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The multistate networks under consideration consist of a source node, a sink node, and some independent failure-prone components
in between the nodes. The components can work at different levels of capacity. For such a network, we are interested in evaluating
the probability that the flow from the source node to the sink node is equal to or greater than a demanded flow of d units. A general
method for reliability evaluation of such multistate networks is using minimal path (cut) vectors. A minimal path vector to system
state d is called a d-MP. Approaches for generating all d-MPs have been reported. Given that all d-MPs have been found, the issue
becomes how to evaluate the probability of the union of the events that the component state vector is greater than or equal to at
least one of the d-MPs. There is a need for a more efficient method of determining the probability of this union of events. In this
paper, we report an efficient recursive algorithm for this union probability evaluation based on the Sum of Disjoint Products (SDP)
principle, and name it the Recursive Sum of Disjoint Products (RSDP) algorithm. The basic idea is that, based on the SDP principle
and a specially defined “maximum” operator, “⊕”, the probability of a union with L vectors can be calculated via calculating the
probabilities of several unions with L − 1 vectors or less. The correctness of RSDP is illustrated. The efficiency of this algorithm
is investigated by comparing it with an existing algorithm that is generally accepted to be efficient. It is found that RSDP is more
efficient than the existing algorithm when the number of components of a system is not too small. RSDP provides us with an efficient,
systematic and simple approach for evaluating multistate network reliability given all d-MPs.

Keywords: Two-terminal networks, multi-state reliability, minimal path vectors, recursive algorithm

Notation

n = the number of components in the network;
Mi = an integer value representing the maximum state

or maximum capacity of component i, Mi ≥ 1,
i = 1, 2, . . . , N;

s = the source node;
t = the sink node;
d = the demand of flow from the source node to the

sink node;
xi = a discrete random variable representing the state

or the capacity of component i, xi may take val-
ues 0, 1, 2, . . . , Mi, i = 1, 2, . . . , N;

x = (x1, x2, . . . , xN) (we call x the component state
vector and it represents the states of all failure-
prone components (i.e., all components);

φ(x) = state of the system;

∗Corresponding author

pij = Pr(xi = j), i = 1, 2, . . . , N, j = 0, 1, 2, . . . , Mi,∑Mi
j=0 pij = 1;

Pij = Pr(xi ≥ j), i = 1, 2, . . . , N, j = 0, 1, 2, . . . , Mi;
zi = the ith minimal path vector of the considered

multistate network;
yi = a general vector with n elements and with index

i;
Yj,i = a vector generated by the “⊕” operator, Yj,i =

yj ⊕ yi;
PrU(•) = the recursive function of the RSDP algorithm;
TMi = the ith term in the SDP calculation;
T1 = The CPU time used by Aven’s algorithm;
T2 = The CPU time used by RSDP;
λ = the ratio T1/T2.

1. Introduction

Many network systems, such as power generation and
transmission systems, oil and gas supply systems, and
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communication systems, consist of components which can
work at different levels of capacity. These systems are re-
garded as multistate networks (Lin et al., 1995; Kuo and
Zuo, 2003; Lisnianski and Levitin, 2003). Reliability is an
important index for evaluating the performance of these
systems and for making decisions such as maintenance
scheduling. We consider a network which satisfies the fol-
lowing assumptions: (i) all nodes are perfect; and (ii) all
links are directed and failure prone. The capacity of a link
is an independent discrete random variable which may take
non-negative integer values following a certain probabil-
ity distribution. The term “components”, which is usually
used in multistate system analysis (Kuo and Zuo, 2003; Lis-
nianski and Levitin, 2003), will be used to refer to these
failure-prone “links”.

We limit our discussions to two-terminal reliability anal-
ysis. This is a classical network reliability problem with
a broad range of practical applications (Kuo et al., 1999;
Ramirez-Marquez and Coit, 2005). We are interested in the
flow from a single source node, s, to a single sink node, t .
Under these assumptions, we can call the flow from node
s to node t the capacity or the state of the system, repre-
sented by φ(x) where x is the component state vector. For
such a network, we are interested in evaluating the prob-
ability that the system state is equal to or greater than d
units, i.e., φ(x) ≥ d, which can also be considered to be the
reliability of the network once d is specified.

