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Abstract

In this paper we present and review a framework for on-
line simulations and predictions which are based on the
combination of real-world traffic data and a multi-agent
traffic flow model. The agent architecture consists of two
layers which distinguish the different tasks that road users
have to perform. The framework is applied to the urban
road network of Duisburg and the freeway network of North
Rhine-Westphalia. On the basis of historical data heuristics
are derived, which can be combined with the dynamic data
of the simulations to provide a short-term traffic forecast.
The necessity for an anticipatory traffic forecast, which in-
cludes decision-making and route choice behavior of the
road users, is discussed.

1. Introduction

Oversaturated freeways and congested main roads in
cities reflect the fact that the existing road networks are not
able to cope with the demand for mobility which will fur-
ther increase in future. Especially, in densely populated re-
gions, like the state of North Rhine-Westphalia, it is on the
one hand socially untenable to expand the existing infras-
tructure further in order to relax the situation. On the other
hand mobility is a vital good for the economic development
of this region.

Therefore, the existing road network has to be used
more efficiently using Intelligent Transportation Systems
[17, 16]. An integral part of these are Advanced Traveler In-
formation Systems (ATIS) which inform the road user about
the current traffic conditions or provide route guidance [1].
The basic requirements for these advises are precise spa-
tially and temporally resoluted data.

These systems work only successfully if the road user
is convinced to change his behavior. Basically, there are
four different possibilities: the driver can abandon his trip
or choose another means of transportation (modal), an alter-
native route (spatial) or another departure time (temporal).

Since most of the road users have certain habits, there must
be a personal advantage to change behavior, like a shorter
travel time or a more comfortable trip. But it is very un-
likely that a road user cancels his trip because it is usu-
ally connected with a certain utility , e.g., going to work
or enjoying the spare time. One basic condition for a modal
change is reliable information about timetables and delays
which makes public transportation more attractive. But to-
day, a lot of the road users still use their individual vehicles
[14].

The strategy of most ATIS is to change the spatial dis-
tribution of traffic patterns, i.e., to provide route guidance.
This method is easier than recommending another departure
time because in such a case a (short-term) traffic forecast
or rather anticipatory route guidance is necessary [7]. In
general, information for road users may fall in three cate-
gories: historical, current and predictive [5]. Historical data
describe the previous states of the network and give insights
into the typical travel patterns of the road users. Current in-
formation is provided real-time, e.g., by measurement de-
vices. Predictive data reflects expectations and helps the
road users to determine optimal departure times for trips.

This paper aims at providing current and predictive data
on the basis of simulations and historical data. The outline
is as follows: The on-line simulation presented in the sec-
tions 2-4 provides current information, i.e., real-time data
about the traffic state, like link travel times. The basic
framework for an on-line simulation is introduced in Sec-
tion 2. It is based on the combination of an agent-based
model, presented in Section 3, with real-world data stem-
ming from inductive loops. The application of this frame-
work to real road networks is depicted in the following sec-
tion. In order to provide predictive information, historical
data is incorporated into the simulation. In Section 5 his-
torical data is analyzed and used to develop heuristics, the
basis of a forecast. In the last section, the impact of such
predictive data on the current traffic patterns is discussed
and the content is summarized.



2. On-Line Simulations
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Figure 1. Flowchart of an on-line simulation.

The basis of every intelligent system which helps to alle-
viate traffic jams is information about the current traffic sit-
uation. Typically, traffic data are collected by locally fixed
detectors like inductive loops or cameras. Nevertheless, a
lot of road networks are not adequately equipped with de-
tection devices to gather information about the present traf-
fic state in the whole network.

A possible way to derive information for those regions
which are not covered by measurements is to combine local
traffic counts with the network structure (i.e., type of roads,
priority regulations at the nodes or on- and off-ramps) under
consideration of realistic traffic flow dynamics. The basic
idea of on-line simulations is: Local traffic counts serve as
input for traffic flow simulations to provide network-wide
information.

In Fig. 1 the structure of an on-line simulation is given.
The traffic data are sent via a permanent connection to the
controller. The controller handles static information like the
network structure and performs microsimulations. The re-
sults can be visualized and processed in further applications,
e.g., Dynamic Route Guidance Systems. An advantage of
this approach is the fact that all important entities of the net-
work like its structure or the traffic light management are
incorporated directly in the simulation dynamics.

