FREE JAZZ: An User-Level Real-Time Threads
Package Designed for Flexibility

Thorsten Kramp

kramp@informatik.uni-kl.de

Report 9/98

Sonderforschungsbereich 501

System Software Group
Computer Science Department
University of Kaiserslautern
Postfach 3049
67653 Kaiserslautern
Germany

FREE JAZZ: An User-Level Real-Time Threads
Package Designed For Flexibility

Thorsten Kramp*

University of Kaiserslautern, Department of Computer Science
P. O. Box 3049, 67653 Kaiserslautern, Germany

ABSTRACT. Up to now designers of multi-threaded run-time sys-
tems traditionally disdain readily available user-level threads pack-
ages due to their inherent lack of flexibility, resultant from preva-
lently adhering to the black-box approach. FREE JAZzZ, in contrast,
is a user-level threads package developed in the spirit of the open
implementation design methodology, providing a well-devised meta
interface particularly with respect to soft real-time scheduling, inter-
thread communication, and synchronisation. Any scheduling code
has been systematically factored out to allow for easy customisation
and adaption even at run time. The general viability of this ap-
proach is demonstrated by the results of a number of performance
measurements carried out.

1 ON GRIEF AND REASON

FREE JAzz is a user-level real-time threads package.! “Uh oh,” I hear you say
with a wry smile, “yet another user-level threads package. So what?” And
yes, you are right — partially. However, no single user-level threads package has
gained wide popularity among designers of multi-threaded run-time systems or
middleware components at the time of writing. In fact, only a few, if any, seem
to use a readily available user-level threads package at all, yet develop their
own. Performance reasons and portability problems aside, the main obstacle
still remaining usually is an inherent lack of flexibility, ultimately caused by
adhering to the black-box principle. To be more specific, each developer of a
threads package must face and find a solution for a number of critical design
decisions, so-called design dilemmas or just dilemmas for short, namely in the
areas of thread states, thread lists and scheduling, context switching modes,
stack management, as well as timing and profiling. The developer of a threads
package, however, cannot anticipate the “best” way to solve these dilemmas,

*krampQacm.org

1The name Free Jazz was chosen because threads are similar to the members of a free
jazz band, at least to a certain extend. While each musician often seems to follow a highly
individual theme (and more often really does), everyone perfectly contributes to the common
tune in real time.

whereas the designer of the multi-threaded run-time system is assumed to be
targeting a specific application domain and therefore hopefully can. Trying to
be clairvoyant only will force “coding between the lines,” that is, playing hider-
and-seeker with the threads package to get it out of the way.

The argument itself is not new and merely a variant of the famous end-
to-end argument discussed by Saltzer et al. in the context of communication
protocols [16]. Knowing that there are no silver bullets for dilemmas, research
in the realm of object-oriented system-level software came up with the open
implementation design methodology [9, 10]. Basically, the functional interface
of a black box is enriched by an interface that describes the behaviour of its
components, the so-called meta interface. This way critical design decisions are
systematically exposed, sometimes with a fall-back policy that might be good
enough for those who do not care, while the sensitive user is free to jump in
and provide a better alternative whenever he or she is not satisfied with the
default. Such an approach is particularly promising for user-level threads pack-
ages that might serve as starting points for building multi-threaded run-time
systems. Yet, while configurable user-level threads packages such as PREsTOhave
been around since 1988 at least [3, 4], the notion of an open implementation
has been only recently exploited systematically for threads by Haines, whose
OPENTHREADS were intended as a proof of concept [7]. Neither OPENTHREADS
nor any other configurable user-level threads package we know about, however,
were developed with real-time environments in mind.

At the heart of each open implementation is agreeing on which design deci-
sions actually are critical and which are not; simply turning everything into an
option is not an option. In fact, the meta interface should be kept as small as
possible, yet cover all dilemmas. “If a user-level threads package is not useful to
a system-level programmer, lack of control over scheduling is commonly at the
root of the cause.” [7] Black-box implementations allow the user to choose from
a number of pre-defined schedulers at best, which is necessarily rather restric-
tive in view of the vast amount of quite different policies developed during the
last three decades. In addition, all sorts of internal queueing and any synchro-
nisation primitives may be affected by a scheduling policy, specifically in the
context of real-time systems, where priority inversion usually becomes an issue
and fairness is sacrificed light-heartedly. Rather than implementing one or even
many schedulers at the core of a threads package, it therefore seems far more
promising to transform thread transitions into events and let the user decide
what to do next. All thread lists and, in the case of inter-thread communica-
tion, all message queues must be made explicit in such a way that their policies
and internal structure may be overridden on demand. As minor aspects, stack
management and context switching modes may also be opened, mainly with
stack allocation and saving/restoring of registers in mind, respectively.

In the following sections we present FREE JAZZ, a user-level threads package
to be used with C/C++ and developed in the spirit of the open implementation
design methodology. Specifically and in contrast to OPENTHREADS, the par-
ticularities of soft real-time requirements are explicitely considered. While the
underlying programming model and most of its internal structure are inherited
from an undocumented non-real-time black-box threads package originally de-
veloped by Peter Buhler here at the Distributed Systems Group, scheduling has
been systematically untangled from the inner core and the ground prepared for
soft real-time threading.

The rest of this report is structured as follows. At first, an overview of related
work is given in Section 2. Then, Section 3 pinpoints the pivotal concepts of the
underlying programming model, before Section 4 gives an impression of what
the programmer’s interface actually looks like. Section 5, finally, summarises
the results of some performance measurements carried out, with conclusions
following in Section 6.

2 RELATED WORK

One of the first extensible user-level threads packages is PRESTO, written in C++
and designed with the philosophy that users should be able to replace compo-
nents such as the scheduler [3, 4]. PRESTO targets multiprocessor machines such
as the Sequent Balance 21000 and particularly allows differential extensions (due
to the use of C++) as well as lateral extensions, that is, to change the behaviour
dynamically at run time. However, a re-implementation in C and Assembler
called FASTTHREADS, in which all policies were hard-coded, is about an order
of magnitude faster [2].

