A Robust Autonomous Freeway Driving Algorithm

Junqging Wei
Department of Electrical and
Computer Engineering
Carnegie Mellon University, USA
Email: junqingw @andrew.cmu.edu

Abstract—This paper introduces a robust prediction- and cost-
function based algorithm for autonomous freeway driving. A
prediction engine is built so that the autonomous vehicle is able
to estimate human drivers’ intentions. A cost function library
is used to help behavior planners generate the best strategies.
Finally, the algorithm is tested in a real-time vehicle simulation
platform used by the Tartan Racing Team for the DARPA Urban
Challenge 2007.

I. INTRODUCTION
A. Background

Starting in the 1980s, autonomous driving has gradually
become a fast-developing and promising area. The abilities of
autonomous vehicles have been extended from lane-centering
to intelligent route planning, off-road navigation and interact-
ing with human urban traffic. Autonomous freeway driving
is one of the most promising applications of robotics in
the next few decades. Statistics show that over one million
people were killed worldwide in traffic accidents in 2007. The
risk of death in a freeway accident is much higher than in
other traffic environments. Most accidents on freeways are
caused by tired or careless drivers or mistaken maneuvers
in emergency conditions. These can be efficiently avoided
with an autonomous driving system. Another advantage of
autonomous freeway driving is its ability to free people to
perform tasks other than driving while traveling long distances.
In a word, autonomous freeway driving technology has the
potential to significantly improve the quality of people’s lives.

II. RELATED WORKS

In the 1990s, E.Dickmanns and his colleagues implemented
an autonomous driving platform based on their 4-D approach
to vision data processing [1], [2]. The NAVLAB project at
CMU has built a series of experimental platforms which are
also able to run autonomously on freeways [3], [4], but do
not include lane selecting, merging behavior and the ability to
blend into the human traffic environment. Rahul Sukthankar
introduced evolutionary algorithms into autonomous freeway
driving behavior control in the 1990s [5], [6]. A three-level
lane-selecting algorithm was used by Jun Miura et al., and
estimated arrival time and event-triggered computation were
used to handle a simulated uncertain freeway traffic envi-
ronment [7]. However, none of these systems was designed
for practical road testing. Many system parameters, such
as the latency, vehicle dynamic performance, input errors

978-1-4244-3504-3/09/$25.00 ©2009 IEEE

John M. Dolan
The Robotics Institute &

Department of Electrical and Computer Engineering

Carnegie Mellon University, USA
Email: jmd@cs.cmu.edu

and sensor ranges were not fully considered. In analyzing
human driver behavior, Ahmed et al. focused on building a
mathematical model to simulate human driver acceleration
and lane-changing behavior [8], [9]. They successfully verified
this modelthrough real traffic data. However, their models’
inputs are not fully compatible with the perception ability
of our autonomous vehicle. And if we directly port their
algorithms to our autonomous vehicle, the system may lose
the potential to exceed human driving performance. In 2007,
the DARPA Urban Challenge provided researchers a prac-
tical scenario in which to test the latest sensors, computer
technologies and artificial intelligence algorithms [10]. Basic
interaction between autonomous vehicles and human-driven
vehicles was proven in low-density, low-velocity traffic. But
another challenging functionality, that of freeway driving,
was not included in the challenge. To finish the competition,
most teams used rather conservative algorithms: their vehicles
preferred to avoid difficult maneuvers in high-density traffic by
stopping and waiting for a clear opening instead of interacting
with it and operating the vehicle and human drivers. Compared
to this previous work, our research can be summarized as
follows.

1) Prediction Engine: We build an intelligent prediction en-
gine with the ability to realizing the intentions of surrounding
vehicles, which provides the autonomous vehicle a look-ahead
ability similar to that of human drivers.

2) Cost Function-Based Scenario Evaluation: We construct
a cost function library which is called by behavior modules to
evaluate the predicted scenarios and generate best strategies.

3) Prediction- and Cost Function-based Algorithm: A
prediction- and cost function-based algorithm is implemented
in three behavior modules related to freeway driving ability,
distance keeping, lane selecting and merge planning, which
improves the performance and robustness.