From the description above the basic “ingredients” of an
on-line simulation can be identified: a traffic flow model, a
digital description of a network, its topology and real-time
data. For the applications presented in Section 4 real-time
data are available for large road networks.

The model is necessary to perform the microsimulations.

Since an on-line simulation requires a high computation
speed, a simple and efficient model is inevitable. However,
in the following section a general agent-based traffic flow
model will be explained which includes a very efficient flow
model.

3. Agent-Based Modeling

In general, traffic flow is a complex system consisting of
many different road users and their interactions. It can be
interpreted as a multi-agent systems (MAS) [8, 33]. MAS-
techniques offer a powerful tool to model complex behav-
ior of road users. However, there are only few applications
mainly related to the field of logistics and traffic control
[11].
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Figure 2. Sketch of the agent driver model.

The activities while driving can be distinguished by two
different time-scales (Fig. 2). First, a driver needs to react to
the traffic situation, i.e., he accelerates, brakes, or changes
the lane. Additionally, he collects information, e.g., traffic
messages or route recommendations, which influence in his
travel behavior [5].

In order to describe this complex behavior, a two layer
agent architecture is proposed in [4]. The layers are respon-
sible for different tasks of the driver. The basic layer is the
tactical layer describing the task of driving. The more so-
phisticated problems, like route choice behavior and navi-
gation are described by the strategic layer.

3.1. Tactical Layer

The tactical layer (Fig. 2) describes the perception and
reaction of the driver-vehicle entity on a short time-scale
of about one second, the typical reaction time. However,
every microscopic traffic flow model describes this layer.
In contrast to macroscopic models a driver is identified as
basic entity of the system and its behavior, for instance car-
following, is modeled in detail.



Traffic flow models used in real-time applications should
describe relevant aspects of the flow dynamics as simply
as possible. In this spirit the Nagel-Schreckenberg cellu-
lar automaton model [25] has been introduced. It repre-
sents a minimal model in the sense that it is capable to
reproduce basic features of real traffic, like phantom jams
but further simplification leads to the loss of this prop-
erty. So far it has been studied in great detail (for an
overview see [9, 30] and references therein). It has also
been pointed out that the efficiency of the model allows for
high-speed micro-simulations of large-scale road networks
[15, 18, 23, 24, 29, 31].
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Figure 3. Part of a road in a cellular automaton
model.

For completeness, the definition of the model for single
lane traffic is briefly reviewed. The road is subdivided in
cells with a length of�� � ������ � ��� m/veh, with ���� �
��� veh/km the density of jammed cars (Fig. 3). Each cell is
either empty or occupied by only one vehicle with an integer
speed �� � ��� � � � � �����, with ���� the maximum speed.
The motion of the vehicles is described by the following
rules (parallel dynamics):

R1 Acceleration: �� � ��	
�� � �� �����,

R2 Deceleration to avoid accidents: � �� � ��	
��� ����,

R3 Randomization: with a certain probability �

do ���� � ��
��� � �� ��,

R4 Movement: �� � �� � ���� .

The variable ��� denotes the number of empty cells in
front of the vehicle at cell �. A time-step corresponds to
�	 � � sec, the typical time a driver needs to react.

The first two rules (R1, R2) describe a somehow opti-
mal driving strategy, the driver accelerates if the vehicle
has not reached the maximum speed ���� and brakes to
avoid accidents, which are explicitly excluded. This can
be summed up as follows: drive as fast as you can and stop
if you have to! Such a cellular automaton is deterministic
and the stationary state depends only on the initial condi-
tions. But drivers do not react in this optimal way: they
vary their driving behavior without any obvious reasons, re-
flected by the braking noise � (R3). It mimics the complex

interactions between the vehicles and is also responsible for
spontaneous formation of jams.

In order to describe more complex situations, e.g., multi-
lane traffic or merging regions, the set of fundamental
rules has to be expanded. For instance, a lane change
has to be carried out with regard to safety aspects and le-
gal constrains, which vary between different countries. A
schematic lane change is shown in Fig. 3. First, a vehicle
checks if it is hindered by the predecessor on its own lane.
This is fulfilled if ��� 
 �. Then it has to take into account
the gap to the successor ���� and to the predecessor ����
on the alternative lane. If the gaps allow a safe change the
vehicle moves to the other lane. A systematic approach for
two-lane rules can be found in [26].