QUICKTHREADS, in contrast, refrains from being a complete threads package
on its own, yet provids a threads toolkit for uniprocessor architectures with a
portable interface to machine-dependent code that performs thread initialisation
and context switching [8]. That is, it plainly avoids all dilemmas right from the
beginning by not including functionality such as scheduling and synchronisation
primitives. This way QUICKTHREADS attempts to achieve most of the flexibility
of PRESTO while retaining a performance similar to FASTTHREADS.

OPENTHREADS, finally, is similar to FREE JAZzz in that it systematically ex-
ploits the notion of an open implementation and reports thread state transitions
to a user-defined scheduler [7]. Neither OPENTHREADS nor any other of the
aforementioned threads packages, however, has been developed specifically with
real-time environments in mind, while real-time user-level threads packages, in
contrast, were black-box solutions up to now.

RT THREADS [5], for instance, is such a real-time user-level threads pack-
age, which even provides mechanisms for inter-thread communication between
different address spaces, possibly on different machines. Its synchronisation
primitives, however, do not care about priority inversion and the scheduling pol-
icy —a priority-driven approach featuring EDF (earliest deadline first) within
each priority —is buried. While the RT THREADS package is operating system
independent, the user-level real-time threads of the ARTS operating system [15]
are so-called first-class threads. That is, the process scheduler of the kernel
and the threads schedulers of all processes interact via scheduler activations as
proposed by Anderson et al. [1] and Marsh et al. [14], for instance.

Yet, the need for more flexibility specifically with respect to real-time archi-
tectures has also been identified by Ann Lo et al. [13] as well as Goyal et al. [6].
Their work on real-time kernels, extending the idea of scheduler activations, led
to a hierarchy of kernel-level and user-level schedulers. To this end, our open
user-level threads packages naturally adds to these architectures.

3 THE RULES OF THE GAME

Prior to getting real with function calls and parameter lists, this section is
meant to introduce the basic abstractions and the underlying design philosophy
of FREE JAzZzZ.

Basic Abstractions € Inter-thread Communication.

Programming in FREE JAzz is foremost a game on the grounds of processing in
response to messages, that is, reactivity is at the core of what this is all about.
A thread only jumps into action after it has received a message and equally
may send messages to other threads, effectively requesting some processing on
its behalf. The whole process is initially set into motion by a root thread created
during system startup, which usually spawns a first set of user threads, sends
some go-ahead messages to a subset of these, and finally awaits termination.
For all practical matters, messages can be assumed to originate from another
thread; any hardware 1/0 including timer signals or user interaction already is
or may be transformed by dedicated threads into appropriate messages. These
messages will re-animate the web of interacting threads if there was temporarily
nothing left to do and the system went idle.

int thread fct (msg_params) {

return done;

new_queue 0—)@3—)@@?
save_queue 0—)@3—)@%)

Fig. 1: A thread as seen from a user’s point of view.

A thread merely consists of a C function with a fixed parameter list that de-
scribes the next message to process and is associated with a certain priority.
Further, due to the intrinsic importance of inter-thread communication based
on messages, it seems natural to introduce a queue with each thread to hold in-
coming messages, the so-called new queue. With each invocation of a thread the
associated function is called, which performs a series of steps in response to the
first message found in the new queue. These steps possibly include interaction
with other threads and reading further messages from the new queue, before fi-
nally the thread’s function is left with a return value. The return value indicates
whether the thread awaits further messages and should remain in the system,
or has terminated eventually and should be disposed of. If the thread is kept
around, its function will be called again as soon as no thread of higher priority
is requesting processing time, provided not all messages have been processed
during the thread’s last invocation or new ones have arrived in the meantime.
Additionally, each thread is equipped with a save queue to temporarily store
messages that cannot be processed immediately and require further preparation,
due to an outstanding response from another thread, for example.

At each instant, a thread is either preemptable and may be interrupted in
favour of a higher-priority thread, or non-preemptable, processing undisturbed
until it blocks, allows a reassignment of the processor at its free will, or returns
from its associated function. Preemption can be dynamically disabled and re-
enabled as needed. Note that the property of being preemptable is assigned on
a per-thread basis, not globally.

Messages may either be sent synchronously if there remains nothing to do
for a thread until an answer is given, or asynchronously whenever the reply is
not necessarily needed right now to continue or no response is required at all.
Synchronous messages are termed as calls (bearing resemblance to telephone
calls), whereas asynchronous messages are sent more similar to a letter. If not
explicitely stated otherwise, the term send is used to indicate that both calls
and sends are valid within a particular context. Moreover, because FREE JAZZ
was designed with soft real time in mind, a message may be accompanied by a
user-defined constraint field to describe scheduling properties such as deadlines.

Up to this point all threads are equal, but some threads are more equal than
others. What sets a thread apart from an ordinary C function is the notion of a
context, comprising the registers of the CPU including the process counter, the
stack pointer, and some additional fields describing the thread’s state or priority,
for example. In FREE JAzzZ, however, some threads do not own a context of their
own yet have to “borrow” one from a thread that sent a message recently. To
distinguish both species of a thread we call those with a context of their own
processes (not to be confused with heavy-weight UNIX processes) and those of
the context-sharing party handlers. The term thread will only be used from now
on when process or handler could have been used interchangeably, that is, when
it does not matter to whom the context actually belongs.