A general method for this multistate network reliability
evaluation is using minimal path (cut) vectors. A compo-
nent state vector, x, is called a minimal path vector to sys-
tem state d if φ(x) ≥ d, and φ(y) < d for any y < x. Such
a minimal path vector is also called a d-MP for short. For
the purpose of evaluating the probability of event φ(x) ≥ d,
Xue (1985) reports an algorithm for generating all d-MPs.
Lin et al. (1995) propose another algorithm for the same
purpose, claiming it to be more efficient. Using either algo-
rithm, one can find all d-MPs. Let us suppose that there
are L such d-MPs and, for simplicity, denote them as
z1, z2, . . . , zL. Then, the probability that φ(x) ≥ d can be
calculated is as follows:

Pr(φ(x) ≥ d) = Pr({x ≥ z1} ∪ {x ≥ z2} ∪ · · · ∪ {x ≥ zL}).
(1)

Given that all d-MPs have been found, the issue becomes
how to evaluate the probability of the union of the events for
which the component state vector is greater than or equal
to at least one of the d-MPs, as shown in Equation (1).
Hudson and Kapur presented methods using the Inclusion-
Exclusion (IE) principle and the Sum of Disjoint Products
(SDP) principle to evaluate system reliability and reliabil-
ity bounds for multistate systems given all minimal path
vectors or minimal cut vectors (Hudson and Kapur, 1983a,
1983b; Hudson and Kapur, 1985). However, these methods
are not systematic and not efficient. Aven (1985) proposed
an algorithm based on state space decomposition, which
provides a systematic way of evaluating the union proba-

bility no matter how many d-MPs exist. It has been proved
to be much more efficient than the IE method (Aven, 1985),
except for a situation in which the number of d-MPs is much
smaller than the number of components, which exists in
very few real systems.

In this paper, we propose an efficient recursive algorithm
for the evaluation of multistate network reliability based on
the SDP principle, and name it Recursive Sum of Disjoint
Products (RSDP) algorithm. The basic idea is that, based
on the SDP principle and a specially defined “maximum”
operator, “⊕”, the probability of a union with L vectors
can be calculated via calculating the probabilities of sev-
eral unions with L − 1 vectors or less. The correctness and
efficiency of this algorithm will be investigated.

2. Some definitions

Some definitions that will be used in the proposed RSDP
algorithm are presented in this section.

Definition 1. Event {x ≥ y} means xi ≥ yi for all i, where x
and y are vectors with the same length.

Consider a multistate network with n independent com-
ponents. Component i (1 ≤ i ≤ n) has Mi + 1 discrete and
mutually exclusive states 0, 1, . . . , Mi. For a certain vector
y in which yi represents the state of component i, we have:

Pr(x ≥ y) =
n∏

i=1

Pr(xi ≥ yi) =
n∏

i=1

Pi,yi , (2)

where Pi,yi is the probability of component i in state yi or
above, 0 ≤ yi ≤ Mi. That is

Pi,yi =
Mi∑

j=yi

pi,j,

where Mi represents the highest state of component i, and
pi,j is the probability of component i in state j.

Definition 2. Event {x �≥ y} is the complement of event
{x ≥ y}.

Definition 3. A special “maximum” operator, “⊕”, is de-
fined as

y1 ⊕ y2 ≡ (
max

(
y1

j , y2
j

))
, 1 ≤ j ≤ n. (3)

For example, if y1 = (1, 2, 3, 4), and y2 = (4, 3, 2, 1), we
will have y1 ⊕ y2 = (4, 3, 3, 4). The “⊕” operator defined in
Equation (3) is designed to manipulate those d-MPs, and it
plays an important role in the proposed RSDP algorithm.
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3. The RSDP algorithm

3.1. The proposed RSDP algorithm

In this section, we will propose a recursive algorithm based
on the SDP principle for the evaluation of multistate net-
work reliability. We call this proposed algorithm the RSDP
algorithm.

