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Abstract Empirical results have shown that many spoken languagéiidetion systems based on

hand-coded features perform poorly on small speech samplee a human would be successful.
A hypothesis for this low performance is that the set of ested features is insufficient. A deep

architecture that learns features automatically is impleted and evaluated on several datasets.

1 Introduction

Spoken language identification is the problem of mappindicoous speech to the language it
corresponds to. Applications of spoken language identifinanclude front-ends for multilingual
speech recognition systems, web information retrievagraatic customer routing in call centers or
monitoring.

Empirical results have shown that many systems based on #mah extraction of acoustic,
prosodic, phonotactic or lexical features have signifigdotver performance on small speech sam-
ples than on large speech samples [3, 4], while a human wiélildessuccessful. A hypothesis for
this low performance is that the set of extracted featurassigficient [5].

Deep learning potentially addresses this issue by exgldhia space of features automatically, by-
passing the traditional phoneme recognition layer anchiegrinstead purely discriminative fea-
tures. A deep architecture is implemented and evaluatedvera datasets.

2 Design and implementation
We train and evaluate our architecture on two datasets:

VoxForge This dataset consists of multilingual speech samplesablaibn the VoxForge [9] web-
site. This dataset contains 5 seconds speech samplesatsdogith different metadata including
the language of the sample. Given that speech samples ardeddy users with their own micro-
phones, quality varies significantly between different gkes. This dataset contains 25420 English
samples, 4021 French samples and 2963 German samples.

RadioStream This dataset consists of samples ripped from several wabsadt has the ad-
vantage of containing a virtually infinite number of samplest are moreover of excellent quality.
However, some samples are outliers, for example, musicesegs or interviews in foreign lan-
guages. It means that the classification error is lower bedilby some constanat~ 5% also known
as the Bayesian rate. A possible workaround consists ofvisgautliers manually from the test
set, however, we don't use it because in certain cases thatibefiof “outlier” can be ambiguous.
We use the following web radios:

English KCRW, Newstalk, KALW
French BFM, RFI, RTL, France Info
German B5 Aktuell, B5 Plus, Deutsche Welle, NDR Info, HR Info
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Figure 1: Spectrograms corresponding to a sample fromvkEBorge dataset (left) and from the
RadioSream dataset (right). Spectrograms showed here are trunca@%cseconds (270 pixels)
instead of 5 seconds (600 pixels). Spectrograms encodelspéth 39 mel-frequencies betweén
and5 kHz. Quality of spectrograms varies depending on the miwoop, the voice of the speaker
and the environmental noise.
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Figure 2: Deep and shallow CNN-TDNN architectures. A coatiohal layerC**! computesn-n
convolutions betweem input frames andw output frames with convolution kernels of sikex [
and applies element-wise the nonlinearityx(min(x, 1), —1) to the output. A subsampling layer
Skxl supsamplesn input frames by a factok x . The TDNN is implemented by the uppermost

subsampling layer.

The classification problem consists of determining whesiperech samples are English, French or
German. These languages are chosen because both dataseits asufficient number of samples
for each of them. We train and evaluate the classifier on bathclasses3g% English samples,
33% French samples ar88% German samples). Each sample corresponds to a speechdignal
seconds.

For each speech signal, a spectrograr®dok 600 pixels is constructed where the y-axis represents
39 mel-frequencies betwedhand5 kHz and the x-axis represeri80 observed times spaced by
8.33 milliseconds. Each frequency of the spectrogram is captusing a Hann window. Examples
of spectrograms are given in figure 1. The range 0-5 kHz isethbgscause most of the spectral
power of speech falls into that range.

The classifier maps spectrograms into languages and isrimepled as a time-delay neural network
(TDNN) with two-dimensional convolutional layers as faaextractors. Our implementation of the
TDNN performs a simple summation on the outputs of the carntiarial layers. The architecture is

implemented with the Torch5 [8] machine learning librarglépresented in figure 2.

Using a TDNN is motivated by good results obtained for speedognition [2, 7]. Using con-

volutional layers as feature extractors is motivated bydgasults obtained by convolution-based
architectures such as convolutional neural networks (CldNyarious visual perception tasks such
as handwriting digit recognition [6]. The classifier is trad with a stochastic gradient descent [1].



