
A 3–Subiteration Surface–Thinning Algorithm

Kálmán Palágyi

Department of Image Processing and Computer Graphics,
University of Szeged, Hungary
palagyi@inf.u-szeged.hu

Abstract. Thinning is an iterative layer by layer erosion for extracting
skeleton. This paper presents an efficient parallel 3D thinning algorithm
which produces medial surfaces. A three–subiteration strategy is pro-
posed: the thinning operation is changed from iteration to iteration with
a period of three according to the three deletion directions.

1 Introduction

Skeleton is a region–based shape feature that is extracted from binary image
data. A very illustrative definition of the skeleton is given using the prairie–fire
analogy: the object boundary is set on fire and the skeleton is formed by the
loci where the fire fronts meet and quench each other [4]. In discrete spaces, the
thinning process is a frequently used method for producing an approximation to
the skeleton in a topology–preserving way [7]. It is based on digital simulation of
the fire front propagation: border points of a binary object that satisfy certain
topological and geometric constraints are deleted in iteration steps. The entire
process is repeated until only the “skeleton” is left.

A simple point is an object point whose deletion does not alter the topology of
the image [9]. Sequential thinning algorithms delete simple points which are not
end points, since preserving end–points provides important information relative
to the shape of the objects. Curve thinning (i.e., a thinning process for extracting
medial line) preserves line–end points while surface thinning (i.e., a thinning
process for extracting medial surface) does not delete surface–end points.

Parallel thinning algorithms delete a set of simple points simultaneously.
A possible approach to preserve topology is to use directional approach (of-
ten referred to as subiteration–based or border sequential strategy) [6]: the
thinning operation is changed from iteration to iteration with a period of n
(n ≥ 2); each iteration of a period is then called a subiteration where only bor-
der points of certain kind can be deleted. Since there are six kinds of major
directions in 3D images, 6–subiteration thinning algorithms were generally pro-
posed [3,5,8,11,12,17]. Note, that 3–, 8–, and 12–subiteration algorithms were
also developed [13,14,15].

In this paper, a new non–conventional 3–subiteration surface thinning algo-
rithm is proposed. Some experiments are made on synthetic objects and the
effectiveness is demonstrated.

W.G. Kropatsch, M. Kampel, and A. Hanbury (Eds.): CAIP 2007, LNCS 4673, pp. 628–635, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A 3–Subiteration Surface–Thinning Algorithm 629

2 Basic Notions

Let p be a point in the 3D digital space Z
3. Let us denote Nj(p) (for j = 6, 26)

the set of points j–adjacent to point p (see Fig. 1). A binary image I is a mapping
(I : Z

3 → {0, 1}), that assigns value 1 to black (or object) points and value 0 is
assigned to white points.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

• • •

• S •

• • •

• U •

W p E

• D •

• • •

• N •

• • •

�
�

�
�

�
�

�
�

�
�

Fig. 1. The set N6(p) of the central point p ∈ Z
3 contains the central point p and the

6 points marked U= u(p), N= n(p), E= e(p), S= s(p), W= w(p), and D= d(p). The
set N26(p) contains N6(p) and the additional 18 points marked “•”.

We are dealing with (26, 6) images [7] (i.e., the equivalence classes of the set
of black points induced by the transitive closure of the 26–adjacency form the
objects of the given image; white components (the background and the cavities)
are the equivalence classes of the set of white points induced by the transitive
closure of the 6–adjacency). It is assumed that any image contains finitely many
black points.

A black point is called border point if it is 6–adjacent to at least one white
point. A border point p is called U–border point in image I if I(u(p)) = 0 (see
Fig. 1). We can define N–, E–, S–, W–, and D–border points in the same way.
A black point p is called interior point if it is not border point (i.e., I(p) =
I(u(p)) = I(n(p)) = I(e(p)) = I(s(p)) = I(w(p)) = I(d(p)) = 1). A black point
is called simple point if its deletion does not alter the topology of the image [7].
(Note, that the simplicity of point p in a (26, 6) image is a local property; it can
be decided in view of N26(p).)

We propose a new surface thinning algorithm for extracting medial surfaces
from 3D (26, 6) images. The deletable points of the algorithm are border points
of certain types and not surface end–points (i.e., which are not extremities of sur-
faces). The proposed algorithm uses the following characterization of the surface
end–points: A black point is surface end–point in a image if it is border point and
it is not 6-adjacent to any interior point. Note, that the same characterization
has been used by other authors [1,10].

