
Minimization of Communication Cost Through Caching inMobile Environments �A. Prasad Sistla Ouri WolfsonYixiu HuangElectrical Engineering and Computer Science DepartmentUniversity of IllinoisChicago, Illinois 60607AbstractUsers of mobile computers will soon have online access to a large number of databases viawireless networks. Because of limited bandwidth, wireless communication is more expensivethan wire communication. In this paper we present and analyze various static and dynamicdata allocation methods. The objective is to optimize the communication cost between amobile computer and the stationary computer that stores the online database. Analysis isperformed in two cost models. One is connection (or time) based, as in cellular telephones,where the user is charged per minute of connection. The other is message based, as inpacket radio networks, where the user is charged per message. Our analysis addresses both,the average case and the worst case for determining the best allocation method.

�A preliminary version of this paper has appeared in the Proceedings of the ACM-SIGMOD, May 1994, Min-neapolis, Minnesota. This research was supported in part by Grants NSF IRI-9224605, NSF IRI-9408750, DARPAN66001-97-2-8901, NATO CRG-960648, AFSOR F49620-93-1-0059.0

1 IntroductionUsers of mobile computers, such as palmtops, notebook computers and personal communicationsystems, will soon have online access to a large number of databases via wireless networks. Thepotential market for this activity is estimated to be billions of dollars annually, in access andcommunication charges. For example, while on the road, passengers will access airline and othercarriers schedules, and weather information. Investors will access prices of �nancial instruments,salespeople will access inventory data, callers will access location dependent data (e.g. whereis the nearest taxi-cab, see [10, 24]) and route-planning computers in cars will access tra�cinformation.Because of limited bandwidth, wireless communication is more expensive than wire commu-nication. For example, a cellular telephone call costs about $0.35 cents per minute. As anotherexample, RAM Mobile Data Corp. charges on average $0.08 per data message to or from themobile computer (the actual charge depends on the length of the message). It is clear that forusers that perform hundreds of accesses each day, wireless communication can become very ex-pensive. Therefore, it is important that mobile computers access online databases in a way thatminimizes communication.We assume that an online database is a collection of data items, where a data item is, forexample, a web-page or a �le. Users access these data items by a unique id, such as a key, one ata time. We minimize communication using an appropriate data-allocation scheme. For example,if a user frequently reads a data-item x, and x is updated infrequently, then it is bene�cial forthe user to allocate a copy of x to her/his mobile computer. In other words, the mobile usersubscribes to receive all the updates of x. This way the reads access the local copy, and donot require communication. The infrequent updates are transmitted from the online databaseto the mobile computer. In contrast, if the user reads x infrequently compared to the updaterate, then a copy of x should not be allocated to the mobile computer. Instead, access should beon-demand; every read request should be sent to the stationary computer that stores the onlinedatabase.Thus, one-copy and two-copies are the two possible allocation schemes of the data item x toa mobile computer. In the �rst scheme, only the stationary computer has a copy of x, whereas inthe second scheme both, the stationary and the mobile computer have a copy of x. An allocationmethod determines whether or not the allocation scheme changes over time. In a static allocationmethod the allocation scheme does not change over time, whereas in a dynamic one it does. Thefollowing is an example of a dynamic allocation method. The allocation scheme changes fromtwo-copies to one-copy as a result of a larger number of writes than reads in a window of fourminutes.In mobile computing the geographical area is usually divided into cells, each of which hasa stationary controller. Our stationary computer should not be confused with the stationarycontroller. The stationary computer is some node in the stationary network that is �xed for agiven data item, and it does not change when the mobile computer moves from cell to cell.In this paper we analyze two static allocation methods, namely the one that uses the one-copyscheme and the one that uses the two-copies scheme; and a family of dynamic data allocationmethods. These methods are suggested by the need to select the allocation scheme according tothe read/write ratio: if the reads are more frequent then the methods use the two-copies allocation1

scheme, otherwise they use the one-copy scheme. The family consists of all the methods thatallocate and deallocate a copy of a data item to the mobile computer based on a sliding window ofk requests. For every read or update (we often refer to updates as writes) the latest k requests areexamined. If the number of reads is higher than the number of writes and the mobile computerdoes not have a copy, then such a copy is allocated to the mobile computer; if the number ofwrites is higher than the number of reads and the mobile computer does have a copy, then thecopy is deallocated. Thus, the allocation scheme is dynamically adjusted according to the relativefrequencies of reads and writes.The algorithms in this family are distributed, and they are implemented by software residingon both, the mobile and the stationary computers. The di�erent algorithms in this family di�eron the size of the window, k.Our analysis of the static and dynamic algorithms addresses both worst-case, and the expectedcase for reads and writes that are Poisson-distributed. Furthermore, this analysis is done in twocost models. The �rst is connection (or time) based, where the user is charged per minute ofcellular telephone connection. In this model, if the mobile computer reads the item from thestationary database computer, then the read-request as well as the response are executed withinone connection of minimum length (say one minute). If writes are propagated to the mobilecomputer, then this propagation is also executed within one minimum-length connection.The second cost model is message based. In this model the user is charged per message,and the exact charge depends on the length of the message. Therefore, in this model we dis-tinguish between data-messages that are longer, and control-messages that are shorter. Data-messages carry the data-item, and control messages only carry control information, speci�callyread-requests (from the mobile computer to the stationary computer) and delete-requests (thedelete-request is a message that deallocates the copy at the mobile computer). Thus a remoteread-request necessitates one control message, and the response necessitates a data message. Awrite propagated to the mobile computer necessitates a data-message.The rest of the paper is organized as follows. In the next section we present a summaryof the results of this paper. In section 3 we formally present the model, and in section 4 weprecisely present the sliding-window family of dynamic allocation algorithms. In section 5 wedevelop the results in the connection cost model, and in section 6 we develop the results in themessage model. In section 7 we discuss some other dynamic allocation methods, and extensionsto handle read, write operations on multiple data items. In section 8 we compare our work torelevant literature. In section 9 we discuss the conclusions of our analysis.2 Summary of the resultsWe consider a single data item x and a single mobile computer, and we analyze the staticallocation methods ST1 (mobile computer does not have a copy of x) and ST2 (mobile computerdoes have a copy of x), and the dynamic allocation methods SWk (sliding-window with window-size k).We assume that reads at the mobile computer are issued according to the Poisson distributionwith the parameter �r, namely in each time unit the expected number of reads is �r. The writesat the stationary computer are issued independently according to the Poisson distribution with2