4) Freeway Driving Performance Analysis: We build a
hybrid performance analysis tool. It combines the advantages
of both qualitative and quantitative performance evaluation.

ITII. SYSTEM FRAMEWORK

A. Software Platform

Because the autonomous driving systems are rather compli-
cated and autonomous freeway driving tests can be dangerous,
it is indispensable to simulate algorithms before conducting
real freeway tests. In the DARPA Urban Challenge 2007,

1015

Mission Planning

Vehicle [—»Perception Behavior Executive

A

Motion Planning

Fig. 1. TROCS Framework
. . Cost Function
Candidate Predu}tmn N based L Best Output
Parameters Engine . Parameters
Evaluation

Fig. 2. Prediction and Cost Function Based Algorithm

the Tartan Racing team built a real-time vehicle controller
called TROCS (Tartan Racing Operator Control System) [11].
Most of the artificial intelligence we used in the competition
was developed and tested using the TROCS simulator, so
its performance and accuracy have been well proven. In
order to implement the new robust freeway algorithms, we
decided to use the TROCS simulator for better testability
and compatibility with previous work. There are four primary
subsystems in TROCS, as shown in Figure 1. The perception
system analyzes real-time data input from LIDAR, radar and
GPS sensors. The role of mission planning is to optimize
the path to achieve different checkpoints considering the
arrival time and distance. In the behavior executive system
we use artificial intelligence to control the vehicle’s behaviors
and interactions with traffic. Motion planning executes the
behavior command while considering the dynamic parameters
and outputting steering and throttle commands.

In developing the behavior control algorithm, we used
the simulation mode of TROCS. In this mode, TROCS will
simulate the perception output and also the traffic environment,
so that we can test our algorithm accurately in simulation.
After the simulation, the tested algorithm can be directly
ported to the vehicle for practical road tests.

IV. PREDICTION- AND COST FUNCTION- BASED
ALGORITHM

A. Algorithm Framework

The diagram of this algorithm is shown in Figure 2.
There are three primary steps in this algorithm: candidate
parameter generation, prediction, and scenario evaluation. In
the candidate parameter generation step, a set of candidate
output parameters is generated. In the distance keeper module,
for example, the generator produces 20 different acceleration
values ranging from -3.0m/s to 3.0m/s. Then the parameter set
as well as the map of the current moving vehicles are sent to
the prediction engine, which generates a series of simulated
scenarios in the following t seconds. For instance, if we set the
prediction interval to 0.3 seconds and predict for 10 steps, we
will get the predicted scenario of the next 3 seconds. The cost
function-based evaluation block then begins to compute the
cost value of each scenario, which represents the performance
of a corresponding input parameter. By using this mechanism,

Fig. 3. Abstract Vehicle Map

we successfully separate the complicated behavior strategy
generation process into two relatively independent parts. The
prediction engine only considers how to accurately generate
simulated scenarios, while the cost function block implements
and imitates a human driver’s evaluation of a given scenario.

B. Prediction Engine

While human drivers operate vehicles on the freeway, they
can react and communicate efficiently with each other by
showing their intentions and also recognizing other vehi-
cles’ intentions. This mechanism provides experienced human
drivers enough time to prepare and make suitable maneuvers in
advance. To implement this look-ahead ability in autonomous
driving, we build two prediction engines into our algorithm.
For better prediction performance and lower computing cost,
we summarize the prediction engine’s input into a single
structure, the Abstract Vehicle Map (AVM), which represents
the micro traffic environment. As shown in Figure 3, in this
structure, the distances and velocities of the 8 vehicles around
us are considered. There are three reasons of choosing this
8-vehicle Abstract Vehicle Map. First, it gives the minimum
number of vehicles we should consider without adding un-
necessary additional vehicles. It thus efficiently represents
the micro traffic environment around a vehicle, especially on
freeways. Second, in Rahul Sukthankar’s research [5], [6] a
similar abstract input was proven to be feasible in tactical
controlling. Finally, it fits the autonomous vehicles’ sensing
range and ability well. After abstracting the input of the
prediction engine, we use two different assumptions described
below to implement the prediction engine and compute the
simulated AVM results.

