
Free Jazz: An User-Level Real-Time ThreadsPackage Designed for FlexibilityThorsten Krampkramp@informatik.uni-kl.de
Report 9/98Sonderforschungsbereich 501

System Software GroupComputer Science DepartmentUniversity of KaiserslauternPostfach 304967653 KaiserslauternGermany

Free Jazz: An User-Level Real-Time ThreadsPackage Designed For FlexibilityThorsten Kramp�University of Kaiserslautern, Department of Computer ScienceP.O. Box 3049, 67653 Kaiserslautern, GermanyABSTRACT. Up to now designers of multi-threaded run-time sys-tems traditionally disdain readily available user-level threads pack-ages due to their inherent lack of �exibility, resultant from preva-lently adhering to the black-box approach. FREE JAZZ, in contrast,is a user-level threads package developed in the spirit of the openimplementation design methodology, providing a well-devised metainterface particularly with respect to soft real-time scheduling, inter-thread communication, and synchronisation. Any scheduling codehas been systematically factored out to allow for easy customisationand adaption even at run time. The general viability of this ap-proach is demonstrated by the results of a number of performancemeasurements carried out.1 ON GRIEF AND REASONFREE JAZZ is a user-level real-time threads package.1 �Uh oh,� I hear you saywith a wry smile, �yet another user-level threads package. So what?� Andyes, you are right�partially. However, no single user-level threads package hasgained wide popularity among designers of multi-threaded run-time systems ormiddleware components at the time of writing. In fact, only a few, if any, seemto use a readily available user-level threads package at all, yet develop theirown. Performance reasons and portability problems aside, the main obstaclestill remaining usually is an inherent lack of �exibility, ultimately caused byadhering to the black-box principle. To be more speci�c, each developer of athreads package must face and �nd a solution for a number of critical designdecisions, so-called design dilemmas or just dilemmas for short, namely in theareas of thread states, thread lists and scheduling, context switching modes,stack management, as well as timing and pro�ling. The developer of a threadspackage, however, cannot anticipate the �best� way to solve these dilemmas,�kramp@acm.org1The name Free Jazz was chosen because threads are similar to the members of a freejazz band, at least to a certain extend. While each musician often seems to follow a highlyindividual theme (and more often really does), everyone perfectly contributes to the commontune in real time. 1

whereas the designer of the multi-threaded run-time system is assumed to betargeting a speci�c application domain and therefore hopefully can. Trying tobe clairvoyant only will force �coding between the lines,� that is, playing hider-and-seeker with the threads package to get it out of the way.The argument itself is not new and merely a variant of the famous end-to-end argument discussed by Saltzer et al. in the context of communicationprotocols [16]. Knowing that there are no silver bullets for dilemmas, researchin the realm of object-oriented system-level software came up with the openimplementation design methodology [9, 10]. Basically, the functional interfaceof a black box is enriched by an interface that describes the behaviour of itscomponents, the so-called meta interface. This way critical design decisions aresystematically exposed, sometimes with a fall-back policy that might be goodenough for those who do not care, while the sensitive user is free to jump inand provide a better alternative whenever he or she is not satis�ed with thedefault. Such an approach is particularly promising for user-level threads pack-ages that might serve as starting points for building multi-threaded run-timesystems. Yet, while con�gurable user-level threads packages such as PRESTOhavebeen around since 1988 at least [3, 4], the notion of an open implementationhas been only recently exploited systematically for threads by Haines, whoseOPENTHREADS were intended as a proof of concept [7]. Neither OPENTHREADSnor any other con�gurable user-level threads package we know about, however,were developed with real-time environments in mind.At the heart of each open implementation is agreeing on which design deci-sions actually are critical and which are not; simply turning everything into anoption is not an option. In fact, the meta interface should be kept as small aspossible, yet cover all dilemmas. �If a user-level threads package is not useful toa system-level programmer, lack of control over scheduling is commonly at theroot of the cause.� [7] Black-box implementations allow the user to choose froma number of pre-de�ned schedulers at best, which is necessarily rather restric-tive in view of the vast amount of quite di�erent policies developed during thelast three decades. In addition, all sorts of internal queueing and any synchro-nisation primitives may be a�ected by a scheduling policy, speci�cally in thecontext of real-time systems, where priority inversion usually becomes an issueand fairness is sacri�ced light-heartedly. Rather than implementing one or evenmany schedulers at the core of a threads package, it therefore seems far morepromising to transform thread transitions into events and let the user decidewhat to do next. All thread lists and, in the case of inter-thread communica-tion, all message queues must be made explicit in such a way that their policiesand internal structure may be overridden on demand. As minor aspects, stackmanagement and context switching modes may also be opened, mainly withstack allocation and saving/restoring of registers in mind, respectively.In the following sections we present FREE JAZZ, a user-level threads packageto be used with C/C++ and developed in the spirit of the open implementationdesign methodology. Speci�cally and in contrast to OPENTHREADS, the par-ticularities of soft real-time requirements are explicitely considered. While theunderlying programming model and most of its internal structure are inheritedfrom an undocumented non-real-time black-box threads package originally de-veloped by Peter Buhler here at the Distributed Systems Group, scheduling hasbeen systematically untangled from the inner core and the ground prepared forsoft real-time threading. 2