Anyway, the policy of context sharing is as follows. If a message is sent to a
handler that is currently busy with another message, the behaviour is the same
as if the message would have been sent to another process —the sending thread
is blocked on calls and continues on sends. Otherwise the handler is invoked
immediately and processes the message, borrowing the context of the sending
thread. As soon as the handler returns, the borrowed context is given back
provided the handler was not preempted by some higher-priority thread and
has received further messages in the meantime. If its new queue is not empty,
however, any pending messages are also processed within the borrowed context.
Although a handler is free to save an incoming message for later processing,
possibly blocking a calling process, a handler on its part must not block due to
some technical subtleties. Specifically, a handler is not allowed to call another
thread. Invoking a handler, however, is significantly faster than invoking a
process (cf. Table 2 in Section 5).

Of Monitors and Semaphores.

FREE JAZZ does not multiplex its user-level threads onto a small number of
kernel-level threads (which would be particularly reasonable on an SMP) and,
thus, only provides multi-programming, not multi-processing at the time of writ-
ing. The pitfalls of concurrently accessed shared data, however, remain never-
theless. Threads still must synchronise prior to accessing shared data; otherwise
bewildering inconsistencies inevitably will cause complete havoc in the end.

A simple, yet perfectly reasonable approach to ease the pain of synchronisa-
tion for user-level threads is going non-preemptive. Generally, the programmer
may be assumed to be able to organise the threads of an application or mid-
dleware component in such a way that these are working cooperatively. The
scheduler is only called in whenever a thread blocks, explicitely grants a reas-
signment of the CPU, or is done with a particular message and returns from
its function. This way a thread’s function cushily becomes the unit of mutual
exclusion with respect to shared data.

Sometimes, however, preemption is handy at least. The programmer is re-
lieved from manually taking care of higher-priority threads during long-running
calculations and real-time system designers, even those in the business of soft
deadlines only, usually try hard to keep the periods of non-preemption at a
minimum to tame priority inversion, for instance. Consequently, fine-grained
synchronisation primitives are reasonable by all means.

Interesting enough, handlers already can be used for such a fine-grained
synchronisation.? Although not explicitely mentioned before, the properties of
handlers are related to those of a monitor, particularly if invoked synchronously
by a call. First of all, a handler is non-reentrant by definition and therefore may
be used to access shared data mutually exclusively. Instead of a set of different
functions as found in a monitor, different messages may be sent to a handler,
which is logically equivalent. But what about condition variables? Of course,
there is no SIGNAL or WAIT; similar effects, however, can be achieved by means
of the save queue. It is easy to see that saving the message of a calling thread is
equivalent to the WAIT operation of a condition variable. Reading and processing
a saved message corresponds to a SIGNAL operation where the signalled thread
is given precedence over the signalling one. It is therefore straightforward to use
handlers as synchronisation mechanism in the spirit of monitors, even though
the code will look quite different.

The same is obviously true for semaphores, which may be emulated by a han-
dler with a single local variable used as semaphore counter. The P operation
is substituted for a PROCURE message that simply decrements the semaphore
counter if its value is greater than zero, otherwise the message is saved, effec-
tively blocking the calling process. V operations conversely are substituted for
VACATE messages that cause a reply to a saved message or just an increment
of the semaphore counter if no thread is currently hold off. Thinking about
priority inheritance [17] as a way to bound priority inversion, however, requires
additional care. While calling a handler to perform some processing might re-
sult in priority inversion, too, this is automagically detected by FREE JAazz and
appropriately signalled to the scheduler. With handlers as semaphores, how-
ever, there is no association of a critical section and its protecting semaphore;
appropriate signals must be generated by the handler manually. Though FREE
Jazz was developed with exactly this kind of user extension in mind, semaphores
are popular enough to provide them right out of the box just for the sake of
convenience — it would have been no harder for the designer of a multi-threaded
run-time system to add these semaphores by herself.

Memory Management.

Since FREE JAzz is targeting (soft) real-time environments, its memory manage-
ment has been designed to be predictable with respect to utilisation as well as
worst-case execution times.

Utilisation predictability means that there are no hidden memory allocations
which cause an application to become surprised by an out-of-memory error —
provided the application-specific demands do not exceed the available memory,
of course. Each memory allocation is only done in response to a user request.

2The following arguments mostly hold for processes, too; however, it seems more natural
to use a handler for synchronisation purposes since it will not produce a context switch as
long as no serialisation is needed and incidentally inherits the priority of the invoking thread.

Specifically, FREE JAzz does not generate messages plainly out of thin air, not
even to signal hardware interrupts. The general policy, in contrast, is for an
application to provide the message it would like to receive in response to a
hardware interrupt, which is simply “bounced” as the interrupt occurs. Con-
sider a timer interrupt, for instance. The application sends a message to the
FREE JAzz timer thread, denoting an interval after that it would like to be no-
tified as the message value. When the specified period of time has expired, the
timer thread simply replies the given message without any memory allocation
on its own. Since this approach is used throughout, memory utilisation is highly
predictable and allows the programmer to keep track of the available memory
quite easily.

Predictability with respect to worst-case execution times, in contrast, is
concerned with the allocation and deallocation operations. While deallocation
including any necessary coalescences of adjacent free blocks always can be done
in constant time, that is O(1) steps, allocation can be worst-case bounded to
O(logn) steps at best [11]. FREE Jazz, however, obeys a user-defined bound %
on the number of elements in the free list that are inspected as part of each
allocation operation. If no sufficiently large memory block can be found in the
first k elements of the free list, memory allocation simply fails. This way a worst-
case bound on memory allocation and deallocation can be derived, particularly
since FREE JAzzZ optionally disables paging for all its memory via the mlock ()
system call.

Going Meta.