1) Constant-Velocity AVM: Due to the uncertainty of the
traffic environment, the longer the prediction period, the larger
the error. We therefore restrict the prediction time to less than
five seconds, which is also similar to human driver’s prediction
ability. Because most drivers keep their velocities relatively
constant on freeways, we just assume that the surrounding
vehicles’ velocities in the AVM are constant. Based on this, we
build the prediction kernel equation in the prediction engine.

ey
2

In Equation 2, v(:) is the relative velocity array of sur-
rounding vehicles, acnqg is the commanded acceleration of
our autonomous vehicle, and d(2) is the relative distance of
the surrounding cars in the AVM. The prediction model thus
assumes that our autonomous vehicle is static while other
surrounding vehicles move relative to it.

v(i+1) = v(i) + acmalt
d(i +1) = d(i) + v(i) At

1016

Fig. 4. Cost Function Library

2) Interactive AVM: Though the constant-velocity assump-
tion is effective in most freeway scenarios, to accurately
predict the vehicles’ movement we also need to consider
surrounding vehicles’ reactions to their own micro traffic
environment. For instance, if one vehicle runs faster than
the vehicle in front of it, it will slow down when close
to it instead of maintaining constant velocity. We therefore
introduce an interactive prediction kernel with basic distance-
keeping ability into this engine. In Equation 3, f(Ad, Av)
represents a velocity reduction factor related to the clearance
gap and velocity differences between each vehicle in the AVM
and its corresponding lead vehicle.

v(i + 1) = v(1) + acmaAt + f(Ad, Av)
d(i+1) =d(i) + v(i)At

3
C))

This look-ahead model, to some extent, serves as a differ-
ential controller in the traditional PID sense. However, it will
be very complicated to model the interaction and interference
between vehicles in traditional PID controllers. Compared to
a traditional PID controller, our prediction engine mechanism
is not only robust, but straightforward to implement, as well.
By using the prediction engine, we successfully implement
prediction ability similar to that of human drivers.

C. Cost Function Library

In scenario evaluation, the choice of cost functions is an
important factor that influences the system’s performance and
robustness. We use seven kinds of base cost function to
quantify human drivers’ scenario evaluation. Based on these
seven base cost functions, a highly reusable and reconfigurable
cost function library shared by different behavior modules is
built.

1) Gap Error: The gap error cost is mainly used in keeping
a desired distance while following a lead vehicle. When the
gap error is smaller than zero, which means the current
distance to the lead vehicle is smaller than desired, the cost
increases significantly. When the gap error is between 0 and
10 meters, the gap is deemed satisfactory, and the cost is quite
low.

2) Clear Distance: The clear distance cost penalizes mov-
ing too close to surrounding vehicles. It is set to zero when
all other vehicles are above safe distances.

| Distance Keeper

~

| Gap Error

| Lane Selector |

R

Merge Planner

Velocity
Difference

Distance to
Goal

—f
Time
‘Consumption

| Clear Distance

| Acceleration |

Fig. 5. Cost Function Library Dependencies

Output
Command

DK Velocity
DK Acceleration

Distance
Keeper

Vehicle
Driver

Intended
Lane

Lane
Selector

Merge
Planner

Merge Velocity
Merge Acceleration
Commanded Lane

Fig. 6. Freeway Driving Modules

3) Arrival Time Cost: Time cost is an important factor in
scenario evaluation, since we are always trying to reach the
destination as quickly as possible, all other things being equal.

4) Distance to Goal: The cost of distance to goal is used
in some maneuvers, such as merging into the right-most lane
when the vehicle is close to the exit of a freeway. This cost
is only in effect when the autonomous vehicle is close to the
goal. Figure 4 shows that when the distance to goal is small,
the cost becomes very big.

5) Merge Safety: To evaluate whether a merging maneuver
is safe enough, both the clear distance and the velocity
difference should be considered, so this cost function is related
to both of these factors. Figure 4 shows this two-dimensional
cost function.

