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Abstract Empirical results have shown that many spoken language identification systems based on
hand-coded features perform poorly on small speech sampleswhere a human would be successful.
A hypothesis for this low performance is that the set of extracted features is insufficient. A deep
architecture that learns features automatically is implemented and evaluated on several datasets.

1 Introduction

Spoken language identification is the problem of mapping continuous speech to the language it
corresponds to. Applications of spoken language identification include front-ends for multilingual
speech recognition systems, web information retrieval, automatic customer routing in call centers or
monitoring.

Empirical results have shown that many systems based on the manual extraction of acoustic,
prosodic, phonotactic or lexical features have significantly lower performance on small speech sam-
ples than on large speech samples [3, 4], while a human would still be successful. A hypothesis for
this low performance is that the set of extracted features isinsufficient [5].

Deep learning potentially addresses this issue by exploring the space of features automatically, by-
passing the traditional phoneme recognition layer and learning instead purely discriminative fea-
tures. A deep architecture is implemented and evaluated on several datasets.

2 Design and implementation

We train and evaluate our architecture on two datasets:

VoxForge This dataset consists of multilingual speech samples available on the VoxForge [9] web-
site. This dataset contains 5 seconds speech samples associated with different metadata including
the language of the sample. Given that speech samples are recorded by users with their own micro-
phones, quality varies significantly between different samples. This dataset contains 25420 English
samples, 4021 French samples and 2963 German samples.

RadioStream This dataset consists of samples ripped from several web radios. It has the ad-
vantage of containing a virtually infinite number of samplesthat are moreover of excellent quality.
However, some samples are outliers, for example, music sequences or interviews in foreign lan-
guages. It means that the classification error is lower bounded by some constante ≃ 5% also known
as the Bayesian rate. A possible workaround consists of removing outliers manually from the test
set, however, we don’t use it because in certain cases the definition of “outlier” can be ambiguous.
We use the following web radios:

English KCRW, Newstalk, KALW
French BFM, RFI, RTL, France Info
German B5 Aktuell, B5 Plus, Deutsche Welle, NDR Info, HR Info
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they act as a pri...s..m and form a rain......bow af..ter for....ty seven minutes before the home side sc..ored

Figure 1: Spectrograms corresponding to a sample from theVoxForge dataset (left) and from the
RadioStream dataset (right). Spectrograms showed here are truncated to2.25 seconds (270 pixels)
instead of 5 seconds (600 pixels). Spectrograms encode speech with 39 mel-frequencies between0
and5 kHz. Quality of spectrograms varies depending on the microphone, the voice of the speaker
and the environmental noise.

DEEP ARCHITECTURE

12 kernels

C
6×6

1→12
S

2×2

12

144 kernels

C
6×6

12→12
S

2×2

12

144 kernels

C
6×6

12→12
S

1×141

12

3
9
×

6
0
0

12 frames

3
4
×

5
9
5

12 frames

1
7
×

2
9
7

12 frames

1
2
×

2
9
2

12 frames

6
×

1
4
6

12 time series

1
×

1
4
1

12 variables

p(y = EN)

p(y = FR)

p(y = DE)

SHALLOW ARCHITECTURE
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Figure 2: Deep and shallow CNN-TDNN architectures. A convolutional layerCk×l
m→n computesm·n

convolutions betweenm input frames andn output frames with convolution kernels of sizek × l
and applies element-wise the nonlinearitymax(min(x, 1),−1) to the output. A subsampling layer
Sk×l

m subsamplesm input frames by a factork × l. The TDNN is implemented by the uppermost
subsampling layer.

The classification problem consists of determining whetherspeech samples are English, French or
German. These languages are chosen because both datasets contain a sufficient number of samples
for each of them. We train and evaluate the classifier on balanced classes (33% English samples,
33% French samples and33% German samples). Each sample corresponds to a speech signalof 5
seconds.

For each speech signal, a spectrogram of39 × 600 pixels is constructed where the y-axis represents
39 mel-frequencies between0 and5 kHz and the x-axis represents600 observed times spaced by
8.33 milliseconds. Each frequency of the spectrogram is captured using a Hann window. Examples
of spectrograms are given in figure 1. The range 0–5 kHz is chosen because most of the spectral
power of speech falls into that range.

The classifier maps spectrograms into languages and is implemented as a time-delay neural network
(TDNN) with two-dimensional convolutional layers as feature extractors. Our implementation of the
TDNN performs a simple summation on the outputs of the convolutional layers. The architecture is
implemented with the Torch5 [8] machine learning library and is presented in figure 2.

Using a TDNN is motivated by good results obtained for speechrecognition [2, 7]. Using con-
volutional layers as feature extractors is motivated by good results obtained by convolution-based
architectures such as convolutional neural networks (CNN)for various visual perception tasks such
as handwriting digit recognition [6]. The classifier is trained with a stochastic gradient descent [1].
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VoxForge Deep architecture Shallow architecture

Known speakers New speakers New speakers

EN FR DE EN FR DE EN FR DE
EN 33.4 0.6 0.3 EN 33.0 0.8 1.4 EN 28.3 1.2 4.4
FR 1.9 30.8 0.6 FR 2.8 27.4 1.4 FR 3.7 26.7 2.5
DE 4.5 0.9 26.9 DE 12.0 1.6 19.6 DE 10.5 3.1 19.7

Accuracy= 91.2% Accuracy= 80.1% Accuracy= 74.6%

RadioStream Deep architecture Shallow architecture

Known radios New radios New radios

EN FR DE EN FR DE EN FR DE
EN 28.7 1.5 3.6 EN 28.0 1.7 5.5 EN 22.1 2.7 7.9
FR 1.3 28.6 2.1 FR 1.4 27.7 2.5 FR 4.0 23.3 5.4
DE 2.3 1.5 30.4 DE 2.9 2.5 27.8 DE 4.8 2.0 27.6

Accuracy= 87.7% Accuracy= 83.5% Accuracy= 73.1%

Figure 3: Performance of the classifier on 5 seconds speech samples. Rows of the confusion matrices
represent the true label and columns represent the prediction of the classifier. Accuracy is computed
as the trace of the confusion matrix.

