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Computational strategies for flexible multibody systems
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Center for Advanced Engineering Environments, Old Dominion University, Hampton VA;
a.k.noor@larc.nasa.gov

The status and some recent developments in computational modeling of flexible multibody
systems are summarized. Discussion focuses on a number of aspects of flexible multibody
dynamics including: modeling of the flexible components, constraint modeling, solution tech-
niques, control strategies, coupled problems, design, and experimental studies. The characteris-
tics of the three types of reference frames used in modeling flexible multibody systems,
namely, floating frame, corotational frame, and inertial frame, are compared. Future directions
of research are identified. These include new applications such as micro- and nano-mechanical
systems; techniques and strategies for increasing the fidelity and computational efficiency of
the models; and tools that can improve the design process of flexible multibody systems. This
review article cites 877 references.@DOI: 10.1115/1.1590354#

1 INTRODUCTION

A flexible multibody system~FMS! is a group of intercon-
nected rigid and deformable components, each of which may
undergo large translational and rotational motions. The com-
ponents may also come into contact with the surrounding
environment or with one another. Typical connections be-
tween the components include: revolute, spherical, prismatic
and planar joints, lead screws, gears, and cams. The compo-
nents can be connected in closed-loop configurations~eg,
linkages! and/or open-loop~or tree! configurations~eg, ma-
nipulators!.

The termflexible multibody dynamics~FMD! refers to the
computational strategies that are used for calculating the dy-
namic response~which includes time-histories of motion, de-
formation and stress! of FMS due to externally applied
forces, constraints, and/or initial conditions. This type of
simulation is referred to asforward dynamics. FMD also
comprises inverse dynamics, which predicts the applied
forces necessary to generate a desired motion response. FMD
is important because it can be used in the analysis, design,
and control of many practical systems such as: ground, air,
and space transportation vehicles~such as bicycles, automo-
biles, trains, airplanes, and spacecraft!; manufacturing ma-
chines; manipulators and robots; mechanisms; articulated
earthbound structures~such as cranes and draw bridges!; ar-
ticulated space structures~such as satellites and space sta-
tions!; and bio-dynamical systems~human body, animals,
and insects!. Motivated by these applications, FMD has been

the focus of intensive research for the last thirty years. FM
is used in the design and control of FMS. In design, FM
can be used to calculate the system parameters~such as di-
mensions, configuration, and materials! that minimize the
system cost while satisfying the design safety constra
~such as strength, rigidity, and static/dynamic stability!. FMD
is used in control applications for predicting the response
the multibody system to a given control action and for c
culating the changes in control actions necessary to direc
system towards the desired response~inverse dynamics!.
FMD can be used in model-based control as an integral
of the controller as well as in controller design for optimi
ing the controller/FMS parameters.

In recent years, considerable effort has been devote
modeling, design, and control of FMS. The number of pu
lications on the subject has been steadily increasing. L
and reviews of the many contributions on the subject
given in survey papers on FMD@1,2# and on the general are
of multibody dynamics, including both rigid and flexibl
multibody systems@3–7#. Special survey papers have be
published on a number of special aspects of FMD, includi
dynamic analysis of flexible manipulators@8#, dynamic
analysis of elastic linkages@9–13#, and dynamics of satellites
with flexible appendages@14#. A number of books on FMD
have been published@15–23#. In the last few years, there
have been a number of conferences, symposia, and sp
sessions devoted to FMD@24#. Two archival journals are
devoted to the subjects of rigid and flexible multibody d
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namics: ‘‘Multibody System Dynamics’’ published by Klu
wer Academic Publishers, and ‘‘Journal of Multibody D
namics’’ published by Ingenta Journals. There are a num
of commercial codes for flexible multibody dynamics~eg,
ADAMS from Mechanical Dynamics Inc, DADS from
CADSI Inc, MECANO from Samtech, and SimPack fro
INTEC GmbH! as well as many research codes develope
universities and research institutions. A survey of multibo
dynamics software up to 1990 with benchmarks was p
sented in Schiehlen@25#. There are two compelling motiva
tions for developing FMD modeling techniques. The fi
motivation is that a number of current problems have not
been solved to a satisfactory degree~see Section 9!. The
second motivation is that future multibody systems are lik
to require more sophisticated models than has hereto
been provided. This is because practical FMD applicati
are likely to have more stringent requirements of econo
high performance, light weight, high speed/acceleration,
safety.

There is a need to broaden awareness among pract
engineers and researchers about the current status and r
developments in various aspects of FMD. The present pa
attempts to fill this need by classifying and reviewing t
FMD literature. Also, future directions for research that ha
high potential for improving the accuracy and computatio
efficiency of the predictive capabilities of the dynamics a
failure of FMS are identified. Some of these objectives w
addressed in the previous review papers. In the present p
an attempt is made to provide a more comprehensive rev
of the literature. The following aspects of FMD are a
dressed in the present paper:

• Models of the flexible components
• Constraints models
• Solution techniques, including solution procedures a

methods for enhancing the computational procedures
models

• Control strategies
• Coupled FMD problems
• Design of FMS
• Experimental studies

There are many common elements of FMD with structu
dynamics, nonlinear finite element method and crashwor
ness analysis. Some of the studies in these areas, whic
clude techniques that are suitable for modeling FMS,
included in this review. The number of publications on t
diverse aspects of FMD is very large. The cited referen
are selected for illustrating the ideas presented and are
necessarily the only significant contributions to the subje
The discussion in this paper is kept, for the most part, o
descriptive level and for all the mathematical details,
reader is referred to the cited literature.

2 MODELS OF FLEXIBLE COMPONENTS

2.1 Deformation reference frames

In multibody dynamics, an inertial frame serves as a glo
reference frame for describing the motion of the multibo
-
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system. In addition, intermediate reference frames that
attached to each flexible component and follow the aver
local rigid body motion~rotation and translation! are often
used. The motion of the component relative to the interm
diate frame is, approximately, due only to the deformation
the component. This simplifies the calculation of the inter
forces because stress and strain measures that are not in
ant under rigid body motion, such as the Cauchy stress te
and the small strain tensor, can be used to calculate th
forces with respect to the intermediate frame. These ten
result in a linear force displacement relation. Two main typ
of intermediate frames are used: floating and corotatio
frames. The floating frame follows an average rigid bo
motion of the entire flexible component or substructure. T
corotational frame follows an average rigid body motion
an individual finite element within the flexible component.
many papers, intermediate frames are not used, instead
global inertial frame is directly used for measuring deform
tions. In this approach, the motion of an element consists
a combination of rigid body motion and deformation and t
two types of motion are not separated. Nonlinear finite str
measures and corresponding energy conjugate stress
sures, which are objective and invariant under rigid bo
motion, are used to calculate the internal forces with resp
to the global inertial frame. A comparison between the ma
characteristics of the three types of frames, namely, float
corotational, and inertial frames is given in Table 1. T
references where the frames were first applied to FMS
given in Table 2.

Thefloating frame approachoriginated out of research o
rigid multibody dynamics in the late 1960s. It was used
extending rigid multibody dynamics codes to FMS. This w
done by superimposing small elastic deformations on
large rigid body motion obtained using the rigid multibod
dynamics code. Initial applications of the floating frame a
proach included: spinning flexible beams~primarily for
space structures applications!, kineto-elastodynamics o
mechanisms, and flexible manipulators~see Table 2!. The
floating frame approach was also used to extend mo
analysis and experimental modal identification technique
FMS @52,54,232,256,272#. This is performed by identifying
the mode shapes and frequencies of each flexible compo
either numerically or experimentally. The firstn modes
~wheren is determined by the physics of the problem and
by the required accuracy! are superposed on the rigid bod
motion of the component represented by the motion of
floating frame. In Table 3, a partial list of publications on t
floating frame approach is organized according to the te
niques used and developed and according to the type of
plication considered.

The corotational frame approachwas initially developed
as a part of thenatural mode methodproposed by Argyris
et al @562#. In this approach, the motion of a finite element
divided into a rigid body motion and natural deformatio
modes. The approach was used for static modeling of st
tures undergoing large displacements and small defor
tions. Later, Belytschko and Hsieh@45# introduced element
rigid convected frames or corotational frames, for the d
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Table 1. Major characteristics of the three types of frames

Floating Frame Corotational Frame Inertial Frame

Frame definition A floating frame is defined for each
flexible component. The floating
frame of a component follows a
mean rigid body motion
of the component~see Fig. 1!.

A corotational frame is defined for each
element. The corotational frame of an
element follows a mean rigid body motion
of the element~see Fig. 2!.

The global inertial reference
frame is used as a reference
frame for all motions~see
Fig. 3!.

Reference frame
for:

a… Deformation Floating frame „for each flexible
component…. Corotational frame „for each finite element…. Global inertial reference frame.

b… Internal forces Floating frame. Corotational frameÕGlobal inertial
reference frame.

Global inertial reference frame.

Note: In some implementations, the
internal force components are
transformed from the floating frame
to the global inertial reference
frame ~eg, @26#!.

Note: The element internal force
components are first calculated relative to
the corotational frame, then they are
transformed from the corotational frame to
the global inertial frame using the
corotational frame rotation matrix.

Note: The internal forces are
calculated using finite strain
measures which are invariant
under rigid body motion.

c… Inertia forces Floating frame. Global inertial reference frame. Global inertial reference frame.
Note: In some implementations, the
flexible motion inertia force components
are first evaluated with respect to the
global inertial reference frame and
then are transformed to the floating
frame ~eg, @27,28#!.

Notes:
• In some implementations, the inertia force

components are first evaluated relative to
the corotational frame and then are
transformed to the inertial frame
~eg, @29–31#!.

Note: In spatial problems, for the
rotational part of the equations o
motion, the internal and inertia
moments are often calculated rela
tive to a moving material frame.

• In spatial problems, for the rotational part
of the equations of motion, the internal
and inertia moments are often calculated
relative to a moving material frame.

Transformation to
global inertial frame Eq. ~1!. Eq. ~1!. No transformation is necessary.

Modeling
Considerations

a… Incorporation of
flexibility effects.

The floating frame approach is the
natural way to extend rigid multibody
dynamics to flexible multibody systems.

The corotational frame transformation
eliminates the element rigid body motion
such that a linear deformation theory can be
used for the element internal forces.

General finite strain measures
that are invariant under
superposed rigid body motion
are used.

b… Magnitude of
angular velocities

No restriction on angular velocities
magnitudes. However, when linear modal
reduction is used, the angular velocity
should be low or constant because the
stiffness of the body varies with the
angular velocity due to the centrifugal
stiffening effect@32#.

No restriction on angular velocities magnitudes. In case of very small elastic
deformations and large angular velocities, special care must be taken during
the solution procedure~time step size, number of equilibrium iterations, etc!
to avoid the situation where numerical errors from the rigid body motion are
of the order of the elastic part of the response.

c… Large deflections • Moderate deflections can be modeled by
using quadratic strain terms. However,
large deflections cannot be modeled
unless the body is sub-structured.

Can handle large deflections and large strains.

• Without the assumption that the strains
and deflections are small, the high-order
terms of the flexible-rigid body inertial
coupling terms cannot be neglected and
the formulation becomes very
complicated.

d… Foreshortening Foreshortening effect can be modeled by
adding quadratic axial-bending strain
coupling terms.

Naturally included.

e… Centrifugal
stiffening

Centrifugal stiffening can be modeled by
adding the stress produced by the axial
centripetal forces and including axial-
bending strain coupling terms.

Naturally included.

f… Mixing rigid and
flexible bodies

Since the floating frame formulation is
based on rigid multibody dynamics
analysis methods, both rigid and flexible
bodies can be present in the same model in
any configuration with no difficulty.

Most implementations place some restrictions on the configuration of the rigid
bodies, such as a closed-loop, must contain at least one flexible body.
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Table 1. (continued)

Floating Frame Corotational Frame Inertial Frame

Characteristics of
the semi-discrete
equations of motion

• The equations of motion are written such
that the flexible body coordinates are
referred to a floating frame and the rigid
body coordinates are referred to the
inertial frame.

• The equations of motion are written with respect to the global inertial frame.
• In spatial problems with rotational DOFs, the rotational part of the equations

of motion can be written with respect to a body attached nodal frame
~material frame! @33–38# or with respect to the global inertial frame
~spatial frame! @35,39#.

a… Inertia forces • The inertia forces involve nonlinear
centrifugal, Coriolis, and tangential
terms because the accelerations are
measured with respect to a rotating
frame ~the floating frame!.

• The inertia forces are the product of the mass matrix and the vector of nodal
accelerations with respect to the global inertial frame.

• In spatial problems with rotational DOFs, the rotational equations
~the Euler equations! include quadratic angular velocity terms.
~These terms vanish in planar problems.!

• The mass matrix has nonlinear flexible-
rigid body motion coupling terms. The
coupling terms are necessary for an
accurate prediction of the dynamic
response, when the magnitude of the
flexible inertia forces is not negligible
relative to that of the rigid body inertia
forces.

• The translational part of the mass matrix is constant. Effects such as coupling
between flexible and rigid body motion, centrifugal and coriolis acceleration
are not present because the inertia forces are measured with respect to an in
frame.

• The solution procedure involves the
inversion or the LU factorization of the
time varying inertia matrices.

b… Internal
„structural …
forces

The internal forces are linear for small
strains and slow rotational velocities. The
linear part of the stiffness matrix is the
same as that used in classical linear FEM.
The nonlinear part of the stiffness matrix
accounts for geometric nonlinearity and
coupling between the axial and bending
deformations~centrifugal stiffening
effect!.

For small strains, the internal forces are
linear with respect to the corotational
frame. The structural forces are
transformed to the global frame using the
nonlinear corotational frame
transformation.

The internal forces are nonlinear
even for small strains becaus
they are expressed in terms of
nonlinear finite strain and stress
measures.

Constraints
a… Hinge joints Hinge joints require the addition of

algebraic constraint equations in the
absolute coordinate formulation.

Hinge joints~revolute joints in planar problems and spherical joints in spatial
problems! do not need an extra algebraic equation and can be modeled by lettin
two bodies share a node.

b… General
constraints

Constraints due to joints, prescribed mo-
tion and closed-loops are expressed in
terms of algebraic equations. These equa-
tions must be solved simultaneously with
the governing differential equations of mo-
tion. The development of general, stable,
and efficient solution procedures for this
system of differential-algebraic equations
is still an active research area@40–42#
~also see Section 4.1!.

Constraints due to joints and prescribed motion are expressed in terms of alge
equations. If an implicit algorithm is used, then a system of differential-algebrai
equations~DAEs! must be solved. If an explicit solution procedure is used, no
special algorithm for solving DAEs is needed.

Applicability of
linear modal
reduction

• Can be applied.
• Can significantly reduce the

computational time.
• Appropriate selection of the deformation

components modes requires experience
and judgment on the part of the analyst.

Not practical because the element vector of
internal forces is nonlinear in nodal
coordinates since it involves a rotation
matrix.

Not practical because the eleme
vector of internal forces is
nonlinear in nodal coordinates
since it involves a nonlinear
finite strain measure.

• For accuracy, linear modal reduction
should be restricted to bodies
undergoing slow rotation or uniform
angular velocity.

• Nonlinear modal reduction@43,44# can
be used for bodies undergoing fast non-
uniform angular velocity in order to
include the centrifugal stiffening effect.
However, a modal reduction must be
performed at each time step.

Possibility of using
modal identification
experiments

The mode shapes and natural frequencies
used in modal reduction can be obtained
using experimental modal analysis tech-
niques. Thus, there is a direct way to ob-
tain the body flexibility information from
experiments without numerical modeling.

Experimentally identified modes cannot be directly used in the model. They can
however, be indirectly used to verify the accuracy of the predicted response
and to tune the parameters of the model.
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Table 1. (continued)

Floating Frame Corotational Frame Inertial Frame

Most suitable
applications

The floating frame formulation along
with modal reduction and new recursive
solution strategies~based on the relative
coordinates formulation! offer the most
efficient method for the simulation of
flexible multibody systems undergoing
small elastic deformations and slow
rotational speeds~such as satellites and
space structures!.

The corotational and inertial frame formulations can handle flexible multibody
systems undergoing large deflections and large high-speed rigid body motion.
In addition, if used in conjunction with an explicit solution procedure,
then high-speed wave propagation effects~for example, due to contact/impact!
can be accurately modeled.

Least suitable
applications

Multibody problems, which involve large
deflections.

For multibody problems involving small deformations and slow rotational speed
the solution time is generally an order of magnitude greater than that of typical
methods based on the floating frame approach with modal coordinates.

First known
application of the
approach to FMS.

Adopted in the late 1960s to early 1970s
to extend rigid multibody dynamics
computer codes to flexible multibody
systems.

Developed by Belytschko and Hsieh@45#.
It was first applied to beam type FMS in
Housner@46–48#.

Used in nonlinear, large
deformation FEM since the
beginning of the 1970s. It was
first applied to modeling beam
type FMS in Simo and
Vu-Quoc @49,50#.
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namic modeling of planar continuum and beam type e
ments, using a total displacement explicit solution procedu
The approach was applied to spatial beams in Belytsc
et al @33# and to curved beams in Belytschko and Glau
@452#. In Belytschkoet al @468# and Belytschkoet al @469#,
the approach was extended to dynamic modeling of sh
using a velocity-based incremental solution procedure. Ta
4 shows a partial list of publications which used corotatio
frames for developing computational models suitable
modeling FMS. The publications are organized according
the techniques used and developed and according to the
of application considered.

The inertial frame approachhas its origins in the non-
linear finite element method and continuum mechan
principles. These techniques were applied to the dyna
analysis of continuum bodies undergoing large rotations
large deformations~including both large strains and larg
deflections! since the early 1970s@92,93#. In Table 5, publi-
cations where the inertial frame approach was used for
veloping computational models suitable for modeling FM
are classified.
Fig. 1 Floating frame

Fig. 2 Corotational frame
 Fig. 3 Inertial frame
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Table 2. Initial references for the application of the three types of frames to FMS

Floating Frame Corotational Frame Inertial Frame

Spinning beams: Nonlinear structural dynamics: Nonlinear finite element method:
Meirovitch and Nelson@51#, Likins @52,53,55#,
Likins et al @54#, Grotteet al @56#.

Belytschko and Hsieh@45#, Belytschkoet al @33#,
Argyris et al @81#, Argyris @82#,
Belytschko and Hughes@83#.

Oden@92#, Batheet al @93#,
Bathe and Bolourchi@94#.

Kineto-elastodynamics of mechanisms: Dynamics of planar flexible beams:
Winfrey @57–59#, Jasinskiet al @60,61#, Sadler
and Sandor@62#, Erdmanet al @9,63,64#, Imam
@65#, Imam and Sandor@66#, Viscomi and Ayre
@67#, Dubowsky and Maatuk@68#, Dubowsky and
Gardner@69,70#, Bahgat and Willmert@71#,
Midha et al @72,74,75#, Midha @73#,
Nath and Gosh@76#, Huston@77#,
Huston and Passarello@78#.

Flexible space structures: Simo and Vu-Quoc@50#.
Housner@46#, Housneret al @47#. Dynamics of spatial flexible beams:
FMS planar beams: Simo @95#, Simo and Vu-Quoc@34,49,96,97#,

Iura and Atluri @48#, Cardona and Geradin@35#,
Geradin and Cardona@98#, Crespo Da Silva@99#,
Jonker@100#.

Yang and Sadler@84#, Wasfy @85,86#,
Elkaranshawy and Dokainish@31#.
FMS spatial beams:
Housner@46#, Housneret al @47#, Wu et al @87#,
Crisfield @88#, Crisfield and Shi@89,90#,
Wasfy and Noor@91#.

Flexible manipulators: FMS shells:
Book @79,80#. Wasfy and Noor@91#.
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2.2 Mathematical descriptions of the intermediate
reference frames

The relation between the coordinates of a point in the glo
inertial frameA (xA) and the coordinates of the same po
in the intermediate body reference frameB (xB) is given by:

xA5xo
A/B1RA/BxB (1)

wherexo
A/B are the coordinates of the origin of frameB in

frameA, andRA/B is a rotation matrix describing the rotatio
from A to B. The methods used to definexo

A/B andRA/B for
the floating and corotational frames are outlined sub
quently.

2.2.1 Floating frame
The motion of the floating frame~position and orientation! is
commonly referred to as thereference motionof the compo-
nent. It is only an approximation of the rigid body motion
the component. Thus there are many ways to define this
erence motion. Two formulations are commonly us
namely, fixed axis and moving axis formulations. In the fix
axis formulation, Cartesian and/or rotation coordinates
one, two, or three selected material points~usually the joints!
on the flexible body are used to define the floating fram
Experience is needed for appropriate selection of body fi
axes that are consistent with the boundary conditions,
cause this choice affects the resulting vibrational modes
the moving axis formulation, also called the body mean a
formulation, the floating frame follows a mean displacem
of the flexible body and thus does not necessarily coinc
with any specific material point. In this case, two definitio
of the floating frame are used in practice: a! the floating
frame is the frame relative to which the kinetic energy of t
flexible motion with respect to an observer stationed at
frame is minimum~Tisserand frame! @109,122,123#; and b!
the floating frame is the frame relative to which the sum
the squares of the displacements, with respect to an obse
stationed at the frame, is minimum~Buckens frame! @122#.

2.2.2 Corotational frame
The definition of the corotational frame depends on the t
of elements used for modeling the flexible components.
two-node beam elements, the corotational frame is usu
defined by the vector connecting the two nodes~eg, @45#!. It
bal
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can also be chosen as the mean beam axis~ie, the axis that
minimizes the total deformation! @450#. For 3D beam ele-
ments, the remaining two axes are chosen as the cr
sectional axes@33,87,456#. In Parket al @479# and Choet al
@480# a relative nodal coordinate approach is used in whic
tree representation of the FMS is constructed and beam
ment deformations are measured with respect to the adja
nodal frame along the tree.

For shell and continuum elements, there are two meth
to define the corotational frame. In the first method, on
some of the nodes of the element are used to define
corotational frame. This type of definition was used for co
tinuum elements in Belytschko and Hsieh@45# and for shells
in Stolarski and Belytschko@455,456,468,470,471,563#, Be-
lytschko et al @468#, Rankin and Brogan@455#, Rankin and
Nour-Omid @456#, and Belytschko and Leviathan@470,471#.
For example, in Belytschkoet al @468# the normal Z-axis
for a four node quadrilateral shell element is defined as
normal to the two diagonals of the element, the X-axis
perpendicular to the Z-axis and is aligned with the vec
connecting nodes 1 and 2, and the Y-axis is perpendic
to the Z- and X-axes. Using some of the element no
to define the corotational frame makes the internal for
dependent on the choice of the element local node n
bering, which may introduce artificial asymmetries in t
response@460,474,476#. In the second method, the origi
and orientation of the corotational frame are defined as
average position and rotation of all the element nodes.
example, the origin of the corotational frame can be defin
as the origin of the natural element coordinate syst
@85,91,460,464,474,476#. The orientation of the frame can b
determined using one of the following techniques:

• Polar decomposition of the deformation gradient tenso
the origin of the natural element coordinate syste
@85,91,460,464,476#

• For shell elements, the Z-axis is normal to the surface
the element at the origin of the natural coordinate syste
The angle between the X-axis and the first element nat
axis is equal to the angle between the Y-axis and the s
ond element natural direction@564#

• A least-square minimization procedure to find the orien
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Table 3. Classification of a partial list of publications on the floating frame approach

Definition of the
floating frame

Coordinates of selected
points „body fixed axis…

Most references,eg Winfrey @57,58#, Sadler and Sandor@62,101,102#, Song and Haug
@103#, Sunada and Dubowsky@104,105#, Shabana and Wehage@106#, Singhet al @107#,
Turcic and Midha@108#, Agrawal and Shabana@109#, Changizi and Shabana@110#, Ider
and Amirouche@111–113#, Chang and Shabana@114#, Modi et al @115#, Shabana and
Hwang @116#, Hwang and Shabana@117#, Pereira and Nikravesh@118#.

Mean rigid body motion
„moving axis…

Likins @52#, Milne @119#, McDonough@120#, Fraejis de Veubeke@121#, Canavin and
Likins @122#, Cavin and Dusto@123#, Agrawal and Shabana@109,124#, Koppenset al
@125#.

Rigid body
coordinates

Absolute coordinates
„Augmented formulation…

Most references,eg Song and Haug@103#,
Yoo and Haug@126,127#, Shabana and Wehage@106#,
Agrawal and Shabana@109#, Bakr and Shabana@128,129#.

Relative „or joint …
coordinates„recursive
formulation …

Open-loop rigid multibody systems
Chace@130#, Wittenburg@131#, Roberson@132#.
Open-loop FMS „tree configuration…
Hughes@133#, Hughes and Sincarsin@134#, Book @135#, Singhet al @107#, Usoroet al
@136#, Benati and Morro@137#, Changizi and Shabana@110#, Kim and Haug@138#, Han
and Zhao@139#, Shabana@140,141#, Shabanaet al @142#, Shareef and Amirouche@143#,
Amirouche and Xie@144#, Surdilovic and Vukobratovic@145#, Znamenacek and Valase
@146#.
Closed-loop FMS
Kim and Haug@147#, Ider and Amirouche@111,112#, Keat @148#, Nagarajan and Turcic
@149#, Lai et al @150#, Ider @151#, Pereira and Proenca@152#, Nikravesh and Ambrosio
@153#, Jain and Rodriguez@154#, Hwang@155#, Hwang and Shabana@117,156#, Shabana
and Hwang@116#, Amirouche and Xie@144#, Verlindenet al @157#, Tsuchia and Takeya
@158#, Pereira and Nikravesh@118#, Fisetteet al @159#, Pradhanet al @160#, Choi et al
@161#, Nagataet al @162#.

3D finite rotation
Description

Euler angles Ider and Amirouche@111,112#, Amirouche@17#, Modi et al @115#, Du and Ling@163#.

Euler parameters Nikraveshet al @164#, Agrawal and Shabana@109#, Geradinet al @165#, Hauget al @166#.
Yoo and Haug@126#, Wu and Haug@167#, Wu et al @168#, Chang and Shabana
@114,169,170#, Ambrosio and Goncalaves@171#.

Two unit vectors Vukasovicet al @172#.