The cellular automaton can be directly interpreted as
a multi-agent system with reactive (sub-cognitive) agents.
The driver-vehicle entity (agent) reacts to the perception of
its own speed and the headway gap. This behavior is rather
simple and no cognitive architecture is necessary. Due to its
efficiency it allows for large-scale simulations presented in
Section 4. But if more complex decision-making processes
are considered additional layers have to be introduced.

3.2. Strategic Layer

The strategic layer extends the basic layer and is re-
sponsible for the information assimilation and the decision-
making of a driver (Fig. 2). During and before a trip, a road
user collects information in many ways, for instance by ra-
dio broadcast or variable message signs. If the driver has to
select between different travel alternatives he uses the col-
lected information and his experience or attitudes. In most
models perfect rationality and utility maximization is as-
sumed for such problems. But in real-world scenarios there
is no optimal solution to the route choice problem, since the
process is highly dynamic and it depends on the behavior of
the others.

Additionally, ATISs and other intelligent devices will
provide even more information about link travel times, den-
sities, road works, or route guidance in the near future.
Thus, drivers have to collect even more information and
evaluate it with a higher frequency. This clearly indicates
that understanding travelers’ route choice behavior is an im-
portant consideration for the development and effectiveness
of such systems [5].

There are several different techniques to describe such
problems [3, 7]. In general, the decision-making process
in human beings is based not only on logical elements, but
also involves some emotional components that are typically
non-logical. As a result, behavior can also be explained
by approaches, which additionally consider beliefs, desires
or intentions, the so-called BDI-formalism, which is well-
known in the field of multi-agent systems.



Such a formalism for a simple commuter scenario is pro-
posed in [4]. The drivers are represented by their individual
mental states. One road user trusts in the information, an-
other does not, or only occasionally. Apart from that there is
an individual knowledge-base and a certain set of plans. A
possible plan could be to leave earlier to avoid being late,
another one takes the risk and stays in bed longer. The
knowledge base contains for instance navigational informa-
tion: a driver who is familiar with the network topology has
more options for his decisions.

It becomes clear that the description of the strategic layer
requires very sophisticated methods and that it is crucial
for development of intelligent transportation systems. The
starting point is the understanding of the human behavior
[2]. Note in the applications discussed in the next section
a simplified representation of the strategic layer is chosen.
The strategic layer is more important if predictive informa-
tion is considered (Section 5).

4. Network and Data

In Section 2 a framework for providing real-time data
to the road user was proposed. It is based on the combina-
tion of real-world traffic data with simulations using a traffic
flow model. In the following we present two examples for
such networks: the urban traffic of downtown Duisburg and
the freeway network of North Rhine-Westphalia.

4.1. OLSIM Duisburg

An urban road network has a complex structure, but
Esser and Schreckenberg [15] showed that arbitrary kinds
of roads and intersections can be constructed with only a
few basic elements. As an example the road network of
downtown Duisburg is shown in Fig. 4. The so-called check
points are marked as filled circles and sources or sinks are
identified by letters. At the check points the data of all lanes
of a road are available. Here the local flow can be tuned with
respect to the empirical data.

In the following the network is described: an edge cor-
responds to a driving direction on a road, i.e., each road
usually consists of two edges. For each road the number
of lanes, the turning pockets, the traffic signal control and
the detailed priority rules are included into the simulation.
The network consists of 107 nodes (61 signalized, 22 non-
signalized and 24 boundary nodes), 280 edges and 22,059
cells corresponding to about 165 km. The boundary nodes
are the sources and sinks of the network [31].

For the on-line simulation the agent model has to be sup-
plemented by traffic data gathered from detection units dis-
tributed all over the city. Every minute the measurements of
about 350 inductive loops (approx. 4 kBytes) are sent from
the traffic computer of the municipal authority of Duisburg
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Figure 4. Sketch of the simulated road net-
work.

to the on-line simulation computer (Fig. 1). These data are
used to calculate turning probabilities and to tune the simu-
lation which will be explained later on.

There are different strategies to run a micro-simulation
in such a network. On the one hand one can use origin-
destination (OD) matrices, i.e., information about the trips
people want to take in the network. Since such data with
sufficient temporal and spatial resolution are hardly avail-
able, vehicles are driven randomly through the network.
This means that the agents do not follow a predefined route.
Instead, they choose their way at every node according to
turning probabilities computed using real traffic data. This
is a very simple implementation of the strategic layer (Sec-
tion 3.2) and more sophisticated methods are necessary in
order to provide a traffic forecast (Section 6.1).