By now an alert reader will probably scratch his head and ask himself what
scheduling policy eventually is used in FREE JAzz. Well, this one is easy. There is
none!® Yes, we already mentioned priorities, priority inheritance, and message
constraints but recall what was stated in Section 1 as the primary reason for
introducing a meta interface in the beginning: “If a user-level threads package
is not useful to a system-level programmer, lack of control over scheduling is
commonly at the root of the cause.” [7]

Consequently, we refrained from adding a covert scheduler, yet systemati-
cally transformed thread state transitions into appropriate messages to be pro-
cessed by user-implemented non-preemptive scheduling handlers. These han-
dlers are responsible for ordering processing requests, assigning appropriate
priorities, and for signalling FREE JAzZZ whenever a context switch should be
performed. To this end the user has complete control over the internal organi-
sation of the ready queue, may it be a doubly linked list, a heap, or something
else the world has not seen before. What a priority looks like and the way it
should be interpreted are open issues, too, only to be resolved by the user.
Foremost the transitions reported are when a thread becomes ready (marked
as 1 in Fig.2), when a reassignment of the CPU occurs due to preemption
or at the will of the active thread (2), or when the active thread runs out
of messages to process and becomes idle (3). In contrast to OPENTHREADS
there are no messages when a thread has been newly created (remember that
a thread only becomes ready when it receives a message) or is destroyed, nor

3Well, not really, of course. A simple rate-monotonic scheduler with a quite rudimentary
understanding of what priority inheritance is about has been implemented and is included as
fall-back policy.

3 2w

RUNNING terminated

Fig. 2: Thread state transitions.

does FREE JAzzZ report system idle times to the scheduler. The user, however,
might easily allocate some kind of idle thread to gather load statistics or might
add create/destroy messages to be handled by a suitable scheduling component.
Furthermore, the scheduler may request always to be called whenever a thread
is blocked at a semaphore or while calling a handler, or only for threads that
should endure bounded priority inversion at worst (4). The former is reasonable
if the execution of the first thread in the ready queue might be cancelled due to
a missed time constraint, for instance, while the latter allows the scheduler to
adjust the priority of a lower-priority thread, effectively bounding the blocking
time of higher-priority threads. As soon as the blockade has been raised, a
message requests the scheduler to reset the inherited priority to its original
value and to reassign the CPU in favour of the waiting higher-priority thread.
The scheduler also might take care of nested or multiple priority inheritance
on the grounds of internally assigned unique identifiers that link corresponding
inherit /reset requests.

Beside these pre-defined messages, the user is free to define additional ones
as part of an admission test, for example. After all, a scheduling policy usually
affects not only a thread’s priority but must also be pervasively reflected by
its new queue at least. The default policy is FIFO because the aforementioned
constraint field of a message is completely user-defined. It is therefore up to
the user to enhance the doubly linked FIFO queue with an appropriate sort
function when needed or to provide a complete replacement. Specifically, the
sort function may deny a message, which cannot be processed with respect to
the constraint given. And finally, although this is not an issue of priorities, a
thread might use its own save queues as replacement of or in addition to the
standard FIFO save queue.

This only leaves the waiting queues of semaphores open for discussion, which,
of course, should be priority-driven, too. However, since FREE JAZZ again does
not prescribe the structure of a thread’s priority similar to the constraint field of
a message, it cannot anticipate a reasonable sorting policy on its own. Queueing
at semaphores is therefore done in FIFO order by default but may be overridden
by any user-implemented policy.

4 FACING THE INTERFACE

While a neat concept surely is more than half the battle, an equally well-devised
programmer’s interface is needed to keep the promises. What follows should
provide enough information to round out the conceptually-driven presentation
of the previous section with some practical insight.

In contrast to the approach chosen by OPENTHREADS, the functional inter-
face and the meta interface are not strictly separated in FREE Jazz. It seemed
to be more convenient and natural to mix up both kinds of parameters to a cer-
tain extend rather than to introduce dedicated functions for meta parameters
artifically.

Thread Creation.

From a programmer’s point of view, a thread is just a C function that agrees
with the following prototype:*

int (*Code)(void *environment, Object *from,
long id, long value, long constraint);

The environment parameter points to a user-defined struct of variables local to
that thread, whereas the remaining four parameters describe the message that
caused the thread to become active.® The return value of a thread’s function
must be set to STOP if the thread has terminated and should be disposed of,
while any value equal to or greater than 0 ensures that the thread is kept around.

All messages in FREE JAzz adhere to a fixed format of four fields. The from
parameter always identifies the sender of the message and is set automatically
as part of any send operation, while structure and content of id, value, and
constraint are entirely user-defined.® Both id and value are evaluated by
the recipient of a message only and, thus, their meaning need not be related
to their names in any way. The constraint parameter, on the other hand, is
intended to prescribe any restrictions or special boundary conditions associated
with a message (e.g., a deadline). The recipient aside, it may (and probably
will) be evaluated by the sort function of the recipient’s new queue and by some
scheduling components to adjust the priority of the recipient accordingly. The
scheduler is not called in if the constraint parameter equals No_constraint,
a user-defined global variable that allows FREE JAzz to distinguish whether a
constraint potentially affects the recipient’s priority or not.”

Calling new_process() or new_handler () transforms any suitable C func-
tion into a thread. Since handlers must “borrow” their contexts from the in-
voking thread, the parameters needed to create a new handler are merely a
subset of those needed to create a process. Hence, common parameters are dis-
cussed first. While environment should point to a struct containing a thread’s
local variables as described before,® the queue parameter may be used to over-
ride the implementation of the thread’s new queue whenever the default doubly
linked FIFO queue is inappropriate. Instead of a complete reimplementation it
is also possible to stick to the doubly linked list and only to replace the FIFO

4The inevitable prefix FJ_ of all FrReeJazz function and struct names has been removed
for brevity.

5The environment comes first to provide for C++ member functions instead of plain C func-
tions, in which case it is equal to the this pointer and need not be declared explicitely.

6 Albeit their declaration as longs it should be noted that any pointer may be passed along
instead with the appropriate casts at both ends. Thus, all three parameters effectively can
carry any amount of data.