6) Acceleration: When driving a car, experienced human
drivers will try to avoid large acceleration to ensure passenger
comfort. The acceleration cost function represents this logic,
as shown in Figure 4. In general, drivers also prefer not to
brake hard in order to save gas and make driving smooth, so
the gain of deceleration is larger than that of acceleration.

7) Adjust Time: In the merging process, we need a adjust-
ment period for autonomous vehicles to get into a feasible
position for merging. This non-linear cost function shows
that the preferred adjustment time is less than or equal to
0.8 seconds, which is also similar to a human’s adjustment
behavior before a merge.

The library utilization and dependencies are shown in Figure
5. Many modules share the same cost functions. The differ-
ences are in the x-axis scales and the cost weights. The cost
weights represent how important a factor is in the scenario
evaluation. The x-axis scaling also enhances cost-function
library reuse and reconfigurability in different modules.

D. Implementation

There are three modules related to freeway driving ability
that need to be implemented or modified in the behavior
executive. They are the distance keeper, lane selector and
merge planner. The data flow is depicted in Figure 6. The role
of the distance keeper is to keep a reasonable distance from the
lead vehicle and it has two outputs, desired acceleration and
desired velocity. The role of the lane selector is to output the
intended lane that the autonomous vehicle wants to merge into.

1017

When the intended lane is different from the current lane we
are driving in, the merge planner will be triggered. It computes
the feasibility of merging and chooses the best opportunity to
merge. Three outputs are used to implement this. They are
merge acceleration, merge velocity and commanded lane.

1) Distance Keeper: We first implement our distance
keeper based on the prediction- and cost function-based al-
gorithm framework. The objective of this module is to keep
a reasonable distance from the leading vehicle. The distance
ddesired 1S computed according to the current velocity as
shown in Equation 5.

Ddesz'red = sz‘n + vaehz‘cle (5)

In this module, we use two cost functions for evaluating and
selecting the best result for the gap error (AD = D yrrent —
Dyesireq) and the cost of acceleration, as shown in Equation
6.

©®

For each generated prediction scenario, we compute its corre-
sponding Cap, Cgyee and then get Cieenario- As shown in
Equation 7, Cyotar is the average cost of all the predicted
scenarios, and n is the number of prediction steps.

Ciotal = z:(Cscenm"io/n) @)

The acceleration and velocity corresponding to the lowest
Ctotai is the module’s output. The performance will be shown
and analyzed in Section V.

2) Freeway Lane Selector: The role of the lane selector is to
output the ID of the intended lane for the vehicle to merge into.
The previous lane-selecting algorithm is rather conservative.
It always tries to merge into the goal lane and then keep in
that lane no matter how far the destination is, except that
the lead vehicle is stopped or of abnormal low speed. Our
prediction- and cost function-based lane selector provides a
more intelligent and robust ability on selecting intended lanes.
One of the main component of the lane selection cost is
the estimated arrival time to the goal. However, since the
traffic environment is uncertain, it is impossible to compute
the arrival time with only local sensor data. We therefore use
a virtual goal instead. The estimated arrival time of virtual
goal consists of three parts as shown in Equation 8.

Cicenario = #1CaD + p2Cacc

®

Cmerge Tepresents the estimated time to perform the merg-
ing maneuver; if the vehicle stays in the current lane, then
Crerge = 0. Ceatcn Tepresents the estimated time for au-
tonomous vehicle to catch up with a lead vehicle, if there is
one. Cyoyi0n represents the remaining time cost after merging
and catching up maneuvers to reach the virtual goal.

For better adjustable and robustness to input noise, we
compute three estimated arrival time for virtual goals 450m,
350m and 250m down the road. We then weight the three time
cost and compute the sum fo them for the final evaluation, as
shown in Equation 9.