Currently, turn counts can be derived directly for 56 driv-
ing directions. In addition, the turning probabilities were
completed by manual counts in order to get at least the av-
erage number of turning vehicles at crossings which are not
covered by measurements.

For realistic results it is crucial to incorporate the real-
world data in the simulation without perturbing the dynam-
ics which are present in the network. To adapt the simulated
results to the real-world data we additionally introduce so-
called check points. They are located at those places where
a complete cross-section is available, i.e., all lanes are cov-
ered by an inductive loop (Fig. 4). At such places, it is con-
venient to perform adjustments. The last minute’s results
of the simulation have to be compared with the measured



data. This can be done using different methods [18]. The
simplest one used in urban traffic is the so-called sink- and
source strategy: Every check-point consists of a sink at the
beginning and a source at the end. The incoming vehicles
are deleted at the sink and the source adds the measured
number of vehicles.

Due to its design the cellular automaton approach allows
to simulate a network much faster than real-time – a ba-
sic requirement for on-line simulations and traffic forecast
[23, 29, 15, 24, 18]. On a common personal computer (Pen-
tium 500 MHz) it takes 5 minutes to simulate the traffic of
a whole day in the network. Besides, it is possible to in-
terpolate the traffic state between check points (which are
typically nearby intersections) and to extrapolate into areas
which are hardly or not equipped with detection units. Ad-
ditionally, the simulation provides dynamic data, e.g., link
travel time or traffic densities. These data can be visual-
ized � and also serve as a support for planning a trip. For
instance, the data can be processed by route guidance sys-
tems which allow the road users to organize their trips with
regard to individual preferences [32].

4.2. Freeway Network North Rhine-Westphalia

In the previous section a simulation framework for ur-
ban traffic has been discussed. In general, urban and free-
way traffic differ in some aspects. The traffic dynamics on
urban roads are governed by the intersections, mainly traffic
lights, whereas on freeways dynamic phases, e.g., synchro-
nized flow or stop-and-go traffic emerge (for an overview
[19, 20]). The analysis of single-vehicle data [28] yields
that for freeway traffic a more detailed description of the
dynamics seems to be necessary [22].

Another difference is the location of sinks and sources
in the network. In urban areas, they are located nearly ev-
erywhere, because a vehicle can leave the system to go to
a parking area or just stop on the sidewalk. In freeway net-
works, the sinks and sources are clearly defined, namely the
on- and off-ramps. This makes a traffic forecast easier if
flows on the ramps are available.

The application described below is based on the free-
way network of North Rhine-Westphalia, an area of about
34,000 km�. The roads of the network have a length of
6,000 km. There are 67 highway intersections and 830 on-
and off-ramps. The digital version of the network consists
of 3,560 edges and 1.4 million sites. Similar to urban areas
[15] the topology of the network was constructed using ba-
sic elements, namely main tracks and transfer tracks [18].
To provide precise travel times the length of every piece of
topology, especially transfer tracks, was determined using a

�The current traffic state of Duisburg is published in the Internet every
minute (http://www.traffic.uni-duisburg.de/OLSIM).

Geo-Information System (GIS)�.
Currently, data from about 2,500 inductive loops are ac-

cessible. Every minute the aggregated amount of cars and
trucks as well as their velocities are sent via permanent lines
from the traffic control centers in Recklinghausen and Lev-
erkusen to the controller of the simulation. Results for the
on-line simulation are depicted in Fig. 5, where the number
of vehicles vs. the time for a part of the freeway network are
shown. The data are generated by an on-line simulation and
basic features like the rush-hour peaks are recovered.
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Figure 5. Number of vehicles vs. time.

In future, it is planned to generate traffic messages using
such a system. Nowadays, messages are given in form of
jam length, which is not a very good measure. For instance,
a jam of length 3 km can have different impacts, since it
might be the beginning of a road blockage or only a small
disturbance. We aim at giving measures, like the travel time
or the travel time loss in a jam. These provide a decision
support for the road user to plan a trip more efficiently.

5. Forecast

In the previous sections the on-line simulation, which
provides current data, was presented. In this section one
way to generate predictive information is discussed. How-
ever, there are many different approaches for predicting
short-term traffic conditions, e.g., time series analysis [35],
neural networks [12, 13], and tracing of jams [21]. Em-
ploying the on-line simulation described in the previous sec-
tion, predictive data can be generated using the dynamics of
the current traffic state, i.e., continue the simulation without

�The basis of the GIS is the NW-SIB provided by the state of North
Rhine-Westphalia.



current traffic data. This is a “do-nothing” scenario: the as-
sumption is that the data does not change. Nevertheless, the
network looses vehicles at the boundaries and off-ramps.
Therefore, predictions about vehicles entering the network
at the boundaries and on-ramps have to be made. These
can be based on heuristics, i.e., experience about recurrent
events, which are derived by a statistical analysis of histor-
ical data.