"Recall that a constraint’s structure and content are not restricted in any way and, thus,
No_constraint is not a pre-defined constant either.

8If a C++ member function is used as thread function, the environment parameter must
be a pointer to an object of the corresponding class.

policy on demand by overriding the put () and get () function pointers of the
Message_Queue struct.

Object* new_process(Code code, Message_(Queue *queue, char *stack,
long stack_size, Memory *memory, long prio, int tame_prio_inv,
void *environment);

Object* new_handler(Code code, Message_Queue #*queue,
int tame_prio_inv, void *environment);

The meaning of the tame_prio_inv flag differs for handlers and processes. Re-
call that a handler is not allowed to block and, thus, cannot sustain priority
inversion at all. However, since handlers are left only as soon as their new
queue has been emptied completely, these pending messages may cause a vir-
tually unbounded priority inversion when the handler is invoked from within a
critical section or another handler. A higher-priority thread waiting at an outer
handler or critical section generally cannot estimate the number of messages
waiting at the inner handler and therefore has no idea how long its blocking will
last even in the worst case. Consequently, a handler with the tame_prio_inv
flag set automatically becomes non-preemptive when called from within another
handler or a critical section.

For processes, on the other hand, the tame_prio_inv flag indicates whether
or not blocking at handlers or semaphores should be reported to the scheduler
to allow for some sort of priority inheritance. Furthermore, if such a thread
invokes an inside handler in the sense as described in the former paragraph, the
handler again is invoked non-preemptively, because a process that does not want
to suffer from unbounded priority inversion should not cause it either. With the
remaining parameters stack and stack_size a user may provide some pre-
allocated stack space to be used by that process or may request FREE JAZZ to
allocate the stack from the free space designated, while prio denotes the initial
priority of the new process.?

Inter-thread Communication.

As mentioned before, messages may either be sent synchronously or asynchro-
nously. In general, both the aynchronous send() and the synchronous call()
must allocate a new message if the recipient is either a handler currently in use
or a process. Otherwise message allocation is avoided for the time being due
to some lazy allocation scheme that sets aside one pre-allocated message buffer
per handler. The asynchronous reply() simple reuses the current buffer.

int send(Object *to, long id, long value, long constraint);
int call(Object *to, long *id, long *value, long *constraint);
int reply(long id, long value, long constraint);

On the recipient’s side we must consider reading the next message from the new
queue, saving a message that cannot be processed immediately, and fetching
these messages from a save queue later on again.

int read(Object **from, long #*id, long *value, long *constraint, int mode);
int save(long id, long value, long constraint, Message_Queue *queue);
int read_saved(long selection, Object **from, long *id,

long *value, long *constraint, Message_Queue *queue) ;

9 Albeit its declaration as long it should be noted that any pointer may be stored within
all priority fields (similar to the message parameters).

10

The meaning of these functions and most of their parameters should be self-
evident. The mode parameter of read() distinguishes between blocking read
operations that only return when there is actually a message to read, and non-
blocking ones reporting an error code if the new queue is currently empty.'°
To retrieve a particular message from a save queue the selection parameter
of read_saved() is interpreted as a bit field that specifies whether and which
of the other parameters contain values that should match the message to read.
Further on, any number of save queues may be used in parallel, with a doubly
linked list sorted by value as default queue whenever queue is a null pointer.

Synchronisation.

Since there are no dedicated synchronisation primitives in FREE JAZZ apart from
semaphores, the programmer’s interface in the area of synchronisation is quite
easy to survey (cf. the discussion in Section 3).

Semaphore *new_semaphore(long count, Queue *queue);
int free_semaphore(Semaphore #*semaphore);

A semaphore’s count parameter prescribes the number of threads that are al-
lowed to stay inside the critical section protected by this semaphore simulta-
neously. Whenever FIFO queueing at a semaphore is inappropriate, the user is
free to provide an alternative implementation via the queue parameter.

int procure(Semaphore *semaphore, int mode);
void vacate(Semaphore *semaphore);

procure() may be called either in blocking and non-blocking mode similar
to read (), specifically since handlers are not allowed to block. A non-blocking
procure, however, not necessarily ensures access to the critical section but simply
may return an error code rather than blocking the calling thread, leaving it up
to the user to proceed accordingly.

Scheduling.

A thread’s facilities with respect to scheduling are basically limited to yielding
the processor or toggling its preemption status.

void schedule(void);
int preemption(int switch_flag);

While calling preemption() only affects the preemption status of the running
thread, going non-preemptive silences all other threads until the running thread
is done with the current message, blocked during a call or at a semaphore, or
releases the CPU at its free will. It should be noted, however, that when turning
preemption temporarily off, it is, as a rule, imprudent to simply turn it on again
subsequently. It might have been already turned off in the beginning for good
reason and, thus, the old preemption status returned by preemption() should
be restored instead.

And now for something completely different: The scheduling meta interface.
As mentioned before, scheduling components in FREE JAzz, which must be non-
preemptive handlers actually, only react to scheduling messages, pre-defined as

10Handlers are not allowed to block and, thus, are restricted to non-blocking reads.

11

well as user-defined ones. The entire collection of pre-defined scheduling mes-
sages as derived from Fig. 2 is summarised in Table 1 for easy reference and will
be explained step-by-step subsequently. Basically, a scheduling handler never
ever performs a context switch by itself, yet directs FREE JAZz to activate the
first thread in the ready queue by setting the global flag Passivate_running.

Each scheduling handler may be registered for one or more message types.
register_scheduler() returns the handler previously registered for this mes-
sage type to allow for some kind of internal stacking, that is, the new scheduling
handler may forward corresponding messages accordingly.