the parameter �w. Other requests are ignored in this paper since their cost is not a�ected by theallocation scheme. We let � denote �w�r+�w .Our analysis of each one of the algorithms uses three measures. The �rst, called expectedcost and denoted EXP , gives the expected cost of a read/write request in the case that � isknown and �xed. The second, called average expected cost and denoted AVG, is important forthe case � is unknown or it varies over time with equal probability of having any value between0 and 1. It gives average the expected cost of a request over all possible values of �.Our third measure is for the worst case, and it is based on the notion of competitiveness 1(see [9, 18, 23, 29, 32]) of an on-line algorithm. Intuitively, a data allocation algorithm A is saidto be c-competitive if for any sequence s of read-write requests, the cost of A on s is at most ctimes as much as the minimum cost, namely the cost incurred by an ideal o�ine algorithm thatknows the whole sequence of requests in advance (in contrast our algorithms are online, in thesense that they service the current request without knowing the next request).In the remainder of this section we summarize the results for each one of the two cost modelsdiscussed in the introduction. These results will be interpreted and discussed at the intuitivelevel in the conclusion section.2.1 Summary of results in the connection modelIn the connection model our results are as follows. For ST1 the expected cost (i.e. expectednumber of connections) per request is 1 � �, and for ST2 the expected number of connectionsper request is �. For SWk the expected cost per request is � � �k + (1 � �) � (1 � �k), where�k is the probability that the majority of k consecutive requests are reads (the formula for thisprobability is in equation 5). Furthermore, we show that for any �xed k, SWk is not lower thanminf�; 1� �g. Thus, if � � 12 , then the static allocation method ST1 has the best expected costper request, and if � � 12 , then the static allocation method ST2 has the best expected cost perrequest.Next consider the average expected cost. SWk has the best average (over the possible valuesof �) expected cost per request. This cost is 14 + 14�k+8 , and it decreases as k increases, comingwithin 6% of the optimum for k = 15. In contrast, ST1 and ST2, both have an average expectedcost of 12 .For the worst case, we show that ST1 and ST2 are not competitive, i.e., the ratio between theirperformance and the performance of the optimal, perfect-knowledge algorithm is unbounded. Incontrast, we show that SWk is (k + 1)-competitive, and this competitiveness factor is tight.In summary, in the worst case the cost of the SWk family of allocation algorithms increasesas k increases, whereas the average expected cost decreases as k increases. The window size kshould be chosen to strike a balance between these two conicting requirements. For example, k= 15 may provide a reasonable compromise.1The traditional worst case complexity as a function of the size of the input is inappropriate since all thealgorithms discussed in this paper have the same complexity under this measure. For example, in the connectionmodel, for each algorithm there is a sequence of requests of size m on which the algorithm incurs cost m.
3

2.2 Summary of results in the message passing modelIn this model our results are as follows. Let the cost of a data message be 1 and the cost of acontrol message be !, where 0 � ! � 1. For ST1, the expected cost per request is (1+!) �(1��);and for ST2 the expected cost is �. For SW1, the expected cost is � � (1 � �) � (1 + 2 � !), andfor SWk (k > 1) we derived the expected cost as a function of ! and � as shown in equation15 of section 6.32. From these formulae of the expected costs, we conclude the following. If� > 1+!1+2�! , then ST1 has the best expected cost; if � < 2�!1+2�! , then ST2 has the best expectedcost; otherwise, namely if 2�!1+2�! < � < 1+!1+2�! , the SW1 algorithm has the best expected cost. Thedominance graph of these three strategies is shown in the following �gure 1. It indicates thesuperior algorithm for each value of � and !.
ST

SW

ω

θ
1

1

1

1ST 2

Figure 1: Superiority coverage in message modelNext we consider the average expected cost, and we obtain the following results. ST1 hasan average expected cost of 1+!2 ; ST2 has an average expected cost of 12 ; SW1 has an averageexpected cost of 1+2�!6 ; and the average expected cost of SWk (for k 6= 1) is given by equation 16of section 6.3, and it has a lower bound of 2+!8 . Then we conclude that, if ! � 0:4, then SW1has the best average expected cost; if ! > 0:4, then the average expected cost decreases as thewindow size k increases (see corollary 2 in section 6.3).For the worst case we show that, as in the connection cost model, neither ST1 nor ST2 arecompetitive. Similarly, we show that the sliding-window algorithm SW1 is (1+2 �!)-competitive,and SWk (for k > 1) is [(1 + !2) � (k + 1) + !]-competitive.In summary, the trade-o� between the average expected cost and the worst case is similarto the connection model. Namely, a dynamic allocation algorithm is superior to the static ones,with the worst case improving with a decreasing window size; whereas the average expected costdecreases as the window size increases.2The SW1 algorithm is not a special case of the SWk algorithms, as pointed out at the end of section 44

3 The ModelA mobile computer system consists of a mobile computerMC and a stationary computer SC thatstores the online database. We consider a data item x that is stored at the stationary computerat all times. Reads and writes are issued at the mobile or stationary computers. Actually, thereads and writes at the stationary computer may have originated at other computers, but theorigin is irrelevant in our model. Furthermore, we ignore the reads issued by the stationarycomputer and the writes issued by the mobile computer, since the cost of each such request is�xed (zero and one respectively), regardless of whether or not MC has a copy of the data item.Thus, the relevant requests are writes that are issued by the stationary computer, and reads thatare issued by the mobile computer. A schedule is a �nite sequence of relevant requests to thedata item x. For example, w; r; r; r; w; r; w is a schedule. When each request is issued, either theMC has a copy of the data item, or it does not. For the purpose of analysis we assume thatthe relevant requests are sequential. In practice they may occur concurrently, but then someconcurrency control mechanism will serialize them, therefore our analysis still holds. We assumethat messages between the stationary computer and each mobile computer are delivered in a�rst-in-�rst-out order.We consider the following two cost models. The �rst is called the connection model. In thismodel, for each algorithm (static or dynamic) the cost of requests is as follows. If there does notexist a copy of the data item at the MC when a read request is issued, then the read costs oneconnection (since the data item must be sent from the SC). Otherwise the read costs zero. Fora write at the SC, if the MC has a copy of the data item, then the write costs one connection;otherwise the write costs zero. The total cost of a schedule , denoted by COST (), is the sumof the costs for all requests in .The second model is called the message cost model. In this model, we assume that a datamessage cost is 1, and a control message cost is !. Since the length of a control message is nothigher than the length of a data message, 0 � ! � 1. In this model the cost of requests is asfollows. For a read request, if there exists a copy at the MC, then the read does not requirecommunication; otherwise, it necessitates a control message (which forwards the request to theSC) and a data message (which transfers the data to the MC) with a total cost of 1 + !.For a write request, if the MC does not have a copy of the data item, then the write costs0. Otherwise the write costs 1, !, or 1 + !, depending on the algorithm and on the result ofthe comparison of reads and writes executed by the MC in response to the write request. If thewrite is propagated to the MC and the MC does not deallocate its copy in response, then thecost is 1; if the MC deallocates its copy in response then the cost is 1 + ! (! accounts for thedeallocate request). Finally, as will be explained in the next section, SW1 does not propagatewrites to the MC; it simply deallocates the copy at the MC at each write request. Then the costof the write is !.We assume that the reads issued from the MC are Poisson distributed with parameter �r,and the writes issued from the SC are Poisson distributed with parameter �w. Denote �w�w+�rby �. Observe that, since the Poisson distribution is memoryless, at any point in time � is theprobability that the next request is a write, and 1� � = �r�w+�r is the probability that the nextrequest is a read.Suppose that A is a data allocation algorithm, and �r and �w are the read and write distri-5