Rotation vector Metaxas and Koh@173#.

Three vectors„rotation
tensor…

Garcia de Jalonet al @174#, Garcia de Jalon and Avello@175#, Friberg@176#, Bayoet al
@177#.

Inertial coupling between rigid body
motion and flexible body motion
„tangential, Coriolis and centrifugal
inertia forces….

Special formulations „initial research…
Viscomi and Ayre@67#, Sadler and Sandor@102#, Sadler@178#, Chu and Pan@179#, Cavin
and Dusto@123#.
FMS formulations
Song and Haug@103#, Haug et al @166#, Nath and Gosh@76#, Shabana and Wehag
@106,180#, Turcic and Midha@108,181#, Shabana@182#, Bakr and Shabana@128,129#,
Shabana@141#, Hsu and Shabana@183#, El-Absy and Shabana@184#, Shabana@21#, Yigit
et al @185#, Liou and Erdman@26#, Ider and Amirouche@111,112#, Dado and Soni@186#,
Naganathan and Soni@187#, Nagarajan and Turcic@149#, Silverberg and Park@188#, Liu
and Liu @189#, Huang and Wang@190#, Jablokowet al @191#, Shabanaet al @142#, Sha-
bana and Hwang@116#, Lieh @192#, Hu and Ulsoy@193#, Fang and Liou@194#, Damaren
and Sharf@195#, Xianmin et al @196#, Shiganget al @197#, Al-Bedoor and Khulief@198#,
Langlois and Anderson@199#.

Centrifugal stiffening Single Rotating Body
Likins et al @54#, Likins @55#, Vigneron @200#, Levinson and Kane@201#, Kaza and
Kvaternik@202#, Cleghornet al @203#, Wright et al @204#, Kaneet al @205#, Kammer and
Schlack@206#, Ryan@207#, Trindade and Sampaio@208#.
FMS
Ider and Amirouche@111,112#, Liou and Erdman@26#, Peterson@209#,
Banerjee and Dickens@210#, Banerjee and Lemak@211#, Banerjee@212#, Wallrappet al
@213#, Wallrapp @214#, Boutaghou and Erdman@215#, Huang and Wang@190#, Liu and
Liu @189#, Ryu et al @43#, Hu and Ulsoy@193#, Sharf@216,217#, Yoo et al @218#, Du and
Ling @163#, Tadikonda and Chang@219#, Damaren and Sharf@195#, Pascal@220#.
Studies on the effect of centrifugal stiffening on the response of FMS
Wallrapp and Schwertassek@221#, Padilla and Von Flotow@222#, Khulief @32#, Zhang
et al @223#, Zhang and Huston@224#, Ryu et al @44#.

Geometric nonlinearity or Beams
moderate deflections. Bakr and Shabana@128,129#, Spanos and Laskin@225#, Hu and Ulsoy@193#, Mayo et al

@226#, Mayo and Dominguez@227#, Du et al @228#, Sharf@216,217,229#, Shabana@21#.

Axial foreshortening Meirovitch @230#, Kaneet al @205#, Ryan@207#, Hu and Ulsoy@193#, Mayo et al @226#,
Mayo and Dominguez@227#, Sharf@217#, Ruzicka and Hodges@231#.
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Model reduction Normal modes superposition
Likins @52,53#, Winfrey @59#, Imamet al @232#, Likins et al @54#, Sunada and Dubowsky
@104#, Hablani @233,235,236#,Amirouche and Huston@234#, Bakr and Shabana@128#,
Yoo and Haug@126,127,237#, Tsuchiyaet al @238#, Chadhan and Agrawal@239#, Ni-
kravesh@240#, Jonker@241#, Ramakrishnanet al @242#, Padilla and Von Flotow@222#,
Wang @243#, Jablokowet al @191#, Ramakrishnan@244#, Yao et al @245#, Wu and Mani
@246#, Verlindenet al @157#, Hsieh and Shaw@247#, Korayemet al @248#, Hu et al @249#,
Tadikonda@250#, Nakanishiet al @251#, Lee@252#, Cuadradoet al @253#, Subrahmanyan
and Seshu@254#, Fisetteet al @159#, Shabana@21#, Znamenacek and Valasek@146#, Pan
and Haug@255#, Craig @256#.
Effect of Centrifugal stiffening on the reduced modes
Likins et al @54#, Likins @55#, Vigneron@200#, Laurenson@257#, Hoa @258#, Wright et al
@204#, Banerjee and Dickens@210#, Banerjee and Lemak@211#, Khulief @32#, Ryu et al
@43,44#, Kobayashiet al @259#, Mbono Samba and Pascal@260#.
Selection of deformation modes
Kim and Haug@261#, Friberg @262#, Spanos and Tsuha@263#, Tadikonda and Schubele
@264#, Gofron and Shabana@265#, Shabana@266#, Shi et al @267#, Carlbom@268#.
Use of experimental Modes
Shabana@269#.
Effect of rigid-flexible motion coupling on the reduced modes
Shabana@270#, Shabana and Wehage@106,180#, Agrawal and Shabana@109#, Hu and
Skelton@271#, El-Absy and Shabana@184#, Friberg@262#, Hablani@236#, Jablokowet al
@191#, Cuadradoet al @253#.
Craig-Bampton modes
Craig and Bampton@272#, Craig @256#, Ryu et al @273,274#, Cardona@275#.
Singular Perturbation model reduction
Siciliano and Book@276#, Jonker and Aarts@277#.
Substructuring „Superelements…
Subbiahet al @278#, Shabana@279#, Shabana and Chang@280#, Wu and Haug@281#,
Cardona and Geradin@282#, Liu and Liew@283#, Lim et al @284#, Mordfin @285#, Haenle
et al @286#, Liew et al @287#, Cardona@275#.
Super-element for rigid multibody systems
Agrawal and Chung@288#, Agrawal and Kumar@289#.
Effect of Geometric Nonlinearity
Wu and Haug@167,281#, Wu and Mani@246#.

Element types Beam Planar Euler Beam
Bakr and Shabana@128#, Liou and Erdman@26#, Boutaghou and Erdman@215#,
Padilla and Von Flotow@222#, Langlois and Anderson@199#.
Spatial Euler-Beam
Sharanet al @290#, Richard and Tennich@291#, Ghazaviet al @292#,
Sharf @216,217,229#, Du and Ling@163#, Du and Liew@293#.
Planar Timoshenko beam
Naganathan and Soni@187,294#, Ider and Amirouche@111–113#, Boutaghou and Erdman
@215#, Smaili @295#, Hu and Ulsoy@193#, Meek and Liu@296#, Xianmin et al @196#.
Spatial Timoshenko beam
Christensen and Lee@297#, Naganathan and Soni@187,294#, Bakr and Shabana@129#,
Gordaninejadet al @298#, Huang and Wang@190#, Fisetteet al @159#, Oral and Ider@299#,
Shabana@21#.
Curved Beam
Bartolone and Shabana@300#, Gau and Shabana@301#, Chen and Shabana@302#.
Twisted Beams
Kaneet al @205#.
Arbitrary Cross-Sections
Kaneet al @205#.

Plates and shells Kirchhoff-Love Theory
Banerjee and Kane@303#, Changet al @304#, Chang and Shabana@114,169#, Boutaghou
et al @305#, Kremeret al @306,307#, Madenci and Barut@308#.
Initially Curved plates: Chen and Shabana@302,309#.

Continuum Turcic and Midha@108,181#, Turcic et al @310#, Shareef and Amirouche@143#,
Jianget al @311#, Ryu et al @312#, Fang and Liou@194#.

Discretization Finite elements Most references.

Boundary element Kerdjoudj and Amirouche@313#.

Finite difference Feliu et al @314#.

Analytical Meirovitch and Nelson@51#, Neubaueret al @315#, Jasinskiet al @60,61#, Viscomi and
Ayre @67#, Sadler@178#, Thompson and Barr@316#, Badlani and Kleinhenz@317#, Low
@318,319#, Boutaghouet al @320#, Xu and Lowen@321,322#.
Symbolic Manipulation:
Cetinkunt and Book@323#, Fisetteet al @159,324#, Korayemet al @248#, Botz and
Hagedorn@325,326#, Piedboeuf@327#, Melzer @328#, Oliviers et al @329#, Shi
and McPhee@330,331#, Shi et al @267,332#.

Variable
configuration

Variable kinematic
structure

Khulief and Shabana@333,334#, Ider and Amirouche@113#, Chang and Shabana@170#,
Fang and Liou@194#.

Variable mass McPhee and Dubey@335#, Hwang and Shabana@336#, Kovecseset al @337#.
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Table 3. (continued).

Joints Prismatic Buffinton and Kane@338#, Pan @339#, Pan et al @340,341#, Hwang and Haug@342#,
Gordaninejadet al @343#, Buffinton @344#, Al-Bedoor and Khulief@198,345#, Verlinden
et al @157#, Fang and Liou@194#, Theodore and Ghosal@346#.

Gears Cardona@347#.

Cams Bagci and Kurnool@348#.

Material models Linear isotropic Most references.

Composite Solid beam cross section:Shabana@349#.
Box cross section:Ider and Oral@350#, Oral and Ider@299#.
Thompsonet al @351#, Thompson and Sung@352#, Sung et al @353#, Shabana@349#,
Azhdari et al @354#, Chalhoub et al @355#, Gordaninejadet al @343#, Kremer et al
@306,307#, Madenci and Barut@308#, Du et al @228#, Ghazaviet al @292#, Gordaninejad
and Vaidyaraman@356#, Ider and Oral@350#, Oral and Ider@299#.

Nonlinear Plastic materials for crash analysis:Ambrosio @357#, Ambrosio and Nikravesh@27#.
Inelastic materials: Amirouche and Xie@358#, Pan and Haug@255#.
Creeping materials: Xie and Amirouche@359#.

Coupling with
other effects

Control Gofron and Shabana@360,361#, Gordaninejad and Vaidyaraman@356#.
Piezo-electric actuators Rose and Sachau@362#.

Thermal Shabana@363#, Sung and Thompson@364#, Modi et al @115#.

Aeroelasticity Du et al @365,366#.

Equations of
Motion

Lagrange’s
equations

Dubowsky and Gardner@69#, Midha et al @72,367#, Midha et al @74#, Blejwas @368#,
Cleghornet al @203#, Turcic and Midha@108,181#, Book @135#, Bakr and Shabana@128#,
Changizi and Shabana@110#, Panet al @341#, Bricout et al @369#, Meirovitch and Kwak
@370#, Smaili @295#, Pereira and Proenca@152#, Modi et al @115#, Huang and Wang@190#,
Meek and Liu@296#, Fattahet al @371#, Metaxas and Koh@173#, Pereiraet al @372#,
Pradhanet al @160#.

Hamilton’s principle Cavin and Dusto@123#, Serna@373#, Fung@374#.

Kane’s equations Ider and Amirouche@111,112#, Banerjee and Dickens@210#, Ider @151#, Han and Zhao
@139#, Amirouche and Xie@144#, Zhanget al @223#, Zhang and Huston@224#, Langlois
and Anderson@199#.

Newton-Euler equations Naganathan and Soni@187,294#, Huang and Lee@375#, Shabana@140,376#, Hwang@155#,
Hwang and Shabana@117,156#, Shabanaet al @142#, Richard and Tennich@291#, Verlin-
denet al @157#, Hu and Ulsoy@193#, Ambrosio@377#, Choi et al @161#.

Principle of Virtual Work Liu and Liu @189#, Lieh @192#, Shi and McPhee@330#.

Mass matrix Consistent Most references.

Lumped Lai and Dopker@378#, Han and Zhao@139#, Shabana@376#, Jain and Rodriguez@154#,
Pan and Haug@379#, Ambrosio and Ravn@28#, Ambrosio and Goncalaves@171#.

Solution Iterative implicit Most references.

Procedure Explicit Metaxas and Koh@173#.

Applications Mechanisms
„Closed-Loops…

Review papers:Lowen and Jandrasits@10#, Lowen and Chassapis@12#, Thompson and
Sung@13#.
Planar:
Winfrey @57,58#, Sadler and Sandor@62,101,102#, Sadler @178,380#, Jasinski et al
@60,61#, Erdmanet al @63#, Viscomi and Ayre@67#, Chu and Pan@179#, Thompson and
Barr @316#, Bahgat and Willmert@71#, Midha et al @72,74,75#, Badlani and Kleinhenz
@317#, Song and Haug@103#, Nath and Gosh@76,381#, Cleghornet al @203#, Blejwas
@368#, Bagci and Abounassif@382#, Badlani and Midha@383#, Turcic and Midha
@108,181#, Turcic et al @310#, Thompson and Sung@352#, Tadjbakhsh and Younis@384#,
Sung and Thompson@364#, Liou and Erdman@26#, Cardona and Geradin@282#, Banerjee
@212#, Jablokowet al @191#, Liou and Peng@385#, Hsieh and Shaw@247#, Verlindenet al
@157#, Fallahiet al @386#, Chassapis and Lowen@387#, Sriram and Mruthyunjaya@388#,
Sriram@389#, Farhang and Midha@390#, Yang and Park@391#, Xianminet al @196#, Fung
@374#, Subrahmanyan and Seshu@254#.
Spatial:
Sunada and Dubowsky@104#, Shabana and Wehage@106,392#, Hwang and Shabana
@117#.

Space Structures Review paper:Modi @14#
Meirovitch and Nelson@51#, Ashley @393#, Likins @52,53#, Likins et al @54#, Grotteet al
@56#, Kulla @394#, Canavin and Likins@122#, Ho @395#, Bodleyet al @396#, Lips and Modi
@397#, Kane and Levinson@398,399#, Kaneet al @400#, Bainum and Kumar@401#, Diarra
and Bainum@402#, Hablani@233,235,236#, Laskinet al @403#, Modi and Ibrahim@404#,
Ibrahim and Modi@405#, Ho and Herber@406#, Wang and Wei@407#, Meirovitch and
Quinn @408#, Meirovitch and Quinn@409#, Tsuchiyaet al @238#, Man and Sirlin@410#,
Hanagud and Sarkar@411#, Silverberg and Park@188#, Meirovitch and Kwak@370#,
Spanos and Tsuha@263#, Modi et al @115#, Kakad@412#, Wu and Chen@413#, Wu et al
@414#, Tadikondaet al @415#, Tadikonda@416#, Pradhanet al @160#, Nagataet al @162#.
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Manipulators „tree… Review paper: Gaultier and Cleghorn@8#.
Chains
Hughes@133#, Hughes and Sincarsin@134#, Wang@243#.
Manipulators „open-loops…
Book @79,135#, Sunada and Dubowsky@105#, Judd and Falkenburg@417#, Subbiahet al
@278#, Bricout et al @369#, Chang and Hamilton@418#, Chang @419#, Chedmailet al
@420#, Geradinet al @421#, Singhet al @107#, Serna@373#, Gordaninejadet al @343#, Han
and Zhao@139#, Pascal@422#, Sharanet al @142,290#, Smaili @295#, Huang and Wang
@190#, Yao et al @245#, Hu and Ulsoy@193#, Fattahet al @371#, Meek and Liu@296#, Du
and Ling@163#, Du and Liew@293#, Liew et al @287#, Surdilovic and Vukobratovic@145#,
Oral and Ider@299#, Theodore and Ghosal@346#, Shiganget al @197#, Kovecseset al
@337#.

Rotorcraft Du et al @365,366,423#, Bertogalliet al @424#, Ruzicka and Hodges@231#.

Vehicle dynamics Review paper:Kortum @425#.
Pereira and Proenca@152#, Richard and Tennich@291#, Schwartz@426#, Kading and Yen
@427#, Sharp @428#, Nakanishi and Shabana@429#, Tadikonda@250#, Nakanishiet al
@251#, Nakanishi and Isogai@430#, Pereiraet al @372#, Campanelliet al @431#, Choi et al
@161#, Lee et al @432#, Assaniset al @433#, Carlbom @268#, Ambrosio and Goncalaves
@171#.

Human body dynamics Amirouche and Ider@434#, Amiroucheet al @435#.

Crash-worthiness Nikraveshet al @436#, Ambrosio@377#.
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tion that minimizes the sum of the squares of the differe
between the orientations of the element sides and the c
tational frame orientation@474#!

• Finding the orientation that makes the rotation at the ori
of the corotational frame zero@478#

The last two approaches are difficult to extend for eleme
with mid-side nodes and for 3D solid elements@476#.

In most FMS applications, the element deformations
small and, therefore, one corotational frame per elemen
sufficient. If the deformation within the element is larg
such as in large-strain problems, then one corotational fra
per element may not be sufficient to approximate the ri
body motion of the entire element. In this case, more th
one corotational frame per element that follows the aver
local element rigid body motion are needed. However, us
more than one corotational element per frame is contrar
the main advantage of the corotational frame approa
which is simplicity and computational efficiency of the el
ment internal forces.

2.3 Semi-discrete equations of motion

The semi-discrete equations of motion of a FMS involve t
types of equations: the dynamic equations of equilibrium a
constraint equations. The dynamic equilibrium equations
be written as:

FI5FN1FE1FR (2)

whereFI , FN , FE , andFR are the vectors of inertia, inter
nal, external, and constraint forces, respectively. Constr
equations express the relations between the various com
nents of the system. They have the following form:

F~q,q̇,t !>0 (3)

whereF is the vector of algebraic constraint equations,q is
the vector of generalized system coordinates,t is the time,
and a superposed dot indicates a time derivative. In the fl
ing frame approach, Eq.~2! is usually written such that the
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flexible body coordinates are referred to a floating frame a
the rigid body coordinates~which define the motion of the
floating frames! are referred to the inertial frame. In the cor
tational and inertial frame approaches, Eq.~2! is usually
written for the entire multibody system with respect to t
global inertial reference frame. The inertial and internal for
vectors in Eq.~2! for the floating, corotational, and inertia
frame approaches can be written in the following form:

Floating frame:
For a flexible component:

q5 HqR

qF
J

FI5M ~q!q̈1Fc (4)

FN5KqF

Corotational frame:
For an individual finite element:

q5 H x
uJ

FI5H Mẍ

Jü1 u̇3Ju̇J (5)

FN5RKqF

Inertial frame:
For an individual finite element:

q5 H x
uJ

FI5H Mẍ

Jü1 u̇3Ju̇J (6)

FNt1Dt
5FNt

1KTt
Dq
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Table 4. Classification of a partial list of publications on the corotational frame approach

Element types Beams Planar Euler beam

Belytschko and Hsieh@45#, Hsiao and Jang@29,437#, Hsiaoet al @438#, Yang and Sadler@84#, Rice and
Ting @439#, Tsang@440#, Tsang and Arabyan@441#, Iura @442#, Mitsugi @443#, Hsiao and Yang@444#,
Elkaranshawy and Dokainish@31#, Wasfy@86#, Galvanetto and Crisfield@445#, Shabana@21,446#, Shabana
and Schwertassek@447#, Banerjee and Nagarajan@448#, Behdinanet al @449#, Takahashi and Shimizu
@450#, Berzeriet al @451#.
Planar Curved Euler beam
Belytschko and Glaum@452#, Hsiao and Yang@444#.
Planar Timoshenko beam
Iura and Iwakuma@30#, Iura and Atluri@453#.
Spatial Euler beam
Belytschkoet al @33#, Argyris et al @81,454#, Bathe and Bolourchi@94#, Housner@46#, Housneret al @47#,
Rankin and Brogan@455#, Rankin and Nour-Omid@456#, Wu et al @87,457#, Crisfield @88,458#, Hsiao
@459#, Wasfy @85,460#, Wasfy and Noor@91#.
Spatial Timoshenko beams
Quadrelli and Atluri@461,462#, Crisfieldet al @38#, Devlooet al @463#.

Shells Rankin and Brogan@455#, Rankin and Nour-Omid@456#.
Kirchhoff-Love model
Peng and Crisfield@464#, Wasfy and Noor@91#, Shabana and Christensen@465#, Meek and Wang@466#.
Mindlin model
Belytschko and Tsay@467#, Belytschkoet al @468,469#, Belytschko and Leviathan@470,471#, Bergan and
Nygard @472,473#, Nygard and Bergan@474#.

Continuum Belytschko and Hsieh@45#, Argyris et al @81#, Belytschko and Hughes@83#, Flanagan and Taylor@475#,
Wasfy @85,460#. Wasfy and Noor@91#, Crisfield and Moita@476#, Moita and Crisfield@477#.

Definition of the
corotational
frame

Defined with
respect to the
position of selected
element nodes

Beams
All references.
Shells and Continuum
Belytschkoet al @468#, Belytschko and Leviathan@470,471#, Rankin and Brogan@455#, Rankin and
Nour-Omid @456#, Meek and Wang@466#.

Defined with
respect to a mean
rigid body motion
of the element

Shells
Nygard and Bergan@474#, Wasfy and Noor@91#.
Continuum
Flanagan and Taylor@475#, Jetteur and Cescotto@478#, Wasfy@85,460#, Wasfy and Noor@91#, Crisfield and
Moita @476#.

Defined with
respect to the
previous element
„relative nodal
coordinates…

Parket al @479#, Choet al @480#

Beam and shell
3D rotation
parameters

Euler angles Beams:Bathe and Bolourchi@94#.

Incremental
rotation vector

Beams
Quadrelli and Atluri@461,462#.
Shells
Bergan and Nygard@472,473#, Nygard and Bergan@474#, Belytschkoet al @468,469#, Belytschko and
Leviathan@470,471#.

Rotation vector Beams
Crisfield @88#, Crisfieldet al @38#, Devlooet al @463#.
Shells
Argyris et al @81,454#, Argyris @82#, Rankin and Brogan@455#, Rankin and Nour-Omid@456#.

Two unit vectors Beams:Belytschkoet al @33#.

Deformation
reference

Total Lagrangian Belytschko and Hsieh@45#, Belytschko and Glaum@452#, Hughes and Winget@481#, Flanagan and Taylor
@475#, Hsiao and Jang@29,437#, Yang and Sadler@84#, Crisfield @88#, Rice and Ting@439#, Tsang@440#,
Tsang and Arabyan@441#, Wasfy @85,86,460#, Wasfy and Noor@91#, Hsiao@459#, Hsiaoet al @438#, Hsiao
and Yang@444#, Crisfield and Shi@89#, Crisfield and Moita@476#, Elkaranshawy and Dokainish@31#, Iura
and Atluri @453#, Quadrelli and Atluri @461,462#, Crisfield et al @38#, Shabana@21,446#, Shabana and
Christensen@465#, Behdinanet al @449#, Takahashi and Shimizu@450#.

Updated
Lagrangian

Bathe and Bolourchi@94#, Belytschkoet al @468,469#, Belytschko and Leviathan@470,471#, Jetteur and
Cescotto@478#, Quadrelli and Atluri@461,462#, Meek and Wang@466#.

Mass matrix Lumped Belytschko and Hsieh@45#, Belytschko and Glaum@452#, Rice and Ting@439#, Wasfy @85,86,460#, Wasfy
and Noor@91#, Iura and Atluri@453#.

Consistent Hsiao and Jang@29,437#, Hsiaoet al @438#, Yang and Sadler@84#, Tsang@440#, Wu et al @87#, Tsang and
Arabyan @441#, Hsiao and Yang@444#, Elkaranshawy and Dokainish@31#, Crisfield et al @38#, Shabana
@446#, Shabana and Christensen@465#, Devlooet al @463#.

DOFs Rotations and
displacements

Most references, eg, Belytschko and Hsieh@45#, Belytschkoet al @33#, Bathe and Bolourchi@94#, Rankin
and Brogan@455#, Rankin and Nour-Omid@456#, Yang and Sadler@84#, Crisfieldet al @38#, Devlooet al
@463#.

Cartesian
Displacements

Wasfy @85,86,460#, Wasfy and Noor@91#, Banerjee@482#, Banerjee and Nagarajan@448#.

Slopes and
displacements

Shabana@21,446,483#, Shabana and Christensen@465#, Shabana and Schwertassek@447#, Takahashi and
Shimizu @450#, Berzeriet al @451#.
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Table 4. (continued)

Solution
procedure

Implicit Semi-implicit with Newton iterations
Housner@46#, Housneret al @47,484#, Yang and Sadler@84#, Hsiao and Jang@29#, Hsiaoet al @438#, Hsiao
and Yang@444#, Elkaranshawy and Dokainish@31#, Banerjee and Nagarajan@448#, Behdinanet al @449#,
Shabana@21#, Devlooet al @463#, Choet al @480#.
Energy conserving:Crisfield and Shi@89,90#, Galvanetto and Crisfield@445#, Crisfieldet al @38#.

Explicit Belytschko and Hsieh@45#, Belytschko and Kennedy@485#, Hallquist @486#, Flanagan and Taylor@475#,
Taylor and Flanagan@487#, Rice and Ting@439#, Wasfy @85,86,460#, Wasfy and Noor@91#, Iura and Atluri
@453#.
Multi-time Step: Belytschkoet al @488#, Belytschko and Lu@489#.

Material models Linear isotropic Most references.

Composite
Materials

Hyper-elastic
materials

Crisfield and Moita@476#.

Elastic-plastic Flanagan and Taylor@475#.

Governing
equations of
motion

Lagrange
equations

Yang and Sadler@84#, Elkaranshawy and Dokainish@31#, Tsang and Arabyan@441#, Devlooet al @463#.

Hamilton’s
principle

Iura and Atluri @453#.

Virtual work Õ
D’Alembert
Principle

Housner@46#, Housneret al @47#, Wu et al @87#, Crisfield @88#, Wasfy @85,460#, Wasfy and Noor@91#.

Applications Nonlinear
structural
dynamics

Belytschko and Hsieh@45#, Belytschkoet al @33#, Rice and Ting@439#.

Crashworthiness Belytschkoet al @468#, Belytschko@490#, Belytschko and Leviathan@470,471#.

Space structures Housner@46#, Housneret al @47#, Wu et al @87#, Wasfy and Noor@91#, Banerjee and Nagarajan@448#.