\oxForge Deep architecture Shallow architecture
Known speakers New speakers New speakers

EN FR DE EN FR DE EN FR DE
EN 334 0.6 0.3 EN  33.0 0.8 1.4 | EN 283 1.2 4.4
FR 1.9 30.8 0.6 FR 2.8 274 1.4 FR 3.7  26.7 2.5
DE 4.5 0.9 26.9 DE 12.0 1.6 19.6 DE 10.5 3.1 19.7

Accuracy= 91.2% Accuracy= 80.1% Accuracy= 74.6%

RadioSream Deep architecture Shallow architecture
Known radios New radios New radios
EN FR DE EN FR DE EN FR DE

EN  28.7 1.5 3.6 EN 28.0 1.7 5.5 EN 22.1 2.7 7.9
FR 1.3 28.6 2.1 FR 1.4 27.7 2.5 FR 4.0 23.3 5.4
DE 2.3 1.5 30.4 DE 2.9 2.5 27.8 DE 4.8 2.0 27.6

Accuracy= 87.7% Accuracy= 83.5% Accuracy= 73.1%

Figure 3: Performance of the classifier on 5 seconds speegties Rows of the confusion matrices
represent the true label and columns represent the pretlictithe classifier. Accuracy is computed
as the trace of the confusion matrix.

3 Results and analysis

The performance of the deep architecture presented in fgjiseevaluated ovoxForge and Ra-
dioStream datasets presented in section 2 in two different settings:

1. Classification fokknown speakers and known radios: speech samples are randomly as-
signed to the training and test set with a respective prdibabf 0.5 and 0.5.

2. Classification fonew speakers and new radios: on VoxForge, speech samples coming from
speakers with initials [A-P] are assigned to the trainingesel speakers with initials [Q-Z]
to the test set. ORadioStream, speech samples coming from KALW, France Info and HR
Info are assigned to the test set and the remaining ones tmathiang set.

We compare the deep architecture with the shallow architeelso presented in figure 2. Choosing
convolution kernels of siz89 x 39 for the shallow architecture is motivated by the fact tha th
subsequent numbers of weights for both architectures heveame order of magnitude- (10*
weights) and that both architectures are then able to mgfileixels of time dependence. Time
dependence is measured as the time interval occupied bylisetsof input nodes connected to a
single hidden node located just before the uppermost sytisagiayer. The deep architecture has
2.8-107 neural connections agairigt” for the shallow architecture and takes consequenflyimes
longer to train. We train the deep architectureddrs - 106 iterations and the shallow architecture
for 2.8 - (0.75 - 10%) = 2.1 - 106 iterations so that both architectures benefit from the sanmuat

of computation time. Controlling the number of paramettits,amount of time dependence and the
number of iterations allows to effectively measure the mfice of depth on language identification.
Results are presented in figure 3. We observe the following:

1. The deep architecture is 5-10% more accurate than ittoshebunterpart. Translation
invariances are not directly encoded by the structure ostialow architecture and must
therefore be inferred from the data, slowing down the cageece time and leading to poor
generalization when the data is limited.

2. The neural network builds better discriminative feasusetween French and non-French
samples than between English and German samples. A possjidénation is that German
and English are perceptually similar due to their common t¥&smanic ancestor. It
shows that the overall accuracy of a system can vary coraditfedlepending on the selected
subset of languages to identify.

3. On theVoxForge dataset, samples from new German speakers are often rsifields It
seems that the low number of German samples or the low nunfl®emnan speakers
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Figure 4. Convolution kernels obtained on teForge dataset. On the left: the2 + 144 + 144
convolution kernels of sizé x 6 of the deep architecture. On the right: ttieconvolution kernels
of size39 x 39 of the shallow architecture. In both cases, not all convafukernels are used, which
means that the capacity of the neural network is not fullydwsed that the performance bottleneck

is not the number of frames in the hidden layers but rathedigtance between train and test data,
the presence of local minima in the loss function or the stmgcof the neural network.

prevents the classifier from creating good “German” feaufde sensitivity to the number
of samples or speakers is an argument for collecting morglssnfrom more speakers.

4. Samples from known speakers are not classified perfégthyle figure 4 suggests that the
number of frames in each hidden layer is suffici@atpixels of time dependence might not
be sufficient to create lexical or syntactic features. Smhstto increase time dependence
are (1) to increase the size of the convolution kernels amdralothe subsequent risk of
overfitting by using more samples or (2) to replace the lastaying module by a hierarchy
of convolutional layers and, if necessary, handle the syle® depth increase by training
the new architecture greedily layer-wise.

4 Conclusion

A deep architecture for spoken language identificationes@nted and evaluated. Results show that
it can identify three different languages with.5% accuracy on 5 seconds speech samples coming
from radio streams and wit80.1% accuracy on 5 seconds speech samples coming ¥todForge.

The deep architecture improves accuracy by 5-10% compaitstshallow counterpart. It indicates
that depth is important to encode invariances requiredaimléast and generalize well on new data.
While we emphasize the superiority of deep architectures shallow ones for this problem, it
remains to determine how deep learning compares to teobmiopsed on hand-coded features. We
suggest that accuracy can be improved by (1) collecting samgples from more speakers and (2)
extending time dependence in order to learn higher levgilage features.
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