bution parameters, respectively. We denote by EXPA(�) the expected cost of a relevant request.Suppose now that � varies over time with equal probability of having any value between 0 and1. Then we de�ne the average expected cost per request, denoted AV GA, to be the mean valueof EXPA(�) for � ranging from 0 to 1, namelyAV GA = Z 10 EXPA(�)d� (1)The average expected cost should be interpreted as follows. Suppose that time is subdividedinto su�ciently large periods, where in the �rst period the reads and writes are distributedwith parameters �1r and �1w, and �1 = �1w�1w+�1r ; in the second period the reads and writes aredistributed with parameters �2r and �2w, and �2 = �2w�2w+�2r ; etc.. Suppose further that each �i hasequal probability of having any value between 0 and 1 (i.e. the probability densisty functionof � has value 1 everywhere between 0 and 1, and is 0 everywhere else). In other words, each�i is a random number between 0 and 1. Then, when using the algorithm A, the expectedcost of a relevant request over all the periods of time is the integral denoted AV GA. In otherwords, AVGA is the expected value of the expected cost. One can also argue that AVGA is theappropriate objective cost function when � is unknown and it has equal probability of havingany value between 0 and 1.For the worst-case study, we take competitiveness as a measure of the performance of an on-line data allocation algorithm. Formally, a c-competitive data allocation algorithm A is de�nedas follows. Suppose thatM is the perfect data allocation algorithm that has complete knowledgeof all the past and future requests. Data allocation algorithm A is c-competitive if there existtwo numbers c (� 1), and b (� 0), such that for any schedule , COSTA() � c �COSTM()+b.We call c the competitiveness factor of the algorithm A. A competitive algorithm bounds theworst-case cost of the algorithm to be within a constant factor of the minimum cost.We say an algorithm A is tightly c-competitive if A is c-competitive, and for any numberd < c, A is not d-competitive.4 Sliding-window algorithmsThe Sliding-Window(k) algorithm allocates and deallocates a copy of the data item x at themobile computer. It does so by examining a window of the latest relevant read and writerequests. The window is of size k, and for ease of analysis we assume that k is odd. Recall, thereads are issued at the mobile computer, and the writes are issued at the stationary computer.Observe that at any point in time, whether or not the mobile computer has a copy of x, eitherthe mobile computer or the stationary computer is aware of all the relevant requests. If the mobilecomputer has a copy of x, then all the reads issued at the mobile computer are satis�ed locally,and all the writes issued at the stationary computer are propagated to the mobile computer; thusthe mobile computer receives all the relevant requests. Else, i.e. if the mobile computer does nothave a copy, then all reads issued at the mobile computer are sent to the stationary computer;thus the stationary computer receives all the relevant requests.Thus, either the mobile computer or the stationary computer (but not both) is in charge ofmaintaining the window of k requests. The window is tracked as a sequence of k bits (e.g. 06

represents a read and 1 represents a write). At the receipt of any relevant request, the computerin charge drops the last bit in the sequence and adds a bit representing the current operation.Then it compares the number of reads and the number of writes in the window.If the number of reads is bigger than the number of writes and there is a copy of x at themobile computer, then the SWk algorithm simply waits for the next operation. If the numberof reads is bigger than the number of writes and there is no copy at the mobile computer (i.e.the stationary computer is in charge), then such a copy is allocated as follows. Observe that thelast request must have been a read. The stationary computer responds to the read request bysending a copy of x to the mobile computer. The SWk algorithm piggybacks on this message (1)an indication to save the copy in MC's local database, in which the SC also commits to propagatefurther writes to the MC, and (2) the current window of requests. From this point onwards, theMC is in charge.If the number of writes is bigger than the number of reads and there is no copy of x at theMC, then the SWk algorithm waits for the next request. If the number of writes is bigger thanthe number of reads and there is a copy of x at the MC (i.e. the MC is in charge), then thecopy is deallocated as follows. The SWk algorithm sends to the SC (1) an indication that the SCshould not propagate further writes to the MC, and (2) the current window of requests. Fromthis point onwards the SC is in charge.This concludes the description of the algorithm, and at this point we make two remarks. First,when the window size is 1 and the MC has a copy of x, then a write at the SC will deallocatethe copy (since the window will consist of only this write). Therefore, instead of sending to theMC a copy of x, the SC simply sends the delete-request that deallocates the copy at the MC.Thus, SW1 denotes the algorithm so optimized. Observe that SW1 the classic write-invalidateprotocol.5 Connection cost modelIn this section we analyze the algorithms in the connection cost model. The section is dividedinto 3 subsections. In the �rst subsection, we probabilistically study the static data allocationalgorithms, and in the second we study the family of sliding window algorithms. In each ofthese subsections we derive the expected cost �rst, then the average expected cost, and then wecompare the algorithms based on these measures. Finally, in section 5.3 we analyze the worstcase performance of all the algorithms.5.1 Probabilistic analysis of the static algorithmsFor the ST1 algorithm, a write request costs 0, and a read request cost 1 connection. For theST2 algorithm, every write costs 1, and every read costs 0. Hence, EXPST1(�) and EXPST2(�)are simply equal to the probabilities that a request is a read and a write, respectively. Thus,EXPST1(�) = 1� � and EXPST2(�) = � (2)Concerning the average expected cost, by equation 1 and equation 2 we obtainAV GST1 = Z 10 EXPST1(�)d� = 12 and AV GST2 = Z 10 EXPST2(�)d� = 12 (3)7

5.2 Probabilistic analysis of the SWk algorithmsIn this section we derive the expected cost of the SWk algorithms, and we show that for each kand for each �, the SWk algorithm has a higher expected cost than one of the static algorithms.Then we derive the average expected cost of the SWk algorithms, and we show that for any kthe SWk algorithm has a lower average expected cost than both static algorithms. Also, we showthat the average expected cost of the SWk algorithms decreases when k increases.Recall that we are assuming that the size of the window k (= 2 � n + 1) is an odd number.At any point in time, the probability that there exists a copy at the MC (which we denote by�k) is the probability that the majority among the preceding k requests are reads, and this isthe same as the probability that the number of writes in the preceding k requests is less than orequal to n, namely �k = nXj=0 kj ! � �j � (1� �)k�j (4)Theorem 1 For every k and for every �, the expected cost of the SWk algorithm isEXPSWk(�) = � � �k + (1� �) � (1� �k) (5)Proof: Let us consider a single request, q. When there is a copy at the MC, then the expectedcost of q is equal to the probability that q is a write operation, and it equals �. When there is nocopy at the MC, the expected cost of q is 1� �. The expected cost of q is the probability thatthere is a copy at the MC times the expected cost of q when there is a copy at the MC, plus theprobability that there is no copy at the MC times the expected cost of q when there is no copyat the MC. Thus, we conclude the theorem. 2The next theorem compares the expected costs of the SWk and the static algorithms.Theorem 2 For every k and every �, EXPSWk(�) � minfEXPST1(�); EXPST2(�)gProof: From equations 2, 5 it follows that EXPSWk(�) = EXPST2 ��k+EXPST1 � (1��k). Thetheorem follows due to the fact that the weighted average of two values is not smaller than theminimum of the two values. 2Now let us consider the average expected costs.Theorem 3 For the sliding-window algorithm with window size k, SWk, the average expectedcost per request is AV GSWk = Z 10 EXPSWk(�)d� = 14 + 14 � (k + 2) (6)Proof : Our derivation of equation 6 uses the following identity for positive integers a and b,Z 10 xa � (1� x)bdx = a! � b!(a + b+ 1)! (7)8