General FMS
„mechanisms and
manipulators…

Yang and Sadler@84#, Wasfy @85,86,460#, Elkaranshawy and Dokainish@31#, Wasfy and Noor@91#,
Shabana@446#, Shabana and Christensen@465#.
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whereqR is the vector of rigid body translations and rot
tions with respect to the global inertial reference frame,qF is
the vector of flexible coordinates~displacements and slope!
with respect to the intermediate frame,M is the mass matrix,
Fc is the vector of coriolis and centrifugal inertia forces,K is
a constant stiffness matrix,x is the vector of element noda
coordinates with respect to the global inertial frame,u is the
vector of element nodal rotations with respect to a mate
frame or the global inertial frame,J is the matrix of rota-
tional inertia,KT is a linearized tangent stiffness matrix,t is
the running time,Dt is the time increment, andDq is the
vector of translation and rotation increments.

In Eq. ~4!, the expression of the inertia forces for th
floating frame involves nonlinear Coriolis, centrifugal, a
tangential inertia forces that are the result of using the n
inertial floating frame as the reference frame. The Corio
and centrifugal terms are included inFC , while the tangen-
tial acceleration term makes the mass matrix a function
the flexible coordinates. The nonlinear inertia terms cou
the rigid body and flexible body motions. The internal forc
on the other hand, are linear provided that the deformati
with respect to the intermediate frame and the angular
locities are small~see Subsection 2.9!.

Equations ~5! and ~6! follow from the Newton-Euler
equations of motion. In these equations, the expression o
translational part of the inertia forces for the corotational a
-
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inertial frame is just mass times acceleration because th
forces are referred to an inertial frame. The expression of
rotational part of the inertia forces includes a quadratic
gular velocity term (u̇3Ju̇). This term is only present in
problems involving spatial rotations, and vanishes for pla
problems. The rotational part of the equations of motion c
be referred to either a moving material frame, or to the glo
inertial reference frame. In the first caseJ is constant, while
in the second caseJ is constant for planar problems and
time varying in spatial problems. The expression of the
ternal forces is nonlinear because it involves either a rota
matrix ~which is a function ofq) in the case of the corota
tional frame, or nonlinear finite strain and stress measure
the case of the inertial frame. For the corotational frame
the strains are small and the material is linearly elastic,
linearity of the force-displacement relation is maintained
the element level before multiplying byR ~see Eq.~5!!. In
other words, the nonlinearity due to large rotations appe
only in the transformation of the internal forces from th
corotational to the inertial frame.

In the majority of implementations of the floating fram
the inertia and internal forces are written in a similar form
in Eq. ~4!, which means that Eq.~2! is written for a flexible
component with respect to the floating frame of the com
nent. This choice allows the use of modal reduction metho
which can greatly reduce the computational cost. In a f
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Table 5. Classification of a partial list of publications on the inertial frame approach

Element types Beams Planar Euler beam
Gontier and Vollmer@491#, Gontier and Li@492#, Meijaard @493#, Meijaard and Schwab@494#, Shabana
@21#, Berzeri and Shabana@495#, Berzeriet al @451#.
Planar Timoshenko Beams
Simo and Vu-Quoc@50#, Ibrahimbegovic and Frey@496#, Stander and Stein@497#.
Planar Curved Timoshenko beams
Ibrahimbegovic and Frey@496#, Ibrahimbegovic@498#.
Spatial Euler-Beam
Rosenet al @499#.
Spatial Timoshenko Beams
Simo @95#, Simo and Vu-Quoc@34,49,96,97#, Vu-Quoc and Deng@500#, Cardona and Geradin@35#, Gera-
din and Cardona@98#, Iura and Atluri@48,501#, Crespo Da Silva@99#, Avello et al @39#, Parket al @502#,
Downeret al @36#, Downer and Park@503#, Borri and Bottasso@504#, Bauchauet al @505#, Ibrahimbegovic
and Frey@506#, Ibrahimbegovicet al @507#, Ibrahimbegovic and Al Mikdad@37#, Bauchau and Hodges
@508#.
Bifurcation and instability in Spatial Timoshenko Beams
Cardona and Huespe@509,510#.
Spatial curved Timoshenko Beams„Reissner beam theory…
Ibrahimbegovic@498#, Ibrahimbegovic and Mamouri@511#, Ibrahimbegovicet al @512#, Borri et al @513#.
Continuum mechanics principles
Wasfy @514#.

Plates and Shells Kirchhoff-Love model
Raoet al @515#.
Mindlin-Reissner model
Simo and Fox@516#, Simo et al @517#, Simo and Tarnow@518#, Vu-Quoc et al @519#, Ibrahimbegovic
@520,522#, Ibrahimbegovic and Frey@506,521#, Boisseet al @523#, Bauchauet al @524#.
Degenerate shell theory
Hughes and Liu@525#, Mikkola and Shabana@526#.
Continuum mechanics principles
Parisch@527#, Wasfy and Noor@528#, Wasfy @514#.

Continuum Oden@92#, Batheet al @93#, Laursen and Simo@529#, Bathe@530#, Kozar and Ibrahimbegovic@531#,
Ibrahimbegovicet al @512#, Goicolea and Orden@532#, Orden and Goicolea@533#, Wasfy @514#.

Rigid body,
beam, and shell
3D rotation
description

Euler-Parameters Spring @534#, Parket al @502#, Downeret al @36#.

Rotational pseudo-
vector „Semi-
tangential rotations…

Argyris @82#, Parket al @502#, Downeret al @36#.

Incremental
rotation vector

Ibrahimbegovic@522,535#, Bauchauet al @524#, Ibrahimbegovic and Mamouri@511#, Borri et al @513#.

Conformal rotation
vector „quaternion…

Geradin and Cardona@98#, Bauchauet al @505#, Lim and Taylor@536#.

Rotation vector Simo @95#, Simo and Vu-Quoc@34,49,97#, Simo and Fox@516#, Cardona and Geradin@35#, Geradin and
Cardona@98#, Borri and Bottasso@504#, Ibrahimbegovic and Frey@521#, Kozar and Ibrahimbegovic@531#,
Ibrahimbegovicet al @507#, Ibrahimbegovic and Al Mikdad@37#.

Two unit vectors Avello et al @39#.

Rotation tensor Simo and Vu-Quoc@34,49,97#, Avello et al @39#, Ibrahimbegovic and Frey@521#, Ibrahimbegovic@498#,
Ibrahimbegovicet al @507#, Ibrahimbegovic and Mamouri@511#, Bauchauet al @505#, Boisseet al @523#.

DOFs Rotations and
displacements

Most references.

Cartesian
Displacements

Parisch@527#, Goicolea and Orden@532#, Orden and Goicolea@533#, Wasfy and Noor@528#, Wasfy @514#.

Slopes and
displacements

Berzeri and Shabana@495#, Berzeriet al @451#, Mikkola and Shabana@526#.

Beam shape
Functions

Polynomial Most references.

Bezier functions Gontier and Vollmer@491#.

Helicoid Borri and Bottasso@504#.

Load-dependent
modes

Meijaard and Schwab@494#.

Eigen modes Meijaard and Schwab@494#.

Mass matrix Lumped Parket al @502#, Downeret al @36#, Wasfy and Noor@528#, Wasfy @514#.

Consistent Most references.

Deformation
Reference

Total Lagrangian Batheet al @93#, Nagarajan and Sharifi@537#, Simo and Vu- Quoc@34,49,50#, Cardona and Geradin@35#,
Ibrahimbegovic and Frey@506,521#, Kozar and Ibrahimbegovic@531#, Ibrahimbegovic and Al Mikdad
@37#, Boisseet al @523#, Wasfy and Noor@528#, Wasfy @514#, Campanelliet al @538#, Goicolea and Orden
@532#, Orden and Goicolea@533#, Berzeri and Shabana@495#, Mikkola and Shabana@526#.

Updated
Lagrangian

Batheet al @93#, Cardona and Geradin@35#, Boisseet al @523#.
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Table 5. (continued).

Governing
Equations of
Motion

D’Alembert
Principle

Wasfy and Noor@528#, Wasfy @514#, Berzeri and Shabana@495#, Mikkola and Shabana@526#.

Hamilton’s principle Bauchauet al @505#, Bauchauet al @524#.

Lagrange equations Hac @539,540#, Hac and Osinski@541#.

Material Models Linear elastic Most references.

Composite materials Vu-Quoc et al @519,542,543#, Vu-Quoc and Deng@500#, Bauchau and Hodges@508#, Ghiringhelli et al
@544#.

Solution
procedure

Implicit Simo and Vu-Quoc@34,49,50#, Cardona and Geradin@35#, Ibrahimbegovic and Al Mikdad@37#, Goicolea
and Orden@532#, Orden and Goicolea@533#, Berzeri and Shabana@495#, Mikkola and Shabana@526#,
Nagarajan and Sharifi@537#, Geradinet al @545#.

Explicit Parket al @502,546#, Downeret al @36#, Wasfy and Noor@528#, Wasfy @514#.

Hybrid Implicit-Explicit multi-time step: Vu-Quoc and Olsson@547–549#.

Applications Non-linear
structural dynamics

Oden@92#, Batheet al @93#, Bathe@530#, Parisch@527#.

Vehicle dynamics Vu-Quoc and Olsson@547–550#.
Belt-Drives: Leamy and Wasfy@551–553#.

Flexible space
structures

Vu-Quoc and Simo@554#, Wasfy @514#.
Mechanical deployment:Wasfy and Noor@528#.
Attitude control: Wasfy and Noor@528#.

Tethered satellites Tether deployment:Leamyet al @555#.
Vibration control: Dignath and Schiehlen@556#.

Rotorcraft Ghiringhelli et al @544#, Bauchauet al @557#.

General FMS
„mechanisms and
manipulators…

Van der Werff and Jonker@558#, Jonker@100,559#, Simo and Vu-Quoc@49,50#, Cardona and Geradin@35#,
Parket al @502,546#, Downeret al @36#, Bauchauet al @505,560#, Hac @539,540#, Wasfy @514#.

Axially moving
media

Vu-Quoc and Li@561#.
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implementations of the floating frame, Eq.~2! is written with
respect to the global inertial frame~see Table 1!. These
implementations do not allow the use of modal reduction
addition, only small deflections are allowed within a bo
unless nonlinear strain measures are used.

In the majority of implementations of the corotation
frame, the inertia and internal forces are written in a sim
form as in Eq.~5!, which means that Eq.~2! is written with
respect to the global inertial frame. This allows the use o
simple expression for the translational part of the ine
forces. Also, the internal forces are linear with respect to
corotational frame~provided the strains are small and th
constitutive relations are linear!. The internal forces are firs
evaluated with respect to the corotational frame and are
transferred to the global inertial frame using the rotation m
trix of the corotational frame. In a few implementations
the corotational frame, Eq.~2! is first written with respect to
the element corotational frame and then it is transformed
the global inertial frame~see Table 1!. The disadvantage o
this approach is that the translational mass matrix inclu
nonlinear terms@30#.

2.4 Deformation of the flexible components

The kinematic relations for different types of structural me
bers can be classified into different groups according to
spatial extent of the members. Beam models are used fo
members; plate and shell models are used for 2D memb
and continuum models are used for 3D members. Th
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models are used in conjunction with the floating, coro
tional, and inertial frames in FMD applications. Tables 3
provide a partial list of publications where these models
used in FMS. Brief descriptions of these models is presen
subsequently, along with the issues related to the use of e
model in conjunction the choice of reference frame.

2.4.1 Beam elements
Beam elements are used in the majority of FMD publicatio
due to the fact that many flexible components are long
slender. Two categories of beam models are used: Eu
Bernoulli beam model and Timoshenko beam model. In
Euler-Bernoulli model, the transverse shear deformation
neglected and the beam cross sections are assumed to re
plane, rigid, and normal to the beam neutral axis after de
mation. The Euler-Bernoulli models provide a good appro
mation for beams with cross-sectional dimensions less t
one tenth the beam length. The rotations of the cross sec
of a beam can be expressed in terms of the displacem
derivatives with respect to the axial coordinate of the bea
Thus, the rotation of the beam cross section and the displ
ment are not independent. The governing partial differen
equation relating the transverse structural forces to the de
mation involves a fourth-order derivative with respect to t
spatial coordinate. Therefore, if a single-field displacem
model is used, shape-functions with C1 continuity are used
for the transverse displacements~cubic polynomial for two-
node beams!. For the axial displacements, only C0 continuity
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is needed for the shape functions~linear polynomial for two-
node beams!. Using different shape functions for the tran
verse and axial displacements can be easily implemente
floating and corotational frame formulations. In the inert
frame formulations, since all displacements are measu
with respect to the inertial frame and there is no distinct
between transverse and axial displacements, the same
polations are used for all displacements with respect to
inertial frame. Thus, inertial frame formulations do not u
Euler-Bernoulli beam theory. Also note that in Eule
Bernoulli beams rotary inertia~inertia due to the rotation o
the cross section! is often neglected because the theory
suitable only for thin beams, for which rotary inertia is sma

The Timoshenko beam model accounts for shear defor
tion. The rotations of the beam cross section and the
placement are independent and the beam cross section
main plane after bending, but not necessarily normal to
beam neutral axis. Timoshenko beam theory is a good
proximation for thick beams with length of more than thr
times the cross-sectional dimensions. Shape functions
C0 continuity are usually used for the displacement and
tation components. All inertial frame beam implementatio
reported in the literature are based on Timoshenko be
theory. As mentioned above, this is because all motions
referred to the inertial frame; therefore interpolation fun
tions should not distinguish between transverse and axial
placements. Thus, all displacement and rotational DOFs
interpolated independently using the same interpola
functions, which are linear functions for two-node beam
ements@34,35,50,453,498,507#. Timoshenko beams are als
extensively used in conjunction with both floating and co
tational frame formulations~see Tables 3 and 4!. Finally,
note that all Timoshenko beam implementations include
rotary inertia because Timoshenko beams are suitable
thick beams for which rotary inertia is important.

A difficulty of Timoshenko beam theory is that it leads
shear locking for thin beams. Techniques to remedy sh
locking include: reduced and selective reduced integratio
the internal forces@35,496#, enhanced interpolations@496#,
and the assumed strain method. Some techniques to a
shear locking, such as reduced integration may give ris
spurious oscillation modes. Iura and Atluri@453# used the
exact solution for linear static Timoshenko beams to der
the stiffness operator with respect to the corotational fra
and demonstrated that this approach eliminates shear l
ing.

Euler-Bernoulli and Timoshenko beams have only o
axial dimension. Those elements can support bending in
of the following ways:

• Using rotational DOFs at the element nodes. Most re
ences use this technique. Many types of rotation par
eters are used~eg, Euler angles, Euler parameters, and
tation vectors.! Tables 3-5 list the references which u
each type of rotation parameters. Also, a discussion of
rotation parameters is given in Subsection 2.6.

• Using global slope DOFs at the element nodes@446,483#
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• Using the torsional spring formulation where the inte
element slopes are measured using the local nodal
placements@5,15,86,91,448,460#

Many types of kinematic couplings between tangen
~axial! and transverse displacements are present in bea
These couplings arise due to the geometry of the beam. T
cal kinematic couplings that have been considered are: b
curvature, arbitrary cross sections, and twisted~or warped!
beams~coupling of torsion and bending!. Tables 3-5 provide
a partial list of the references where kinematic couplings
considered in conjunction with the floating, corotational, a
inertial frames.

Most references use polynomial shape functions for
beam elements such as linear or third order polynomials
some references new types of interpolations are sugge
such as: Bezier functions@491# and helicoid@504#.

2.4.2 Shell and solid elements
Three types of shell models are used: Kirchhoff-Love mo
els, Reissner-Mindlin models, and degenerate shell mod
In addition, shells can be modeled using solid elements
are based on continuum mechanics principles.

Kirchhoff-Love models for shells are the 2D counterpa
of Euler-Bernoulli models for beams. They assume that n
mals to the shell reference surface remain straight and
mal after deformation and are inextensional. These mod
are only valid for thin shells. Transverse displacements
slopes over the shell must be continuous when Kirchho
Love models are used. For four-node shell elements, a
cubic interpolation for transverse displacements is need
while in-plane displacements are interpolated using a
linear interpolation. Using different interpolations for th
transverse and axial displacements is allowed only in a flo
ing or corotational frame formulation.

Reissner-Mindlin type models incorporate shear deform
tion and are the 2D counterparts of Timoshenko models
beams. The rotations and transverse displacements are
pendent@468# and normals to the shell reference surface
main straight and inextensional but not necessarily norm
The degenerate shell models are based on 3D contin
mechanics with a collapsed thickness coordinate@525,565#.
Solid elements do not collapse the thickness coordinate
thus do not have to use rotational DOFs. Inertial frame sh
implementations are based on either the Reissner-Mindlin
continuum mechanics principles. This is due to the fact t
since all motions are referred to the inertial frame, interp
lation functions should not distinguish between transve
and in-plane displacements, and all displacement and r
tional DOFs are interpolated independently using the sa
interpolation functions such as bi-linear functions for fou
node shell elements@468,523#.

Shell and solid elements are used in many types of lo
ing conditions such as bending, tension, compression, sh
torsion, and coupled combinations of the previous loadin
Many elements proposed in the literature give accurate
sults under certain types of loading and poor results un
other types of loading. In addition, many elements perfo
poorly if the element shape is distorted@566#. In order to test
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the overall accuracy and robustness of an element, stan
tests problems have been proposed which include m
combinations of loadings and element distortions@567,568#.
Ideally, a shell or solid element should pass all those te
The main reason for poor shell and solid elements per
mance is locking. Many types of locking can occ
@530,563,569–571#, including:

• Shear lockingis caused by the overestimation of she
strains when the element is undergoing pure bending
to low order interpolation.

• Membrane lockingis caused by the overestimation of th
membrane strains for curved elements when the eleme
undergoing pure bending.

• Trapezoidal lockingis related to membrane locking and
caused by the fact that when the element is distorted~trap-
ezoidal shape! the membrane forces are not aligned w
the element edges. Thus they cause a moment that re
bending.

• Thickness lockingis also related to membrane locking an
is caused by the activation of transverse normal strains
to the Poisson ratio terms when the element is undergo
pure bending.

• Volumetric lockingoccurs when a nearly incompressib
material~Poisson ratio close to 0.5! is used.

Locking can occur in the plane of the element for shell e
ments. In addition, Reissner-Mindlin theory and the deg
erate shell theory lead to shear locking in the transverse
rection. Four techniques are available to eliminate
alleviate locking:

• Reduced integration methods
• Assumed field methods
• Natural-modes elements
• Higher-order elements

Reduced integration methods. Reduced integration serve
two functions: reducing the computational cost of the e
ment and remedying locking@467,563,572#!. Unfortunately,
if reduced integration is used, then the element bend
modes~hourglass modes! are not modeled and, accordingl
they become spurious zero energy modes. Adding artifi
strains, which are orthogonal to all linear fields~thus they are
not activated by constant straining or by rigid body motio!,
can stabilize these modes@467,469,573#. In early implemen-
tations, ad hoc user-input hourglass control parameters w
used to calculate the associated artificial stress. The gl
response was found to be sensitive in some cases to t
parameters@574#. The ad hoc parameters were later elim
nated @470,471,478,574# by using the Hu-Washizu varia
tional principle to determine the magnitude of the stabiliz
tion parameters. Stabilized reduced integration eleme
cannot model bending with only one element through
thickness because they do not have a physically cor
bending mode. Even two to three layers of elements may
provide accurate results. In Harn and Belytschko@575#, an
adaptive procedure is devised in which the number
quadrature points for the normal stresses is changed dep
ing on the deformation state of the element.
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Assumed field methods. The main reason for locking in she
and solid elements is the use of the classical isoparam
formulation where the deformation field is assumed to
given by the element interpolation functions. For low ord
linear elements, this deformation field cannot accurately c
ture the combined bending and shear deformations. Assu
field methods include: the method of incompatible mod
@476,521,531,576,577#, assumed natural strain@527,578#,
enhanced-strain@523,577#, and assumed stress@579#. In the
assumed field methods, a strain, stress, or deformation
dient field is added to the strain field obtained using
element isoparametric shape functions so as to allow the
currence of pure bending deformation modes with vanish
shear. Some of those techniques introduce extra varia
that can be eliminated using static condensation. Those t
niques, in most cases, are used with the fully integrated
ment.

Natural modes elements. Some researchers proposed aba
doning the isoparametric formulation in favor of anatural
deformation modesformulation@81#. In this formulation, the
element natural deformation modes are used as a basi
constructing the element stiffness matrix. For example,
TRIC triangular shell element@580–582# is divided into
three beams with each beam possessing four natural d
mation modes~extension, shear, symmetric bending, a
asymmetric bending!. In a triangular element that uses thre
truss sub-elements to model the membrane behavior
three torsional spring sub-elements to model the bending
havior was presented. In Wasfy and Noor@528# and Wasfy
@514#, an eight-node solid brick element that consists
twelve truss sub-elements and six surface shear sub-elem
with appropriate stiffness and damping values for model
the brick natural deformation modes~three membrane, six
bending, three asymmetric bending, three shear, and t
warping modes!, was developed. Natural modes eleme
can be designed to avoid locking while accurately model
the element deformation modes.

Higher-order elements. Another way to reduce locking is to
use second and third order isoparametric Lagrangian
ments. Third order elements have a bending mode tha
nearly shear free and therefore suffer negligible shear lo
ing. Lee and Bathe@566# showed that the 16-node plana
rectangular Lagrangian element has negligible shear
membrane locking if its sides are straight and the mid-s
nodes are evenly spaced. Higher order elements have
seldom used in FMS applications because:

• They suffer membrane locking when they are curv
@571#.

• They are computationally expensive.
• They are more complex and involve more DOFs.
• Mesh generation is more difficult.
• Mid-side and corner nodes are not equivalent. This ma

it difficult to connect them to other elements and join
Also, it complicates the formulation and modeling
their inertia characteristics and their use in contact/imp
problems.
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• Their accuracy, stability, and locking behavior are sensit
to the location of the mid-side nodes.

2.5 Treatment of large rotations

A major characteristic of FMS is that the flexible comp
nents undergo large rigid body rotations. The treatmen
large rotations in the floating, corotational, and inertial fra
approaches is discussed subsequently.

2.5.1 Floating frame
In the floating frame approach, large rotations are handle
the component level using the component’s floating fram
The deformation of the flexible components is described
small displacement and slope DOFs that are defined rela
to the floating frame. The fact that the component is mov
and rotating introduces nonlinear inertia coupling, tangen
centrifugal, and Coriolis terms in the inertia forces, and
centrifugal stiffening effect in the internal forces. The
terms are discussed in Subsection 2.8. The position and
entation of each floating frame~or flexible component!, with
respect to the global inertial reference frame, can be de
mined using three position coordinates and a minimum
three orientation coordinates. The position coordinates de
the origin of the floating frame and the orientation coor
nates define the rotation matrix (R) of the floating frame~Eq.
~1!!. Commonly used orientation angles are the three E
angles. However, it is known that the use of three parame
to define the spatial orientation of a body leads to singul
ties at certain orientations. Thus, researchers prefer to
non-minimal spatial orientation descriptions such as Eu
parameters, two unit vectors, rotation vector, or rotation t
sor ~see Table 3!. The various types of spatial orientatio
descriptions were first used in rigid multibody dynamics a
then ported to FMD. Note that in planar problems there is
problem with rotation parameterization because the orie
tion of the floating frame is easily defined using only o
angle.

2.5.2 Corotational and inertial frame
In the inertial and corotational frame formulations, the fin
expression of the internal force vector of a finite elem
involves a rotation or deformation gradient matrix which:

• Defines the local rigid body rotation
• Transforms the DOFs relative to the inertial frame to lo

DOFs
• Transforms the local internal forces back to the iner

frame

When modeling beams and shells, rotational DOFs are o
used. The types of nodal rotation parameters used in c
junction with the corotational frame and inertial frames a
listed in Tables 4 and 5, respectively. Many researches
more than one type of rotation parameters. For example
Parket al @502# and Downer et al.@36#, the rotational pseudo
vector is used for calculating the internal forces and Eu
parameters are used for the time integration. Reviews of
different types of rotation parameters and the relations
tween them are given in Argyris@82#, Spring @534#, Atluri
and Cazzani@535,583#, Ibrahimbegovic@535#, Betschet al
ive

-
of
e

at
e.
by
tive
ng
ial,
a
e
ori-

ter-
of

fine
i-

ler
ters
ri-
use
ler
n-

n
nd
no
ta-
e

al
nt

al

ial

ften
on-
re
use
, in

ler
the
be-

@584#, and Borri et al @585#. Spatial finite rotations can be
uniquely represented using a second-order orthogonal r
tion tensorC. The six orthogonality conditions (CCT5I)
can be used to reduce the representation to a minimum
three. There are a number of difficulties associated with
tational DOFs:

• Using three parameters~eg, Euler angles! or four param-
eters ~eg, rotation vector! lead to singularities at certain
positions. For example, for rotation magnitudes grea
thanp, the rotation vector at a node is not unique@35,37#.
This singularity can be removed using a correction rout
for rotations greater thanp. Alternatively, the incrementa
rotation vector@35# can be used. Incremental rotation ve
tors are additive, can be transformed as vectors, and
free of singularities@35,474#.

• The relation between the various rotation parameters
the generalized physical moments and the moments o
ertia involve complicated trigonometric functions.

• In spatial problems with rotational DOFs, the rotation
part of the equations of motion can be written with resp
to the global inertial frame~spatial frame! @35,39# or a
body attached nodal frame~material frame! @33–38#. Re-
ferring the rotational equations to the inertial frame in sp
tial problems leads to a moment of inertia tensor wh
varies with time, thus requiring it to be computed eve
time step. On the other hand, if the rotational equations
written with respect to a material frame, then the mom
of inertia tensor with respect to that frame is constant.

• Interpolation of different types of rotational DOFs~such as
Euler angles, Euler parameters, rotation vector, etc! is not
equivalent.

• Interpolation of incremental and total rotation measu
spoils the objectivity of the strain measure with respect
rigid body rotation@586#. In addition, interpolation of in-
cremental rotations, especially in the inertial frame a
proach, leads to accumulation of rotation errors in a p
dependent way@538,586#.

• Drilling rotational DOFs were used in shell elemen
@472–474,587#, membrane elements @506,520,521,
588,589#, as well as solid elements@531#. This makes the
element compatible with beam elements. However, it w
shown in Ibrahimbegovic and Frey@521# that the introduc-
tion of drilling rotational DOFs can amplify the shear loc
ing effect. The accuracy of the element was recovered
using the method of incompatible modes to remedy
shear locking@521,531#.