Suppose we have three minimal path vectors z1, z2 and
z3. From the SDP principle (Hudson and Kapur, 1983; Kuo
and Zuo, 2003), we have:

Pr({x ≥ z1} ∪ {x ≥ z2} ∪ {x ≥ z3})
= Pr(x ≥ z1) + Pr({x �≥ z1}{x ≥ z2})
+ Pr({x �≥ z1}{x �≥ z2}{x ≥ z3}). (4)

The first term can be calculated directly using Equation
(2). The second term is the probability that events {x ≥ z2}
and {x �≥ z1} occur simultaneously. To evaluate the second
term, we can use the following basic probability formula:

Pr(ĀB) = Pr(B) − Pr(AB), (5)

where A and B are two arbitrary events. Applying Equation
(5), the second term in Equation (4) can be written as

Term2 = Pr(x ≥ z1{x ≥ z2})
= Pr(x ≥ z2) − Pr({x ≥ z1}{x ≥ z2})
= Pr(x ≥ z2) − Pr(x ≥ (z1 ⊕ z2))
= Pr(x ≥ z2) − Pr(x ≥ Y1,2) (6)

where Y1,2 = z1 ⊕ z2. As shown in Equation (6), the prob-
ability of an event involving two vectors, z1 and z2, is cal-
culated via the probability of an event involving only one
vector, z2, and the probability of another event involving
only one vector, Y1,2.

The third term in Equation (4) is the probability that
events {x ≥ z3}, {x �≥ z1} and {x �≥ z2} occur simultane-
ously. Let Y1,3 = z1 ⊕ z3, and Y2,3 = z2 ⊕ z3. Similarly, we
can find that the third term “Term3” can be represented as

Term3 = Pr(x ≥ z3) − Pr
(
{x ≥ Y1,3}

⋃
{x ≥ Y2,3}

)
(7)

As can be seen, the third term can be calculated via the
probability of a union of two events. From this specific ex-
ample, we find that a recursive algorithm based on the SDP
principle is viable.

Now we will consider the general case. Suppose we have L
general vectors y1, y2, . . . , yL. We define the recursive func-
tion as

PrU(y1, y2, . . . , yL) ≡ Pr

( L⋃
i=1

{x ≥ yi}
)

(8)

From the SDP principle, we develop the following recursive
algorithm:

PrU(y1, y2, . . . , yL) =
L∑

i=1

TMi, (9)

where TMi is the ith term in the SDP calculation.

TM1 = Pr(x ≥ y1), (10)

TMi = Pr(x ≥ yi) − Pr

( i−1⋃
j=1

{x ≥ Yj,i}
)

= Pr(x ≥ yi) − PrU(Y1,i, . . . , Yi−1,i), for i ≥ 2,

(11)

where vector Yj,i = yj ⊕ yi. The length of Yj,i is the same
as yj and yi, and the value of an element of Yj,i refers to
the corresponding state of the corresponding component.
Therefore, from Equations (9), (10) and (11), the PrU(•)
function with L input vectors can be calculated via PrU(•)
functions with L − 1 input vectors or fewer.

The boundary condition is L = 1. In this case:

PrU(•) = TM1 = Pr(x ≥ y1). (12)

A simplifying procedure is used in RSDP to reduce, when-
ever possible, the number of input vectors in function
PrU(•). That is, for any input vector, yi, if there is an input
vector yj (j �= i) satisfying yi ≥ yj, yi will be deleted from
the set of input vectors. The reason for this is that, under
the assumption that yi ≥ yj, we have (x ≥ yi) ∪ (x ≥ yj) =
(x ≥ yj).

For a multistate network with L d-MPs z1, z2, . . . , zL, its
reliability with respect to level d is

Pr(φ(x) ≥ d) = PrU(z1, z2, . . . , zL).

3.2. An illustrative example

The detailed implementation of RSDP will be illustrated in
this section, using the example given by Lin et al. (1995).
The network system under investigation is a bridge network
as shown in Fig. 1. This network has six components (links)
represented by C1, C2, . . . , C6, respectively. The compo-
nents are made up from various possible states. The state
distributions of the components (Lin et al., 1995) are listed
in Table 1.