Object *register_scheduler(Object *object, long msg_type);
void scheduler_install();

During system startup, with no scheduling handler registered at all, FREE JAzZzZ
calls the user-defined function scheduler_install(), within the user must
nominate (not necessarily different) scheduling handlers to process READY and
SCHEDULE messages. If priority inversion should be tackled, suitable scheduling
handlers for all of the remaining signals (i.e., CALL, PROCURE, and NICE) must
be registered, too. Besides the user is free to define new message types, register
appopriate scheduling handlers, and even to modify the scheduling configuration
at run time if needed.

The Thread struct as defined in FREE JAzz already comprises a number of
relevant fields with respect to scheduling. While some of these should be quite
obvious in their meaning, others probably deserve a few words of explanation.
Since FREE JAzZ makes no assumptions about the size of the thread struct, ad-
ditional fields may be easily appended whenever the default set is found lacking.

typedef struct Thread_Struct {

struct Thread_Struct *next, *prev; /* doubly linked */

long prio, save_prio /* priority fields */

long restore_prio, restore_reason; /* priority inheritance */

Message_Queue *new_queue; /* thread’s new queue */

Semaphore *semaphore; /* blocked at semaphore? */
} Thread;

Two fields have been set aside to easily collect threads of similar state or impor-
tance in doubly linked lists, which is the default implementation of the ready
queue by the way.!! The scheduler (i.e., more precisely, the team of cooperat-
ing scheduling handlers), however, may exert any number of user-implemented
ready queues in parallel, activating the one for FREE JAzZZ to use on demand.
Using the term queue in its broadest sense, a call to ready_queue () dynamically
activates a new ready queue and returns the replaced one.

Queue *ready_queue(Queue *new_queue);

The internal structure may differ from queue to queue as well, provided the first
two fields are arranged to point to the queue’s put () and get () functions.
The priority scheme of FREE JAzz is specifically designed with soft real-time
threading in mind. While a single priority field would be usually sufficient
for non-real-time threading, life is not that easy as soon as priority inversion

11 FrEE Jazz automatically keeps track of blocked threads, that is, there is usually no need
to maintain a dedicated list for this purpose.

12

id value contraint

READY thread to insert constraint
SCHEDULE NOP, PRIO SAVE/RESTORE, NEXT constraint
CALL stymie descriptor constraint
PROCURE stymie descriptor unused
NICE address of semaphore/handler unused

Table 1: Scheduling messages as defined by FREE JAzz.

becomes an issue. In general, both fixed-priority scheduling algorithms, which
assign priorities to threads once and for all, as well dynamic-priority ones, which
evaluate the assigned priority from request to request, are supported by FREE
JAzz, with rate-monotonic scheduling (RMS) and earliest deadline first (EDF)
being their most prominent exponents, respectively. For fixed-priority schemes
we assume that the constraint field of each message is always set to the user-
defined global variable No_constraint, while otherwise the scheduler is called
whenever a thread reads or receives a message to adjust the thread’s priority
accordingly. Anyway, prio is intended to hold the basic priority of a thread,
that is, the one used to decide which thread should run next.!? The prior-
ity of the root thread may be initially set via the user-defined global variable
Root_priority.

The scheduling message most easily explained is READY, which tells the
scheduler that a new thread has become ready and should be inserted into the
ready queue. Its new priority should reflect the constraint passed on, which is
taken from the message that caused the thread to become ready. As always,
the scheduler may request a context switch to be performed subsequently if the
priority of the just inserted thread exceeds the priority of the running one.

Whenever a handler’s priority depends on the constraint associated with
the current message to process, its priority usually would override the priority
of the thread to whom the context belongs. Hence, FREE JAzZ automatically
generates a SCHEDULE message with a PRIO SAVE value to indicate that the
current priority should be saved before a new one, reflecting the accompanied
constraint, is calculated. The scheduler must store a saved priority (unequal
to the user-defined global variable No_save_prio) in the save_prio field to
request an appropriate restore message (PRIO RESTORE) as soon as the handler
is actually left, that is, its new queue became empty. Furthermore, it might
become necessary to save more than one priority whenever a handler itself sends
messages to another handler that is temporarily idle. In this case the scheduler
should stack the saved priorities accordingly and use the save_prio field as
pointer to an associated user-maintained stack space (not to be confused with a
thread’s function-call stack space). Note that in either case FREE JAzz interprets
save_prio simply as a flag that indicates whether or not a priority actually has
been saved and, thus, a corresponding restore message is expected.

SCHEDULE messages with a NOP value, on the other hand, simply grant a
reassignment of the CPU, either on behalf of the currently running thread or
due to a preemption signal whose frequency also is user-defined via the global

12 Again, albeit their declaration as Longs it should be noted that any pointer may be stored
within each priority field.

13

constant Timer_quantum. As far as SCHEDULE messages are concerned, this only
leaves the NEXT value open for discussion. Whenever a thread is blocked that
does not care about priority inversion, the scheduler nevertheless may request
always to be called in with a SCHEDULE/NEXT message, contrary to the default
behaviour of advancing to the first thread in the ready queue automatically. The
blocked thread, for instance, might have consumed more processing time than
anticipated, jeopardising the constraint of the message to be processed by the
first thread in the ready queue. Hence, processing this message might cause a
domino effect, endangering the constraints of even more messages. It is therefore
sometimes reasonable to cancel the processing of a single message before it has
started (even though it is not necessarily the message of the first thread in the
ready queue that must be sacrificied). To this end, the scheduler has access to
a thread’s new queue to modify the contents of a cancelled message, effectively
telling the recipient about its decision. It is not allowed, however, to remove a
message; any error handling required should be performed by the recipient only.