The rest of this report is structured as follows. At �rst, an overview of relatedwork is given in Section 2. Then, Section 3 pinpoints the pivotal concepts of theunderlying programming model, before Section 4 gives an impression of whatthe programmer's interface actually looks like. Section 5, �nally, summarisesthe results of some performance measurements carried out, with conclusionsfollowing in Section 6. 2 RELATED WORKOne of the �rst extensible user-level threads packages is PRESTO, written in C++and designed with the philosophy that users should be able to replace compo-nents such as the scheduler [3, 4]. PRESTO targets multiprocessor machines suchas the Sequent Balance 21000 and particularly allows di�erential extensions (dueto the use of C++) as well as lateral extensions, that is, to change the behaviourdynamically at run time. However, a re-implementation in C and Assemblercalled FASTTHREADS, in which all policies were hard-coded, is about an orderof magnitude faster [2].QUICKTHREADS, in contrast, refrains from being a complete threads packageon its own, yet provids a threads toolkit for uniprocessor architectures with aportable interface to machine-dependent code that performs thread initialisationand context switching [8]. That is, it plainly avoids all dilemmas right from thebeginning by not including functionality such as scheduling and synchronisationprimitives. This way QUICKTHREADS attempts to achieve most of the �exibilityof PRESTO while retaining a performance similar to FASTTHREADS.OPENTHREADS, �nally, is similar to FREE JAZZ in that it systematically ex-ploits the notion of an open implementation and reports thread state transitionsto a user-de�ned scheduler [7]. Neither OPENTHREADS nor any other of theaforementioned threads packages, however, has been developed speci�cally withreal-time environments in mind, while real-time user-level threads packages, incontrast, were black-box solutions up to now.RT THREADS [5], for instance, is such a real-time user-level threads pack-age, which even provides mechanisms for inter-thread communication betweendi�erent address spaces, possibly on di�erent machines. Its synchronisationprimitives, however, do not care about priority inversion and the scheduling pol-icy�a priority-driven approach featuring EDF (earliest deadline �rst) withineach priority� is buried. While the RT THREADS package is operating systemindependent, the user-level real-time threads of the ARTS operating system [15]are so-called �rst-class threads. That is, the process scheduler of the kerneland the threads schedulers of all processes interact via scheduler activations asproposed by Anderson et al. [1] and Marsh et al. [14], for instance.Yet, the need for more �exibility speci�cally with respect to real-time archi-tectures has also been identi�ed by Ann Lo et al. [13] as well as Goyal et al. [6].Their work on real-time kernels, extending the idea of scheduler activations, ledto a hierarchy of kernel-level and user-level schedulers. To this end, our openuser-level threads packages naturally adds to these architectures.3 THE RULES OF THE GAMEPrior to getting real with function calls and parameter lists, this section ismeant to introduce the basic abstractions and the underlying design philosophyof FREE JAZZ. 3