There are three 3-MPs:

z1 = (3, 2, 1, 0, 0, 1),
z2 = (2, 2, 0, 0, 1, 1),
z3 = (2, 1, 1, 0, 1, 2). (13)

Table 1. State distributions of the components in the example
network

State 0 1 2 3

Component 1 0.05 0.10 0.25 0.60
Component 2 0.10 0.30 0.60 —
Component 3 0.10 0.90 — —
Component 4 0.10 0.90 — —
Component 5 0.10 0.90 — —
Component 6 0.05 0.25 0.70 —
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Fig. 1. A multistate network with six components.

The proposed RSDP algorithm is used to calculate
Pr(φ(x) ≥ 3). From Equation (9) of the RSDP algorithm,
there will be three terms in this problem:

Pr(φ(x) ≥ 3) = Pr({x ≥ z1} ∪ {x ≥ z2} ∪ {x ≥ z3})
= TM1 + TM2 + TM3. (14)

1. TM1 = Pr(x ≥ z1) = (0.6) · (0.6) · (0.9) · (0.1 + 0.9) ·
(0.1 + 0.9) · (0.25 + 0.7) = 0.3078.

2. From Equation (11), we have:

TM2 = Pr(x ≥ z2) − Pr(x ≥ Y1,2), (15)

where

Y1,2 = z1 ⊕ z2 = (3, 2, 1, 0, 1, 1).

Thus, we get TM2 = 0.1590.
3. From Equation (11) we obtain:

TM3 = Pr(x ≥ z3) − Pr
(
{x ≥ Y1,3}

⋃
{x ≥ Y2,3}

)
(16)

where

Y1,3 = z1 ⊕ z3 = (3, 2, 1, 0, 1, 2),
and

Y2,3 = z2 ⊕ z3 = (2, 2, 1, 0, 1, 2).

Since Y1,3 ≥ Y2,3, based on “the simplifying procedure”,
Y1,3 will be removed. Thus, we have:

TM3 = Pr(x ≥ y3) − Pr(x ≥ Y2,3) = 0.1446. (17)

Eventually we have:

Pr(φ(x) ≥ 3) = TM1 + TM2 + TM3 = 0.6114.

This result agrees with the result in Lin et al. (1995), and
this has illustrated the correctness of the proposed RSDP
algorithm.

In this example, the RSDP approach evaluates five prob-
ability terms. If the IE procedure is used, we need to evalu-
ate seven probability terms. The advantage of the proposed
RSDP procedure over the IE principle is clear from the

following:

Pr
(
{x ≥ Y1,3}

⋃
{x ≥ Y2,3}

)
= Pr(x ≥ Y2,3).

4. Efficiency investigation of the RSDP

Aven’s algorithm (Aven, 1985) is recognized as an efficient
reliability evaluation algorithm for multistate systems com-
pared to conventional methods such as the IE method. The
computation time with the IE method increases exponen-
tially as the number of MPs, L, increases (Aven, 1985). In
this section, we will compare the efficiency of the proposed
RSDP algorithm with that of Aven’s algorithm. We wrote
Aven’s algorithm by following the procedure in Aven (1985)
and the FORTRAN program in its Appendix. The pro-
grams of both RSDP and Aven’s algorithm were developed
using MATLAB 6.5, and were implemented on a computer
with a Pentium M 1.7 GHz CPU and 512 MB of RAM.

In terms of the efficiency of the two algorithms, we are
interested in the required computation time with respect to
different values for the number of components, n, and dif-
ferent values for the number of MPs, L. First we consider
a hypothetical multistate network system with ten compo-
nents. Each component has ten states, from zero to nine;
and the state distributions of all the components are set to
be the same. Specifically, the state distribution vector, p, is
set to be

p = (0.05, 0.15, 0.1, 0.05, 0.15, 0.05, 0.15, 0.1, 0.05, 0.15).