Using equation 5, it is straightforward to show thatAV GSWk = 12 + 2 � Z 10 �k � �d� � Z 10 �kd� (8)Using equation 4 and the identity given by equation 7 and after some algebraic simpli�cations,it can be shown that Z 10 �k � �d� = (n+ 1)(n+ 2)2(k + 1)(k + 2) (9)and Z 10 �kd� = (n + 1)(k + 1) (10)Substituting for R 10 �k � �d� and R 10 �kd� in equation 8, and after some simpli�cation, we get theresult given by equation 6. 2Corollary 1 The average expected cost of the SWk algorithms decreases when the window sizek increases, and AVGSWk < minfAVGST1 ; AV GST2g for any k � 1.Proof: From theorem 3, it is easy to see that AV GSWk decreases when k increases, andAV GSWk � AV GSW1 = 14 + 112 = 13 . From equations 3 in section 5.1, we conclude the corollary.25.3 Worst case analysis in connection modelIn this section we show that the static algorithms, ST1 and ST2, are not competitive. Thenwe show that the SWk algorithm is (k + 1)-competitive. Therefore, our competitiveness studysuggests that for optimizing the worst case, one has to choose the sliding window algorithm witha small window size k.First, let's consider the two static strategies. For the ST1 algorithm, we can pick a longschedule which consists of only reads. Then the cost of the ST1 algorithm is un-boundedlyhigher than the cost of the optimal algorithm on this schedule (which is 0 if we keep a copy atthe MC). For the ST2 algorithm, we can also pick a long schedule which consists of only writes.Then the cost of the ST2 algorithm on this schedule is also un-boundedly higher than the optimalcost (which is 0 if we do not keep a copy at the MC). Therefore, the static algorithms, ST1 andST2, are not competitive.Theorem 4 The sliding-window algorithm SWk is tightly (k + 1)-competitive.Proof : We prove this by showing that for any schedule of requests, COSTSWk() � N � (k+1) + (k + 1) where N is the number of read requests in that occur immediately after a writerequest. We will also exhibit a schedule 0 for which COSTSWk(0) = N 0 � (k + 1) + (k + 1).Since it can be shown that the cost of an optimal o�-line algorithm on a schedule is N , itfollows that SWk is tightly (k+1)-competitive. As before, we assume throughout the proof thatk = 2 � n+ 1.First we prove that COSTSWk() � N � (k + 1) + (k + 1). Let be a schedule consisting ofread and write requests. Let N be the number of read requests in that occur immediately after9

a write request. We divide the schedule into maximal blocks consisting of similar requests.Formally, let B1; B2; :::; Br be the division of into blocks such that the requests in any blockare all reads or they are all writes, and successive blocks have di�erent requests.It should be easy to see that the total number of read blocks in , i.e. blocks that onlycontain read requests, is less than or equal to (N + 1). Similarly, the total number of writeblocks in is less than or equal to (N +1). Now, we analyze the cost of read and write requestsseparately. Consider any read block Bi. It should be easy to see that only the �rst n+1 reads inBi may each incur a connection. After the �rst n+1 reads the window will de�nitely have morereads than writes, and the algorithm will maintain two copies (consequently further reads in theblock do not cost any connections). Thus the cost of executing all the reads in Bi is boundedby (n + 1). Hence the cost of all the reads in is bounded above by (n + 1) � (N + 1). By asimilar argument, it can be shown that the cost of all the writes in a write block is bounded by(n+1). As a consequence, the cost of all the writes in is bounded by (n+1) � (N +1). Hence,COSTSWk() � 2 � (n+ 1) � (N + 1). Substituting k = 2 � n + 1 and rearranging the terms, weget COSTSWk() � (k + 1) �N + (k + 1).To show that the above bound is tight, assume that initially there is a single copy of thedata item. Consider a schedule 0 that starts with a block of read requests, ends with a blockof write requests, and in each block there are exactly k requests. It should be easy to see thatCOSTSWk(0) = (k + 1) �N + (k + 1). 26 Message cost modelThis section is divided into 4 subsections. In the �rst subsection we probabilistically analyzethe static algorithms, in the second we analyze SW1, and in the third we analyze the family ofsliding window algorithms SWk for k > 1. 3 In each one of the �rst three subsections we studythe algorithm's expected cost �rst, then the average expected cost. We also study the relationamong the expected costs of all the static and dynamic algorithms; and the relation among theaverage expected costs. In subsection 6.4, we study the worst case of all the algorithms.Recall that in this model we assume that a data message cost is 1, and a control messagecost is !, where ! ranges from 0 to 1.6.1 Probabilistic analysis of the static algorithmsFor the ST1 algorithm, the write does not require any communication, whereas the read costs(1 + !); for the ST2 algorithm, every write costs 1, the read costs 0. So,EXPST1(�) = (1 + !) � (1� �) and EXPST2(�) = � (11)AV GST1 = Z 10 EXPST1(�)d� = 1 + !2 and AV GST2 = Z 10 EXPST2(�)d� = 12 (12)3As mentioned at the end of section 4, SW1 is not simply SWk with k = 1. In this cost model this di�erencein the algorithms results in a di�erent analysis, thus the need for a separate subsection dedicated to the analysisof SW1. 10

6.2 Probabilistic analysis of the SW1 algorithmFirst we derive the expected cost of a relevant request.Theorem 5 The expected cost of the SW1 algorithm isEXPSW1(�) = � � (1� �) � (1 + 2 � !) (13)Proof: For the SW1 algorithm, a read that immediately follows a write costs 1 + ! (! forthe control message that conveys the read request, and 1 for the data message); a write thatimmediately follows a read costs an ! (the cost of a control message deallocating the copy atthe MC). No other relevant requests cost any communication. Therefore, the expected cost of arequest q is the expected cost of a read that immediately follows a write times the probability ofq being such a read, plus the expected cost of a write that immediately follows a read times theprobability of q being such a write, namely, EXPSW1(�) = � � (1� �) � (1 + !) + (1� �) � � � ! =� � (1� �) � (1 + 2 � !): 2In the next theorem we study the relation of the expected costs of three algorithms, i.e.,EXPST1(�), EXPST2(�), and EXPSW1(�). The results of this theorem is graphically illustratedin Figure 1.Theorem 6 The expected costs EXPSW1(�), EXPST1(�), and EXPST2(�) are related as follows,depending on � and !.1) If � > 1+!1+2�! , then EXPST1(�) < EXPSW1(�) < EXPST2(�);2) If 2�!1+2�! < � < 1+!1+2�! , then EXPSW1(�) < minfEXPST1(�); EXPST2(�)g;3) If � < 2�!1+2�! , then EXPST2(�) < EXPSW1(�) < EXPST1(�);Proof: This is a straight-forward algebraic derivation, that uses equations 11, 13, and the factthat ! < 1 . 2Now we are ready to consider the average expected cost.Theorem 7 The average expected cost of the SW1 algorithm isAV GSW1 = 1 + 2 � !6 (14)and AV GSW1 � AVGST2 � AVGST1Proof: Equation 14 can be easily obtained from equation 13, based on the de�nition of theaverage expected cost (equation 1). Since 0 � ! � 1, we obtain 1+2�!6 � 12 � 1+!2 . From theequations 12 in section 6.1, we conclude the theorem. 26.3 Probabilistic analysis of SWkIn this section we consider the SWk algorithms, for k = 2 �n+1 > 1. First, we derive the formulaof the expected cost for SWk. Then we show that for any k and for any � the expected cost ofSWk is higher than the minimum of the expected costs of SW1, ST1, and ST2. Thus we conclude11