3 Results and analysis

The performance of the deep architecture presented in figure2 is evaluated onVoxForge andRa-
dioStream datasets presented in section 2 in two different settings:

1. Classification forknown speakers and known radios: speech samples are randomly as-
signed to the training and test set with a respective probability of 0.5 and 0.5.

2. Classification fornew speakers and new radios: onVoxForge, speech samples coming from
speakers with initials [A-P] are assigned to the training set and speakers with initials [Q-Z]
to the test set. OnRadioStream, speech samples coming from KALW, France Info and HR
Info are assigned to the test set and the remaining ones to thetraining set.

We compare the deep architecture with the shallow architecture also presented in figure 2. Choosing
convolution kernels of size39 × 39 for the shallow architecture is motivated by the fact that the
subsequent numbers of weights for both architectures have the same order of magnitude (∼ 104

weights) and that both architectures are then able to model39 pixels of time dependence. Time
dependence is measured as the time interval occupied by the subset of input nodes connected to a
single hidden node located just before the uppermost subsampling layer. The deep architecture has
2.8·107 neural connections against107 for the shallow architecture and takes consequently2.8 times
longer to train. We train the deep architecture for0.75 · 106 iterations and the shallow architecture
for 2.8 · (0.75 · 106) = 2.1 · 106 iterations so that both architectures benefit from the same amount
of computation time. Controlling the number of parameters,the amount of time dependence and the
number of iterations allows to effectively measure the influence of depth on language identification.
Results are presented in figure 3. We observe the following:

1. The deep architecture is 5–10% more accurate than its shallow counterpart. Translation
invariances are not directly encoded by the structure of theshallow architecture and must
therefore be inferred from the data, slowing down the convergence time and leading to poor
generalization when the data is limited.

2. The neural network builds better discriminative features between French and non-French
samples than between English and German samples. A possibleexplanation is that German
and English are perceptually similar due to their common West-Germanic ancestor. It
shows that the overall accuracy of a system can vary considerably depending on the selected
subset of languages to identify.

3. On theVoxForge dataset, samples from new German speakers are often misclassified. It
seems that the low number of German samples or the low number of German speakers
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Figure 4: Convolution kernels obtained on theVoxForge dataset. On the left: the12 + 144 + 144
convolution kernels of size6 × 6 of the deep architecture. On the right: the12 convolution kernels
of size39×39 of the shallow architecture. In both cases, not all convolution kernels are used, which
means that the capacity of the neural network is not fully used and that the performance bottleneck
is not the number of frames in the hidden layers but rather thedistance between train and test data,
the presence of local minima in the loss function or the structure of the neural network.

prevents the classifier from creating good “German” features. The sensitivity to the number
of samples or speakers is an argument for collecting more samples from more speakers.

4. Samples from known speakers are not classified perfectly.While figure 4 suggests that the
number of frames in each hidden layer is sufficient,39 pixels of time dependence might not
be sufficient to create lexical or syntactic features. Solutions to increase time dependence
are (1) to increase the size of the convolution kernels and control the subsequent risk of
overfitting by using more samples or (2) to replace the last averaging module by a hierarchy
of convolutional layers and, if necessary, handle the subsequent depth increase by training
the new architecture greedily layer-wise.

4 Conclusion

A deep architecture for spoken language identification is presented and evaluated. Results show that
it can identify three different languages with83.5% accuracy on 5 seconds speech samples coming
from radio streams and with80.1% accuracy on 5 seconds speech samples coming fromVoxForge.
The deep architecture improves accuracy by 5–10% compared to its shallow counterpart. It indicates
that depth is important to encode invariances required to learn fast and generalize well on new data.
While we emphasize the superiority of deep architectures over shallow ones for this problem, it
remains to determine how deep learning compares to techniques based on hand-coded features. We
suggest that accuracy can be improved by (1) collecting moresamples from more speakers and (2)
extending time dependence in order to learn higher level language features.
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de la Parole, 1991
[3] J. Hieronymous and S. Kadambe, Spoken Language IdentificationUsing Large Vocabulary Speech

Recognition, 1996
[4] R. Tong, B. Ma, D. Zhu, H. Li and E.-S. Chng, Integrating Acoustic, Prosodic and Phonotactic Features

for Spoken Language Identification, 2006
[5] R. Cole, Survey of the State of the Art in Human Language Technology, 1997
[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-basedlearning applied to document recognition,

1998
[7] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang, Phoneme recognition using time-delay

neural networks, 2002
[8] R. Collobert, Torch5,www.torch5.sf.net
[9] VoxForge, Free Speech Recognition,www.voxforge.org

4