Recently, in Shabana@446,483,590,591#, an absolute nodal
coordinates formulationwas developed, in which globa
slope DOFs are used instead of rotational DOFs. This le
to an isoparametric formulation with a constant mass mat
The formulation was first used with a corotational type fram
for planar beams. Then it was used with the global iner
frame as the only reference frame in Berzeri and Shab
@495# and Berzeriet al @451#. The application of this formu-
lation to spatial problems requires the use of 12 DOFs~three
translational DOFs and nine slope DOFs! per node@465,526#
as opposed to only six DOFs per node~three translational
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DOFs and three rotational DOFs! for elements that use tra
ditional rotational DOFs. More research is being conduc
to develop elements that use this formulation and assess
accuracy, convergence, robustness, and computational
ciency.

In order to circumvent the difficulties associated with r
tational and slope DOFs, some researches use only Cart
nodal coordinates to model beams and shells. In this c
the equations of motion are written with respect to the glo
inertial frame and the mass matrix is constant. The treatm
of large rotations, in this case, is straightforward~requiring a
rotation or deformation gradient matrix!. The kinematic con-
dition necessary for modeling beams and shells is that
transverse displacements and slopes between element
continuous~this condition may be satisfied only in a glob
sense!. This condition can be satisfied at element interfa
without using rotational DOFs by using the vectors conne
ing the nodes to define the inter-element slopes or by u
solid elements. Three-node torsional spring beam form
tions @5,15,85,86,91,448,482,592# achieve slope continuity
between elements by using the direction of the vector c
necting two successive nodes as the direction of the tan
to the beam at the midpoint between the two nodes. T
technique was also used to develop a triangular three-n
shell element in Argyriset al @593# and an eight-node she
element in Wasfy and Noor@91#. The latter element exhibits
negligible locking because it has the correct bending mod
However, the element has the same difficulties of other hi
order elements outlined at the end of Section 2.4.

Recently, many researchers developed displacem
based solid elements, based on continuum mechanics
ciples, that can be used to model beams and shells:

• Hexahedral eight-node element@527,571,594#
• Pentagonal six-node element@595#
• Hexahedral 18-node element with two layers of nodes e

having nine nodes~thus the thickness direction is linear
interpolated! @571,596#. This high-order element exhibit
the difficulties outlined at the end of Section 2.4.

All the above elements used the assumed natural strai
stress methods to remedy locking. Unfortunately, those
ments have only been tested in static and quasi-static l
deformation problems, but have not yet been tested in
namic problems. In Wasfy and Noor@528# and Wasfy@514#
the natural-modes eight-noded brick element based on
inertial reference frame was designed to accurately mode
element deformation modes while avoiding locking and s
rious modes. It was shown in Wasfy@514# that the element
accurately solved standard benchmark dynamic shell
beam problems. The element was also used to simulate
deployment process of a large articulated space struc
over 180 sec. The model consisted of beams, shells, revo
joints, prismatic joints, linear actuators, rotary actuators,
PD tracking controllers.

2.6 Reference configuration

Two reference configuration choices are used in practice
tal Lagrangian~TL! and updated Lagrangian~UL!. In the TL
-
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formulation, the reference configuration is the unstres
configuration~or the initial configuration at time 0!. In the
UL formulation, the reference configuration is the configu
tion at the previous time step. The UL and TL formulatio
can be used with the floating, corotational, or inertial fram
approaches~see Tables 3–5!.

In UL formulations the stress-strain relation is more na
rally expressed in rate form relating a stress rate tensor t
energy conjugate strain-rate tensor. Jaumann stress rate@530#
is often used in inertial frame formulations and Cauchy str
rate @468,597# is often used in corotational frame formula
tions. UL formulations are used in conjunction with corot
tional @468–471# and inertial@94,444,475,481# frame formu-
lations in large strain applications such as crash-worthin
metal forming, and nonlinear structural dynamics. Those
plications often involve plastic material behavior. UL form
lations are most suited for systems which involve lar
strains and plastic material behavior because the constitu
stress-strain relations used in these applications, such
visco-plastic material models, are usually expressed in te
of strain and stress rates Bathe@468,530#. In UL formula-
tions, because the stress state at each time step depen
the computed stress state at the previous time step, nume
errors such as iteration errors, time integration errors,
round-offs can accumulate from one time step to the n
causing the response to drift in time@439,449#. This drift is
much more critical in FMD applications because they
volve much larger rigid body rotations~which usually in-
volves many revolutions! and much longer simulation time
relative to metal forming and crash-worthiness applicatio
The response drift is more critical in implicit methods than
explicit methods@468# because the chosen time step is us
ally much larger than the smallest time step of the syste
thus resulting in larger time integration errors. Also, the
sponse drift is more critical for inertial frame formulation
than corotational frame formulations because the latter eli
nate the rigid body rotation before the UL stress update. P
et al @502# and Downeret al @36# developed a corotationa
UL formulation along with an explicit solution procedure
model spatial Timoshenko beams. Meek and Wang@466# de-
veloped a corotational UL formulation along with an implic
solution procedure for modeling shells.

Many inertial and corotational frame formulations use
UL formulation for rotations in which rotations are describ
as increments with respect to the configuration at the pr
ous time step~eg,@35,474#!. This formulation is very conve-
nient because incremental rotations are vector quantities
therefore, are additive and free of singularities. Howev
Jelenic and Crisfield@586# showed that, similar to the UL
stress update, this can lead to accumulation of rotation er
in a path dependent way.

TL formulations do not suffer from the response dr
problem during stress updates because the strain is alw
referred to a fixed known configuration. Most floating fram
formulations use a TL formulation because displaceme
relative the floating frame are relatively small and, thu
there is no advantage in using an UL formulation. Also, m
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corotational frame formulations~see Table 4! and inertial
frame formulations~see Table 5!, which are developed spe
cifically for FMS, use a TL formulation.

2.7 Discretization techniques

In the majority of FMD literature on floating, corotationa
and inertial frame approaches, the flexible components
discretized using the finite element method. Other discret
tion techniques have been used in conjunction with the flo
ing frame approach. These are:

• Normal mode technique~see Modal Reduction in Subse
tion 2.8.4!

• Finite differences@101,178#
• Boundary element method@313#
• Element-free Galerkin method~EFGM! @598#
• Analytical modeling@11,60,66,67,315–316#. In analytical

modeling techniques, generally only one link of the mu
body system is assumed to be elastic while the others
rigid.

2.8 Special modeling techniques used in conjunction
with the floating frame

Since the equations of motion~Eq. ~3!! for the floating frame
are written with respect to the floating frame, which is
non-inertial frame, special modeling techniques are nee
to handle the nonlinear inertia forces. In addition, other s
cial modeling techniques which are used in conjunction w
the floating frame approach include: the description of ri
body motion in terms of absolute or relative coordinat
treatment of geometric nonlinearities, and modal reduct
methods. Table 3 lists the references where these techni
were developed.

2.8.1 Absolute and relative coordinates
An important classification of rigid body coordinates of t
floating frame is whether absolute or relative coordinates
used. In the absolute coordinates formulation, the coo
nates of each body are referred to the global inertial re
ence frame. Joints and motion constraints couple and c
strain the rigid body coordinates of the bodies~such that they
are no longer independent!. This method is also called th
augmented formulationbecause the resulting equations
motion involve sparse matrices and a non-minimal num
of DOFs that include six spatial degrees of freedom for e
body, Lagrange multipliers associated with the constra
between the bodies, and elastic coordinates of each b
The formulation simplifies the introduction of general co
straint and forcing functions for both open and closed-lo
FMS.

In the relative coordinates formulation, the coordinates
a body in a chain of bodies are expressed in terms of
coordinates of the previous body in the chain and the DO
of the joint connecting the two bodies. Thus, for open-lo
systems, the generalized coordinates are independent
their number is minimal. This formulation is also called t
joint coordinate formulation because the joint DOFs are u
to determine the position and forces of each body. This
mulation allows the use of a recursive solution procedure
-

l,
are
za-
at-

-

ti-
are

a
ded
e-

ith
id
s,

ion
ques

e
are
di-
er-
on-

of
er
ch

nts
ody.
n-
op

of
the
Fs

op
and
e
ed

or-
in

which Cartesian joint coordinates are calculated by star
from the base body to the terminal bodies~forward path! and
the joint reaction forces are eliminated from one body to
next until the base body is reached~backward path!. Since
constraints are automatically incorporated in the equation
motion from leaf-bodies to the base body, for open-loop s
tems, only the dynamic equilibrium equations~Eq. ~3!! are
needed to model the system. For closed-loop systems, h
ever, loop-closure constraint equations~Eq. ~2!! must be
added. The dynamic equilibrium equations have the sa
form as Eq.~3!, except that now the system matrices a
dense because the set of generalized coordinates is min
The relative coordinate formulation algorithm was first a
plied to open-loop rigid multibody systems in Chace@130#
and to open-loop FMS in Hughes@133#, Book @135#,
Changizi and Shabana@110#, and Kim and Haug@138#.
Then, it was extended to closed-loop FMS by addi
cut-joint constraints to the equations of motio
@111,112,147,148,150#. The closed-loop constraints, as we
as prescribed motion constraints, are usually included us
Lagrange multipliers. The relative coordinates formulation
conjunction with a recursive solution procedure has be
demonstrated to yield near real-time solution for some pr
tical problems~eg, @154,599,600#!.

Relative nodal coordinates, along with a recursive so
tion procedure, have recently been used in conjunction w
a corotational-type formulation for FMS which include
beams and rigid bodies in Parket al @479# and Choet al
@480#. The corotational frame in this case is the frame of t
adjacent node to the element. Similar to the floating fram
recursive algorithm including forward and backward paths
used. A loop-closure constraint equation was added for m
eling closed-loop FMS.

Relative coordinates techniques involve the additio
step of computing the tree. This can be inconvenient
variable structure FMS and FMS involving contact/impa
In addition, for FMS involving closed loops, the solutio
depends on the choice of the location of the cut-jo
constraint.

2.8.2 Nonlinear inertia effects
As mentioned previously, in the floating frame approa
usually both inertia and internal forces are evaluated w
respect to the floating frame. Since the inertia forces
expressed relative to the floating frame, which is a mov
frame, they include, in addition to the linear mass times fl
ible accelerations relative to the floating frame term, th
types of terms: nonlinear tangential, centrifugal, and Corio
inertia forces. These terms couple rigid body acceleration
the floating frame and the flexible body accelerations rela
to the floating frame such that a vibration of the body p
duces a rigid body motion and vice versa.

In the early research on the floating frame approach,
coupling terms were neglected. A rigid body dynamic ana
sis was first conducted to find the rigid body motion a
inter-body reaction forces of the flexible multibody syste
Then, for each discrete configuration of the system, the
action forces are applied to each flexible body to find
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flexible deformations. Thus, at each discrete position,
multibody system is assumed to be an instantane
structure. This approach was adopted in the kine
elastodynamics of mechanisms~eg, @9,57,58,63#!. The effect
of the coupling between flexible and rigid body motion b
comes more important as the ratio between the rigid b
inertia forces and the flexible body inertia forces decrea
This ratio increases by mounting flywheels with high m
ments of inertia to the axis of the rotating flexible bod
Researchers working on kineto-elastodynamics of mec
nisms found that adding the coupling terms has very li
effect on the response@181,310#. This is because the mecha
nisms have large flywheels and are stiff closed-loop FM
For FMS that do not have large flywheels, such as rob
manipulators and space structures, the coupling terms
essential for accurate response prediction.

The importance and need for the rigid-flexible moti
coupling were recognized very early in the development
the floating frame approach. Viscomi and Ayre@67# and Chu
and Pan@179# derived the partial differential equation gov
erning the motion of the flexible connecting rod of a slide
crank mechanism which includes the inertial coupling term
Sadler and Sandor@102# and Sadler@178# developed a
lumped mass finite difference type nonlinear model for fle
ible four-bar linkages. Thompson and Barr@316# presented a
variational formulation for the dynamic modeling of linkag
where Lagrange multipliers are used to impose displacem
compatibility at the joints, and some coupling terms are
cluded. Cavin and Dusto@123# derived the governing semi
discrete finite element equations of a single flexible bo
including the coupling terms using a body mean-axis form
lation. The axial deformation was neglected in Viscomi a
Ayre @67# and Sadler and Sandor@102#, and was included in
Chu and Pan@179#. Neglecting the axial deformation mean
that the centrifugal stiffening effect and the nonlinear iner
coupling terms which involve the axial deformation, are n
glected. The effect of these additional terms is negligible
mechanisms with high axial stiffness undergoing relativ
slow rotation and small deformations.

The limitation of computational speed and the lack
a standard formulation of the coupling terms betwe
rigid body and flexible body motion made the inclusion
these terms difficult until the late 1970s. Then a series
papers presented floating frame absolute coordinates fi
element formulations which include the coupling term
@72,103,106,108,180,181,270#. Floating frame formulations
based on relative coordinates which include the coup
terms were presented by Kim and Haug@138# and Ider and
Amirouche@111#. Shabana and Wehage@106,180# suggested
the current widely used form of the inertia coupling term
This form can be easily used in conjunction with modal
duction techniques and it clearly identifies the various c
pling terms. In this form, the generalized coordinates
partitioned in the following way:

q5@qT qu qf #
T (7)

where subscriptsT, u, and f denote rigid body translation
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rigid body rotation, and flexible coordinates, respective
The corresponding system’s mass matrix in Eq.~4! can be
written as:

M5F MTT MTu MT f

M uu M u f

sym. M f f

G (8)

The matrix MTT is a constant translational mass matr
which represents the mass of the entire body,M f f is the
constant finite element mass matrix,M uu is the rotary inertia
matrix which represents the inertia tensor of the flexib
body (M uu is approximately constant if the body deform
tions are small, otherwise it is time varying!, M u f and MT f

are time-varying matrices~which are a function of the gen
eralized coordinates! which represent the inertial couplin
between the gross rigid body motion and the flexible def
mations, andM uT is a time-varying matrix representing th
inertial coupling between the rigid body translation and rig
body rotation. The Coriolis and centrifugal forces are qu
dratic in velocities and are also nonlinear in the generali
coordinates. They are added to Eq.~4!:

Fc5Ṁ q̇1
1

2

]

]q
~ q̇TMq̇! (9)

whereṀ q̇ is the Coriolis force vector and12]/]q (q̇TMq̇) is
the centrifugal force vector.

Another important nonlinear inertial effect is dynamic
centrifugal stiffening. The centrifugal component of the ine
tia force acts along the axis of the rotating body causing
axial stress that increases the bending stiffness of the b
@55,204,206#. In addition, if this body is connected to othe
bodies, then the rotation of the other bodies will cause
stiffening effect on the root body because of the transfer
inter-body forces through the joints@111,203,214,221,222#.
If a classical beam element is used for the flexible com
nent, the bending deformation is not coupled with the ax
deformation, which means that dynamic stiffening is n
glected. Many flexible multibody analysis codes develop
in the early 1980s had this flaw. Kaneet al @205# showed
that, for a rotating flexible beam undergoing a spin-up m
neuver, neglecting the centrifugal stiffening term results
the wrong prediction that the beam diverges during the m
neuver. They demonstrated that by using a nonlinear str
displacement relation, which couples the axial and bend
strains, proper stiffening effects are included. This was f
lowed by numerous other studies investigating the dyna
stiffening effect and developing new modeling techniques
accurately incorporate the effect in general FMS~see Table
3!. In a finite element formulation, the centrifugal stiffenin
term is usually included in a nonlinear stiffness matrixKNL

that is added to the partitioned equation of motion~see Eq.
~2!! yielding the following form for the system stiffness ma
trix:

K5F 0 0 0

0 0 0

0 0 KL1KNL

G (10)
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whereKL is the linear constant stiffness matrix~if a linear
constitutive material law is used!. KNL is nonlinear and time-
varying which may include, in addition to the coupling b
tween axial deformation and transverse bending deforma
which gives rise to the centrifugal stiffening effect, quadra
strain-displacement terms which account for moderate fl
ible deflections~see the succeeding subsection!. The use of
the nonlinear stiffness matrixKNL makes it difficult to use
modal reduction techniques. This is further discussed in
Subsection 2.8.4.

2.8.3 Treatment of geometric nonlinearities
In order to extend the deflection range of a body when
floating frame approach is used, quadratic terms in the str
displacement relation can be included. In Table 3 publi
tions in which these terms are included are listed. The n
linear quadratic strain terms are added to the nonlin
stiffness matrixKNL ~Eq. ~10!!. An important effect, which is
included by incorporating the axial-bending quadratic str
terms, is the foreshortening effect, which is the shortening
the projected length of a beam relative to its referen
straight configuration when it bends. This means that a tra
verse displacement of a point on the beam gives rise to
axial displacement. In the floating frame approach, beca
the deformations are superimposed on the rigid body re
ence configuration, the rigid body length is usually kept co
stant, which means that foreshortening is neglected.
counting for foreshortening requires updating the bo
inertia tensors. Foreshortening becomes more importan
the deflection increases.

2.8.4 Modal reduction
A major advantage of using the floating reference frame
that the physical finite element nodal coordinates can be
ily reduced using modal analysis techniques based on usi
reduced set of eigen-vectors of the free vibration discr
equations of motion as flexible modal coordinates. The
duction is achieved by eliminating the high frequen
modes, which carry little energy. Modal reduction offers
efficient way to reduce the number of DOFs with the mi
mum deterioration in accuracy. Based on the coordinate
titioning strategy suggested in Shabana and Weh
@106,180#, modal reduction can be done by using the follo
ing transformation for the generalized coordinates:

H qT

qu

qf

J 5F I 0 0

0 I 0

0 0 W
G H qT

qu

Pf

J (11)

where I is the identity matrix,W is the modal matrix that
consists of a finite set of eigenvectors~up to the eigenvecto
corresponding to the desired maximum natural frequen!
and Pf is the vector of generalized modal coordinates.
many FMS applications, the high frequency modes ca
little energy and thus have a negligible effect on the ove
dynamic motion of the multibody system. Also, the presen
of the high frequency modes increases the stiffness of
equations of motion and requires the use of a small inte
tion time step. So if these modes are eliminated, the gai
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computational speed is twofold. First, a larger integrat
time step can be used. Second, the reduction in the num
of flexible DOFs reduces the number of equations of mot
that need to be solved. Detailed deformation and stress fi
in a flexible body can be calculated using an FEM progr
in a post-processing stage. This can be done by applying
computed inertia forces in addition to the applied loads a
constraints to a detailed FE model of the flexible bo
@312,601# or by applying the deformations following from
the modal coordinates to the FE model@602#.

The mode shapes and natural frequencies that are us
modal reduction can be obtained either by modal reduc
of a finite element model or by using experimentally iden
fied modes@269#. The ability to use modal reduction~espe-
cially experimentally identified modes! is the main factor for
the widespread use of the floating frame approach in mo
ing FMS. Very early in the development of the floating fram
approach, modal reduction and normal mode techniq
were used in modeling space structures with flexible appe
ages @52–54,59,233# and in the kineto-elastodynamics o
mechanisms@104,232#. Then, later modal reduction was ap
plied to finite element models of general FMS~see Table 3!.

Modal reduction can achieve large reductions in com
tation time only if the body mass and stiffness matrices
constant~ie, are not a function of time or generalized coo
dinates!. The modal reduction, in this case, is perform
once at the beginning of the simulation. If the mass or st
ness matrices are not constant, then modal reduction mu
performed at each time step, which defeats the purpos
reducing the computation time. If the deflection of the bo
is small and its angular velocity is low or constant, then t
body mass and stiffness matrices are approximately cons
with respect to the floating frame. Large deflections int
duce quadratic terms in the strain-displacement relatio
Large variable angular velocities make the centrifugal st
ening term time varying. Thus large deflections and la
variable angular velocities make the stiffness matrix, a
hence the natural frequencies and mode shapes of the fle
bodies, nonlinear and time-varying~a function of the
flexible body coordinates and angular velocities! @32,204,
257,258#. For example, Khulief@32# showed that the re-
sponse of the coupler and follower of a four-bar linkage c
culated using modal coordinates deviated significantly fr
that using physical coordinates. Ryuet al @43,44# developed
a time varying stiffness matrix that can be used to extr
time-varying Eigen modes of centrifugally stiffened beam
which can be superposed on the linear Eigen modes.
method, however, requires a modal reduction at each t
step.

The nonlinear inertial coupling terms make the inertia te
sor of a body nonlinear. However, using the coordinate p
titioning technique developed in Shabana and Wehage@106#,
linear modal reduction techniques can be applied only to
flexible coordinates mass matrix@184,191,236,253,262,271#.
In order to allow the floating frame and modal coordinates
be used in problems involving large deflections, several
searchers developed a sub-structuring procedure in w
each body is divided into a number of sub-structu
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@21,167,278,281–283,285,287#. Modal reduction is per-
formed for each sub-structure relative to a frame fixed to
Thus, in large deflection problems the deflections insid
sub-structure are still small and modal reduction is still va

The flexible behavior of a body is dependent on t
choice of the component modes since a flexible body
only deform in the space spanned by the selected modes
calculation and selection of these modes requires experi
and judgment on the part of the analyst. This is because
boundary conditions, which are used to calculate the de
mation mode shapes, do not usually fit a standard descrip
~such as simply supported, fixed-fixed, or cantilevered! and
sometimes the description may be configuration depen
@246,264#. In addition, the choice of the deformation mod
depends on the choice of the definition of the floati
frame—fixed @282# or moving body axes@275#. Thus, in
practical application of modal reduction, the analyst m
insure that the experimental or numerical modes used m
the boundary conditions of the actual system where the c
ponent will be placed@87#. Thus, modal reduction require
experience on the part of the analyst. Several researc
have addressed the issue of the selection of the deforma
modes and their relation to the boundary conditions a
floating frame definition@109,256,261–266,275,603#. For
large FMS, which can involve thousands of components,
modal reduction step may require a very long time from
experienced analyst. Thus, the increase in model prepara
time can far outweigh the reduction in computer time.

2.8.5 Governing equations of motion
There are many choices for writing the governing equat
of motion of a multibody system. These include: Lagrang
equations, the Hamilton principle, Kane’s equations, a
Newton-Euler equations. In the first three choices, sc
quantities such as kinetic energy, potential energy, and
tual work are used. In these formulations the nonwork
constraint forces are automatically eliminated from the d
vation of the equations of motion. This is useful for rig
body dynamic type analyses because it means reducing
number of unknown forces by the number of nonworki
constraint forces. However, in FMD the constraint forc
are working forces because they cause deformations; th
fore all the forms of the governing equations lead to sim
semi-discrete equations of motion. In Table 3, papers
classified according the type of governing equations of m
tion used during the derivation of the semi-discrete equati
of motion.

2.9 Summary of the key advantages and limitations of
the three frame formulations

The floating frame approach, in conjunction with modal c
ordinates, is currently the most widely used method for m
eling FMS. This is because:

• The floating frame approach provided a direct way to
tend rigid multibody dynamics codes for modeling FMS

• Reduced modal coordinates can be used in conjunc
with the floating frame formulation. Mode shapes and f
quencies can be either obtained from a finite elem
it.
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model or from experiments. Experimental modal ident
cation is extensively used for transportation vehicles a
space structures~eg, @604,605#!.

• For small deflections and low angular velocity applicatio
~such as space structures applications!, the floating frame
formulation, in conjunction with modal coordinates, offe
the best mix of speed and accuracy. In the 1970s and 19
the reduction in computational effort offered by modal c
ordinates was essential to be able to solve practical p
lems in a reasonable time.

The corotational and inertial frame approaches share the
lowing advantages over the floating frame approach:

• The translational part of the inertia tensor is linear a
constant.

• Kinematic nonlinear effects such as large deflections, c
trifugal stiffening, and foreshortening are automatically a
counted for. The accuracy of accounting for these effe
increases with mesh refinement.

Despite the aforementioned advantages, the corotational
inertial frame approaches have not been widely used
modeling FMS until the early 1990s due to the following:

• The corotational frame approach arose out of researc
computational structural dynamics, while the inertial fram
approach arose out of research on the large deforma
nonlinear finite element methods. The floating frame a
proach, on the other hand, arose out of research on r
multibody dynamics, which is conceptually closer to FM

• Modal reduction techniques cannot be easily applied w
current corotational and inertial frame formulations. The
fore, for small deflection FMS problems, the computati
time is generally considerably larger than that of tec
niques relying on the floating frame and modal reductio
The limited computational speed up to the late 1980s m
the corotational and inertial frame approaches unattrac
for solving practical FMS problems.

• Rigid body closed loops are difficult to include in a cor
tational and inertial frame formulation because the op
mum solution procedure for rigid body closed loops is fu
damentally different from the optimum flexible bod
corotational or inertial frame solution procedures.

• In practical multibody applications, some components m
be very stiff. Those components require very small integ
tion time steps, which make the solution very slow. In
floating frame approach, on the other hand, when mo
reduction is used, the stiff modes can be discarded.

• For the inertial and corotational frames, the computat
time is the same for small deflection and large deflect
problems. This is because the formulation used in mod
ing large deflections is the same formulation required
account for the large rigid body rotation. Therefore, t
small deflection assumption, which is valid in a large nu
ber of practical FMS, does not reduce the computat
time. In addition, in the inertial frame approach, the co
putation time is also the same for small strain and la
strain problems.
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Recent advances have relaxed some of the above difficu
Some of these advances are:

• Computer speeds have increased by nearly three orde
magnitude since the mid-1980s. At the same time, co
puter prices have dropped. Thus, the computational
has considerably decreased, making the corotational
inertial frame formulations economical for more practic
FMS applications. In addition, new clusters of massiv
parallel processors allow fast solution of many practi
large FMS.

• There are many commercial codes~eg, DYNA, MSC/
DYTRAN, and ABAQUS/Explict! based on the corota
tional and inertial frame approaches that incorporate ri
components, with the restriction that at least one flexi
component must be present in a closed loop. These c
also have a large library of joints such as revolute, p
matic, cylindrical, spherical, planar, and universal joints

• Multi-time step explicit and hybrid explicit-implicit proce
dures@489# have been developed to solve stiff problem
with disperate time scales at a considerable saving in c
puter time.