that for a known �xed �, SWk is inferior to the other algorithms. Then we derive the formulaof the average expected cost for SWk. Then we show that SWk has the best average expectedcost for some k � 1, and we determine this optimal k as a function of !, the cost of a controlmessage.Theorem 8 For every k > 1, the expected cost of the SWk algorithm isEXPSWk(�) = �k � � + (1� �k) � (1� �) � (1 + !) + ! � 2 � nn ! � �n+1 � (1� �)n+1 (15)Proof : Consider a write request w. It costs a data message if there exists a copy at the MCwhen the request is issued. The probability of having a copy at the MC is �k. Additionally, ifthe MC deallocates its copy as a result of this write, the write will necessitate a delete messagesent from the MC to the SC, It can be argued (and we omit the details) that this occurs if andonly if the sequence of k requests immediately preceding w, starts with a read and has exactlyn writes. Therefore, the expected cost of w is�k + ! � (1� �) � 2 � nn ! � �n � (1� �)nNow consider a read request r. It does not require communication if there is a copy at theMC when the request is issued. Otherwise, it costs a control message for the request, and a datamessage for the response. Thus, the expected cost of r is (1� �k) � (1 + !).Therefore, the expected cost of a request is the expected cost of a write times the probabilitythat the request is a write, plus the expected cost of a read times the probability that the requestis a read, namely, EXPSWk(�) = � � [�k+! � 2 � nn ! � �n � (1� �)n+1] + (1� �) � (1��k) � (1+!)A simple algebraic manipulation of the above expression leads to equation 15. 2Theorem 9 For any � and for any k > 1, the expected cost of algorithm SWk is higher thanthe expected cost of at least one of the algorithms SW1, ST1, and ST2. Namely, EXPSWk(�) �minfEXPSW1(�); EXPST1(�); EXPST2(�)gIn order to prove this theorem, we need the following three lemmas.Lemma 1 For any k > 1, if � � 0:5, then EXPSWk(�) � EXPST2(�).Proof: From equations 11 and 15 we deriveEXPSWk(�)� EXPST2(�) � �k � � + (1� �k) � (1� �)� � = (1� �k) � (1� 2 � �) � 0 2Lemma 2 If � > 0:5, then �k decreases when k increases, and 1� � � �k > 0 for any k > 1.Proof : From the de�nition of �k (see equation 4), we can derive 1� � = �1, and �k+2 � �k = kn !��n+1 �(1��)n+1 �(1�2��) , (details are omitted). From this formula, we see that �k+2��k isnegative for all k � 1. Hence �k decreases with k. As a consequence �1��k = (1����k) > 0,for any k > 1. 2 12

Lemma 3 For any k > 1 and any � > 0:5,1) If ! < 2���11�� , then EXPSWk(�) > EXPST1(�);2) If ! � 2���11�� , then EXPSWk(�) � EXPSW1(�).Proof: EXPSWk(�)�EXPST1(�) �(by equations 11 and 15) �k � �+ (1� �k) � (1� �) � (1+!)� (1��) � (1 + !) = �k � [2 � � � 1� ! � (1� �)], namely,EXPSWk(�)� EXPST1(�) � �k � [2 � � � 1� ! � (1� �)]Base on the above inequality, it is easy to show that if ! < 2���11�� , then EXPSWk > EXPST1.Thus, we have proved the �rst claim of the lemma.EXPSWk(�)�EXPSW1(�) �(by equations 13 and 15) �k��+(1��k)�(1��)�(1+!)���(1��)�(1+2�!) =� �[�k�(1��)�!]+(1��)�(1+!)�(1��k��) �(!�1) � �[�k�(1��)]+(1��)�(1+!)�(1��k��) =(1����k)�[1�2��+!�(1��)], namely, EXPSWk(�)�EXPSW1(�) � (1����k)�[1�2��+!�(1��)]Based on the above inequality and lemma 2, it is easy to show that if ! � 2���11�� , then EXPSWk(�) �EXPSW1(�) 2Proof of theorem 9: If � � 0:5, then lemma 1 indicates that EXPSWk(�) � EXPST2(�);if � > 0:5, then lemma 3 indicates that EXPSWk(�) � minfEXPSW1(�); EXPST1(�)g. Thetheorem follows. 2Now, let's consider the average expected cost of the SWk algorithms for k > 1.Theorem 10 For the SWk algorithm with window size k > 1, the average expected cost isAV GSWk = Z 10 EXPSWk(�)d� = 14 + 14 � (k + 2) + ! � [18 + 38 � (k + 2) + 14 � k � (k + 2)] (16)Proof : From the de�nition of �k in section 5.2, equation 7 and equation 15, we can derive theequation 16. The tedious intermediate derivation steps are omitted. 2Corollary 2 For k > 1, AV GSWk decreases when k increases, and AV GSWk > 14 + !8 .Proof: This corollary is straight forward from equation 16. 2In theorem 7 we have shown that the average expected cost of the SW1 algorithm is better(i.e. lower) than that of the static algorithm. In the following corollaries, we analyze when theaverage expected cost of SWk (for k > 1) is lower than the average expected cost of SW1 basedon the two formulae 14 and 16. In corollary 3 below, we show that when ! � 0:4, the averageexpected cost of SWk is always higher than that of SW1.Corollary 3 If ! � 0:4, then AV GSWk > AVGSW1 for any k > 1.Proof: If ! < 0:4, then 1+2�!6 < 14 + !8 . Thus, by theorem 7 and corollary 2, we conclude thiscorollary. 2In the next corollary, we study the case where ! > 0:4. We show that for a given ! > 0:4,there is some k0, such that if k � k0, then the average expected cost of SWk is lower than that13

ω

k

0.4

1.0

0.8

0.6

0.2

 3 5 7 11 21 39 95

 SW

 SW

1

k

of SW1. The following �gure illustrates the results of the corollaries 3 and 4. For example, if! = 0:45, then only when k � 39, the SWk algorithm has a lower expected cost than that ofSW1; if ! = 0:8, then only when k � 7, the SWk algorithm has a lower expected cost than thatof SW1.Corollary 4 If ! > 0:4, then AVGSWk � AVGSW1 for any k which satis�esk � 10� ! +p100� 68 � ! + 121 � !22 � (5 � ! � 2)Proof : Algebraic manipulation using equations 14 and 16. 26.4 Worst case in message modelIn this section, we study the competitiveness of the algorithms ST1, ST2, and SWk for k � 1,in the message cost model. The result for SW1 is stated separately, since it is a special case(see section 4). We conclude that the static algorithms are not competitive as is the case in theconnection model. Then we show that SW1 is more competitive than SWk for k > 1, and weshow that the competitiveness factor of the SWk algorithms deteriorates when k increases, thusSW1 performs the best in the worst case.As in the connection model, we can easily derive that the static algorithms are not competitivein the message model.Theorem 11 The algorithm SW1 is tightly (1 + 2 � !)-competitive in the message cost model,where !(< 1) is the ratio of control message cost to data message cost.Proof : Similarly to the proof of theorem 4, we let N be the number of reads in that occurimmediately after a write, where is an arbitrary schedule of requests. It is easy to see thatN is the minimum cost to satisfy all the requests in . Let B1; B2; :::; Br be the division of into blocks such that the requests in any block are all reads or they are all writes, and successiveblocks have di�erent requests.It should be easy to see that the total number of read blocks in is less than or equal to(N +1), and a read block costs at most (1+!) since after the �rst read the mobile computer willkeep a copy of the data item. The total cost of reads is bounded by (N +1) � (1+!). Similarly,the total number of write blocks in is less than or equal to (N + 1), and a write block costs14