We randomly generate 50 vectors, z1 to z50, indicating the
components’ states, and ensure that there are no two vectors
zi and zj satisfying zi ≥ zj. That is, no vector is dominated
by other vectors in this group (Huang and Zuo, 2004). As
a result, these 50 vectors can be treated as all the MPs to a
hypothetical system state, say state d. Thus, the probability
of the component state vector being not less than any of
these hypothetical MPs can be calculated using after RSDP
or Aven’s algorithm. First, assume that only the first five
MPs, z1 to z5, are available. RSDP and Aven’s algorithm
are used respectively to evaluate the probability of interest.
Then we change L, the number of MPs, by assuming only
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Table 2. Efficiency comparison when the system has ten components

Number of d-MPs (L)

5 10 15 20 25 30 40 50

CPU time by Aven’s algorithm (T1) 0.03 0.22 0.44 0.69 1.20 2.15 9.26 15.71
CPU time by RSDP (T2) 0.01 0.09 0.29 0.83 1.62 2.74 16.475 23.95
Ratio λ = T1/T2 2.60 2.52 1.54 0.83 0.74 0.78 0.56 0.66

Table 3. Efficiency comparison when the system has five components

Number of d-MPs (L)

5 10 15 20 25 30 40 50

CPU time by Aven’s algorithm (T1) 0.008 0.023 0.055 0.085 0.13 0.20 0.25 0.29
CPU time by RSDP (T2) 0.008 0.04 0.10 0.21 0.27 0.35 0.47 0.69
Ratio λ = T1/T2 1.00 0.56 0.55 0.40 0.48 0.56 0.53 0.41

Table 4. Efficiency comparison when the system has 15 components

Number of d-MPs (L)

5 10 15 20 25 30

CPU time by Aven’s algorithm (T1) 0.11 0.67 2.37 4.97 17.22 35.70
CPU time by RSDP (T2) 0.01 0.10 0.35 1.39 6.40 17.95
Ratio λ = T1/T2 11.00 6.70 6.76 3.58 2.69 1.99

Fig. 2. Ratio λ with respect to different number of components and different L.
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the first ten, 15, 20, 25 , 30, 40 or 50 MPs are available,
respectively, and calculate the same probability of interest.
In all these cases, RSDP and Aven’s algorithm lead to the
same results, which further shows the correctness of RSDP.

We need to note that the 50 MPs used above are gen-
erated randomly. The computation time using RSDP or
Aven’s algorithm may be different if we use another group
of 50 MPs. To make more sense in comparing the efficiency
of RSDP and Aven’s algorithm, we randomly generate ten
groups of MP vectors, with 50 MPs in each group. The av-
erage CPU time using these ten groups of MP vectors is
used to represent the CPU time with respect to a certain
L. The CPU time (in seconds) using RSDP or Aven’s al-
gorithm is listed in Table 2, where T1 and T2 represent the
CPU time by Aven’s algorithm and by RSDP, respectively.
Let λ = T1/T2 denote the ratio between the CPU time of
Aven’s algorithm and that of RSDP. That is, λ represents the
advantage of RSDP over Aven’s algorithm in terms of CPU
time. If 0 < λ < 1, RSDP is slower than Aven’s algorithm;
if λ > 1, RSDP is faster than Aven’s algorithm. The bigger
the λ is, the more advantageous RSDP is over Aven’s algo-
rithm. From Table 2, it appears that the computation time
does not increase exponentially as L increases for either
RSDP or Aven’s algorithm. In this specific network system
with ten components, RSDP is a little bit faster when there
are 15 MPs or less, while Aven’s algorithm is faster when
there are 20 MPs or more. From the trend of λ, Aven’s al-
gorithm becomes more advantageous with the increase in
the number of MP vectors (L) for the network with ten
components.

Next, we investigate a multistate network with only five
components. The other settings, such as the number of
states and the state distribution for each component, remain
the same as in the case of a system with ten components.
Similarly, we generate ten groups of MP vectors with 50
MPs in each group, and investigate the efficiency of RSDP
and Aven’s algorithm. The results are shown in Table 3. We
find that for the network with five components, Aven’s al-
gorithm is faster than RSDP. There is no clear trend for
λ with respect to the number of d-MPs. We also conclude
that for networks with a small number of components (less
than ten in this example), Aven’s algorithm is more efficient
than RSDP.