5.1. Heuristics based on Historical Data

In order to develop heuristics for a traffic forecast, we
analyze historical data of the inner city of Duisburg (see
Section 4.1). In the year 1998, 228 inductive loops supplied
data for 186 days. In 1999, the network was extended and
351 loops supplied data for 106 days. To compare the data
from different years these are given in cars/inductive loop
and minute [10].

In order to classify differences, the daily traffic demand,
i.e., the flow of vehicles vs. time, are investigated (Fig. 6).
Note that the graphs reflect the traffic pattern of the whole
network, since the value given is the number of cars mea-
sured averaged over all inductive loops.

In general, two different time-scales for changes can be
distinguished: daily and seasonal differences. Seasonal dif-
ferences arise due to school holidays. Daily differences
are there because on working days a sharp morning peak
is there which is absent on Sundays or holidays. In Fig. 6
the results of a statistical analysis are shown. In order to
classify different days, the daily demands of them are com-
pared with each other. It is quite obvious that the activities
on most working days do not differ very much. Interest-
ingly, this is also true if Fridays and days before holidays
are compared. The data used are stemming from all induc-
tive loops of downtown Duisburg (Section 4.1) and are aver-
aged over an interval of ten minutes. There are four classes
of days that can be easily identified. Additionally, there are
sometimes special events, like football games. Thus, the
following distinct classes can be defined (Fig. 6):

1. Monday to Thursday, except holidays or days before
holidays,

2. Friday and days before holidays,

3. Saturday except holidays, and

4. Sunday and holidays.

The daily graphs of these classes are depicted in Fig. 6. The
most cars are generally measured on Friday. If this value
is set to 100% the other classes are as follows: Monday
to Thursday 96%, Saturday 71%, and Sunday 51%. If the
daily graphs are analyzed in more detail, the graph for Mon-
day til Thursday (solid line in Fig. 6) can be roughly sub-
divided: a sharp morning peak (7:49 a.m, with a standard

deviation of 5.5 min), a high traffic volume during the day,
a peak in the afternoon (at 4:26 p.m. with a standard devia-
tion of 26 min), and light traffic at night.
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Figure 6. Number of vehicles vs. time.

This division reflects the daily life. In the morning, peo-
ple go to work at about 8 o’clock. Since most of the people
begin to work roughly at the same time this peak is much
sharper than that in the afternoon. Albeit, the afternoon
peak is much higher since in addition to the commuters
there is shopping traffic. Besides this global features, there
are smaller peaks which are recurrent. In the morning two
peaks are found, the first morning shift at 5:45 a.m. and
the second morning shift at 6:54 a.m., with very small stan-
dard deviations of about five and four minutes, respectively.
These peaks result from the shift workers of the heavy in-
dustry in this region.

For a traffic forecast the standard deviations of the peaks
are an important feature. They reflect the quality of the
heuristics. Since the standard deviation of the morning peak
is about six minutes, it will appear with a high probability
in an interval of this small span.

For the analysis of seasonal differences, only the data of
1998 can be used. In 1998, data are available from February
to November. On average the highest number of vehicles
was measured in May. For this comparison only working
days, i.e., Mondays to Fridays, are included. If the value for
May is set to 100% the other months are: November 99.1%,
June and September 97.9%, March and April 97.7%, Febru-
ary 97.2%, August 94%, October 89.91%, July 88.42%.
Most of these differences are due to school holidays. In
general, daily graphs during holidays stay the same, i.e., the
traffic patterns do not change. But in July the absolute val-
ues are decreased by 10%. Of course, the analysis was only
carried out during one year and is therefore not statistically
profound. Today, the data base for the freeway network is



too small to carry out such an analysis. But it will be done
in future. However, the travel patterns in the urban area
will show a lot of similarities since the freeway network is
closely linked to the urban network.

With this kind of statistical analysis, it is possible to clas-
sify special events or even local origin-destination matrices
[10]. In addition to the simulations described above, these
heuristics can be used to predict the temporal evolution of
traffic patterns at local points of road networks, e.g., bound-
ary nodes and on-ramps. Thus, predictive data is calculated
by linking current (on-line) with historical data.