only ! since the �rst write in the block will invalidate the copy at the MC. Thus, the total costof writes in is bounded by (N +1) �!, and COSTSW1() � (N +1) � (1+!)+ (N +1) �! =(1 + 2 � !) �N + (1 + 2 � !).To show that the above bound is tight, assume that initially there is a single copy of thedata item. Consider a schedule 0 that starts with a read request, ends with a write request,and in each block there is exactly 1 request. It should be easy to see that COSTSWk(0) =(k + 1) �N + (k + 1). 2Theorem 12 The algorithm SWk (for k > 1) is tightly [(1 + !2) � (k+ 1)+!]-competitive in themessage cost model, where !(< 1) is the ratio of control message cost to data message cost.Proof : Similarly to the proofs of theorems 4 and 11, we prove that for any schedule ofrequests, COSTSWk() � N � [(1 + !2) � (k + 1) + !] + (1 + !2) � (k + 1) + !, where N is thenumber of read requests in that occur immediately after a write request. We will also exhibita schedule 0 for which COSTSWk(0) = N � [(1 + !2) � (k + 1) + !] + , where is a constant.Since it can be shown that the cost of an optimal o�-line algorithm on is N , it follows thatSWk is tightly [(1 + !2) � (k + 1) + !]-competitive. As before, we assume throughout the proofthat k = 2 � n + 1.Let be a schedule consisting of read and write requests. We prove that COSTSWk() �N � [(1+ !2) � (k+1)+!]+(1+ !2) � (k+1)+! as follows. We divide the schedule into maximalblocks consisting of similar requests. Formally, let B1; B2; :::; Br be the division of into blockssuch that the requests in any block are all reads or they are all writes, and successive blocks havedi�erent requests.It should be easy to see that the total number of read blocks in , i.e. blocks that onlycontain read requests, is less than or equal to (N + 1). Similarly, the total number of writeblocks in is less than or equal to (N + 1). Now, we analyze the cost of read and writerequests separately. Consider any read block Bi. It should be easy to see that only the �rstn + 1 reads in Bi may each cost (1 + !). After the �rst n + 1 reads the window will de�nitelyhave more reads than writes, and the algorithm will maintain two copies and further readsin the block do not cost any communication. Thus the cost of executing all the reads in Biis bounded by (n + 1) � (1 + !). Hence the cost of all the reads in is bounded above by(n + 1) � (1 + !) � (N + 1). Now consider a write block Bj. It is easy to see that Bj will costat most (n + 1) data message, since after the �rst n + 1 writes the window will de�nitely havemore writes than reads and the copy at the MC will be deallocated, and this deallocation maycost this block an additional control message. Thus, the cost of a write block is bounded by(n+1+!). As a consequence, the cost of all the writes in is bounded by (n+1+!) � (N +1).Hence, COSTSWk() � (2 + !) � (n+ 1) � (N + 1) + ! � (N + 1). Substituting k = 2 � n+ 1 andrearranging the terms, we get COSTSWk() � [(k + 1) � (1 + !2) + !] �N + (k + 1) � (1 + !2) + !.To show that the above bound is tight, assume that initially there is a single copy of thedata item. Consider a schedule 0 that starts with a block of read requests, ends with a blockof write requests, and in each block there are exactly k requests. It should be easy to see thatCOSTSWk(0) = (k + 1) �N + (k + 1). 2
15

7 ExtensionsIn this section we discuss various extensions to the previous methods. In particular, in the �rstsubsection we show how to modify the static algorithms to make them competitive, and in thesecond subsection we discuss extensions of the algorithm to optimize the case where multipledata items can be read and written in a single operation.7.1 Modi�cations to the Static MethodsWe have presented two simple static methods that use the one-copy and two-copies schemes.The static methods can be chosen if the value of � is known in advance. For example, in theconnection model, the static method using a single copy at the stationary computer has thebest expected cost if � > 0:5. Similarly, the static method using the two-copy scheme has thebest expected cost when � � 0:5. However, the static methods do not have a good worst casebehavior, i.e. they are not competitive. For example, a static method using a single copy willincur a high cost on a sequence of requests consisting of only reads from the mobile computer.This cost can be arbitrarily large, depending on the length of the sequence. Even though such asequence is highly improbable, it can occur with nonzero probability.We can overcome this problem by simple modi�cations to the static methods, that actuallymake them dynamic. For example, we can modify the one-copy static method as follows. Itwill normally use the one-copy scheme until m consecutive reads occur; then it changes to thetwo-copies scheme and uses this scheme until the next write. Then it reverts back to one-copyscheme and repeats this process. We refer to this algorithm as T1m. It can be shown that T1mis m + 1-competitive and that its expected cost is (1 � �) + (1� �)m(2� � 1) in the connectionmodel. Note that the second term is the additional expected cost over the static method (it canbe shown that for each � > 0:5 T1m has a lower expected cost than SWm and they are bothequally competitive). This is the price of competitiveness. Thus, if we know that � > 0:5 thenwe can choose the T1m algorithm instead of ST1, for an appropriate value of m.Similarly, we can modify the ST2 algorithm to obtain the T2m algorithm that has almost thesame expected cost as ST2, and is (m + 1)-competitive.7.2 Multiple Data ItemsIn this paper we have addressed the problem of choosing an allocation method for a single dataitems. These results can be extended to the case where multiple data items can be read andwritten in a single operation.We will sketch an algorithm that gives an optimal static allocation method, in the connectionmodel, for multiple data items, when the frequencies of operations on the data items are knownin advance. Assume that multiple data items can be remotely read in one connection; similarlyfor the remote writes. We present the algorithm for the case when we have only two data items xand y. This can be generalized to more than two data items. Also, we discuss how this approachcan be extended to the dynamic window based algorithms.Assume that we have two data items x and y. We classify the read operations into threeclasses. reads of x only, reads of y only, and reads that access both x and y. We assume that16

these three di�erent reads occur according to independent Poisson distributions with frequencies�r;x; �r;y and �r;�, respectively. We classify the writes similarly and assume that these writes occurwith frequencies �w;x; �w;y and �w;�, respectively. It is to be noted that �r;� and �w;� denote thefrequencies of joint reads and writes respectively. Now, we have four possible allocation methodsfor x and y: ST1 (both x and y have only one copy), ST2(both x and y have two copies), ST1;2(x has one copy and y has one copy) and ST2;1 (x has two copies and y has only one). For each ofthese allocation methods we can obtain the expected cost of a single operation using the abovefrequencies, and then choose the one with the lowest expected cost. For example, the expectedcost for ST1 is (�r;x + �r;y + �r;�)=� and that of ST1;2 is (�r;x + �w;y + �r;� + �w;�)=� where � isthe sum of all the read and write frequencies. The above method can be generalized to any �niteset of data items. We need the frequencies of various joint operations on these data items.To use the method given above we need to know the frequencies of various operations inadvance. If these frequencies are not known in advance, then we can use the window basedapproach that dynamically calculates these frequencies. In this case, we need to keep track ofthe number of operations of di�erent kind (i.e. the joint/exclusive read/write operations formultiple data items) in the window. From these numbers, we can calculate the frequencies ofthese operations, compute their expected costs (similar to the static methods given in the previousparagraph) using these frequencies, and choose an appropriate future allocationmethod. To avoidexcessive overhead, this recomputation can be done periodically instead of after each operation.Future work will address the performance analysis of this method.8 Comparison with Relevant LiteratureAs far as we know this is the �rst paper to study the communication cost of static and dynamicallocation in distributed systems using both, average case and worst case analysis. There are twobodies of relevant work, each of which is discussed in one of the following two subsections. In the�rst subsection we compare this paper with database literature on data allocation in distributedsystems. In the second subsection we compare this paper to literature on caching and distributedvirtual memory.8.1 Data allocation in distributed systemsData allocation in distributed systems is either static or dynamic. In [35] and [36], we consid-ered dynamic data allocation algorithms, and we analyzed them using the notion of convergence,which is di�erent than the measures used in this paper, namely expected case and worst case.Additionally, the algorithms in those works are di�erent than the ones discussed here. Further-more, in [35] and [36] we did not consider static allocation algorithms, and we did not considerthe connection cost model.Other dynamic data allocation algorithms were introduced in [22] and [23]. Both worksanalyze dynamic data allocation in the worst case only. Actually, the SW1 algorithm was �rstanalyzed in [23]. However, the model there requires a minimum of two copies in the system,for availability purposes. Thus even for the worst case the results are di�erent. In contrast, inthis paper we assume that availability constraints are handled exclusively within the stationarysystem, independently of the mobile computers.17