These recent advances, coupled with the advantages o
corotational and inertial frame formulations, have ma
these formulations very attractive for practical FMS applic
tions. Many researchers recently applied the corotatio
frame approach to beam-type FMS@31,38,46,47,84–88
91,453,460# and to shell-type FMS@91,466#. Also, many re-
searchers recently applied the inertial frame approach
beam-type FMS@34–37,39,48–50,96,97,501–503# and to
shell-type FMS@514,518,524,528#.

3 CONSTRAINT MODELING IN FLEXIBLE
MULTIBODY DYNAMICS

Constraints can be divided into three main types: prescri
motion, joints, and contact/impact. The three types can
written in the following compact form:

f ~q,t !50 ~Prescribed motion! (12)

f ~q!50 ~Joints! (13)

f ~q!>0 ~Contact/impact! (14)

whereq is the vector of generalized system coordinates,t is
the running time, andf is the generalized constraint functio
These constraints give rise to constraint reaction forces
are normal to the direction of motion. In addition, they c
produce friction, damping, and elastic forces in the direct
of motion. In the following subsections, the various FM
techniques for modeling joints, prescribed motion co
straints, and contact/impact are reviewed.

3.1 Joint and prescribed motion constraints

Prescribed motion constraints and joints are modeled by
ing constraint equations which relate some of the general
coordinates in such a way as to allow only the kinema
motion allowed by the constraint or joint. The methods
incorporating general constraints into the differential eq
tions of motion of FMS, include:
ties.
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• Lagrange multiplier method
• Penalty method
• Augmented Lagrangian method
• Relative coordinates method
• Special methods for hinge Joints
• Internal element constraints

Table 6 shows a partial list of papers where the various m
ods for constraint enforcement are used.

3.1.1 Lagrange multipliers
In the Lagrange multiplier technique, constraint reacti
forcesFR ~see Eqs.~2,3!! of the form:

FR52
]FT

]q
l (15)

are added to the global equations of motion. In Eq.~15!,
]F/]q is the Jacobian of constraint equations andl is the
vector of Lagrange multipliers. Lagrange multiplier meth
is used to incorporate holonomic and non-holonomic c
straints in rigid multibody systems.

The method was applied to FMS using the floating fra
approach in Thompson and Barr@316#, Song and Haug
@103#, and Blejwas@368# and is currently the most widely
used method for incorporating constraints in the float
frame formulation. It is also used in the relative joint coo
dinates formulation to enforce loop-closure constrain
Equations~2! and~3!, which are the governing semi-discre
equations of motion of the FMS, form a system of DAEs
size 6N1m1c, whereN is the total number of bodies,m is
the total number of elastic DOFs, andc is the total number of
Lagrange multipliers@103#. For the absolute coordinate for
mulation, the number of Lagrange multipliers is equal to t
total number of constraints. In this case, the equations
motion have the maximum number of coordinates and t
the formulation is called the augmented formulation. T
number of DOFs can be reduced to 6N1m2c independent
coordinates prior to the solution procedure by eliminating
dependent coordinates and associated Lagrange multip
A variety of methods have been developed to perform t
reduction and obtain an expression of the dependent DOF
terms of the independent DOFs. These include: the ortho
nal complement to the constraint matrix~zero eigenvalue
theorem! @5,371,606–610#, the singular value decompositio
method@72,611,612#, coordinate partitioning methods usin
LU factorization @147,613–618#, and up-triangular decom
position of the constraints Jacobian matrix using Hou
holder iterations@113,619–622#. Using the relative coordi-
nate formulation, this reduction is automatically obtained
tree type FMS @111,112,157#. For closed-loop FMS, a
Lagrange multiplier is needed for each loop-closure c
straint. The Lagrange multiplier method has also been u
with the inertial frame approach for modeling revolute join
@505,560#, universal joints@623#, and prismatic joints@624#.

The Lagrange multiplier method has the advantage
the constraints are satisfied exactly~within the accuracy of
the numerical iterations! and that the equations of motion fo
arbitrary configuration FMS including holonomic and no
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Table 6. Classification of a partial list of references on constraint enforcement methods

Method Floating frame Corotational frame Inertial frame

Lagrange
multiplier

Thompson and Barr@316#, Song and Haug
@103#, Blejwas@368#, Shabana and Wehage
@106,180#, Samanta@628#, most references
after 1980.

Wu et al @87,457#, Housner@46#,
Housneret al @47#, Devlooet al @463#.

Bauchauet al @505,560#, Bauchau
@623,624#, Ibrahimbegovicet al @512#.

Penalty Serna@373#, Bayoet al @177#. Devlooet al @463#. Avello et al @39#, Orden and Goicolea
@533#, Orden and Goicolea@533#,
Wasfy and Noor@528#.

Augmented
Lagrange

Parket al @502,546#, Cardonaet al
@629#, Cardona@347#,
Downeret al @36#.

Relative
coordinates

Open-loop multibody systems„tree
configuration….

Closed and Open-Loop multibody
systems

Hughes@133#, Book @135#, Singhet al
@107#, Usoroet al @136#, Benati and Morro
@137#, Changizi and Shabana@110#, Kim
and Haug@138#, Han and Zhao@139#,
Shabana@140,142#.

Parket al @479#, Choet al @480#.

Closed and Open-Loop multibody systems.
Kim and Haug@147#, Ider and Amirouche
@111,112#, Keat @148#, Nagarajan and
Turcic @149#, Lai et al @150#, Ider @151#,
Pereira and Proenca@152#, Nikravesh and
Ambrosio @153#, Hwang@155#, Hwang and
Shabana@117,156#, Shabana and Hwang
@116#, Jain and Rodriguez@154#, Amirouche
and Xie @144#, Verlindenet al @157#,
Tsuchia and Takeya@158#, Pereira and
Nikravesh@118#. Pradhanet al @160#.

Modeling hinge
joints by sharing
a node

Pan and Haug@255#. Yang and Sadler@84#, Hsiao and Jang@29#,
Wasfy @85,86,460,630#, Wasfy and Noor@91#,
Elkaranshawy and Dokainish@31#,
Iura and Atluri @453#.

Simo and Vu-Quoc@34,50#.

Internal element
constraints

Ibrahimbegovic and Mamouri@511#,
Ibrahimbegovicet al @512#,
Jelenic and Crisfield@627#,
Iura and Kanaizuka@598#.
y

t

o

t

o
v

e

s

m-
ent

ss
of
the
ss.

en,
de
. In
n to
em.
is
lty
r-
not

ing

gid-
holonomic constraints can be constructed systematicall
disadvantage of the method is that it leads to a system
DAEs with a non-minimal set of coordinates 6N1m1c.
Also, zero terms are introduced on the diagonal of
equivalent nonlinear stiffness matrix~see Subsection 4.1.1!,
which considerably increase its stiffness and required s
tion effort. Coordinate reduction methods for obtaining t
6N1m2c set of coordinates require additional compu
tional effort and often produce a stiffer system of DAEs th
is harder to solve.

3.1.2 Penalty method
In the penalty method, the reaction forces associated with
constraints can be written as~see Eq.~2!!:

FR5
]FT

]q
a

]F

]q
(16)

wherea is a diagonal matrix that contains the penalty fact
for each constraint equation. The method has the disad
tage that the constraint equations are not satisfied exactly
that largealead to stiff equations; however, it avoids th
difficulties of the Lagrange multiplier approach of solving
system of DAEs. The penalty method was used in Bayoet al
@177# and Avello et al @625# for modeling joints in rigid
multibody systems. It was used in conjunction with the in
. A
of

he

lu-
he
a-
at

the

rs
an-
and
e
a

r-

tial frame approach for flexible and rigid multibody system
in Avello et al @39#, Goicolea and Orden@532#, and Wasfy
and Noor@528#. Penalty springs can be used to connect co
ponents with incompatible nodal interfaces and to repres
the shape and stiffness of joints@626#.

Following is a systematic way for choosing the stiffne
of the penalty spring. If the joint stiffness is on the order
the stiffness of the other components of the FMS, then
penalty spring stiffness can be set equal to the joint stiffne
In this case, the method is physically appropriate. Oft
however, the joint stiffness is several orders of magnitu
higher than the stiffness of other components/elements
this case, the stiffness of the penalty spring can be chose
be equal to the stiffness of the stiffest element in the syst
The constraint will not be satisfied exactly, however, th
choice will insure that the error introduced due to the pena
spring will be of similar magnitude to the discretization e
ror. Also, this choice insures that the penalty spring does
make the system stiffer~thus harder to solve! than it already
is. Thus, in summary, the stiffness of the penalty spr
should be equal or less than the physical joint stiffness.

The penalty method can also be used to impose the ri
ity constraint of a rigid body@532,539–541#. Goicolea and
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Orden @532# modeled rigid bodies by using multiple points
on the body connected using stiff penalty springs.

3.1.3 Augmented Lagrangian method
The augmented Lagrange method combines both the
Lagrange multiplier and the penalty methods in order to re-
duce the disadvantages of both methods. By introducing a
penalty spring whose stiffness is comparable to the stiffness
of other components of the FMS, the number of iterations
and effort required to solve the system of DAEs can be re-
duced. The constraint is satisfied exactly at the end of each
solution time step. Downeret al @36# and Park et al
@502,546#, used the augmented Lagrange method with the
inertial frame approach to model general holonomic and
non-holonomic constraints. A coordinate partitioning scheme
was used in Parket al @502# to eliminate the Lagrange mul-
tipliers.

3.1.4 Relative coordinates
For open-loop FMS~tree configuration!, joint constraints can
be automatically satisfied using the floating frame and the
relative coordinate formulation~see Table 2!. As mentioned
in Subsection 2.8.1, the coordinates of a body~child body! in
a chain of bodies are expressed in terms of the coordinates of
the previous body~or parent body! in the chain and the
DOFs of the joint connecting the two bodies. Thus, the joint
constraints are automatically incorporated from the root body
to the tip body. However, closed loops and prescribed motion
constraints still need the addition of constraint equations.
These types of constraints are usually enforced using the
Lagrange multiplier technique@111,112,153,157#. The
Lagrange multipliers can then be eliminated in order to ob-
tain a minimal set of coordinates@153,240#.

3.1.5 Special method for rotational hinge joints
Rotational hinge joints constrain the translational DOFs be-
tween two bodies and allow some rotational motion. They
include: spherical, universal, and revolute joints. For the in-

ertial and corotational frames, hinge joints can be mode
by letting two bodies share a node and then constrain
relative rotation at that node as required by the jo
@31,50,86,453,460#. The Lagrange multipliers or penalt
methods can be used to impose the rotation constraints
are not required for imposing the translation constraints.

3.1.6 Internal element constraints
Recently, a type of methods for enforcing constraints that
not require penalty parameters or Lagrange multipliers h
been developed. The methods are based on explicitly imp
ing the constraints into the element arrays and the tim
integration solution procedure. Ibrahimbegovic and Mamo
@511# incorporated revolute, prismatic, universal, and rig
joints into a spatial geometrically exact beam element. Al
in Jelenic and Crisfield@627#, a spatial geometrically beam
element with anend releasewhich introduces the joint kine-
matics in the element formulation was used to model re
lute, prismatic, and universal joints. Iura and Kanaizu
@598# developed a similar approach for translational joints
using a modified shape function in an element-free Galer
formulation. The method has the advantage of not requir
additional variables or additional algebraic equations. Ho
ever, it requires reformulating the existing elements.

3.2 Joint types

Table 7 shows a classification for the various joint mod
used and developed in the literature. These are:

Revolute, Spherical, and Universal Joints.These joints
connect two bodies at a point. All the translational displa
ment components at the joint are equal for the two bod
while some rotational freedom is allowed, thus these joi
are also called hinge joints. The revolute joint leaves o
one rotational DOF free and constrains the remaining tw
the universal joint leaves two rotational DOFs free and c
strains one, and the spherical joint leaves all three rotatio
DOFs free. The revolute joint is the most common type

Table 7. Classification of a partial list of references on the various types of joints

Joint Type Floating frame Corotational frame Inertial frame

2D revolute All references on planar FMS. Most references on planar FMS. Most references on planar FMS.

3D revolute Shabana@140#, Cardonaet al @629#,
Huang and Wang@190#.

Most references on spatial FMS. Most references on spatial FMS.

Spherical Most references on spatial FMS. Most references on spatial FMS. Most references on spatial FMS.

Universal Bauchau@623#, Jelenic and Crisfield@627#.

Cylindrical Shabana@21,140#. Orden and Goicolea@533#, Bauchau@624#.

Prismatic Chu and Pan@179#, Buffinton and Kane
@338#, Pan@339#, Panet al @340,341#,
Hwang and Haug@342#, Shabana@21,140#,
Azhdari et al @354#, Gordaninejadet al
@343#, Buffinton @344#, Al-Bedoor and
Khulief @345#, Verlindenet al @157#, Fang
and Liou @194#, Theodore and Ghosal@346#.

Bauchau@624#, Orden and Goicolea@533#,
Wasfy and Noor@528#
Axially moving beam: Downer and Park@503#,
Vu-Quoc and Li@561#.

Planar Orden and Goicolea@533#.

Lead screws Chalhoub and Ulsoy@639#.

Gears Amiroucheet al @640#. Cardona@347#.

Cams Bagci and Kurnool@348#. Cardona and Geradin@638#.
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joint and thus it has been used in most multibody dynam
studies. For a revolute joint in 3D, two constraints are ad
in order to constrain the relative rotation between the t
bodies to the plane of the revolute joint. Clearances in
revolute joints were addressed by Dubowsky and Freud
stein @631#, Winfrey et al @632#, Dubowsky and Gardne
@69,70#, Soong and Thompson@633#, and Amirouche and Jia
@634#. Lubrication effects were modeled in Liu and Lin@635#
and Bauchau and Rodriguez@636# by solving the Reynolds
lubrication equation.

Prismatic, Planar, and Cylindrical Joints. These joints
connect a point on a body to a line or surface on anot
body. Prismatic joints allow only one translational DOF a
constrain the two remaining translation DOFs as well as
three rotation DOFs. Planar joints allow two translation
DOFs and constrain the remaining translation DOF as w
as the three rotation DOFs. Cylindrical joints allow only o
translational DOF along an axis and one rotational D
around that axis and constrain the remaining DOFs. P
matic joints are used in slider-crank mechanisms which
present in many machines, most notably internal combus
engines.

Gears. Gears are devices for the transmission of rot
motion from one shaft to another. The general type of ge
is 3D gearing where the two shafts are not necessarily
allel. All kinds of gears are a particular case of 3D gearin
eg, spur gears, bevel gears, hypoid gears, worm gears
Cardona@347# developed a methodology for modeling ge
eral gears within an inertial frame formulation using a set
holonomic and non-holonomic constraints. Two nodes,
at the center of each gear, are used to model the gear jo

Cams. Cams are devices for the transformation of rota
motion to a desired linear motion. Cams are most nota
used in internal combustion engines to control the air int
and exhaust from the cylinders. They are also widely use
industrial machines. Bagci and Kurnool@348# modeled cam
driven linkages using the theory of elasto-dynamics in wh
the linkage is considered as an instantaneous structur
each snapshot of motion. The periodic response of a c
driven valve train with clearances was studied in Wang a
Wang@637#. The dynamic response of cams, including int
mittent motion and Coulomb friction, was studied by Ca
dona and Geradin@638#.

Lead Screws. Lead screws are devices for the transform
tion of a large rotary motion to a much smaller linear motio
thus gaining a large mechanical advantage. Chalhoub
Ulsoy @639# used the floating frame approach to mode
flexible robot driven by a lead screw.

3.3 Treatment of contactÕimpact

Contact/impact modeling is used in a number of applicat
areas including: crash-worthiness analysis, metal form
and multibody dynamics. A review article on contact/impa
by Zhong and Mackerle@641# includes about 500 reference
While some publications deal exclusively with one applic
tion area, other publications develop general contact/imp
methods. Some FMD applications which involve conta
impact are: joint clearances@636#, intermittent motion
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mechanisms@333,334#, clutches@552#, belt drives@551,553#,
variable kinematic structure mechanisms~involving addition
or deletion of joints!, robot grasping, and docking and a
sembly of space structures~variable mass FMS involving
mass capture/release! @335,336,642#!. There are four physi-
cal conditions present in a contact/impact problem:
1! The displacements of the contact point on the first bo

and the corresponding contact point on the second b
must be such that the two bodies do not overlap.

2! The reaction forces at a contacting point on the first bo
and the corresponding point on the second body mus
equal in the static contact limit.

3! The total momentum and energy of the two impacti
bodies must be conserved in case there is no other so
of energy or momentum gain or dissipation.

4! In case there is a relative motion between the two c
tacting bodies, a friction force in a direction tangential
both contacting surfaces must be added. The magnit
of this force is a function of the normal reaction forc
between the two bodies. The most widely used fricti
model is the Coulomb friction model in which the frictio
force is proportional to the normal reaction force.

Contact/impact modeling methods attempt to model
contact/impact phenomena while satisfying the above co
tions. In order to satisfy condition 1, a method for detecti
when contact occurs—contact searching—is needed. Zh
and Mackerle@641# classify contact searching algorithms a
cording to: master-slave algorithms@486# and hierarchical-
territory algorithms~HITA ! @641,643–645#. In the HITA,
four types of hierarchies can be used: the contact bodies
contact surfaces, the contact segments, and the co
nodes. The territory of each hierarchical branch is used
detect contact, thus speeding up contact searching by e
nating higher level branches without having to sea
through the lower level branches.

Once contact is detected, two main types of methods h
been used to satisfy conditions 1 and 2. These are: con
force based methods and momentum-impulse methods. C
tact force based methods can be further divided into:
penalty method, the Lagrange multipliers method, and
augmented Lagrange method@641#. Momentum-impulse
methods can be divided into: global and local methods.
this section, the contact/impact modeling methods that
used in conjunction with FMD applications are reviewe
Literature classification for the various FMS Contact/Impa
modeling methods are shown in Table 8 and a brief expla
tion of each method will be given in the subsequent subs
tions.

3.3.1 Penalty method
In the penalty method, the contact pressure is assumed t
equal to the amount of penetration times a penalty param
This is equivalent to introducing apenalty springbetween
the contacting points. A penalty damper can also be us
The same procedure described in Subsection 3.1.2 for se
ing the penalty stiffness and damping for joints can be u
in contact/impact modeling~eg, @641,646#!. A physical con-
tact force model such as Hertzian contact force can also
used@647–649#. In Khulief and Shabana@650# the stiffness
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and damping coefficients were determined using a momen-
tum balance approach. In practice, for contact between stiff
bodies, a large penalty stiffness is used. The larger the value
of the penalty stiffness, the more the non-penetration condi-
tion is satisfied, but the smaller the required solution time
step.

Coulomb friction can be also modeled using a penalty
approach where, for small relative tangential velocities be-
tween the two bodies, the friction force is proportional to the
tangential velocity, up to the Coulomb friction force
@551,651#. The larger the value of the proportionality con-
stant, the closer the friction model is to the Coulomb friction
law. The penalty contact method, along with this approxi-
mate penalty Coulomb friction law, was used to accurately
model the dynamic response of belt drives including accurate
prediction of the belt stick and slip arcs over the pulleys
@551,553#.

The penalty method can be used to model intermittent
motion mechanical elements. For example, in Leamy and
Wasfy @552# a one-way clutch element between two pulleys
was used in which the transmitted torque in the clutch trans-
mission direction is equal to a penalty parameter multiplied
by the relative angular velocities between two pulleys and
zero in the opposite direction.

3.3.2 Lagrange multiplier and augmented Lagrange
methods
In the Lagrange multiplier method, Lagrange multipliers are
introduced in the variational form of the governing equa-
tions. Then, constraints are added between nodes in contact
to force them to have the same displacement. Lagrange mul-
tipliers associated with a constraint represent the contact
force. The Lagrange multiplier method is suitable for contact
between very stiff bodies. It eliminates the need for an arbi-

trary large penalty parameter at the expense of adding
extra solution variable—the Lagrange multiplier.

As in the augmented Lagrangian method for joints, bot
penalty parameter and a Lagrange multiplier can be use
the contact constraint equation. The penalty parameter
duces the number of iterations required to solve the sys
equations.

3.3.3 Global momentum/impulse methods
In contact force based approaches, a normal reaction f
between the two impacting surfaces can be readily ca
lated. Momentum/impulse methods, on the other hand, p
dict the jump discontinuities in the system velocities a
internal reaction forces as a result of the impact using m
mentum and impulse conservation equations. Momentu
impulse based methods are well established for impac
rigid bodies~eg, @652#!; however, they have only been re
cently applied to impact of flexible bodies. In Khulief an
Shabana@333,334#, Bakr and Shabana@653#, and Rismantab-
Sany and Shabana@654#, the generalized impulse momentu
equations were used to predict the jump discontinuities in
velocities and joint reaction forces of intermittent motio
FMS. The momentum-impulse method was applied to all
generalized coordinates of the two impacting flexible bodi
In Rismantab-Sany and Shabana@654#, the convergence o
the series solution obtained by solving the generalized
pulse momentum equations was used to prove the validit
the approach. In Yigitet al @655,656# the validity of the ap-
proach was verified experimentally using a flexible rotati
beam impacting on a rigid surface. For methods based on
floating frame approach and modal reduction, contact/imp
introduces jump discontinuities in the system natural f
quencies and mode shapes@336#. The influence of contact
impact on the choice of the reduced modes was studie

Table 8. Classification of a partial list of references on contactÕimpact modeling methods

ContactÕImpact
method Floating frame Corotational frame Inertial frame

PenaltyÕphysical
contact force

Khulief and Shabana@650#, Wu and Haug
@281#, Huh and Kwak@658#, Ko and Kwak
@659,660#, Amiroucheet al @661#, Dias
and Pereira@662#.
Effect of Modal Reduction
Escalonaet al @649#.
Friction Model
Hauget al @663#, Pereira and Nikravesh
@118#, Lankarani and Nikravesh@664#.

Lee et al @665#, Lee @666,667#, Osmont@668#, Shethet al
@669#, De la Fuente and Felipa@670#, Ibrahimbegovic and
Wilson @671#, Hunek @672#, Shaoet al @673#, Huang and
Zou @674#, Laursen and Simo@529#, Qin and He@675#,
Laursen and Chawla@676#, Bauchau@648#, Leamy and
Wasfy @551,552#, Bottasso and Trainelli@677#.

Lagrange
multiplier

Hauget al @663#, Wu and Haug@281#,
Jia and Amirouche@678#.

Belytschko and Neal@679#,
Belytschko@490#.

Taylor and Papadopoulos@680#, Shaet al @681#, Wriggers
et al @682#, Bauchau@651#.

Global
momentum
conservation

Khulief and Shabana@333#, Bakr and
Shabana@653#, Rismantab-Sany and
Shabana@654#, Hsu and Shabana@683#,
Gau and Shabana@684,685#, Yigit et al
@655,656#, Lankarani and Nikravesh@686#,
Kovecseset al @337#, Marghituet al @687#.
Effect of Modal reduction
Palaset al @657#.
Coulomb Friction
Zakhariev@688#.

Local momentum
conservation

Wasfy @85,630#, Wasfy and
Noor @642#.
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Table 9. Classification of a partial list of references on explicit and implicit solution procedures

Procedure Type Floating frame Corotational frame Inertial frame

Iterative-implicit Song and Haug@103#,
Shabana and Wehage@106#,
Bakr and Shabana@128#,
Rismantab-Sany and Shabana@701#,
Shabana@21#,Haug and Yen@617#,
Fisette and Vaneghem@618#,
Simeon@689#.

Semi-Implicit with Newton Iterations
Housner@46,47#, Hsiao and Jang@29,437#,
Hsiaoet al @438#, Hsiao and Yang@444#,
Elkaranshawy and Dokainish@31#,
Banerjee and Nagarajan@448#,
Devloo et al @463#.

Nagarajan and Sharifi@537#, Simo and VuQuoc
@34,49,50#, Cardona and Geradin@35#, Geradin
@702#, Bauchau et al @505,560#, Bauchau and
Theron@703#, Ibrahimbegovic and Al Mikdad@37#.

Energy conserving:Crisfield and Shi
@89,90#, Galvanetto and Crisfield@445#.

Energy Conserving:
Simo and Tarnow@518#, Simo et al @691#, Stander
and Stein @497#, Ibrahimbegovic and Al Mikdad
@704#, Orden and Goicolea@533#, Ibrahimbegovic
et al @512#, Borri et al @513#, Bauchauet al @524#.
Energy Decaying: Bauchau @623#, Bauchau and
Hodges @508#, Bauchau et al @524#, Borri et al
@513#.

Explicit Metaxas and Koh@173#. Flanagan and Taylor@475#, Wasfy
@85,86,460#, Wasfy and Noor@91#,
Iura and Atluri @453#.

Park et al @502#, Downer et al @36#, Wasfy @514#,
Leamy and Wasfy@551,552#.

Implicit-Explicit Parket al @502,546#, Lim and Taylor@536#.
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Palaset al @657#. The global momentum method has an i
herent assumption that the impact propagates in the flex
body at an infinite speed. This assumption is valid for s
bodies and is not valid for highly flexible bodies.

3.3.4 Local momentum/impulse conservation methods
This technique is based on the use of the rigid body imp
modeling tools, namely, conservation of momentum and
restitution equations as local velocity constraints. This te
nique was presented in Wasfy@630# and Wasfy and Noor
@642#. The restitution and conservation of momentum eq
tions ~which are equivalent to the energy and moment
conservation equations in case there is no friction betw
the contact surfaces! are used as local postimpact veloci
constraints on the impacting nodes. So, in this approa
contact is considered to be a local phenomenon in wh
only the motion of the impacting node is directly altered
the impact. The motion of the rest of the finite element mo
is indirectly altered due to the transfer of the impact eff
through internal~structural! forces. The contact force be
tween the surfaces is modeled by the internal forces in
contact region. Frictional effects can be modeled by int
ducing two restitution coefficients, one in the normal impa
direction and one in the tangential impact direction. Unli
impact modeling of rigid bodies, the restitution coefficien
are not used to model the energy loss in the body as a w
~this is left to the internal material damping set off by t
large deformation rates caused by the impact! or to model
energy dissipation as sound and heat due to impact and
tion; they only model the local friction force effect at th
contact point.