Carm’val = Cmerge + Ccatch + Cfollow

Cave = 113Carrivalaso + 1#4Carrivaizso + 15Carrivaizso (9)

After computing the estimated arrival time, merge risk penalty
and distance to goal penalty are added as shown in Equation
10

Clane = Cave + HﬁCrisk + H7CcloseToGoal (10)

The merging risk uses the clear distance cost in the library. It
reflects a strategy preference of merging into lanes with larger
gaps. When the vehicle is close to goal, we add penalty times
to the estimated arrival time of the lanes other than the goal
lane, so that the lane selecting algorithm will not cause the
vehicle to miss destinations. Then this module will output the
lane corresponding to the lowest Cjgpe.

3) Merge Planner: The merge planner computes the merge
commands, including desired velocity, acceleration and merge
status. There are mainly two statuses in a typical merging ma-
neuver, adjusting and merging. The rule-based merge planner
strategy we used in the Urban Challenge tries to make this
maneuver as safe as possible. But on freeways its adjustment
strategy, such as slowing down or even stopping to wait
for merging gaps, is not proper and can be dangerous. We
therefore implemented a smarter merge planner with better
performance on freeways. In our prediction- and cost function-
based implementation, there are four parameters that represent
a merging strategy, adjustment time, adjustment acceleration,
merging time and merging acceleration. But since the merging
time is controlled by the lower-level motion planning subsys-
tem, we set it to a constant. We then send different combination
of the three inputs into the prediction engine. As shown in
Equation 11, the cost of a merge strategy consists of two parts,
adjustment cost and merging cost.

Costiotal = /J'SCadj + /J'Qcmerge (11)
COStadj = p10XCelear + HllcadjT + 112C0cc (12)
COStmerge = N132(Cclear) + ,Uf142(CAV) + ,Uflscacc (13)

Adjustment cost considers the clear distance, adjustment time
and acceleration only in the current lane. And the merging
cost considers the clear distance, acceleration, and velocity
difference of both current and intended lanes, as shown in
Equation 12 and 13.

V. PERFORMANCE EVALUATION
A. Testing Scenario Generator

To test the performance of our algorithm, the first step is to
build a freeway scenario in simulation. The scenario should
be random, but statistically repeatable, and should be similar
to practical freeway environments.

1) Normal Freeway Traffic: The freeway traffic environ-
ment is generated through a Gaussian random number gen-
erator. Both the distances between vehicles and velocities
have a Gaussian distribution. Therefore, by adjusting the four
parameters, dgye, do, Ugve and v,, we get different traffic
environments.

2) Checkpoints: The testing autonomous vehicle enters the
road in the center lane and its destination is in the same lane.
Currently, the more complicated traffic features near exits or
entrances are not included.

1018

Matlab
Performance
Evaluator

Human
Readable
Convertor

Comma-Separated
VAlues (CSV)
File

. . Driving Data
Simulation — Logging File —» —>

Fig. 7. Logging File Analyzing Mechanism

Fig. 8. Performance Improvements of Distance Keeper

Fig. 9. Vehicle Following Performance

3) Road Length: In this experiment, the length of the
test road is set to 20,000m, so that it is long enough for
repeatability.

B. Performance Analyzing

Because human evaluations of the driving skills are mainly
qualitative, there is no universally accepted way to compare
different algorithms or set an optimization goal. Some previous
work in strategy optimization uses a global cost function
to evaluate the performances [5], [6]. However, there are
many factors in driving ability, so a single value is not
representative enough. Other researches use the time-maneuver
plots to show the performance improvements [7]. But this
qualitative evaluator is not able to show global performance
improvements. We therefore propose a logging file analysis
mechanism, as shown in Figure 7. The evaluator can summa-
rize our simulation results using the following features: arrival
time, number of maneuvers, histogram of velocity, acceleration
and clear distances. It is then much easier for people to
use their preliminary knowledge to analyze the algorithms’
the advantages and disadvantages. In our research, both the
statistical features and explanation of specific examples will
be used to show performance improvements.