6. Outlook

In the previous section, we have discussed possibilities to
generate current and short-term predictive data. Although
such information services have reached a high technical
standard, the reaction of the road user to these systems is
not well explored. Recommendations and information will
be given to the road user by means of communication such
as variable message signs or radio broadcasts. But each of
these systems is confronted with a fundamental problem:
the messages are based on future predictions which them-
selves are affected by drivers’ reactions to the messages
they receive [7]. Therefore, an anticipatory traffic forecast,
which anticipates the reaction of the road users to the infor-
mation is necessary.

6.1. Anticipatory Traffic Forecast

Traffic State

ATIS

Traffic Forecast

?

Driver

Information
Simulation

Traffic Message

Figure 7. Impact of a traffic message.

In Fig. 7 a feedback loop is depicted, which describes the
effect of dynamic information in traffic networks. First, the
current traffic state is generated using on-line simulations.
Then algorithms are used to provide additionally predictive
data. The results are traffic messages, which are transmit-
ted to the driver using, e.g., Advanced Traveler Information
Systems (ATIS). The road user receives and processes the

information and then changes his plans with regard to the
new input. The feedback loop is closed.

The effect of this travel behavior on the current traffic
state needs to be evaluated using a simulation. The most
important question is: what is the impact of a traffic mes-
sage? Today, this feedback is not very strong since the in-
formation about the traffic state is not precise enough. Once
a road user has chosen a certain route he will rarely be able
to evaluate the other alternatives. But reliable information,
which might be available soon, can lead to social dilemmas,
i.e., situations where there is a conflict between individual
and collective aims [6].

To provide an anticipatory traffic forecast, the reasoning
and reaction of the drivers has to be included in the agent
model described above. Bottom et al. [7] propose a frame-
work in which every road user behaves rationally and thus,
a fixed point problem has to be solved which is equivalent
to finding one Nash equilibrium. From experimental game
theory it is known that people exhibit bounded rationality
and a system rarely reaches such an equilibrium [27]. In
[3, 34] binary route choice scenarios with information are
studied. It is found that dynamic information, e.g., link
travel time, can harm traffic patterns significantly. For an
anticipatory traffic forecast it is therefore necessary to de-
scribe the decision-making of a road user in detail by, for
instance, employing multi-agent techniques (Fig. 2).

6.2. Summary and Conclusion

This paper discusses an Advanced Traveler Information
System and its impact on traffic patterns. Using real-world
traffic data stemming from inductive loops and an agent-
based traffic flow model it is possible to derive the traf-
fic state of a complete network on-line. With a statistical
analysis of historical data it is possible to develop heuristics
which allow for a traffic forecast.

The multi-agent model presented has a two layer archi-
tecture: the tactical and the strategic layer. The tactical
layer describes the task of driving and corresponds to a mi-
croscopic traffic flow model, e.g., the Nagel-Schreckenberg
cellular automaton. The strategic layer is responsible for the
information assimilation and the decision-making.

Using this model it is possible to perform on-line sim-
ulations of urban and freeway networks, the downtown
area Duisburg and the freeway network of North Rhine-
Westphalia. The results are published in the Internet every
minute. The dynamic data produced, e.g., link travel times
or traffic densities can be processed in dynamic route guid-
ance systems. For both networks simulations are performed
faster than real-time – a basic requirement for a traffic fore-
cast.

A naive approach to traffic forecast is a “do-nothing”
scenario. The the dynamics of the traffic flow model are



used to run the on-line simulation without further data sup-
port. But in the system, vehicles leave at the boundary
nodes and the network grows empty. Therefore, it is neces-
sary to develop heuristics which provide experience about
the temporal evolution of the traffic patterns. These are ex-
tracted from historical data.

In general, it is found that the days of the week can be
classified in four groups: Monday to Thursday, Friday, Sat-
urday, and Sunday. Also seasonal differences which result
from school holidays can be distinguished. But every traf-
fic forecast suffers from a fundamental problem: the mes-
sages are based on future predictions which themselves are
affected by drivers’ reactions to the messages they receive.
Therefore it is necessary to provide an anticipatory traffic
forecast which includes the reasoning and decision-making
of the individual drivers. In general, human factors in Intel-
ligent Transportation System are not well explored. Within
the research project SURVIVE we will perform route choice
experiments with real road users and analyze them with
methods of experimental economics�.
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