4 SOLUTION TECHNIQUES

In this section, implicit and explicit solution procedures th
are used to solve the semi-discrete equations of motion a
with the constraint equations~Eqs. ~2 and 3!! are reviewed.
Also, some of the methods used to enhance the speed
accuracy of the solution procedure and the numerical mo
are reviewed. These methods are: recursive solution pr
n-
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dures, multi-time step methods, parallel computational st
egies, object-oriented strategies, computerized symbolic
nipulation, adaptive approximation strategies, and meth
for assessing the effects of uncertainties.

4.1 Solution procedures

4.1.1 Implicit solution procedures
In implicit solution procedures~see Table 9!, a solution for
the system displacements that simultaneously satisfies
equations of motion and constraints is sought at each t
step given the solution at the previous time step. Since
equations are nonlinear, Newton-Raphson equilibrium ite
tions are performed to guarantee that an equilibrium solu
is reached at each time step@40–42,530#. A typical solution
algorithm is summarized in the following three equations

$q* % t1Dt
(1) 5$q* % t (17a)

@K* # t1Dt
(k) $Dq* % t1Dt

(k11)5$D f * % t1Dt
(k) (17b)

$q* % t1Dt
(k11)5$q* % t1$Dq* % t1Dt

(k11) (17c)

where t is the running time,Dt is the time step, (k) is the
iteration number, andq* is the vector of generalized coord
nates.@K* # and D f * are the equivalent tangent nonline
stiffness matrix and the vector of equivalent generaliz
forces. @K* # and D f * are functions of$q* % t1Dt

(k21) and the
system stiffness, damping, and inertia forces. Equation~17b!
also includes algebraic equations for the prescribed mot
joint, and contact constraints. The iterations start by set
the value of the generalized coordinates at the first itera
of the next time step$q* % t1Dt

(1) to be equal to the value of th
generalized coordinates at the previous time step$q* % t ~Eq.
~17a!!. The equations of motion are linearized, by neglect
the quadraticD terms, at the configuration at time stept
1Dt and cast in terms of a linear system of algebraic eq
tions~Eq. ~17b!!. This system of equations is solved forDq*
using Gauss elimination, LU factorization, or the conjuga
gradient method. A new estimate of the generalized coo
nates is calculated using Eq.~17c! and used to calculate
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new equivalent tangent stiffness matrix and the equiva
force vector, which are in turn plugged back into Eq.~17b!.
The iterative procedure is repeated until the maximum e
between iterations is less than a certain tolerance. For m
body dynamics problems, the solution time and, thus,
number of time steps is large compared to other fields~such
as metal forming and crash-worthiness analysis!. Thus, the
iterative solution tolerance must be set at a small va
which means that a large number of iterations will be
quired. This is because any error admitted into the solutio
a time step will affect the time evolution of the solution in
path-dependent way@530#.

Implicit solution procedures are unconditionally stab
However, the time step should be at least an order of m
nitude smaller than the smallest natural period that need
be resolved. An advantage of implicit solution procedu
over explicit procedures is that the time step can be m
larger than the smallest natural period of the system, wh
can be very small for very stiff systems. Modes with a na
ral period of the same order or smaller than the chosen t
step are not accurately modeled. Therefore, some experi
is needed, when using an implicit solution procedure,
choosing a time step that provides a response within e
neering accuracy.

In the evaluation of@K* #, a time integration formula is
needed. The most widely used formulas are: the Newm
method@29,31,37,47,437,438,448,618#, Runge-Kutta method
@30,623,689#, Gear’s algorithm@84,103, 690#, or more gen-
erally, backward differentiation formulas. The Newma
method is simple, fast, and unconditionally stable for line
problems, however it has been shown to be unstable for l
rotation nonlinear problems@89,497,518,691#. Gear’s algo-
rithm and backward differentiation formulas are particula
suited to DAEs since they can be tuned to be stable
stiff equations @690#. The generalized Alpha-method in
cludes a parameter for filtering frequencies above a cer
level @480,692#. Geometric integration relies on differen
tial geometry and Lie group theory to achieve total ener
linear momentum, and angular momentum conserva
@512,513,518,691#. Some researchers found that the ene
conserving schemes can produce non-physical high freq
cies in the internal stresses, especially when material da
ing is present@524,623#. This is due to the fact that the cho
sen time step is generally at least two orders of magnit
larger than the smallest characteristic time in the proble
The unmodeled high-frequency modes produce the n
physical response. Geometric integration energy deca
schemes were developed based on various numerical inte
tion techniques such as Runge-Kutta and finite differe
~eg, @513,524,560,623,693#!, which allow filtering the high
frequencies by gradually reducing the total energy in a c
trolled fashion.

There is a very close relationship between the solut
methods and the constraints modeling methods. The floa
frame approach is usually used in conjunction with t
Lagrange multiplier method for imposing the constrain
Two methods are used to include the constraint equation
Eq. ~17b!, namely: the direct method and methods based
ent
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reduction of the dependent coordinates. In the direct meth
the constraint equations are directly added to Eq.~17b!
@103,128,694#. The direct method leads to a maximal numb
of coordinates. The resulting equivalent stiffness mat
@K* # is generally a sparse matrix. The sparsity of the syst
equations is computationally advantageous because it
been shown that it is usually more efficient to solve a la
system of sparse equations rather than a smaller syste
dense equations@695#. But in order to take advantage of th
equations sparsity, sparse matrix storage and decompos
must be used. It is inefficient to store and decompos
sparse matrix using a 2D array. The most commonly u
method of storing sparse matrices is to store the row
column indices and the value of each nonzero entry of
matrix. A sparse Gauss elimination or LU decomposition c
then be performed@695#. Many commercial packages base
on the floating reference frame and absolute coordinates~eg,
ADAMS and DADS! take advantage of the sparsity of th
equations by using sparse matrix techniques@696#. Pan and
Haug @379# developed an inertia lumping technique for r
ducing off-diagonal coupling~ie, increasing the sparsity! of
@K* #.

Alternatively, in methods based on reduction of the d
pendent coordinates, the number of DOFs is reduced toN
1m2c independent coordinates prior to the solution pro
dure by identifying the dependent coordinates and expres
them in terms of the independent coordinates using a var
of techniques~see Subsection 3.1.1!. This results in a mini-
mal number of coordinates and dense system equations.
computational advantage gained by the reduction in the n
ber of coordinates is generally offset by the following:

• The characteristic matrices are denser.
• The nonlinearity of the equations is increased.
• The reduction routine requires a matrix factorization

each time step@21,140#.

The floating reference frame with relative coordinates a
leads to a dense, strongly coupled equivalent stiffness ma
But, recursive solution procedures~see Subsection 4.2.1! can
be used.

Similar to the floating frame, a major issue in an implic
solution procedure based on the corotational or iner
frames are incorporating the constraint equations into
~17b!. The various techniques for incorporating the co
straints are discussed in Subsection 3.1.

4.1.2 Explicit solution procedures
In explicit solution procedures@697#, a solution for the nodal
accelerations that satisfies the equations of motion and
straints is sought at each time step. If a lumped mass ma
is used, then the system’s equations of motion are uncou
at each time step and they can be directly solved for
nodal accelerations. A typical explicit algorithm starts
evaluating the vector of internal forces (f internal) from the
known nodal positions and velocities at time stept. Then,
internal forces are added to the external forcesf external. The
equations of motion are then directly used to calculate
accelerations at time stept1Dt:
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ẍt1Dt5M 21~ f internal1 f external! t (18)

A time integration formula such as the trapezoidal rule
used to integrate the acceleration into the velocities
positions at time stept1Dt. Equilibrium iterations can be
performed within a time step to improve the stability a
increase the critical time step@85,91#. Two equilibrium itera-
tions correspond to predictor-corrector type algorithm
As the number of equilibrium iterations increase, the
gorithm approaches an iterative-implicit conjugate gradi
algorithm.

Explicit temporal integration techniques are only con
tionally stable because the time step must be smaller than
equation’s characteristic time. If the same time step is u
for the entire FMS, then that time step must be smaller t
the smallest natural period of all finite elements. This i
poses a severe time step restriction and generally means
a very large number of time steps is needed to obtain
dynamic response of practical FMS. On the other hand,
advantages of explicit solution procedures are:

• All the system modes are accurately resolved.
• Physical material damping does not produce non-phys

high frequency oscillations in the response as in impl
methods, but actually helps damp out the high frequenc

• The number of arithmetic operations at each time ste
only O(N), whereN is the number of DOFs. This is in
contrast with implicit solution procedures, which require
leastO(N2) number of arithmetic operations per time st
due to matrix decompositions. Thus, there exists a crit
N above which explicit procedures are computationa
more efficient than implicit procedures.

• They areembarrassinglyparallel because all the equation
of motion are decoupled at a time step~see Subsection
4.2.3!.

Explicit solution procedures were first used for transie
analysis of large structures. They were applied to nonlin
structural dynamics using the corotational formulation in B
lytschko and Hsieh@45#, Belytschkoet al @698#, Hughes and
Winget @481#, Flanagan and Taylor@475#, and Rice and Ting
@439#. They are also used for contact/impact large deform
tion structural dynamics and crash-worthiness analysis~eg,
@681,699,700#!. Explicit solution procedures are well suite
for problems involving high deformation rates and hig
speed wave propagation such as automobile cra
worthiness analysis. Table 9 lists the references where
plicit solution procedures are used for FMS.

A variety of time integration formulas are used with e
plicit solution procedures such as: central difference@439#,
Newmark method@85,86,91,460#!, and fourth order Runge
Kutta method@453#.

The incorporation of constraints in explicit solution pr
cedures depends on the type of constraint. Hinge-type jo
do not introduce extra constraint equations because they
be modeled by sharing a node between two bod
@34,50,460#, thus they do not require any special treatme
For prescribed motion constraints, the constraint equat
can be executed within the explicit iterations to enforce th
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satisfaction@85,86#. For joints and contact/impact the, fo
lowing constraint enforcement methods can be used:

• The penalty method@528,551,552#
• The augmented Lagrangian method in conjunction with

separate implicit solution for the Lagrange multiplie
@36,502,546#

• Lagrange multiplier method in conjunction with a conj
gate gradient iterative projection algorithm@681#

4.1.3 Explicit-implicit solution procedures
Recognizing the advantages of explicit methods for flexi
multibody systems undergoing high speed/acceleration
that of implicit methods in dealing with stiff DAEs, Lim and
Taylor @536# suggested using an explicit integrator for fle
ible bodies and an implicit integrator for rigid bodies alon
with a node based explicit-implicit partitioning for interfac
elements.

4.2 Enhancements of the computational process

4.2.1 Recursive solution procedures
Recursive formulations are used in conjunction with t
floating reference frame and relative coordinates. The r
tive joint variables describe the large translation and rotat
between successive system components. The recursive
tion procedure consists of two main steps@135#, 1! the re-
cursive evaluation from base to tip of the body positio
velocity, and acceleration in terms of all the previous bod
in the chain, and 2! the recursive evaluation from tip to bas
of the internal forces and moments. Using the relative co
dinate formulation, the joint constraints are automatically
cluded for open-loop systems with no prescribed mot
constraints. Thus, the resulting equations for open loops
not include Lagrange multipliers and consist of a minimu
set of independent coordinates. The gain in computatio
speed is thus twofold. First, the recursive solution algorit
is O(N) @147,150,154#, where N is the number bodies
which means that the computational time grows only linea
with the number of rigid bodies. Second, a minimal set
equations of motion is used. The algorithm was applied
open-loop rigid multibody systems in Chace@130#, Witten-
burg @131# and Roberson@132#, and to open-loop FMS in
Book @135#, Changizi and Shabana@110#, Kim and Haug
@138#, Shabana@140,141#, Shabanaet al @142#, and Amir-
ouche and Xie@144#. Then, it was extended to closed-loo
FMS by adding cut-joint constraints to the equations of m
tion @111,112,116,117,147,148,150,151–156,158#. The cut-
joint closed-loop constraints, as well as prescribed mot
constraints, are usually included using Lagrange multipli
along with Newton type equilibrium iterations~eg,
@111,112,147#!. The recursive algorithm is, in most studie
applied to hinge type joints~revolute and spherical joints!
~eg, @154#!. It was also applied to prismatic and cylindric
joints in Shabanaet al @142#. In Hwang@155#, Shabanaet al
@142#, and Hwang and Shabana@117,156#, a recursive proce-
dure for decoupling the elastic and rigid body accelerat
while maintaining the coupling between rigid body and fle
ible body motion was developed. The relative coordina
formulation, in conjunction with a recursive solution proc
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dure, has been demonstrated to yield a near real-time s
tion of the FMS dynamic response in Baeet al @599#, Hwang
et al @600#, and Jain and Rodriguez@154#.

4.2.2 Multi-time step methods
In multi-time step methods, each local part of a flexible bo
is integrated in time using its own time step, thus eliminat
the need to integrate the entire FMS using the smallest
tem time step. Small or stiff components can be integra
with small time steps while large or compliant compone
can be integrated using larger time steps. This can lea
considerable gains in computational speed for practical FM
which usually involve components with disparate tim
scales. Multi-time step methods have not yet been use
FMD, however they have been successfully applied to lar
scale nonlinear structural dynamics applications such
crash-worthiness analysis@705#. Also, they are implemented
in commercial nonlinear structural dynamics explicit cod
that can also be used to model FMS such as DYNA-3D
DYTRAN.

Multi-time step methods can be implemented with im
plicit @706# and explicit@489,705# methods. They can also b
used to mix implicit and explicit integration in the sam
solution @488,489,706,707#. By alleviating the time step re
striction of explicit solution procedures, multi-time ste
methods make explicit procedures competitive with impli
procedures for problems with a small number of DO
(;1000 DOFs). Thus, multi-time step methods are mos
used in practice with explicit solution procedures.

The first multi-time step algorithms allowed only integ
time step ratios@706,707# ~ie, a minimum time stepDt was
selected and all other time steps can only take on value
nDt, wheren is a positive integer!. This restriction was re-
laxed for structural dynamics problems in Neal and B
lytschko@705#. Two types of time step partitions can be use
nodal partitions and element partitions.

Although the area of FMD probably has a lot to gain,
terms of increasing the computational efficiency, from ge
eral multi-time step iterative-implicit and explicit solutio
procedures, which include an algorithm for modeling gene
constraints, such procedures have not yet been present
the literature.

4.2.3 Parallel computational strategies
The development of solution procedures that can be im
mented on parallel computer architectures is very impor
for practical FMD applications. Using a large number of pr
cessors, it may be possible to achieve real-time simulatio
large-scale practical FMS. This can be used in applicati
such as real-time control of FMS, real-time virtual real
simulation of FMS, and computational steering. The m
important aspect of a parallel solution procedure is
speedup versus the number of processors. Algorithms
achieve a linear speedup have the largest potential bene

Explicit solution procedures with a lumped mass mat
are embarrassingly parallel at both the element and n
level within a time step, and have a theoretical linear para
speedup ratio@91,699#. This means that the element forc
and nodal accelerations are independent within a time s
olu-
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On the other hand, implicit solution procedures, which
volve matrix decompositions, cannot be easily paralleliz
and usually cannot achieve a theoretical linear speedup a
element level because the matrix decomposition involves
terdependent operations. Implicit solution procedures ba
on the floating frame and absolute coordinates can be pa
lelized at the body level@708#. Implicit solution procedures
based on the floating frame, relative coordinates, and a
cursive solution procedure are difficult to parallelize at t
body level because all the operations from the tip to b
bodies and vice versa have to be performed in order. Th
algorithms can be parallelized for each branch of bod
@599,600,709# or for the evaluation of the various variable
@151,710,711#.

4.2.4 Object-oriented strategies
The main advantage of an object-oriented strategy is tha
provides the best known mix of modularity and reusabili
FMS can be naturally described using an object-orien
strategy@712#. This is because an FMS consists of modu
components or objects that can be connected together i
arbitrary arrangement. The following classes of objects h
been identified in the literature@709,713–720#: system com-
ponents, prescribed motion, contact/impact surfaces, jo
forces, sensors, physical materials, and material colors
detailed parametric solid geometric model of each com
nent can be included as part of the component’s data st
ture. Typical objects used in each of these classes are sh
in Fig. 4. Each class has a set of standard properties
methods that are inherited by objects in that class. The in
itance construct allows new object types to be easily crea
Communication between objects is performed only throu
the standard methods and properties. Object represent
completely hides orencapsulatesthe underlying mathemati
cal models. The object-oriented strategy also allows comp
objects to be assembled from simpler objects. Obje
oriented strategies were applied to the construction
analysis of rigid multibody systems@715,721,722# and FMS
@718,720,723#.

A major advantage of an effective and comprehens
object-oriented representation of FMS is that it can be u
to generate many types of models wich are used in the an
sis, design, and manufacturing of FMS such as finite elem
models, geometric solid models, machining codes, rapid p
totyping coordinates, etc.

4.2.5 Computerized symbolic manipulation
Symbolic manipulation can be used to speed up the solu
procedure. This is because some terms in the final equat
can be factored out or canceled out in some situations. T
if the symbolic expression of the output can be obtained
then simplified, the number of arithmetic operations need
to obtain an output can be considerably reduced. Typically
rigid multibody systems, a reduction in the number of ari
metic operations by a factor of five can be achieved using
symbolically simplified final expressions@724#. The manipu-
lation and simplification of the symbolic expressions is do
using a symbolic processor. Generally, the final symbo
equations are integrated numerically in time because the
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sulting differential equations are nonlinear and, therefore
is very difficult to obtain closed form expressions.

Symbolic manipulation has been extensively develop
and used in rigid multibody systems@725#, but has only been
recently applied to FMS~see Table 3!. Cetinkunt and Book
@323# applied computerized symbolic manipulation to fle
ible open-loop type flexible manipulators. By using cut-jo
constraints to model closed loops, Fisetteet al @159,324# and
Melzer @328# used computerized symbolic manipulation f
modeling beam type FMS. A recursive relative coordin
formulation was used to derive, symbolically, the equatio
of motion. Fisetteet al @159# and Valemboiset al @726# used
power series monomials to approximate the beam sh
while Oliviers et al @329# used a polynomial Taylor serie
expansion. Shi and McPhee@330,331# used linear graphs in
which nodes represent reference frames on rigid and flex
bodies, and edges represent components that connect
frames to generate the equations of motion of FMS in sy
bolic form. The application of the technique to spatial Eul
Bernoulli beams was presented in Shiet al @267,332#. Taylor,
Chebyshev, or Legendre polynomials were used to appr
mate the beam shape.

4.2.6 Adaptive approximation strategies
During the simulation of an FMS, some part of the syst
may deform beyond the range of accuracy of the underly
discretization. This routinely occurs in vehicle cras
worthiness analysis, but may also occur in highly flexib
multibody systems. If the simulation is started with the fin
possible discretization, then the solution may be too exp
sive because of the small time step needed and the l
number of elements. Alternatively, the simulation can s
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with the coarsest possible discretization provided that an
gorithm for adaptively increasing and decreasing the discr
zation as needed is used.

Three types of adaptive strategies are currently us
h-adaptivity@490,727#!, p-adaptivity@727#, and modal adap-
tivity @106,180,728#. In h-adaptivity, the finite element mes
is refined~fission! and unrefined~fusion! depending on the
level of straining which occurs during the simulation.
adaptivity is routinely used in the area of crash-worthine
analysis. It has been applied to FMS in Metaxas and K
@173# and Ma and Perkins@729#. The latter used it in study-
ing the dynamics of tracked vehicles for accurately accou
ing for the finite length of the track segments when an Eu
rian formulation is used for modeling the track. I
p-adaptivity, the degree of the polynomial shape funct
approximation is increased or decreased depending on
amount of deformation of the element. Modal adaptivity
used in conjunction with the floating frame approach.
modal adaptivity, the number of modes used to approxim
the shape of body is increased or decreased during the s
lation depending on the applied forces and the angular
locity magnitude@106,180#. The number of modes can als
be increased following an impact or a sudden change in
nematic structure@728#.

4.2.7 Accounting for uncertainties
There are two main sources of uncertainty in model
physical systems: assumptions and approximations in
model; and imprecision in determining the values of the s
tem’s parameters. This means that the system response
not be determined precisely and we can only determine
bounds on the response that correspond to the known bo

Fig. 4 Object classes
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on the system parameters. Depending on the type of un
tainties present, there are three methods for assessing
effects of uncertainties on the response@730#: probabilistic
methods, anti-optimization methods~or convex methods!,
and methods based on fuzzy set theory. If the probab
distributions of the system parameters can be obtained,
probabilistic analysis is appropriate. The response in
case is obtained in terms of a probability distribution in tim
which can, in general, be calculated using Monte-Carlo t
simulations. When the information about the system is fr
mentary ~eg, only upper and lower bounds on the syst
characteristics are known!, then anti-optimization method
can be used to find theleast favorable response@731#. If the
uncertainty is due to vague and imprecise system chara
istics and insufficient information, then fuzzy-set based tre
ment is appropriate. The latter type of uncertainty is m
prevalent in FMS because of our limited measurement te
nology and knowledge, and the complexity of these syste
In fuzzy-set analysis, some of the system’s parameters
expressed in terms of fuzzy numbers. A fuzzy number d
not have a precise value but rather can take on a rang
values with each value assigned a possibility value betw
0 and 1. In Wasfy and Noor@528,732,733#, and Leamyet al
@555#, an approximate fuzzy-set method called thevertex
methodwas used to obtain the time envelopes of the po
bility distributions of various FMS response quantities giv
the fact that some of the system’s parameters~joint charac-
teristics, material properties, and external forces! were ex-
pressed in terms of fuzzy numbers.

5 CONTROL OF FLEXIBLE MULTIBODY
SYSTEMS

The area of control of FMS is currently a very active r
search area due to its applications in flexible robotic mani
lators @734# and articulated space structures@734–736#.
Table 10 lists representative papers on control of FMS
each of these two applications. Control of FMS is concern
with finding actuator forces that produce a desired motion
the multibody system. Thus, inverse dynamics is part of c
trol. However, control can be directly done on the physi
system without a using a numerical model. This is done
using a control law along with sensors~eg, encoders, acce
erometers, and strain gauges! that measure the current con
figuration of the system. The measurements are fed to
control law, which calculates actuator forces necessary
make the difference between the measured configuration
the desired configuration go to zero. This is calledclosed-
loop control. Control can also be done in an open-loop fa
ion where only the initial configuration of the system
known and a force profile isfed-forward to the actuator to
produce the desired motion. However, closed-loop contro
almost always used in practical applications to be able
respond to un-modeled dynamics, disturbances, and pay
variations. These effects will unavoidably make the op
loop controller diverge with time from the desired trajecto

Three main difficulties make the control of FMS muc
harder than the control of rigid systems:
cer-
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• The number of DOFs is much larger than the number
actuators. A flexible body has an infinite number of DOF
In practice, the body can be discretized into a finite num
of DOFs using a variety of techniques such as the fin
element method and modal analysis. However, the num
of actuators is still generally much less than the numbe
DOFs, which unavoidably makes the controller incapa
of exactly following a desired trajectory. At best, the co
troller can follow a trajectory that minimizes the error b
tween the desired and the actual trajectories.

• Wave propagation delays. An actuator action at one tip of a
flexible link takes time to propagate to the other tip.

• Reversed initial action. This effect can be observed in
rotating flexible link. When a torque is applied to the lin
in one direction, its tip position initially moves in the op
posite direction.

The last two difficulties are a result of the fact that the a
tuators and control points are non-collocated@737#. For ex-
ample, in robotic manipulators the actuators are located
the joints and the desired position is the tip of the en
effector. Park and Asada@738# used a force transmissio
mechanism to reduce the distance between the control fo
and the controlled endpoint, thus reducing the no
collocation between the actuator and the control point. T
was shown to reduce the endpoint vibrations for a sin
flexible link.

FMD including forward and inverse dynamics are exte
sively used in the analysis and design of controllers of FM
Forward dynamics is used in control in the following tw
ways:

• Simulating the behavior of the controller. The controller
can be first tested on the numerical model to insure that
controller does not cause any type of failure~such as in-
stability, excessive vibrations, large stresses, etc! to the
physical FMS.

• Design optimization of the controller. Forward dynamics is
used in a design optimization procedure to find the b
controller parameters that meet the performance requ
ments~such as high maneuvering speed and small resid
vibrations!. The design optimization procedure typical
starts by simulating the response of the system with a
sets of controller parameters. These simulations are t
used to assess how changes in the parameters affec
performance. Then, the parameters are modified in su
way as to obtain a better performance. The procedur
repeated until the best performance is obtained. The de
optimization procedure can also be used to find the b
geometric and material parameters for the integrated FM
controller ~eg, @739#!.

Similarly inverse dynamics can be used in control in t
following ways:

• Assessing the performance of closed-loop controlle.
Since, the actuator forces obtained using inverse dynam
are by definition the forces that give the closest poss
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Table 10. Classification of a partial list of references on FMS control

Robotic
Manipulators

PlanarÕSpatial Planar
Book et al @746#, Berbyuk and Demidyuk@747#, Cannon and Schmitz@748#, Goldenberg and Rakhsh
@749#, Chalhoub and Ulsoy@639,750#, Bayo @751,752#, Bayo and Moulin@753#, Bayoet al @754#, Nicosia
et al @755#, De Lucaet al @756#, Sasiadek and Srinvasan@757#, Yuan et al @758,759#, Asadaet al @745#,
Castelazo and Lee@760#, Shamsa and Flashmer@761#, Chen and Menq@762#, Chedmailet al @420#, Feliu
et al @314#, Chang@419#, Aoustin and Chevallerau@763#, Kubica and Wang@764#, Eisleret al @765#, Xia
and Menq@766#,Levis and Vandergrift@767#, Ledesma and Bayo@740#, Book @734#, Kwon and Book
@768#, Yigit @769#, Gordaninejad and Vaidyaraman@356#, Park and Asada@738#, Rai and Asada@739#, Hu
and Ulsoy@770#, Meirovitch and Lim@771#, Choi et al @772,773#, Chiu and Cetinkunt@774#, Lammerts
et al @775#, Gawronskiet al @776#, Meirovitch and Chen@777#, Milford and Asokanthan@778#, Yanget al
@779#, Aoustin and Formalsky@780#, Mordfin and Tadikonda@781#, Mimmi and Pennacchi@782#.
Spatial
Book @783#, Pfeiffer @784#, Ledesma and Bayo@741#, Jianget al @785#, Ghazavi and Gordaninejad@786#.