3 The New Thinning Algorithm

Each conventional 6–subiteration 3D thinning algorithm uses the six deletion
directions that can delete certain U–, D–, N–, E–, S–, and W–border points,

630 K. Palágyi

respectively [3,5,8,11,12,17]. In our 3–subiteration approach, two kinds of border
points can be deleted in each subiteration. The three deletion directions corre-
spond to the three kinds of opposite pairs of points, and are denoted by UD,
NS, and EW. The first subiteration assigned to the deletion direction UD can
delete certain U– or D–border points; the second subiteration associated with
the deletion direction NS attempt to delete N– or S–border points, and some
E– or W–border points can be deleted by the third subiteration corresponding
to the deletion direction EW.

The proposed algorithm is given as follows:

Input: binary image A
Output: binary image B
3-subiteration thinning(A,B)
begin

B = A;
repeat

B = deletion from UD(B); /* 1st subiteration */
B = deletion from NS(B); /* 2nd subiteration */
B = deletion from EW(B); /* 3rd subiteration */

until no points are deleted ;
end.

The new value of a black point depends on the values of 28 additional points.
The considered special neighbourhoods are presented in Fig. 2.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�UD

� � �

� � �

� � �

� � �

� p �

� � �

� � �

� � �

� � �

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�NS

� � �

� � �

� � �

� � �

� p �

� � �

� � �

� � �

� � ��

�
��

��
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�EW

� � �

� � �

� � �

� � �

� p �

� � �

� � �

� � �

� � �
� �

�
�

�
�

�
�

�
�

�
�

Fig. 2. The special local neighbourhoods assigned to the deletion directions UD, NS,
and EW, respectively. The new value of a black point p depends on N26(p) (marked
“�”) and two additional points (marked “�”).

Deletable points in a subiteration are given by a set of matching templates. A
black point is deletable if at least one template in the set of templates matches it.

The set of templates TUD is given by Fig. 3. Note that Fig. 3 shows only the
eight base templates TU1–TU4,TD1–TD4. Additionally, all their rotations
around the vertical axis belong to TUD, where the rotation angles are 90◦, 180◦,
and 270◦. It is easy to see that the complete TUD contains 2 · (1+4+4+4) = 26
templates. This set of templates was constructed for deleting some simple points

A 3–Subiteration Surface–Thinning Algorithm 631

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�TU1

◦ ◦ ◦

· · ·

· • ·

◦ ◦ ◦

· p ·

• • •

◦ ◦ ◦

· · ·

· • ·

•

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�TU2

· · ·

· • ·

· • ·

◦ ◦ ◦

· p ·

• • •

◦ ◦ ◦

· · ·

· • ·

•

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�TU3

· · ·

· • ·

· • ·

· ◦ ◦

• p ·

• • •

· ◦ ◦

· · ·

· • ·

•

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�TU4

• ◦ ◦

• · ·

· • ·

◦ ◦ ◦

· p ·

• • •

◦ ◦ ◦

· · ·

· • ·

•

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�TD1

· • ·

· · ·

◦ ◦ ◦

• • •

· p ·

◦ ◦ ◦

· • ·

· · ·

◦ ◦ ◦

•

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�TD2

· • ·

· • ·

· · ·

• • •

· p ·

◦ ◦ ◦

· • ·

· · ·

◦ ◦ ◦

•

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�TD3

· • ·

· • ·

· · ·

• • •

• p ·

· ◦ ◦

· • ·

· · ·

· ◦ ◦

•

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�TD4

· • ·

• · ·

• ◦ ◦

• • •

· p ·

◦ ◦ ◦

· • ·

· · ·

◦ ◦ ◦

•

�

�

�

�

�

�

�

�

�

�

Fig. 3. Base templates TU1–TU4,TD1–TD4 and their rotations around the vertical
axis form the set of templates TUD assigned to the deletion direction UD. This set of
templates belongs to the first subiteration. Notations: each position marked “p” and
“•”, matches a black point; each position marked “◦” matches a white point; each “·”
(“don’t care”) matches either a black or a white point.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�UD