There has also been work addressing dynamic data allocation algorithms in [9]. This work alsoaddresses the worst case only. Additionally, the model there does not allow concurrent requests,and it requires centralized decision making by a processor that is aware of all the requests in thenetwork. In contrast, our algorithms are distributed, and allow concurrent read-write requests.Static allocation was studied in [37, 14]. These works address the following �le-allocationproblem. They assume that the read-write pattern at each processor is known a priori or itcan be estimated, and they �nd the optimal static allocation scheme. However, works on the�le-allocation problem do not compare static and dynamic allocation, and they do not quantifythe cost penalty if the read-write pattern deviates from the estimate.Many works on the data replication problem (such as [4, 6, 11, 13, 17, 21, 34]) and on �lesystems (such as CODA [30, 33]) address solely the availability aspect, namely how to ensureavailability of a data item in the presence of failures. In contrast, in this paper we addressed thecommunication cost issue.The works done by Alonso and Ganguly in [5, 20] are also related to the present paper inthe sense that they also address the optimization issue for mobile computers. However, theiroptimization objective is energy, whereas ours is communication.The work on broadcast disks ([2]) also addresses peformance issues related to push/pull ofdata in a mobile computing environment. However, this work assumes read-only data items andit does not perform the type of analytical performance evaluation present in this paper.8.2 Caching and virtual memoryIn the computer architecture and operating systems literature there are studies of two subjectsrelated to dynamic data allocation, namely caching and distributed virtual memory (see [1, 3, 7,8, 12, 15, 16, 19, 25, 29, 30, 27, 28, 31, 33, 38]).However, there are several important di�erences between Caching and Distributed VirtualMemory (CDVM) on one hand, and replicated data in distributed systems on the other. There-fore, our results have not been obtained previously. First, many of the CDVM methods donot focus on the communication cost alone, but consider the collection of factors that determineperformance; the complexity of the resulting problem dictates that their analysis is either experi-mental or it uses simulation. In contrast, in this paper we assumed that since in mobile computingwireless communication involves an immediate out-of-pocket expense, the optimization of wire-less communication is the sole caching objective; and we performed a thorough analytical costevaluation.Second, in CDVM the size of the cache is assumed to be limited. Thus, the important issuesin CDVM literature are cache utilization, and the page replacement strategy (e.g. LRU, MRU,etc.), namely which page to replace in the cache when the cache is full and a new page has tobe brought in. In other words, in contrast to replicated data in distributed systems, which mayreside on secondary and even tertiary storage, in CDVM a page may be deleted from the cacheas a results of limited storage. One may argue whether or not limited storage is a major issue indistributed databases, however, in this paper we assumed that storage at the mobile computeris abundant.There have been some CDVM methods which consider communication cost as one of theoptimization criteria (e.g. TreadMarks [26]). However, they do not use dynamic allocation18

schemes.9 ConclusionsIn this paper we have considered several data allocation algorithms for mobile computers. Inparticular, we have considered the one-copy and the two-copies allocation schemes. We haveinvestigated static and dynamic allocation methods using the above schemes. In a static methodthe allocation scheme remains unchanged throughout the execution. In a dynamic method theallocation scheme changes dynamically based on a window consisting of the last k requests;if in the window there are more reads at the mobile computer than writes at the stationarycomputer, then we use the two-copy scheme, otherwise we use the one-copy scheme. We getdi�erent dynamic methods for di�erent values of k. For k = 1 the dynamic method is simply theclassic write-invalidate protocol.We have considered two cost models { the connection model and the message model. In theconnection model, the cost is measured in terms of the number of (wireless telephone) connec-tions, where as in the message model the cost is measured in terms of the number of control anddata messages.We have considered three di�erent measures| expected cost, average expected cost, and theworst case cost which uses the notion of competitiveness. Roughly speaking, an algorithm Ais said to be k-competitive if for every sequence s of read-write requests the cost of A on thesequence s is at most k times the cost of an ideal o�-line algorithm on s which knows s in advance.An algorithm A is said to be competitive, if for some k > 0, A is k-competitive. The expectedcost is the standard expected cost per request assuming �xed probabilistic distributions for readsand writes. We believe that an allocation method should be chosen based on the expected costas well as the worst case cost. Speci�cally, we think that an allocation method should be chosento minimize the expected cost, provided that it has some bound on the worst case behavior.Now we explain the di�erence between the expected cost and the average expected cost. Wehave assumed that both, reads at the mobile computer and writes at the stationary computer,occur according to independent Poisson distributions with frequencies �r and �w respectively.When the values of �r and �w are known (more speci�cally, when the value of � = �w�r+�wis known), then an allocation method should be chosen based on the expected cost and thecompetitiveness. However, when � varies and it is equally likely to have any value between 0 and1, then an allocation method should be chosen based on the average expected cost (in additionto competitiveness). The average expected cost is the integral of the expected cost over � from0 to 1. An allocation method with a lower average expected cost will have a lower average costper request, in a sequence of requests in which the frequencies of reads and writes vary overtime. Furthermore, the average expected cost can also provide an insight and/or a measure forselecting an allocation method in the case when � is unknown, but it is equally likely to haveany value between 0 and 1 4.In the connection model, if � is greater than 0:5, i.e., the read frequency is lower than the writefrequency, then the static allocation method using only one copy at the stationary computer has4If � is not uniformly distributed, then the average expected cost should be de�ned as the integral of theexpected cost multiplied by the density function for �. 19

the best expected cost. Similarly, if � is smaller than 0:5, then the static allocation method usingone copy at the stationary computer and one at the mobile computer has the best expected cost.When �r and �w change over time (i.e. � changes over time), then one of the dynamicmethods SWk for an appropriate value of k should be chosen. This is due to the fact that theaverage expected cost of the SWk algorithms is lower than either one of the static methods. Thevalue of the window size k should be chosen to strike a balance between the average expectedcost (which decreases as k increases, see equation 6) and competitiveness (the SWk algorithmis (k + 1)-competitive, thus competitiveness becomes worse as k increases). For example, fork = 9 the sliding-window algorithm will have an average expected cost that is within 10% ofthe optimum, and in the worst case will be at most 10 times worse than the optimum o�inealgorithm.In the message model, the static allocation methods are still not competitive; and the dynamicallocation methods SWk are again competitive, although with a di�erent competitiveness factor.For a given �, the expected cost of one of the three methods ST1, ST2 and SW1 is lowest; theparticular one depends on the values of � and ! (the ratio between the control message cost andthe data message cost). The lowest expected-cost algorithm as a function of � and ! is given in�gure 1.If � is unknown or it varies over time, then one of the sliding window methods provides theoptimal average expected cost. The particular one depends on the value of !. If ! � 0:4 thenthe SW1 algorithm should be chosen as it has the least average expected cost; for other valuesof !, the higher the value of k the lower the average expected cost of the SWk algorithm (see�gure 2). Again, the appropriate value of k should be chosen to strike a balance between averageexpected cost and competitiveness.The data allocation methods and the results of this paper pertain to applications where thedata items accessed by the various mobile computers are mostly disjoint, and the read requestsmust be satis�ed by the most-up-to-date version of the data item. For applications that do notsatisfy these assumptions, techniques that use data broadcasting and batching of updates maybe appropriate, and our results need to be extended. This is the subject of future work.ACKNOWLEDGEMENT: We wish to thank the referees for their insightful comments.References[1] J. Archibald and J. Baer, "An Evaluation of Cache Coherence Solutions in Shared-BusMultiprocessors", ACM Trans. on Computer Systems, 4:(4), Nov. 1986, pages 273-298[2] S. Acharya, M. Franklin, S. Zdonik, "Balancing Push and Pull for Data Broadcast", ACM-SIGMOD '97, pp. 183-194.[3] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, "An Evaluation of Directory Schemesfor Cache Coherence", Proc. of the 15-th Int'l Symp. on Computer Architecture, Pages 280-289, June 1988 20