As soon as priority inversion must be bounded to allow for (soft) real-time
reasoning, additional measures must be taken. Again, a combination of schedul-
ing messages and variables of Thread is used. Priority inversion may occur
while calling a handler or procuring a critical section. For processes blocked at
a semaphore and with their tame_prio_inv flag set, procure () sends an appro-
priate PROCURE message to the scheduler, uniquely identifying the semaphore
and providing a pointer to the list of threads currently inside the critical section
as part of the stymie'? descriptor. In response, the scheduler may increase the
priority of some or all of the threads inside to minimise and, more importantly,
bound the waiting thread’s blocking time. The blocking threads, however, may
be blocked themselves at another semaphore, making it necessary to update the
waiting lists of the semaphores concerned in accordance with the priority just
inherited. Even more the priority of any threads inside these seamphores should
be possibly adjusted, too, causing some kind of transitive priority inheritance.
The thread’s semaphore field therefore always points to the semaphore a thread
is currently waiting for.

Anyway, the priority to restore must be saved in the restore_prio field to
make sure that vacate (), conversely, generates a corresponding NICE message
whenever a thread with an inherited priority finally leaves a critical section in
question.'® Thus, the scheduler may be called in twice within a single call to
vacate(). The first message of type READY concerns the process chosen to
enter the critical section next and is sent always. The second message, however,
is of type NICE and therefore only sent if the priority of the vacating thread has
been increased before due to some priority-inheritance protocol. Consequently,
the scheduler is expected to perform a context switch in response to the READY
message whenever the priority of the unblocked process exceeds the priority
of the vacating thread, and should wait for the corresponding NICE message
otherwise.

For processes blocked while calling a handler and with their tame_prio_inv
flag set, an appropriate CALL message is sent to the scheduler, uniquely iden-
tifying the handler in question and providing a pointer to the thread currently

13sty-mie n 1 (in golf) situation on the green in which an opponent’s ball is between
one’s own ball and the hole. 2 (fig infml) awkward or difficult situation. (Oxford Advanced
Learner’s Dictionary, 4th ed.)

14Note that restore_prio is interpreted by Frer Jazz as a flag only, similar to save_prio.

14

using the handler as part of the accompanied stymie descriptor. The constraint
field is taken from the message the thread was blocked on to judge the priority
of the call correctly. Again, the priority to restore as soon as the handler is left
by the blocking thread must be stored in the restore_prio field to receive an
appropriate NICE message later on.

The restore_reason field, finally, may point to a user-implemented struct
that records the unique identifiers mentioned before, since with nested prior-
ity inheritance it becomes necessary to associate the numerous NICE messages
accordingly.

5 PERFORMANCE

To demonstrate the viability of our approach a number of experiments on various
platforms have been performed, the results of four of which are summarised in
Table 2. Of course, flexibility cannot be expected to come for free, yet to
exactly quantify the overhead caused by opening the threads package a black-
box variant of FREE JAzz has been implemented. Numbers in bold face denote
the measured results for the open implementation — giving an impression of the
absolute performance of FREE JAzZ — and their relative performance in percent
compared to those measured for the black-box implementation, which are shown
in plain text.

It should be noted that all overhead denotes a worst-case loss in the sense
that an application’s overall performance will suffer from such a slow down only
if it does virtually no processing besides sending messages and causing context
switches. Consequently, the real-world overhead imposed by factoring out the
scheduler will be somewhere between virtually nothing and the percentage given
in Table 2, while exact figures are necessarily application-dependent.

The ‘send — process’ benchmark measures the time needed to send a sin-
gle message from one process to another one asynchronously, that is, without
a context switch. Such a send operation mainly consists of allocating a new
message and appending it to the recipient’s new queue in FIFO order. The re-
cipient is assumed to be in a ready-to-run state prior to receiving this message
and, thus, there is no scheduler intervention at all. Within the ‘send — handler’
benchmark, in contrast, the handler is assumed to be not in use and is therefore
invoked synchronously for the message within the context of the sending pro-
cess.!® The handler itself does nothing in response to the message but simply
returns.

The ‘call 2 process’ and ‘call 2 handler’ benchmarks, on the other hand,
quantify the round-trip time of calling a process or handler, respectively, with an
empty message. Again no processing is done by the recipient despite returning
the message fields unmodified. For processes (‘call 2 process’) this operation
causes, message allocation aside, two context switches and two scheduler in-
vocations of type READY. Neither of these is needed when calling a handler
(‘call 2 handler’) which explains the evident discrepancy in execution time.
Although two scheduler invocations require two send operations to a scheduling
handler, the overhead if compared to the black-box implementation is less than
the time of two handler invocations (i.e., two ‘send — handler’ operations).

151f the handler would be assumed to be in use, this benchmark and its results would be
equal to the ‘send — process’ benchmark.

15

send — process call 2 process

SunOS 4.1.3 2.21 68.84
SPARCIO0 Model 20 2.34 (+5.9%) 71.90 (+4.4 %)

Lynx0S 2.5.0 0.60 15.43
P166 0.60 (£0.0%) 16.07 (+4.1%)

Linux 2.0.30 0.59 2.78
P166 0.59 (+0.0%) 3.50 (+25.9%)

Linux 2.0.30 0.49 2.20
P200MMX 0.49 (£0.0%) 2.72 (+23.6%)

send — handler call 2 handler

SunOS 4.1.3 3.98 5.01
SPARCI0 Model 20 4.26 (+7.0%) 5.28 (+5.4%)

LynxOS 2.5.0 1.04 1.25
P166 1.06 (+1.9%) 1.30 (+4.0%)

Linux 2.0.30 1.03 1.23
P166 1.02 (—1.0%) 1.26 (+2.4%)

Linux 2.0.30 0.85 0.97
P200MMX 0.79 (—71%) 0.95 (—2.1%)

Table 2: FREE JAzZ performance figures measured in us.

Since scheduling handlers are necessarily non-preemptive it was possible to cut
corners within FREE JAzZZ and to speed up scheduler invocations beyond the
time needed for the invocation of a standard, possibly preemptive handler.