6 7 8

14 15 16

22 23 24

3 4 5

12 p 13

20 � 21

0 1 2

9 10 11

17 18 19

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�NS

22 23 24

20 � 21

17 18 19

14 15 16

12 p 13

9 10 11

6 7 8

3 4 5

0 1 2

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�EW

22 14 6

23 15 7

24 16 8

20 12 3

� p 4

21 13 5

17 9 0

18 10 1

19 11 2

�
�

�
�

�
�

�
�

�
�

Fig. 4. Indices of the 25 Boolean variables (i.e., the considered points in N26(p)).
Note, that investigating the point marked “�” is not needed. Since the deletion rule
of a subiteration can be derived from the deletion rule of the reference subiteration
UD by the proper rotation, the indexing scheme of a subiteration corresponds to the
proper permutation of positions assigned to the reference subiteration.

which are neither surface end–points nor extremities of surfaces. The deletable
points of the other two subiterations (corresponding to deletion directions NS
and EW) can be obtained by proper rotations of the templates in TUD.

Note that choosing another order of the deletion directions yields another
algorithm. The proposed algorithm terminates when there are no more black
points to be deleted. Since all considered input images are finite, it will terminate.

632 K. Palágyi

Fig. 5. Two synthetic images containing a 140 × 140 × 50 horse and a 45 × 45 × 45
cube (top); and their skeletons produced by the proposed surface–thinning algorithm
(bottom)

Implementing the proposed algorithm seems to be rather difficult and time
consuming, but it is wide of the mark. We can state that a border point in image
B is to be deleted from deletion direction UD if:

((B(d(p))=1 and B(u(p))=0 and d(p) is interior point) or
(B(u(p))=1 and B(d(p))=0 and u(p) is interior point)) and

f(x0, x1, . . . , x24) = 1,

where f is a Boolean–function of 25 variables derived from the set of templates.
It is easy to see, that function f can be given by a pre-calculated 4 Mbyte (unit
time access) look-up-table. The considered 25 variables correspond to 25 points
in N26(p) (see Fig. 4). More details concerning the efficient implementation of
3D thinning algorithms are presented in [16].

A 3–Subiteration Surface–Thinning Algorithm 633

4 Discussion and Results

Thinning algorithms have to take care of the following four aspects:

1. forcing the “skeleton” to retain the topology of the original object (i.e.,
topology is to be preserved);

2. providing “shape preservation” (i.e., significant features of the original object
are to be produced);

3. forcing the “skeleton” to be in its geometrically correct position (i.e., in the
“middle” of the object);

4. producing “maximal” thinning (i.e., the desired “width” of the “skeleton” is
one point).

It is easy to see the topological correctness (the 1st requirement) by using
a characterization of simple points [9] and a sufficient condition for parallel
reduction operations of 3D (26, 6) images [13].

Shape preservation (the 2nd requirement) is a fairly important requirement,
too. For example, an object like “b” cannot be thinned into an object like “o”.
The aim of the thinning is not to produce the topological kernel [2] of an object:
the thinning differs from shrinking. That is the reason why end–point criteria
are used in thinning. It is easy to see that surface–end points are removed by
none of our templates.

Geometrical correctness (the 3rd requirement) of the extracted skeleton is
mostly achieved by the subiteration (multi–directional) thinning approach. An
object is to be shrunk uniformly from each directions.

Fig. 6. Three synthetic images containing a 45 × 45 × 45 cube with one, two, and
three hole(s), respectively (top); and their skeletons produced by the proposed surface–
thinning algorithm (bottom)

634 K. Palágyi

Table 1. Computation times for the considered five kinds of test objects. The imple-
mented surface–thinning algorithm was run under Linux on an Intel Pentium 4 CPU
2.80 GHz PC. Due to the efficient implementation [16], the time complexity depends
only on the number of object points and the compactness of the objects (i.e., volume
to area ratio); but it does not depend on the size of the image.

test object size number of object points running time (sec.)

140 × 140 × 50 92 534 0.125

45 × 45 × 45 91 125 0.035
93 × 93 × 93 804 357 0.383

141 × 141 × 141 2 803 221 1.388
45 × 45 × 45 81 000 0.032
93 × 93 × 93 714 984 0.359

141 × 141 × 141 2 491 752 1.320
45 × 45 × 45 74 250 0.028
93 × 93 × 93 655 402 0.335

141 × 141 × 141 2 284 106 1.268
45 × 45 × 45 67 500 0.026
93 × 93 × 93 595 820 0.322

141 × 141 × 141 2 076 460 1.105

It is rather difficult to prove that the 4th requirement about maximal thinning
is satisfied. Due to the used surface end–point criteria, the produced skeleton
may contain 2–point thick surface patches [1,10]. It is easy to overcome this
problem (e.g., by applying the final thinning step proposed by Arcelli et al. [1]).