[4] M. Ahamad and M.H. Ammar, "Multidimensional Voting", ACM Trans. on Computer Sys-tems, 9(4), 1991, pages 399-431[5] R. Alonso and S. Ganguly, "Query Optimization for Energy E�ciency in Mobile Enviro-ments", Proc. of the 1993 Int'l Workshop on Foundations of Models and Languages for Dataand Objects, Aigen, Austria[6] D. Agrawal, A. El Abbadi, "The Tree Quorum Protocol: An E�cient Approach for Man-aging Replicated Data", Proc. of 16th VLDB, August, 1990.[7] J.K. Bennett, J.B. Carter and W. Zwaenepoel, "Adaptive Software Cache Management forDistributed Shared Memory Architectures", Proc. of the 17-th Int'l Symp. on Comp. Arch.,Pages 148-159, May 1990[8] J.K. Bennett, J.B. Carter and W. Zwaenepoel, "Munin : Distributed shared memory basedon type-speci�c memory coherence", Proc. of the 1990 Conference on Principles and Practiceof Parallel Programming[9] Y. Bartal, A. Fiat, Y. Rabani, "Competitive Algorithms for Distributed Data Management",24th Annual ACM STOC, 5/92, Victoria, B.C. Canada.[10] B. R. Badrinath and T. Imielinski, "Replication and Mobility", Proc. of the 2nd Workshopon the Management of Replicated Data (WMRD-II), pp. 9-12, Monterey, CA.[11] S. Y Cheung, M.H. Ammar, and M. Ahamad, "The Grid Protocol: A High PerformanceScheme for Maintaining Replicated Data", Proceedings of the 6th International Conferenceon Data Engineering, pp 438-445, January 1990.[12] M.J. Carey, M.J. Franklin, M. Livny, E.J. Shekita, "Data Caching Tradeo�s in Client-ServerBDMS Architectures", ACM-SIGMOD '91, pp. 357-366[13] Michael J. Carey, and Miron Livny, "Distributed concurrency control performance: A studyof algorithms, distribution and replication", Proc. of the 14th VLDB Conf., Los Angeles,CA, 1988[14] L. W. Dowdy and D. V. Foster, "Comparative Models of the File Assignment Problem',ACM Computing Surveys, 14 (2), 1982.[15] S. J. Eggers and R. H. Katz, "A Characterization of Sharing in Parallel Programs and ItsApplication to Coherency Protocol Evaluation", Proc. of the 15-th Int'l Symp. on Comp.Architecture, Pages 373-382, June 1988[16] Susan J. Eggers and Randy H. Katz, "Evaluating the Performance of Four Snooping CacheCoherency Protocols", Proc. of the 16-th Int'l Symp. on Computer Architecture, June 1989[17] Eager, D.L. and K.C. Sevick, "Achieving Robustness in Distributed Database Systems",ACM-TODS, 8(3), 354-381, Sept. 1983 21

[18] A. Fiat, R, Karp, M.Luby, L.A. McGeoch, D.Sleator, N.E. Yong, "Competitive pagingalgorithms", Journal of Algorithms, 12, pages 685-699, 1991[19] M. Franklin, "Client data Caching: A foundation for high performance object databasesystems", Kluwer Academic Publishing , 1996,[20] S. Ganguly and R. Alonso, "Query Optimization in Mobile Enviroments", Technical Report,December 1993[21] D. Gi�ord. "Weighted Voting for Replicated Data", Proc. of 7th ACM Symposium on Op-eration System Principles, pages 150-162, 1979[22] Yixiu Huang, Ouri Wolfson, "A Competitive Dynamic Data Replication Algorithm", IEEEProc. of 9-th International Conference on Data Engineering '93, pages 310-317, Vienna,Austria[23] Yixiu Huang, Ouri Wolfson, "Dynamic Allocation in Distributed System and Mobile Com-puters", IEEE Proc. of 10-th Int'l Conf. on Data Engineering '94, pages 20-29, Houston,Texas.[24] T. Imielinski and B. R. Badrinath, "Querying in highly mobile distributed environments",Proc. of the 18th Int'l Conf. on VLDB '92, pp. 41-52[25] Kai Li, "Shared Virtual Memory on Loosely Coupled Multiprocessors", Ph. D. thesis,September 1986, Department of Computer Science, Yale University, New Heaven, CT, USA[26] P. Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel, "TreadMarks: Distributed SharedMemory on Standard Workstations and Operating Systems", Proceedings of the Winter 94Usenix Conference, pp. 115-131, January 1994.[27] Kai Li and Paul Hudak, "Memory Coherence in Shared Virtual memory systems", ACMTrans. on Computer Systems, 7(4):321-359, Nov. 1989[28] J. Lee and U. Ramachandram, "Synchronization with Multiprocessor Caches", Proc. of the17-th Int'l Symp. on Comp. Architecture, Pages 27-37, May 1990[29] A.R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, "Competitive Snoopy Caching",Algorithmica (1988) 3:79-119[30] J.J. Kistler, and M. Satyanarayanan, "Disconnected Operation in the Coda File System",ACM Trans. on Computer Systems, 10(1), February 1992, Pages 3-25[31] D.J. Makaro� and D.L. Eager, "Disk Cache Performance for Distributed Systems" Proc. ofthe 10-th Int'l Conf. on Dist. Computing Systems, Pages 212-219, May 1990[32] M. Manasse, L.A. McGeoch, and D.Sleator, "Competitive algorithms for online problems",Proc. 20th ACM STOC, pp. 322-333, ACM 198822

[33] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, and D.C. Steere,"Coda: A Highly Available File System for a Distributed Workstation Environment", IEEETrans. on Computers, 39(4) April 1990, Pages 447-459[34] R. H. Thomas, "A Majority Consensus Approach to Concurrency Control for Multiple CopyDatabase", ACM Trans. on Database Systems, 4(2):180-209, June, 1979[35] Ouri Wolfson and Sushil Jajodia, "Distributed Algorithms for Dynamic Replication ofData", Proc. of ACM-PODS, 1992[36] Ouri Wolfson and Sushil Jajodia, "An Algorithm for Dynamic Data Distribution", Proc. ofthe 2nd Workshop on Management of Replicated Data (WMRD-II), 1992, pp. 62-65[37] O. Wolfson and A. Milo, "The Multicast Policy and Its Relationship to Replicated DataPlacement", ACM TODS, 16 (1), 1991.[38] Y. Wang, L.A. Rowe, "Cache Consistency and Concurrency Control in a Client/ServerDBMS Architecture", ACM-SIGMOD '91, Pages 367-376

23