C. Experiment Results

1) Distance Keeper: Figure 8 shows that due to the cost of
the acceleration, the vehicle no longer strictly follows the lead
vehicle’s speed and keeps a constant distance from it. Instead,
it considers the need of following and also the smoothness of
driving at the same time. Figure 8 also shows that the ratio
r = u2/ul represent the strategy generators’ preference of
strict following or smooth driving. As shown is Figure 9, the
latency of reaction is smaller using this algorithm in following
lead vehicle. With prediction the vehicle is able to accelerate
or decelerate more resonablely. All these features show that

Fig. 10. Performance Comparison of Lane Selector

TABLE I
AVERAGE PERFORMANCE FROM 5 RANDOM SCENARIO TESTS

Cost Weights Nmanewver tarrival (8)
uz=1,ua =1,us =1 [55.3+3.8 1897.1 £ 73.1
w3z =2,u4 =1, u5 =0 | 387154 2049.9 +122.4
w3 =0,pus =1, u5 =2 | 85+9.0 1939.2 + 69.8

Fig. 11. Merging Between Two Vehicles

Fig. 12. Circumventing Vehicles

the prediction- and cost function-based algorithm makes the
distance-keeping strategy more similar to that of the human
drivers.

2) Lane Selector: Table I shows the performance improve-
ments of using prediction- and cost function-based algorithm.
We also find that parameters pu3, ¢4 and ps, which represent
the respective weights of ¢4.riyqr to 250m, 350m, 450m virtual
goals, influence the performance a lot. With larger us or
smaller u3, the system emphasizes long-term time savings
more than short-term advantages. However, if we consider
long-term time savings too much, the possible velocity vari-
ances of surrounding vehicles will lead to inaccurate prediction
and cause the vehicle to make incorrect decisions. As shown
in Figure 10, with larger us, there are more oscillations
between lanes. In contrast, with more consideration of short-
term advantages, larger u3, we failed to select the most time-
saving lanes and the time consumption is larger.

3) Merge Planner: There are two examples show the robust
and smarter merge planner we implemented, which is in Figure
11 and 12. In the first scenario, the vehicle makes a smooth
merge while keeping the most reasonable distances between
V1 and V2. And by adjusting cost function parameters pg
the merge strategy can be either conservative (u 1.5)
or aggressive (4 = 0.5). The second example shows the
autonomous vehicle’s ability of emergency merging with the
relatively optimal safety clearances instead of a merge failure.

1019

TABLE II
AVERAGE OVERALL PERFORMANCE FROM 5 RANDOM SCENARIO TESTS

(dC = l > Ug= l)
dave (M) Vave (MV/S) tarrival Nmerge

Current 150 8 2173.4+130.2 36.4+2.0
Previous | 150 8 2985.9 +99.1 156.4 £+ 20.1
Current 120 7.5 2220.0 £99.7 43.5+5.3
Previous | 120 7.5 2726.4 £100.2 146.1 +2.0
Current 920 7 2641.7 £ 54.2 51.0+7.5
Previous | 90 7 2941.0 £150.7 139.9+19.6
Current 60 6.5 3195.5 +20.3 36.9 2.0
Previous | 60 6.5 3070.4 £190.5 146.0+31.9

Fig. 13. Velocity and Clear Distance Histogram

This is very helpful when the vehicle is close to the objective
freeway exit.

4) Cooperation of the Three Modules: After separately
testing the three modules, we integrated them into our TROCS
platform together. Table II shows the statistical results ex-
tracted from tests in different scenarios. Compared to the pre-
vious strategy, the vehicle using the new algorithm arrives 20%
faster. The improvements are more obvious in not so heavy
traffic, since there are more circumventing opportunities. We
also analyze the histograms of velocities and clear distances,
as shown in Figure 13. As you can see, when dg,. > 90, the
histograms of velocities are similar. This means our algorithm
is adaptive to different traffic densities. When the traffic is
heavier (dgye = 60), it takes the vehicle longer time to get
into a feasible position for merging, therefore it has to keep
larger distances from the lead vehicles quite often.