Number of links Single-Link
Cannon and Schmitz@748#, Goldenberg and Rakhsha@749#, Bayo @751#, Sasiadek and Srinvasan@757#,
Yuanet al @758#, De Lucaet al @756#, Nicosiaet al @755#, Chen and Menq@762#, Castelazo and Lee@760#,
Shamsa and Flashmer@761#, Feliuet al @314#, Chang@419#, Kubica and Wang@764#, Levis and Vandergrift
@767#, Kwon and Book@768#, Park and Asada@738#, Rai and Asada@739#, Choi et al @773#, Chiu and
Cetinkunt @774#, Milford and Asokanthan@778#, Aoustin and Formalsky@780#, Marghitu et al @687#,
Mordfin and Tadikonda@781#, Mimmi and Pennacchi@782#.
Multi-link
Book et al @746#, Book @783#, Berbyuk and Demidyuk@747#, Chalhoub and Ulsoy@639,750#, Pfeiffer
@784#, Baruh and Tadikonda@787#, Asadaet al @745#, Jonker@559#, Chedmailet al @420#, Cetinkunt and
Wen-Lung@788#, Aoustin and Chevallerau@763#, Yuanet al @759#, Xia and Menq@766#, Eisleret al @765#,
Ledesma and Bayo@740,741#, Yigit @769#, Gordaninejad and Vaidyaraman@356#, Hu and Ulsoy@770#,
Meirovitch and Lim@771#, Jianget al @785#, Meirovitch and Chen@777#, Zuo et al @789#, Lammertset al
@775#, Gawronskiet al @776#, Ghazavi and Gordaninejad@786#, Geet al @790#, Ghanekaret al @791#, Yang
et al @779#, Banerjee and Singhose@792#, Xu et al @793#.

Control type Regulator control
Sasiadek and Srinvasan@757#, Castelazo and Lee@760#, Shamsa and Flashmer@761#, De Luca and Sicil-
iano @794#, Aoustin and Formalsky@780#.
Tracking control
Book et al @746#, Goldenberg and Rakhsha@749#, Chalhoub and Ulsoy@639,750#, Bayo @751#, Pfeiffer
@784#, Yuanet al @758#, De Lucaet al @756#, Nicosiaet al @755#, Asadaet al @745#, Chedmailet al @420#,
Chang@419#, Xia and Menq@766#, Ledesma and Bayo@740,741#, Kwon and Book@768#, Yigit @769#,
Gordaninejad and Vaidyaraman@356#, Hu and Ulsoy@770#, Meirovitch and Lim@771#, Zuo et al @789#,
Lammertset al @775#, Gawronskiet al @776#, Chiu and Cetinkunt@774#, Meirovitch and Chen@777#,
Ghazavi and Gordaninejad@786#, Yim and Singh@795#, Milford and Asokanthan@778#, Yanget al @779#,
Banerjee and Singhose@792#.
Vibration control
Ider @796#.
Force control
Hu and Ulsoy@770#, Yim and Singh@795#.

Feedback Linear state„actuatorÕjoint … feedback Angular position „encoders…
Most references,eg, Milford and Asokanthan@778#, Aoustin and Formalsky@780#.
Angular velocity „Tachometers…
Aoustin and Formalsky@780#.
Endpoint feedback Position
Cannon and Schmitz@748#, Feliu et al @314#, Jianget al @785#.
Acceleration „Accelerometer…
Chalhoub and Ulsoy@750#, Milford and Asokanthan@778#.
Force „Force sensor…
Hu and Ulsoy@770#.

Joint type Revolute joints
Most references.
Prismatic joints
Gordaninejad and Vaidyaraman@356#, Hu and Ulsoy@193#.
Lead-Screws
Chalhoub and Ulsoy@639,750#.

Material model Linear Isotropic
Most references.
Composite materials
Gordaninejad and Vaidyaraman@356#, Ghazavi and Gordaninejad@786#.

Space Structures PlanarÕSpatial Planar
Schafer and Holzach@797#, Yen @798#, Banerjee@482#, Yen @799#.
Spatial
Krishma and Bainum@800#, Banerjee@482#.

Control Type Retargeting flexible antennas and panels
Ho and Herber@406#, Meirovitch and Quinn@409#, Meirovitch and Kwak@370,801#, Kakad@412#, Bennett
et al @802#, Banerjee@482#, Kelkar et al @803,804#, Yen @798#, Singhoseet al @805#.
Vibration Control
Schafer and Holzach@797#, Krishma and Bainum@800#, Meirovitch and Quinn@409#, Fisher@806#, Li and
Bainum@807#, Banerjee@482#, Suet al @808#, Kelkaret al @803,804#, Kelkar and Joshi@809#, Dignath and
Schiehlen@556#.
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trajectory to the desired trajectory, a good measure of per-
formance of the closed-loop controller is the difference
between the controller’s forces and the inverse dynamics
forces.

• Feed-forward open-loop control of FMS. Inverse dynamics
can be used to calculate, in advance, the actuator forces
necessary to move the FMS from the initial position to a
desired position. These forces can then be applied to the
system. This type of control is calledcomputed torque
method. The computed torque method is usually used in
conjunction with a secondary closed-loop controller that
fine-tunes the pre-calculated torques to minimize the track-
ing errors and vibrations.

• On-line real-time closed-loop control of FMS. In this case
inverse dynamics is used as the control law. In theory, this

would provide the optimum control forces. However, th
requires that the inverse dynamics computation be co
pleted faster than real-time, which is currently difficult fo
practical FMS.

The inverse dynamics problem can, in general, be solved
using a Newton type iterative procedure on the forward
namics solution@740–744#. It was obtained in Korayemet al
@248# using a symbolic manipulator and the assumed m
method. Since, for FMS, the number of forces is always l
than the number of response DOFs, inverse dynamics ge
ally cannot generate the precise desired trajectory and
only achieve the closest possible trajectory to the des
trajectory. For stiff manipulators with linearized equations
motion, the inverse dynamics solution can be obtained

Table 10. (continued).

Attitude Control in the presence of disturbances
Ho and Herber@406#, Fisher @806#, Ramakrishnanet al @242#, Maund et al @810#, Bennettet al @802#,
Cooperet al @811#, Yen @798,799#, Mosieret al @812#, Wasfy and Noor@528#, Nagataet al @162#.
Deployment Control
Wasfy and Noor@528#.

Feedback Relative displacement
Schafer and Holzach@797#.

Mechanisms Planar Crank-slider
Liao and Sung@813#, Gofron and Shabana@360,361#, Choi et al @772#, Liao et al @814#.
Tracking
Gofron and Shabana@360,361#.
Vibration control
Liao and Sung@813#, Choi et al @772#, Liao et al @814#.

Type of Frame Floating frame Most references.

Corotational
frame

Eisler et al @765#.

Inertial frame Wasfy and Noor@528#.

Control law PID control Cannon and Schmitz@748#, Berbyuk and Demidyuk@747#, Schafer and Holzach@797#, Goldenberg and
Rakhsha@749#, Chalhoub and Ulsoy@639,750#, Pfeiffer @784#, Shamsa and Flashmer@761#, Chang@419#,
Yuanet al @759#, Yigit @769#, Gordaninejad and Vaidyaraman@356#, Park and Asada@738#, Tu et al @815#,
Choi et al @773#, Ghazavi and Gordaninejad@786#, Ghanekaret al @791#, Aoustin and Formalsky@780#,
Wasfy and Noor@528#, Mordfin and Tadikonda@781#.
Proportional
Book et al @746#, Book @783#, Gawronskiet al @776#.
Non-linear
Castelazo and Lee@760#.

Adaptive control Sasiadek and Srinvasan@757#, Yuanet al @758#, Chen and Menq@762#, Bennettet al @802#, Lammertset al
@775#, Milford and Asokanthan@778#, Yanget al @779,816#.

Robust control Hu and Ulsoy@770#, Liao et al @814#.

Neural-Network Maundet al @810#, Chiu and Cetinkunt@774#, Yen @798,799#.

Pseudo-
Linearization

Nicosiaet al @755#, Levis and Vandergrift@767#, Nagataet al @162#.

Linear quadratic
regulator „LQR …

Cannon and Schmitz@748#, Meirovitch and Kwak@370#, Chedmailet al @420#, Feliu et al @314#, Liao and
Sung@813#, Meirovitch and Lim@771#, Choi et al @772#, Suet al @808#, Dignath and Schiehlen@556#.

Fuzzy control Kubica and Wang@764#, Zeinoum and Khorrami@817#, Xu et al @793#.

Computed-
torque method

Reference system: Rigid-body model
Goldenberg and Rakhsha@749#, Pfeiffer @784#, Chedmailet al @420#, Chang@419#, Gofron and Shabana
@360#, Tu et al @815#, Meirovitch and Chen@777#.
Reference system: Linearized Flexible-body model
Bayo @751,752#, Bayo et al @754,818#, Bayo and Moulin@753#, De Lucaet al @756#, Asadaet al @745#,
Feliu et al @314#, Williams and Turcic@819#, Kokkinis and Sahrajan@742#, Gawronskiet al @776#.
Reference system: Flexible-body model with rigidÕflexible coupling terms
Phamet al @820#, Ledesma and Bayo@740#, Ledesma and Bayo@741#, Gofron and Shabana@360,361#,
Chen et al @743#, Xia and Menq@766#, Gordaninejad and Vaidyaraman@356#, Kwon and Book@768#,
Ghazavi and Gordaninejad@786#, Lammertset al @775#.
Reference system: Flexible-body model with rigidÕflexible coupling terms and geometric nonlinearity
Eisler et al @765#, Rubinsteinet al @744#, Banerjee and Singhose@792#.
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solving first the inverse kinematic problem and then solv
the dynamic algebraic equations of motion for the syst
torques@745#.

In Table 10, papers that deal with the control of FMS a
classified according to the type of application, the deform
tion reference frame, and the strategy for the control law
the Subsection 5.1, we will discuss the two main applicati
of control of FMS, namely, control of flexible manipulato
and control of flexible space structures. In Subsection
the various types of control laws, which were applied
FMS, are reviewed. An integral part of a control system
comprised of the actuators and sensors. Brief overview
the various actuator and sensor types and computati
models used in conjunction with control of FMS are given
Subsection 5.3.

5.1 FMS control applications

Robot control is a very large research area with many d
cated journals and conferences. About two decades ago
searchers started extending their control strategies and m
els from rigid manipulators to flexible manipulato
@79,80,746#. The direct way for extending rigid body mode
to flexible bodies was to use the floating frame approa
Thus, the majority of the flexible manipulators control str
egies use the floating frame approach. The research on
trol of flexible manipulators is classified in Table 10 acco
ing to the number of spatial coordinates~planar motion or
spatial motion!, the number of links~one link or multiple
links!, control type~regulator or tracking!, type of feedback,
joint types, and material model. The majority of the pap
presented numerical and experimental results for planar
nipulators. We note that for spatial manipulators, the non
ear centrifugal and Coriolis inertia forces take on a mu
more complicated form than for planar manipulators. T
type of feedback is also critical for flexible manipulators. F
rigid manipulators, linear state feedback, which is obtain
using encoders on each robot joint, is sufficient to determ
the position of the end-effector. For flexible manipulato
other types of sensors such as strain gages, accelerom
and cameras are used to feed back to the controller the
of deformation of the manipulator.

Similarly, control of articulated space structures is a ve
active research area because of the need to control the s
and attitude of these structures. The following types of c
trol operations are performed on space structures:

• Retargeting of flexible appendagessuch as antennas, sola
panels, mirrors, and lens to constantly point towards a
sired object. Depending on the speed of relative motion
the object, this can either be a regulator or a tracking pr
lem.

• Active vibration control. Following a disturbance on th
space structure such as an impact~eg, docking or mass
capture! or a motion of an appendage, structural vibratio
occur. These vibrations must be damped out quickly
cause they reduce the precision of onboard instrument

• Attitude control. The orientation of the entire space stru
ture should be controlled at all time to maintain the desi
orientation. Disturbances are typically caused by the m
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tion of an onboard appendage, the docking or separatio
another structure, or solar radiation pressure. Attitude c
trol can be achieved using control moment gyros or re
tion control jets. The current orientation of the space str
ture can be obtained either by referring to a fixed ea
target, fixed stars, or by using high-speed gimballed in
tial navigation gyros@812#.

• Deployment control. Many new space structures are d
ployable. They are folded in order to fit in the shroud
the launch vehicle. Then, once in orbit, they are deploy
into their final configuration using mechanical joint
actuators or inflation. In Wasfy and Noor@528#, the de-
ployment process of the Next Generation Space Telesc
~NGST! was simulated. The NGST structure is deploy
using revolute and prismatic joints along with rotary a
linear actuators and PD controllers. Another type of d
ployment is deployment of space tethers, which can
used for raising/lowering the orbit of satellites and gene
tion of electricity @555,821#.

Table 10 lists the papers dealing with each of the ab
operations. Most references used the floating frame appro
for modeling the flexible bodies. This is due to the fact th
the angular velocities and accelerations for space struct
are small and that these structures are usually analyzed u
modal techniques. The choice of reduced modes and its
fects on the controller design were discussed in Hab
@233,235,236# and Mordfin and Tadikonda@781#.

5.2 Control laws

The two main requirements for an FMS controller is that
must be fast and must accurately follow the desired tra
tory. These two requirements are, in general, contradict
ie, the faster the controller the less accurate it is and v
versa. There are many types of control laws with each of
ing benefits under some conditions. Often, more than
type of control law is used in the same system in order
maximize the benefits. Table 10 lists the most popular ty
of control laws along with the papers in which they are d
veloped and used. Control laws can be roughly divided i
two main types: non-model-based laws and model-ba
laws ~where a computer model of the FMS is used as
integral part of the control law!. The non-model-based law
are:

• Proportional-integral-derivative (PID) control. PID con-
trol is the most widely used control law in practice. The
are many situations in FMS where PID control with co
stant gains is not appropriate. This includes articula
multi-link FMS such as robotic manipulators because
the large configuration changes when the manipula
move and the change in centrifugal stiffening and iner
loads with the angular velocity.

• Fuzzy control. In fuzzy control, the controlled variable
space is partitioned into overlapping ranges. A stable c
troller is assigned with a fuzzy membership function
each range. Then, based on the current state of the sys
the desired state, and the membership function and ra
of each controller, a fuzzy output is calculated. This outp
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is then defuzzified to yield crisp actuator forces. This strat-
egy was applied for position and vibration control of flex-
ible link maipulators@764,817#.

• Neural-Networks (NN). In this type of control, an artificial
NN is trained to apply the actuation forces given the cur-
rent system state and the error between the current and
desired positions. This is achieved by using another con-
troller as the training controller. The disadvantage of NN
controllers is that they need to be trained using a represen-
tative variety of all possible system configurations and
control scenarios. For multiple body spatial systems, this
can translate into a very large training set. Chiu and
Cetinkunt@774# used NN for regulation control of a single
flexible link. Yen @799# proposed using NN control along
with distributed piezo-ceramic sensors and actuators for
tracking a desired trajectory of a flexible structure with
minimum vibrations.

The model-based laws are:

• Adaptive control. In adaptive control, a PID type controller
with adaptive gains is used. The gains are automatically
adjusted during operation based on the response of the
system in such a way that the response of the system
closely matches that of a reference model. The forward
dynamics simulation of the reference model is carried out
in real time during the operation of the FMS. The differ-
ence between the response of the reference model and that
of the physical system is used to adapt the PID gains
and/or the reference model parameters. Since the forward
dynamics problem must be solved in real time, a floating
frame based reduced order modal model is often used as
the reference model. One to three modes are used for each
body.

• Robust control. In robust control, an upper and lower
bound is established on the system parameters. The con-
troller is designed to yield a stable bounded response given
the range of uncertainty in the input parameters. Robust
control is used in conjunction with another type of control
law such as adaptive, PID control, or sliding mode control.
Hu and Ulsoy@770# used the robust control strategy along
with an adaptive controller for position and force tracking
of a single flexible link.

• Pseudo-Linearization~or Feed-Back Linearization!. In the
pseudo-linearization method, a state/control space coordi-
nate system is found such that the FMS in the new coor-
dinate system has a linearized model~Nicosiaet al @755#!.
A standard PID controller can then be applied in that lin-

earized configuration. Nicosiaet al @755# used this strategy
for position tracking control of a single flexible link.

• Linear quadratic regulator (LQR). In LQR control, a pro-
portional variable gain controller is used. The gain
evaluated using a quadratic performance measure tha
cludes the square of the difference between the actual
tem and a linearized model. This strategy was used
tracking control of a two-link planar manipulator in Che
mail et al @420#, orientation regulation of a flexible link
mounted on a free rigid platform in Meirovitch and Kwa
@370#, and tracking control of a three-link manipulato
mounted on a free rigid platform in Meirovitch and Lim
@771#.

• Computed torque method (CTM). In the CTM, the inverse
dynamic torques are first obtained. These torques are
forward to the system in an open-loop fashion. Then,
other type of feedback closed-loop controller such as P
controller@776#, LQR method@777#, or adaptive controller
@775,816# is used to fine tune the pre-calculated torques
order to minimize the tracking errors and vibrations.

A very important step in the design of a control law is
prove the stability of the controlled system. Classical line
proofs cannot be used because FMS are inherently nonlin
Stability proofs can be done using the Lyapunov functio
which measures the total energy of the system. The ne
sary condition for stability is that this function is strictl
decreasing for an arbitrary configuration of the system.

5.3 Actuators and sensors

5.3.1 Actuators
Actuators are an essential part of a control system beca
they produce the forces necessary to move the FMS. Ac
tors convert a form of energy such as electrical, chemical
mechanical into mechanical energy that produces force
moments on the FMS~see Table 11 for a partial list of pape
where the actuator models are coupled with FMS mode!.
From the modeling point of view, actuators can be classifi
into stiff actuators and compliant actuators. Stiff actuat
can be modeled as a prescribed motion because the m
they produce is not affected by the reaction forces of
FMS. For compliant actuators, the reaction forces of
FMS affect the commanded motion of the actuator. Th
there is atwo-way coupling between the actuator and th
FMS. So, a model of the actuator must be included in
model of the FMS. A typical stiff actuator is a low spee
high power rotary electric DC motor mounted on a st

Table 11. Classification of a partial list of references on coupled actuator-FMS models

Electrical Piezo-electric actuators Liao and Sung@813#, Zeinoum and Khorrami@817#, Choi et al @772#, Thompson
and Tao@822#, Yen @799#, Liao et al @814#, Maiber et al @823#, Rose and Sachau
@362#, Ghiringhelli et al @544#.
Electro-rheological fluid actuators: Choi et al @773#.

Chemical Rocket thrusters Reaction jets for space structures:Cooperet al @811#.

Flywheels Control Moment Gyros for space structures attitude control:
Cooperet al @811#, Wasfy and Noor@91#.

Mechanical Pressure Hydraulic actuators:Cardona and Geradin@824#, Chang@419#.
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Table 12. Classification of a partial list of references on coupled FMD models

Application Space structures:Krishma and Bainum@800,826#, Modi et al @115#.
Thermo-mechanical High speed flexible mechanical systems:Shabana@363#, Sung and Thompson

@364#, Wasfy @85#.

Frame type Floating frame: Krishma and Bainum@800,826#, Shabana@363#, Sung and
Thompson@364#, Modi et al @115#.
Corotational frame: Wasfy @85#.

Electro-mechanical
„Mechatronics…

Smart structures with piezo-electric actuators:Liao and Sung@813#,
Thompson and Tao@822#, Choi et al@772,773#.
Review articles: Loewy @838#, Matsuzaki@839#.
Electro-dynamics of tethered Satellites:Leamyet al @555#.

Fluid-structure
interaction

External flow

Review article: Done @827#.
Aeroelasticity multibody beam model: Du et al @365,366#.
Fluid-structure interaction for a cylinder mounted on springs: Nomura@831#.
Fluid-flow over free and falling airfoils: Mittal and Tezduyar@833#, Johnson
and Tezduyar@832#.
Floating and submerged structures:Casadei and Halleux@834#, Concaet al
@828#, Kral and Kreuzer@840#.

Internal flow Coupled FMS-fluid interaction: Ortiz et al @829#.
Effect of explosions on containers:Casadei and Halleux@834#.
Liquid sloshing in moving vehicles:Sankaret al @841#, Rumold@830#.
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shaft. An electric AC high speed motor is a compliant act
tor because the torque it produces is inversely proportiona
the angular velocity. Future FMS will be required to run
high speeds and high accelerations, and at the same
consume less energy. Under these conditions taking into
count the compliance of the actuator becomes more im
tant for accurately modeling the system dynamics.

5.3.2 Sensors
Sensors measure the local or global motion of a body.
measurement is sent to the controller through the feedb
loop in order to adjust the controller commands. Genera
sensors are designed such that their transfer function is
ear. Also, generally, the measurement action of the se
should have negligible effect on the motion of the syste
Sensors can be classified according to the type of motion
they measure into position, velocity, acceleration, and st
energy sensors:

• Position sensors measure the relative position and/or
entation of a point on the system. They include: encod
~rotary and linear, incremental, and absolute!, ranging sen-
sors ~laser and light sensors, high speed cameras@748#,
electromagnetic tracking, and ultrasound tracking!, and gy-
roscopes for measuring orientation.

• Velocity sensors~tachometers! measure the relative ve
locity.

• Accelerometers measure the absolute acceleration. Ac
erometers are mostly used to measure the vibration
flexible structures. They can also be used to measure
position, but a double integration in time is necess
which causes drift of the calculated position in time. Th
they are usually combined with another type of lower re
lution position sensor.

• The main types of strain sensors are strain gages
piezo-electric sensors@362,772,814#.
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sensor feedback of the closed-loop controller into: line
state feedback control, endpoint feedback, and strain
feedback.

• In linear state feedback control, the sensors are colloca
with the actuators. For example, in manipulators, the
tuators are located at the joints and the relative joint ang
are measured using encoders. This is the most widely u
type of feedback.

• In endpoint feedback, the sensors and actuators are
collocated. The feedback measurements can be used
active controller to damp the unwanted vibrations and
correct the error in endpoint position due to the flexibili
of the FMS. This feedback can be done using accelero
eters@750,759,770,778#, CCD cameras@314#, Laser rang-
ing sensors, electromagnetic tracking, or ultrasound tra
ing.

• In strain feedback, the strain at discrete points is measu
as a function of time. This information can be used
estimate the deformed shape of the structure and the
point location as well as to measure the structural vib
tions @420,759#. Thus, this type of feedback can be used
endpoint control and active vibration control.

6 COMPUTATIONAL STRATEGIES FOR
COUPLED FMD PROBLEMS

FMD is primarily concerned with predicting the time histo
of the mechanical response~displacement, strain, and stre
fields! of an FMS. The mechanical response of the FMS c
be coupled with other types of physical fields such as: th
mal, electric, magnetic, and fluid velocity fields. In coupl
problems, the governing equations for all the fields must
solved simultaneously. A special case of coupled field pr
lems is when the coupling between two fields is much str
ger in one direction. In this case, the primary field is calc
lated first, independent of the secondary field, and
secondary field is then calculated using the primary fie
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New applications of FMS and the need for cheaper, ligh
and faster systems are increasing the demand to per
coupled response predictions. Some of the important type
coupled FMD problems, along with examples of their pra
tical applications, are listed in Table 12. In this section,
literature on the computational aspects of thermo-mechan
coupling and fluid-structure coupling is reviewed.

6.1 Thermo-mechanical coupling

Temperature change produces strain in a flexible body
addition, mechanical energy losses due to material dam
and friction transform into heat energy, which increases
temperature of the body. Thus, there is a two-way coup
between the deformation and temperature fields. The cou
displacement-temperature fields can be calculated by sim
taneously solving the equation of motion~momentum equa-
tions! and the energy equation. There have been consider
studies of coupled thermo-mechanical problems with sm
deformation and large deformation@825#; however, very
little work has been done on thermo-mechanical dyna
analysis of FMS~mechanical systems undergoing large ro
tion!. The thermal effects in a FMS include:

• Heat conduction, in the bodies and between the bodies
joints

• Thermal stresses. The constitutive relation relating
stress tensor to the temperature change must be add
the stress-strain relation.

• Heat generation due to the stress power term in the en
equation

• Heat generation due to friction in the joints and on cont
surfaces

• Heat flux from or to the surroundings due to radiation a
convection~heat convection may be a function of the rig
body motion!

• Heat flux due to conduction when two bodies are in co
tact

• The physical material properties such as Young’s modu
material damping, Poisson ratio, thermal conduction co
ficient, thermal expansion coefficient, etc, are a function
temperature.

The reported work on thermo-mechanical modeling of FM
has been driven by two main applications: space struct
and high speed flexible mechanical systems. Space struc
in orbit are subjected to severe uneven radiation heating f
the sun~the temperature gradient between the side expo
to the sun and the opposite side can reach 400°C). The
mal gradients produce high thermal stresses and defo
tions. In addition, the energy loss due to damping from
vibrations and motion of the structure is converted into th
mal energy. It is now recognized that the deployment of
ture large space stations and other space structures, w
carry sensitive instruments, will require a much deeper
derstanding and accounting of the thermo-mechanical eff
@115#. The reported studies have focused on one-way c
pling where only the temperature affects the deformati
Krishma and Bainum@800,826# and Modiet al @115# devel-
oped computational methods for modeling the deflections
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free beams and plates exposed to solar radiation, where
effects of surface reflectivity and the incidence angle w
taken into account. Shabana@363# studied the effect of tem-
perature on the vibrational response of a crank-slider mec
nism.

Future mechanisms and manipulators are likely to be e
faster and lighter than current systems, and to be mad
new materials such as composites, ceramics, and plas
Those systems are expected to generate more heat d
material damping. Since they have poor heat conduct
they are expected to be more prone to thermal deforma
due large temperature gradients. Accurate modeling of
motion of these systems requires models that can accoun
the two-way thermo-mechanical coupling. Wasfy@85# used a
corotational frame formulation and solved the fully-coupl
semi-discrete momentum and energy equations to predic
thermo-mechanical response of FMS.