Table 5. Efficiency comparison when the system has 20
components

Number of d-MPs (L)

5 8 10 15 20

CPU time by Aven’s
algorithm (T1)

0.31 0.97 3.27 33.55 114.53

CPU time by RSDP
(T2)

0.01 0.06 0.18 0.95 6.42

Ratio λ = T1/T2 31.27 16.17 18.17 35.44 17.84

Table 6. Efficiency comparison when the system has 30
components

Number of d-MPs (L)

5 8 10 15 20

CPU time by Aven’s
algorithm (T1)

0.93 17.28 75.49 992 15 646

CPU time by RSDP
(T2)

0.01 0.06 0.19 1.92 20.00

Ratio λ = T1/T2 93.00 288.00 397.29 518.02 782.30

Now, we will investigate multistate networks with more
than ten components. First, we consider a multistate net-
work with 15 components. All the other settings remain
the same as in the case of system with ten components. The
results are shown in Table 4. We have also investigated the
case of multistate networks with 20, 30 and 40 components
respectively in the same way, and the results are listed in Ta-
bles 5, 6 and 7. We did not do the case for Aven’s algorithm
when there are 40 components and 20 d-MPs, because in
this case the expected CPU time using Aven’s algorithm is
around 40 hours and thus determining the average CPU
time would take quite a few days.

In the case of 15 components in Table 4, RSDP is faster
than Aven’s algorithm with respect to all L values inves-
tigated. From the trend of λ, the advantage of RSDP de-
creases with the increase of L; however, this trend does not
exist in the cases of 20, 30 and 40 components, as shown
in Tables 5, 6 and 7. In fact, RSDP is much more efficient
than Aven’s algorithm in these cases. Specifically, RSDP
is about 20 times faster than Aven’s algorithm in the case
of the system with 20 components, and hundreds or thou-
sands of times faster than Aven’s algorithm in the cases of
the systems with 30 and 40 components. Thus, it seems that
the efficiency of Aven’s algorithm is much more sensitive
to the number of components than that of RSDP. We can
conclude that RSDP is more efficient than Aven’s algorithm
when the number of components of a system is not too small
(say, when there are more than 15 components in the sys-
tem), and the advantage of RSDP becomes stronger with
the increase of the number of components in the system.

Table 7. Efficiency comparison when the system has 40
components

Number of d-MPs (L)

5 8 10 15 20

CPU time by Aven’s
algorithm (T1)

2.58 80.2 670 8698 —

CPU time by RSDP
(T2)

0.01 0.06 0.22 2.25 37.80

Ratio λ = T1/T2 258.00 1336.67 3045.45 3865.96 —
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In Fig. 2, we present the ratio λ with respect to different
number of components and different number of minimal
path vectors L in a graphical manner. The vertical axis rep-
resents the ratio λ in a logarithm format. Again, it is very
obvious that the advantage of RSDP over Aven’s method
becomes more significant with the increase of the number
of components in the system.

5. Conclusions

In this paper, we developed the RSDP algorithm, an effi-
cient recursive algorithm based on the SDP principle for
reliability evaluation of multistate networks. Based on the
SDP principle and a specially defined “maximum” opera-
tor, “⊕”, RSDP can calculate the probability of a union
with L vectors via calculating the probabilities of several
unions with L − 1 vectors or fewer. The implementation of
RSDP has been illustrated using a simple example. The effi-
ciency of this algorithm has been investigated by comparing
it with Aven’s algorithm which is widely recognized as be-
ing efficient. It has been found that RSDP is more efficient
than Aven’s algorithm when the number of components of
a system is not too small (say, greater than 15), and it can
efficiently deal with the reliability evaluation of complex
systems with a large number of components. RSDP pro-
vides us with an efficient, systematic and simple approach
for evaluating multistate network reliability when all d-MPs
are given.
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