Through the performance evaluation, we arrive at four
conclusions regarding the prediction- and cost function-based
algorithm. First, the algorithm increases the human signifi-
cantly. The autonomous vehicle performs more intelligently
and similarly to a human driving vehicle. Second, the safety
performance is satisfactory. Different parameters in behavior
modules only affect the preferences of the strategy, while the
safety performance is strictly ensured. Third, the algorithm
is capable and robust in dealing with traffic environments
with higher density and variant velocity. Finally, the algorithm
provides high reconfigurability ability in behavior modules.
By adjusting parameters, the strategies will perform either
aggressively or conservatively.

VI. CONCLUSIONS

A. Achievements

According to the performance analyzer based on the real-
time vehicle control platform TROCS, the robustness and
performance of the autonomous freeway driving increase

a lot. The strategy generated by the new algorithm saves
about 20% times while driving on a freeway with traffic.
And the maneuver numbers decreases 70%, which means
that the merging and lane selecting are more reasonable and
efficient. In conclusion, the prediction- and cost function-based
algorithm has been proven to be functional and promising in
improving autonomous vehicles’ behavior abilities.

B. Further Improvements and Works

Though autonomous freeway driving ability is preliminarily
proven to be satisfactory on the simulated platform, there are
potential improvements. First, we plan to use machine learning
and pattern recognition to refine our prediction model and
extend it to a vehicle intention recognition system. Second,
a parameters self-adjustment is necessary for the prediction-
and cost function-based algorithm. Through this mechanism,
we may be able to find a set of particular cost function library
parameters that makes a greater contribution to improving
travel time, while another set contributes more to lowering
the number of lane changes. By intelligent switching between
these parameter sets, we may achieve better performance,
robustness and safety. Finally, we expect to test our algorithm
at freeway speeds with human test subject soon.

ACKNOWLEDGMENT

This work was supported in part by General Motors through
the GM-Carnegie Mellon Autonomous Driving Collaborative
Research Laboratory. The authors also would like to thank
the Tartan Racing Team in the DARPA Urban Challenge, who
built the vehicle control platform TROCS.

REFERENCES

[1] E. D. Dickmanns, “Vehicles capable of dynamic vision: a new breed of
technical beings?” Artificial Intelligence, vol. 103, no. 1-2, pp. 49-76,
Aug. 1998.

R. Gregor, M. Lutzeler, M. Pellkofer, K. H. Siedersberger, and E. D.
Dickmanns, “Ems-vision: a perceptual system for autonomous vehicles,”
vol. 3, no. 1, pp. 48-59, March 2002.

D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural net-
work,” 1989.

C. Thorpe, M. Herbert, T. Kanade, and S. Shafer, “Toward autonomous
driving: the cmu navlab. i. perception,” vol. 6, no. 4, pp. 3142, Aug.
1991.

R. Sukthankar, J. Hancock, D. Pomerleau, and C. Thorpe, “A simulation
and design system for tactical driving algorithms,” Proceedings of Al,
Simulation and Planning in High Autonomy Systems, 1996.

R. Sukthankar, J. Hancock, S. Baluja, D. Pomerleau, and C. Thorpe,
“Adaptive intelligent vehicle modules for tactical driving.”

J. Miura, M. Ito, and Y. Shirai, “A three-level control architecture
for autonomous vehicle driving in a dynamic and uncertain traffic
environment,” IEEE Conf. on Intelligent Transportation Systems, pp.
706-711, 1997.

K. Ahmed, E. Moshe, H. Koutsopoulos, and R. Mishalani, “Models of
freeway lane changing and gap acceptance behavior,” in Proceedings of
the 13th International Symposium on the Theory of Traffic Flow and
Transportation, 1996, pp. 501-515.

K. I. Ahmed, “Modeling drivers’ acceleration and lane changing be-
havior,” Ph.D. dissertation, Massachusetts Institute of Technology, Feb
1999.

C. Urmson et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp.
425-466, 2008.

C. R. Baker and J. M. Dolan, “A case study in behavioral subsystem
engineering for the urban challenge,” IEEE RAM SPECIAL ISSUE ON
SOFTWARE ENGINEERING IN ROBOTICS, 2008.

(2]

(3]
(4]

(3]

(6]

(7

(8]

9]

[10]

[11]

1020