On the SPARC processor the overhead of the open implementation versus its
black-box variant affects all benchmarks, yet is thoroughly quite low. On the
PENTIUM processor, in constrast, the overhead mainly shows up when scheduler
invocations are involved. The bad absolute performance of the ‘call 2 process’
benchmark under LynxOS is most probably due to a very slow implementation
of the setjmp () and longjmp () library functions, as the otherwise competetive
results indicate. These library functions are used in FREE JAzz to perform
context switches and, thus, their performance is crucial. The absolute overhead,
however, is comparative to the one measured under Linux.

Under Linux in general and with the PENTIUM MMX processor in particular,
slight cache anomalies show up, suggesting that the open implementation even
can outperform the black-box variant for some benchmarks. For real-world
applications, however, we expect that such effects will wear away.

16

6 CONCLUSIONS

As stated in the introduction, no user-level threads package has gained wide
popularity among designers of multi-threaded run-time systems or middleware
components at the time of writing. This is caused by adhering to the black-box
principle, which has been the predominant line of thought when developing user-
level threads packages in the past. However, due to the inherent inflexibility that
results from this approach, design dilemmas must be solved once and for all,
more often than not in mismatch with the requirements a developer of multi-
threaded run-time systems tries to meet later on. As a consequence, developers
commonly refrain from using a readily available user-level thread packages at
all and usually develop yet another one on their own in the end.

Although the open implementation design methodology was specifically de-
veloped as a way to open traditional black boxes, the idea of a meta interface
was systematically employed for a user-level threads package only recently by
Haines, whose OPENTHREADS, however, are not concerned with (soft) real-time
threading in particular [7]. With FREE JAZZ we propose an open user-level
threads package that tries to fill this gap. The chosen interface, foremost in-
tended as proof of concept, admittedly still must stand the test of time and,
thus, refinements in response to future experience with FREE JAzz are down-
right inevitable. Nevertheless, the performance figures suggest that the adopted
course is promising at least and we will continue to explore the opportunities as
well as the limitations of our approach likewise.

Specifically, we are in the process of developing an object-oriented variant
of FREE JAzz, called CooL Jazz, that will provide the flexibility of FREE JAzZz
via type-safe customisation. CooL JAazz will become the execution environment
of our QoS-supporting middleware architecture currently under development
[12]. As part of this work we will also investigate ways to integrate user-level
schedulers and kernel-level schedulers hierarchically [1, 6, 13], that is, we are
ultimately aiming at first-class real-time threads.

ACKNOWLEDGEMENTS

First of all special thanks to Peter Buhler for providing the black-box thread
package that served as the starting point for FREE Jazz. Approximately 50 %
of the original code survived virtually unchanged. Additional thanks (in alpha-
betical order) to Lothar Baum, Volker Hiibsch, Rainer Koster, and Reinhard
Schwarz for their valuable comments on this report during its various stages of
preparation.

17

1]

2]

3]

[4]

[5]

[6]

[7]

18]

9]

[10]

[11]

[12]

[13]

REFERENCES

T. E. Anderson, B. N. Bershad, E. D. Lazwoska, and H. M. Levy. Scheduler
activations: Effective kernel support for the user-level management of par-
allelism. In Proceedings of the Thirteenth Symposium on Operating System
Principles (SOSP), October 1991.

T. E. Anderson, E. D. Lazowska, and H. M. Levy. Performance implica-
tions of thread management alternatives for shared memory multiproces-
sors. IEEE Transactions on Computers, 38(12):1631-1644, December 1989.

B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO: A system for
object-oriented parallel programming. Software — Practice and Ezperience,
18(8):713-732, August 1988.

B. N. Bershad, E. D. Lazwoska, H. M. Levy, and D. B. Wagner. An open
environment for building parallel programming systems. ACM SIGPLAN
Notices, 23(9):1-9, September 1988.

D. Finkelstein, N. C. Hutchinson, D. J. Makaroff, R. Mechler, and G. W.
Neufeld. Real-time threads interface. Technical Report TR-95-07, Depart-
ment of Computer Science, University of British Columbia, Canada, 1995.

P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU scheduler for mul-
timedia operating systems. In Proceedings of the Second Symposium on
Operating Systems Design and Implementation (OSDI). USENIX, October
1996.

M. Haines. On designing lightweight threads for substrate software. In Pro-
ceedings of the 1997 Annual Technical Conference, pages 243—-255. USENIX,
1997.

D. Keppel. Tools and techniques for building fast portable threads packages.
Technical Report UWCSE 93-05-06, Department of Computer Science and
Engineering, University of Washington, May 1993.

G. Kiczales, R. DeLine, A. Lee, and C. Maeda. Open implementation
analysis and design of substrate software. In Tutorial Notes, OOPSLA ’95.
ACM/SIGPLAN, October 1995.

G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms
(Third Edition). Addison Wesley, 1997.

T. Kramp and R. Koster. A service-centred approach to QoS-supporting
middleware. Work-in-Progress Paper presented at Middleware 98 (IFIP
International Conference on Distributed Systems Platforms and Open Dis-
tributed Processing), September 1998.

S. L. Ann Lo, N. C. Hutchinson, and S. T. Chanson. Architectural consid-
erations in the design of real-time kernels. In Proceedings of the Fourteenth
Real-Time Systems Symposium, pages 138-147. IEEE, December 1993.

18

[14]

[15]

[16]

[17]

B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-
class user-level threads. In Proceedings of the Thirteenth Symposium on
Operating System Principles (SOSP), October 1991.

S. Oikawa and H. Tokuda. User-level real-time threads: An approach to-
wards high performance multimedia threads. In Proceedings of the Fourth
International Workshop Network and Operating System Support for Digital
Audio and Video (NOSSDAV), pages 66-76, November 1993.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, pages 277—288, 1984.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronisation. IEEE Transactions on Comput-
ers, pages 1175-1185, September 1990.

19