6.2 Fluid-structure interaction

All earthbound FMS operate in a fluid medium, mainly air
water. For relatively low speed operation in air, the effect
the fluid flow on the structural response is negligible. Ho
ever, for very high speed operation in air, and operation
liquids such as water, the effect of the viscous and ine
effects of the fluid must be taken into account. A classi
way to account for those effects for flexible structures is
added mass and damping method~Done @827# and Conca
et al @828#!. This method was used to account for fluid e
fects for helicopter blades and airplane wings~Done @827#!.
In Du et al @365,366#, a 2D quasi-steady thin airfoil theor
was used to calculate the aerodynamic loads for a beam
tached to a moving base. Ortizet al @829# used the floating
frame approach to model a flexible double-link pendulu
attached to a container carrying a fluid. Potential flow w
modified Raleigh damping was used to model the fluid. R
mold @830# modeled planar liquid sloshing in moving ve
hicles using a finite-volume multigrid code for solving th
full incompressible Navier-Stokes equations coupled with
multi-rigid body code.

A detailed account of the fluid flow and the interaction
the fluid-structure interface are needed for an accurate
general solution of FMS-fluid interaction problems, such
jet engines, rotorcraft, wing propelled aircraft, water su
merged mechanical systems, and fluid flow in flexible pip
~eg, blood flow!. These problems can be solved by simul
neously solving the Navier-Stokes equations for the fluid a
the FMS equations of motion. New computational tec
niques have been developed to account for the large r
body motion of FMS while they move in a fluid medium
These include:

• The Arbitrary Lagrangian-Eulerian~ALE! formulation.
This method can be used to model the fluid flow throug
moving fluid domain@831–834#.

• Moving the fluid mesh along with the flexible solid com
ponents smoothly and evenly by modeling the fluid me
as a very light and very flexible elastic solid domain tied
the solid mesh@832#
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• Using overlapping CFD mesh~Chimera grids! @835#. Each
body can be surrounded by its own grid. The grids fro
different bodies overlap due to the rigid body motion a
deformation. Overlapping grids have been used in the C
simulation involving separation of multiple rigid bodie
during flight @836,837#.

• Automatic re-meshing of the fluid domain if the deform
tion of the domain is excessive@832#

• Coupling between the fluid and structural forces at the
terface by writing the dynamic equilibrium of force equ
tions at the interface nodes@834#

7 DESIGN OF FLEXIBLE MULTIBODY SYSTEMS

In addition to the ability to predict the dynamic response
FMS, two main capabilities are needed for the design
FMS. These are design representation and design optim
tion.

7.1 Design representation

The aim of design representation is to find an effective st
egy for storing all the required information about the syste
Hierarchical object oriented FMS representation strateg
have been demonstrated to be very effective~see Subsection
4.2.4!. An object-oriented design representation strategy
be used in a virtual product development environment
allow the following capabilities:

• Creation of the modelin an intuitive user-friendly graphi-
cal environment

• Automatic generation of the different types of represen
tions needed during the design and manufacturing p
cessesfrom a single general object-oriented representat
of the FMS. The types of representations include: geom
ric solid models, finite element models, normal mode m
els, CNC machining codes, rapid prototyping mode
manufacturing steps/processes, assembly steps, etc.

• Dynamic simulation. The FMD analysis code can be em
bedded in the virtual product development environmen
allow building the model and predicting the dynamic r
sponse in one integrated environment.

• Visualization of the FMS design. This involves displaying
the system’s model from different views with a realis
rendering during the design process so that the user
quickly make design changes.

• Interactive Visualization of the simulation results. This in-
volves displaying an animation of the system motion t
is calculated using the FMD code. The user can change
parameters of the visualization such as the anima
speed, the model color, graphs parameters, etc. The
metric model can be overlaid on the finite element mo
in order to display an animation comprising the geome
details of the system instead of the idealized beam or s
finite elements. The simulation can be visualized on sing
screen desktop workstations all the way up to multi-scr
stereoscopic immersive virtual reality facilities@723,842#.

Graphical design environments that include some of
above capabilities have been presented in the literature~eg,
@714,720,843#!. Also, many commercial FMD codes cu
rently provide the above capabilities, to some degree.
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7.2 Design optimization

The aim of design optimization is to obtain the system p
rameters that minimize an objective function, which co
prises measures of the system performance requirements
the system cost while satisfying performance constrai
Predicting the system’s dynamic response is needed in
course of the design optimization process in order to evalu
the objective function and/or the constraints. Strategies
design representation and design optimization of FM
coupled with FMD modeling have been developed in t
following references: Schiehlen@713#, Daberkowet al @714#,
Haug @709#, Daberkow and Schiehlen@717#, and Hardell
@844#. In Table 13 a classification of a partial list of refe
ences devoted to FMS design optimization techniques
shown. The design optimization problem can be written a

min f ~l i !

subject to gj~l i !<0 i 51¯N, j 51¯M (19)

where f is the objective function,l i is design variable num-
ber i , gj is constraint function numberj , N is the total num-
ber of design variables, andM is the total number of con-
straints. Typical design variables include system dimensi
and material properties. Typical constraints include limits
weight, stresses, and displacements. The constraints ca
combined in the objective function using either Lagran
multipliers or a penalty method. The evaluation of the obje
tive function and/or the constraints requires a forward d
namics solution for the FMS. This makes the constra
equations a nonlinear function of the design variables. N
linear optimization problems can be solved numerically
ing one or more of the following methods: gradient desce
heuristics, expert systems, and genetic algorithms~see Table
13!. Gradient descent algorithms start from an initial des
state and iteratively find a local minimum design state
changing the variables in the direction of the steepest des
gradient. The main limitation of a gradient descent algorith
is that the design variables must be continuous. A popu
gradient descent algorithm for mechanical systems is the
quential quadratic programming technique@845–847#. If the
design variables are discontinuous, discrete, or integer
parameters~such as material type, system configuratio
number of supports, etc!, then more suitable optimization
techniques are heuristics, expert systems, and genetic a
rithms. Since most design problems involve both continuo
and discontinuous type variables, a hybrid optimization p
cedure consisting of two or more optimization algorithm
can be used. Heuristics, expert systems, and gradient de
algorithms have been used in the design of flexible pla
mechanisms by Imam and Sandor@66#, Thorntonet al @848#,
Cleghorn et al @849#, Zhang and Grandin@850#, Hill and
Midha @851#, Liou and Lou@852#, Liou and Liu @853,854#,
and Liou and Patra@855#. To the authors’ knowledge, ther
are no reported studies on the use of genetic algorithms
the design optimization of FMS.

For gradient optimization methods, partial derivatives
the objective function, and the constraint functions with
spect to the design variables are needed. This requires
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evaluation of partial derivatives of the response variables
with respect to the design variables. This can be done either
by direct differentiation of the equations of motion or by
finite differences~see Table 13!. In the direct differentiation
approach, if the semi-discrete equations of motion are writ-
ten as:

Meẍe5 f int
e 1 f ext

e (20)

then direct differentiation of Eq.~20! yields:

Me
] ẍe

]l j
5

] f int
e

]l j
1

] f ext
e

]l j
2

]Me

]l j
ẍe (21)

wherel j is design variable numberj . In the direct differen-
tiation approach, in addition to solving Eq.~20!, Eq. ~21!
must be solvedN times for theN-sensitivity coefficients
]xe/]l j @91#. However, the use of the automatic differentia-
tion facilities for generating the governing equations for the
sensitivity coefficients~Eq. ~21!! alleviates the complexity
associated with the direct differentiation approach. However,
this is accomplished at the expense of additional storage and
computational time. In addition, some types of design vari-
ables involve discontinuous operators such as absolute value,
maximum, or minimum operators. Examples of these vari-
ables are maximum allowable stresses and deflections. The
values of these variables can shift discontinuously in both
space and time. The gradients of these variables are very

difficult to evaluate using the direct differentiation approa
because analytical derivatives cannot be defined at disco
nuities.

The finite difference approach requiresN11 evaluations
of Eq. ~20!. The finite difference approach is simpler
implement since it does not involve formulating new equ
tions and variables. In addition, gradients of discontinuo
variables can readily be calculated using finite difference

8 EXPERIMENTAL STUDIES

In the past, design and analysis of practical FMS rel
primarily on experiments. Starting in the 1980s, comp
ter speeds and the advances in computational mode
has allowed a much greater reliance on computer mod
Experimental studies are, however, still very important b
cause they can be used to develop, improve, and asses
accuracy of numerical models. In Table 14, experimen
studies reported in the literature are listed and classified
application.

9 FUTURE RESEARCH DIRECTIONS

As in other fields, the future research directions of FMD w
be driven by the applications. Some of the recent and fut
applications are outlined in Subsection 9.1. Those appl
tions will likely require higher model fidelity and faster com
putational speed. Research topics that are likely to prod

Table 13. Classification of a partial list of references on FMS design optimization

Evaluation of
sensitivity coefficients

Direct
differentiation

Imam and Sandor@66#, Haug@845#, Bestle and Eberhard@846#, Woytowitz
and Hight@856#, Wasfy and Noor@91#, Liu @857#, Pereiraet al @372#, Dias
and Pereira@858#.

Finite differences Imam and Sandor@66#, Wasfy and Noor@91#, Ider and Oral@859,860#.

Reference frame Floating Rigid multibody systems:
Haug @845#, Bestle and Eberhard@846#.
No coupling between rigid body and flexible body motion„KED …:
Imam and Sandor@66#, Thorntonet al @848#, Cleghornet al @849#, Zhang
and Grandin@850#, Liou and Lou@852#, Liou and Liu @853#, Yao et al @245#,
Liou and Liu @854#, Liou and Patra@855#.
Coupling between rigid body and flexible body motion:
Dias and Pereira@861#, Ider and Oral@859#, Oral and Ider@860#, Pereiraet al @372#.

Inertial Woytowitz and Hight@856#.

Applications Rotating beam Woytowitz and Hight@856#.

Manipulators Yao et al @245#, Rai and Asada@739#, Oral and Ider@860#.

Mechanisms Imam and Sandor@66#, Thorntonet al @848#, Cleghornet al @849#, Zhang
and Grandin@850#, Liou and Lou@852#, Liou and Liu @853,854#, Liou
and Patra@855#, Hulbertet al @862#.

2D crash-worthiness Dias and Pereira@861#, Pereiraet al @372#.

Optimization algorithm Gradient descent Sequential quadratic programming:
Haug @845#, Bestle and Eberhard@846#, Woytowitz and Hight@856#, Bestle@847#,
Ider and Oral@859#, Oral and Ider@860#, Hulbertet al @862#.
Feasible direction method:
Dias and Pereira@861#, Pereiraet al @372#.

HeuristicsÕ
gradient descent

Imam and Sandor@66#, Thorntonet al @848#, Cleghornet al @849#, Zhang
and Grandin@850#.
User driven Newton-Raphson iterations:Hill and Midha @851#.

Expert systemÕ
heuristics

Liou and Lou@852#, Liou and Liu @853,854#, Liou and Patra@855#.

Genetic algorithms No references.
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Table 14. Classification of a partial list of references on FMS experimental studies

Mechanisms

Four-Bar
Linkage

Alexander and Lawrence@863#, Jandrasits and Lowen@11#, Turcic et al @310#,
Thompson and Sung@352#, Sunget al @864#, Liou and Erdman@26#, Sinhaet al
@865#, Liou and Peng@385#, Giovagnomi@866#.
Composite materials:Thompsonet al @351#, Sunget al @353#.

Crank-Slider Thompson and Sung@352#, Sunget al @864#.
Composite materials:Sunget al @353#.
Smart materials: Choi et al @772#, Thompson and Tao@822#.
Joint clearances:Soong and Thompson@633#.

5 links or more Caraccioloet al @867#.

Machines Chassapis and Lowen@387#.

Manipulators

One link Cannon and Schmitz@748#, Feliu et al @314#,
Liou and Peng@385#, Kwon and Book@768#, Milford and Asokanthan@778#,
Aoustin and Formalsky@780#.
Smart materials: Choi et al @773#.

Two or more
links

Chalhoub and Ulsoy@750#, Panet al @340#, Chedmailet al @420#, Yuanet al @759#,
Hu and Ulsoy @770#, Yang et al @779#, Lovekin et al @868#, Gu and Piedboeuf
@869,870#.

Tracked Vehicles Choi et al @646#, Nakanishi and Isogai@430#.

Space structures Mitsugi et al @871#, Lovekin et al @868#.
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improved model fidelity and speed are identified in Subs
tion 9.2. The new models must then be integrated in
design process of FMS. Research topics that can hel
integrating FMD models into the design process are ide
fied in Subsection 9.3.

9.1 Recent and future FMS applications

The current trend in the various applications of FMS is
wards cheaper, lighter, faster, more reliable, and more pre
systems. In addition to traditional FMS applications listed
Section 1, some of the recent applications, which will like
require more FMD research in order to improve the mo
fidelity and computational speed, include:

High speed, lightweight manipulators. Currently manipu-
lators are constructed using bulky stiff links and are mov
at slow speeds so that they do not experience excessive
flections and vibrations. New lightweight stiff material
piezo-electric actuators and sensors, and high speed m
based closed-loop control are pushing the speed and we
limits of manipulators. These new manipulators can be u
in a wide array of applications such as industrial producti
nuclear waste retrieval, and fast assembly of space struc
in orbit.

Large high precision deployable lightweight space stru
tures. Stable and high dimensional precision space structu
are needed for new high resolution and high sensitivity
tical and radio telescopes as well as very high bandw
communication satellites. Those space structures will be
ployed in orbit from a small package that fits in the shroud
the launch vehicle into their large useful configuration. E
fects such as joint friction, material damping, thermal he
ing, and solar radiation pressure must be included in th
models.

High speed, lightweight mechanisms. New lightweight
stiff materials such as advanced composites and ceramic
increasingly being used in automobile and airplane eng
and production machines. The flexibility effects in the
mechanisms will be larger than current mechanisms
ec-
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more difficult to model due to material nonlinearity and a
isotropy. In addition, complex material failure modes w
make prediction of allowable operation limits more difficu

Bio-dynamical systems. Typical applications include: limb
replacement; vehicle occupant crash analysis; motion/fo
analysis for athletes, animals, and insects.

Robots. There is an increasing interest to develop inte
gent autonomous robots that can perform tedious tasks
stead of humans. These robots must have an effective co
strategy to enable them to walk on rough terrains and m
nipulate, grasp, and move objects using arms and ha
Those robots are also likely to be lightweight and flexible

Active model based controlof robots, manipulators, and
space structures

Micro and nano electro-mechanical systems (MEMS a
NEMS). These systems have many applications in the me
cal, electronics, industrial, and aerospace fields; and, th
fore, have been receiving increasing attention from resea
ers in recent years. MEMS have dimensions ranging from
few millimeters to one micrometer, while the dimensions
NEMS range from submicron dimensions down
nanometer/atomic scale. There are already practical app
tions of MEMS, such as airbag deployment acceleromet
and NEMS such as carbon Nanotube manipulators
probes@872#. Typically, MEMS and NEMS involve at leas
one moving component that is coupled with an elect
and/or magnetic field. Due to their small size, viscous flu
flow effects can affect the motion. MEMS can be model
using the classical mechanics techniques presented in
paper. For atomic sized NEMS, quantum effects are imp
tant and can be modeled using classical molecular dynam
tight-binding molecular dynamics, or density function
theory~a theory used to solve the multibody nuclei-electro
Schrodinger equation!, which are various levels of approxi
mations for the atomic forces@873#. Many MEMS and
NEMS include: components that undergo large rigid bo
motion while experiencing deflections and vibrations; kin
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matic joints; control actuators/motors; and sensors. In a
tion, many MEMS and NEMS such as manipulators a
gears@874# experience frictional contact/impact. Therefor
many of the modeling methodologies developed for class
FMS can be adapted to MEMS and NEMS.

Coupling of physical experiments and simulations. The
cost and number of physical tests of FMS, can be gre
reduced by coupling the physical experiment to the simu
tion @842#. For example, the physical test can be perform
on an automobile suspension system while the rest of
vehicle is simulated. By using actuators and sensors at
interface between the physical test and the simulation,
interface forces required for the test and simulation can
generated.

Real-time interaction with virtual FMS. In virtual reality
applications, the user interacts with a computer genera
environment. The interaction can range from manipulat
the virtual objects using the mouse and keyboard to touch
and holding the objects using haptic gloves@842#. A real-
time FMD simulator can be used to generate the both vis
and haptic feedback such that the virtual objects behave
real-world objects@173,875#. Applications range from 3D
computer games to training.

Movies and computer games. FMD models can be used t
generate a realistic visual animation of the motion a
contact/impact response of various objects.

9.2 High performance FMS models research

In order to design, construct, and operate FMS that sat
the current and future applications requirements, more
search is needed to improve FMD models fidelity and co
putational speed. This will reduce the reliance on phys
prototypes, thereby reducing the development cost and t
Model fidelity can be improved by incorporating all the re
evant phenomena affecting the response into the mo
Computational speed is especially needed for inverse dyn
ics and design optimization problems because of the la
number of iterations involved in those solution procedur
In addition, some new applications, such as model ba
control and interacting with FMS in virtual reality environ
ments, require real-time or near real-time response pre
tion. In the past, accuracy was sacrificed in favor of com
tational speed because, otherwise, practical FMS probl
could not be solved in a reasonable amount of time on ex
ing computers. Currently, the increasing speed of compu
provides opportunities for high-fidelity rapid simulations
complex FMS. Improving FMD model fidelity and spee
requires more research in the following subtopics of FMD

9.2.1 Basic models
More research is needed to improve the basic models of
flexible components. These include:

• Accurate and efficient beam, shell, and solid elements. Ac-
curacy requires that the element does not exhibit any t
of locking or spurious modes and that it must pass
accuracy tests. Efficiency means that the element is
prohibitively expensive relative to other available eleme
that can solve the same problem to the same accuracy.
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element must accurately account for the following: lar
arbitrary spatial rigid body rotation, large deflections, lar
strains, transverse shear deformation, rotary inertia, in
curvature, twisted~warped! beams and shells, arbitrar
cross sections, general nonlinear anisotropic material c
stitutive law including material damping and friction, an
material failure.

• Contact/impact friction models. Traditionally, friction is
modeled using a Coulomb friction model. However, mo
sophisticated models such as asperity based models~eg,
@876,877#! exist and need to be incorporated in FM
contact/impact models. Friction is likely to be very impo
tant in applications such as docking and assembly of sp
structures, and grasping payloads using robotic manip
tors.

• Joint models. More research is needed to assess veloc
force/moment relation~including friction and damping!,
clearances@70,637#, and dimensional precision and hyste
esis of joints~Wasfy and Noor@733#!. These effects are no
critical for low speed and/or low precision systems. Ho
ever, for future systems, understanding those effects
be very critical for the design of high performance joint

9.2.2 Formulations
An understanding of the mathematical foundations of ex
ing formulations is needed. This includes the following:

• Mathematical relation between the three types of refere
frames. Further research is needed to determine the m
ematical relations between the three reference frame
mulations for the various types of elements, model red
tion methods, and mass matrix types~lumped or
consistent!. This can help in identifying the assumption
the limitations, and the range of validity of the response
each formulation. Some studies have shown the equ
lence of the corotational and the inertial frame formu
tions@453#. Also, if the flexible motion inertia forces in the
floating frame approach are referred to the global fram
then the floating frame can be considered as one cor
tional frame for the entire body.

• Rotational DOFs for the corotational and inertial frame.
In corotational and inertial frame formulations, many typ
of rotational DOFs are used such as Euler angles, in
mental rotation vector, rotation pseudo vector, rotation t
sor, and global slopes~see Tables 3 and 4!. In some stud-
ies, rotational DOFs are not used@85,91,527#. More
research is required to determine the advantages and
tations of the various types of rotational DOFs, particula
their effect on the rotational inertia moments. Also, mo
research is needed to determine the advantages and lim
tions of formulations that use rotational DOFs versus f
mulations that do not use them.

• Hybrid frame formulations. These are formulations wher
more than one type of reference frame is used in the s
problem. This can be advantageous for FMS with dispar
ranges of rotational speeds and/or relative deformation
the flexible components. Hybrid formulations will requir
developing solution procedures that can handle multi
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reference frames for inertia and internal forces, differ
types of rotational DOFs, and multiple time step sizes.

• Effect of nonlinearities on modal coordinates. The floating
frame approach in conjunction with modal reduction
used extensively for space structures and flexible man
lators. However, guidelines should be developed for
range of angular velocities, stiffness, and system confi
rations within which modal coordinates produce accur
results. Also, nonlinear modal reduction methods need
be further developed in order to accurately account
nonlinearities~centrifugal stiffening, foreshortening, an
large deflections! and changes in kinematic structu
~addition/deletion of joints and constraints!.

9.2.3 Computational strategies
Improved computational strategies are needed, which inc
enhancements in:

• Solution strategies. Guidelines are needed for choosin
implicit and explicit solution procedures. Future resea
should address developing mixed explicit-implicit mul
time step solution procedures for FMS to maximize t
advantages of both solution methods.

• Parallel solution procedures. Procedures that can achieve
linear speedup of the number of processors to the num
of DOFs are the most advantageous. Explicit meth
naturally satisfy this condition. More research is needed
develop implicit or implicit-explicit hybrid methods tha
achieve a near linear speedup. Also, more researc
needed to implement the parallel solution procedures
new, massively parallel, heterogeneous computer clus
in such a way as to minimize the idle time of each proc
sor and the volume of communication between process

• Adaptive strategies. Further research is needed to incorp
rate h, p, and modal adaptive methods to FMS. Also, f
ther research is needed for model adaptation in which
reference frames, element formulations, etc, can
switched during the simulation.

• Symbolic Manipulation. Symbolic manipulation can re
duce the number of mathematical operations needed du
the numerical simulation. Symbolic manipulation has be
recently used in conjunction with the floating frame form
lations~eg,@159,324#!; however, it has not been applied
the corotational or inertial frame formulations

• Accounting for uncertainties and variabilities. FMS have
inherent uncertainties due to assumptions and approx
tions in the model and imprecision in estimating the valu
of the system’s parameters. Computational procedures
can predict the response under these uncertainties and
abilities need to be developed. More research is neede
develop and apply techniques based on probability the
fuzzy set theory@732#, and interval analysis@731#.

9.2.4 Coupled FMD analyses
This is perhaps the field which will experience the larg
growth in the near future because it is grossly underde
oped and, at the same time, there are many practical a
cations in biomechanics, aeronautics, space structures,
micro and nano-mechanical systems that require cou
nt
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analyses. Noteworthy examples include: coupling of the
namics of electro-magnetic and piezo-electric actuators
sensors for smart structures and MEMS; thermo-mechan
coupling for space structures, and fluid-structure interact
for submerged mechanical systems.

9.2.5 Verification and validation of numerical simulation
In order to verify and validate the accuracy of the numeri
simulation benchmark, experimental and numerical t
problems are needed.

• Benchmark experiments. These are needed in order to va
date and assess the accuracy of the computational mo
in representing key effects such as: spatial motion, op
closed loops, high speed rotation, large deflections,
Most past experimental studies focused on simple F
~eg, rotating beams, two-link manipulators, four-bar lin
ages, and crank-sliders! that are designed to highlight onl
one or two of these effects~see Table 12!. While these
results are useful, more results that cover various order
magnitude and combinations of these effects are neede
addition, there is also a need for benchmark experime
results of large practical FMS. State-of-the-art sensors~see
Subsection 5.3.2! and data acquisition facilities should b
used in these experiments in order to provide detailed h
resolution measurements of strains and displacements~eg,
@869,870#!.

• Benchmark simulations. There is a need to develop a set
benchmark simulations for verification and comparison
the computational models. Those tests must be designe
target individual effects as well as coupled effects. A su
set of those accuracy tests are the beam, shell, and
elements benchmark tests developed in the finite elem
structural analysis field~eg, @567,568#!. In addition, FMS
accuracy tests for the following effects are needed: c
trifugal stiffening, high accelerations, vibrations~mode
shapes and natural frequencies!, frictional contact, large
arbitrary rigid body motion, and very long simulatio
times.

9.3 FMS design research

For typical mechanical systems, the computer analy
simulation time is now only a small fraction of the tot
design process time. Most of the time is spent in formulat
the problem, generating the computer model, and p
processing the results. The following technologies, when
tegrated with FMD techniques, can significantly reduce
design time and help design better performing~ie, close to
optimum! FMS:

• Object oriented strategies. An object-oriented strategy ca
effectively couple design, simulation, and manufacturi
tools, which will result in large savings in product deve
opment time and cost. This is consistent with the curr
trend of transforming CAD systems into virtual produ
development systems with embedded numerical simula
tools.

• Design optimization methods. FMS involve continuous,
discontinuous, discrete, and integer type design variab
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While there are many papers on gradient descent meth
~see Table 11!, these methods work only on continuou
variables. There is significantly less work on knowledg
based expert systems and there is virtually no work on
use of fuzzy expert systems and genetic algorithms for
design of FMS. The latter two techniques have prov
very effective for many other types of nonlinear optimiz
tion problems, thus their application to FMS is likely to b
very beneficial. For example, using fuzzy expert syste
in conjunction with fuzzy-set models@732#, some of the
system design parameters can be defined using lingu
values. The linguistic description is more natural for h
mans. In addition, classifying the ranges of the parame
using the linguistic quantifiers can help in exploring a lar
design space faster.

• Virtual reality. This technology can help analysts and d
signers to visualize, construct, and interact with FMS m
els on a computer. Virtual reality can be integrated w
FMD in two ways. First, it can be used as a tool for co
structing the FMS geometry. Second, a near real-time
ward dynamics capability can be incorporated in a virt
reality environment for interacting with the FMS usin
hand worn gloves and other haptic devices. This offers
user a realistic visual view as well as realistic motion a
reaction forces behavior of the FMS.

• Collaborative design and analysis of FMS. Collaborative
visualization and simulation environments allow ge
graphically dispersed teams to work together in develop
and analyzing virtual prototypes of FMS. These enviro
ments will significantly reduce the development tim
lower life cycle costs, and improve the quality and perf
mance of future FMS. The Internet can provide the co
munication infrastructure for these environments.
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