Our algorithm has been tested on objects of different shapes. Here we present
five examples (see Figs. 5–6).

The computation time of a thinning process depends on the complexity of an
iteration step and the required number of iteration steps. The 3–subiteration 3D
thinning strategy has been compared with other subiteration–based approaches
with periods of 6, 8, or 12. It has been shown that the 3–subiteration approach
requires the least number of iterations [15]. If we use unit time access look-
up-tables (corresponding the deletion rules of the considered algorithms) and
our efficient implemetation method [16] is applied, then the 3–subiteration al-
gorithms are the fastest subiteration–based ones. The efficiency of the proposed
method is illustrated in Table 1.

Acknowledgements

The author is grateful to Stina Svensson (Centre for Image Analysis, Swedish
University of Agricultural Sciences, Uppsala, Sweden) for supplying the horse
image data (see Fig. 5).

A 3–Subiteration Surface–Thinning Algorithm 635

References

1. Arcelli, C., Sanniti di Baja, G., Serino, L.: New removal operators for surface
skeletonization. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS,
vol. 4245, pp. 555–566. Springer, Heidelberg (2006)

2. Bertrand, G., Aktouf, Z.: A 3D thinning algorithms using subfields. In: Proc. SPIE
Conf. on Vision Geometry III, vol. 2356, pp. 113–124 (1994)

3. Bertrand, G.: A parallel thinning algorithm for medial surfaces. Pattern Recogni-
tion Letters 16, 979–986 (1995)

4. Blum, H.: A transformation for extracting new descriptors of shape. Models for
the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge
(1967)

5. Gong, W.X., Bertrand, G.: A simple parallel 3D thinning algorithm. In: Proc. 10th
Int. Conf. on Pattern Recognition, pp. 188–190 (1990)

6. Hall, R.W.: Parallel connectivity–preserving thinning algorithms. In: Kong, T.Y.,
Rosenfeld, A. (eds.) Topological algorithms for digital image processing, pp. 145–
179. Elsevier Science, Amsterdam (1996)

7. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer
Vision, Graphics, and Image Processing 48, 357–393 (1989)

8. Lee, T., Kashyap, R.L., Chu, C.: Building skeleton models via 3–D medial sur-
face/axis thinning algorithms. CVGIP: Graphical Models and Image Processing 56,
462–478 (1994)

9. Malandain, G., Bertrand, G.: Fast characterization of 3D simple points. In: Proc.
11th IEEE Internat. Conf. on Pattern Recognition, pp. 232–235 (1992)

10. Manzanera, A., Bernard, T.M., Pretêux, F., Longuet, B.: Medial faces from a con-
cise 3D thinning algorithm. In: Proc. 7th IEEE Internat. Conf. Computer Vision,
ICCV’99, pp. 337–343 (1999)

11. Mukherjee, J., Das, P.P., Chatterjee, B.N.: On connectivity issues of ESPTA. Pat-
tern Recognition Letters 11, 643–648 (1990)

12. Palágyi, K., Kuba, A.: A 3D 6–subiteration thinning algorithm for extracting me-
dial lines. Pattern Recognition Letters 19, 613–627 (1998)

13. Palágyi, K., Kuba, A.: Directional 3D thinning using 8 subiterations. In: Bertrand,
G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 325–336.
Springer, Heidelberg (1999)

14. Palágyi, K., Kuba, A.: A parallel 3D 12–subiteration thinning algorithm. Graphical
Models and Image Processing 61, 199–221 (1999)

15. Palágyi, K.: A 3-subiteration 3D thinning algorithm for extracting medial surfaces.
Pattern Recognition Letters 23, 663–675 (2002)

16. Palágyi, K.: Efficient implementation of 3D thinning algorithms. In: Proc. 6th Conf.
Hungarian Association for Image Processing and Pattern Recognition, pp. 266–274
(2007)

17. Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3–D pictures. Computer
Graphics and Image Processing 17, 315–331 (1981)

	A 3–Subiteration Surface–Thinning Algorithm
	Introduction
	Basic Notions
	The New Thinning Algorithm
	Discussion and Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