Basic Abstractions & Inter-thread Communication.Programming in FREE JAZZ is foremost a game on the grounds of processing inresponse to messages, that is, reactivity is at the core of what this is all about.A thread only jumps into action after it has received a message and equallymay send messages to other threads, e�ectively requesting some processing onits behalf. The whole process is initially set into motion by a root thread createdduring system startup, which usually spawns a �rst set of user threads, sendssome go-ahead messages to a subset of these, and �nally awaits termination.For all practical matters, messages can be assumed to originate from anotherthread; any hardware I/O including timer signals or user interaction already isor may be transformed by dedicated threads into appropriate messages. Thesemessages will re-animate the web of interacting threads if there was temporarilynothing left to do and the system went idle.int thread fct(msg params) f...return done;gnew queuesave queueFig. 1: A thread as seen from a user's point of view.A thread merely consists of a C function with a �xed parameter list that de-scribes the next message to process and is associated with a certain priority.Further, due to the intrinsic importance of inter-thread communication basedon messages, it seems natural to introduce a queue with each thread to hold in-coming messages, the so-called new queue. With each invocation of a thread theassociated function is called, which performs a series of steps in response to the�rst message found in the new queue. These steps possibly include interactionwith other threads and reading further messages from the new queue, before �-nally the thread's function is left with a return value. The return value indicateswhether the thread awaits further messages and should remain in the system,or has terminated eventually and should be disposed of. If the thread is keptaround, its function will be called again as soon as no thread of higher priorityis requesting processing time, provided not all messages have been processedduring the thread's last invocation or new ones have arrived in the meantime.Additionally, each thread is equipped with a save queue to temporarily storemessages that cannot be processed immediately and require further preparation,due to an outstanding response from another thread, for example.At each instant, a thread is either preemptable and may be interrupted infavour of a higher-priority thread, or non-preemptable, processing undisturbeduntil it blocks, allows a reassignment of the processor at its free will, or returnsfrom its associated function. Preemption can be dynamically disabled and re-enabled as needed. Note that the property of being preemptable is assigned ona per-thread basis, not globally. 4

Messages may either be sent synchronously if there remains nothing to dofor a thread until an answer is given, or asynchronously whenever the reply isnot necessarily needed right now to continue or no response is required at all.Synchronous messages are termed as calls (bearing resemblance to telephonecalls), whereas asynchronous messages are sent more similar to a letter. If notexplicitely stated otherwise, the term send is used to indicate that both callsand sends are valid within a particular context. Moreover, because FREE JAZZwas designed with soft real time in mind, a message may be accompanied by auser-de�ned constraint �eld to describe scheduling properties such as deadlines.Up to this point all threads are equal, but some threads are more equal thanothers. What sets a thread apart from an ordinary C function is the notion of acontext, comprising the registers of the CPU including the process counter, thestack pointer, and some additional �elds describing the thread's state or priority,for example. In FREE JAZZ, however, some threads do not own a context of theirown yet have to �borrow� one from a thread that sent a message recently. Todistinguish both species of a thread we call those with a context of their ownprocesses (not to be confused with heavy-weight UNIX processes) and those ofthe context-sharing party handlers. The term thread will only be used from nowon when process or handler could have been used interchangeably, that is, whenit does not matter to whom the context actually belongs.Anyway, the policy of context sharing is as follows. If a message is sent to ahandler that is currently busy with another message, the behaviour is the sameas if the message would have been sent to another process� the sending threadis blocked on calls and continues on sends. Otherwise the handler is invokedimmediately and processes the message, borrowing the context of the sendingthread. As soon as the handler returns, the borrowed context is given backprovided the handler was not preempted by some higher-priority thread andhas received further messages in the meantime. If its new queue is not empty,however, any pending messages are also processed within the borrowed context.Although a handler is free to save an incoming message for later processing,possibly blocking a calling process, a handler on its part must not block due tosome technical subtleties. Speci�cally, a handler is not allowed to call anotherthread. Invoking a handler, however, is signi�cantly faster than invoking aprocess (cf. Table 2 in Section 5).Of Monitors and Semaphores.FREE JAZZ does not multiplex its user-level threads onto a small number ofkernel-level threads (which would be particularly reasonable on an SMP) and,thus, only provides multi-programming, not multi-processing at the time of writ-ing. The pitfalls of concurrently accessed shared data, however, remain never-theless. Threads still must synchronise prior to accessing shared data; otherwisebewildering inconsistencies inevitably will cause complete havoc in the end.A simple, yet perfectly reasonable approach to ease the pain of synchronisa-tion for user-level threads is going non-preemptive. Generally, the programmermay be assumed to be able to organise the threads of an application or mid-dleware component in such a way that these are working cooperatively. Thescheduler is only called in whenever a thread blocks, explicitely grants a reas-signment of the CPU, or is done with a particular message and returns fromits function. This way a thread's function cushily becomes the unit of mutualexclusion with respect to shared data. 5

Sometimes, however, preemption is handy at least. The programmer is re-lieved from manually taking care of higher-priority threads during long-runningcalculations and real-time system designers, even those in the business of softdeadlines only, usually try hard to keep the periods of non-preemption at aminimum to tame priority inversion, for instance. Consequently, �ne-grainedsynchronisation primitives are reasonable by all means.Interesting enough, handlers already can be used for such a �ne-grainedsynchronisation.2 Although not explicitely mentioned before, the properties ofhandlers are related to those of a monitor, particularly if invoked synchronouslyby a call. First of all, a handler is non-reentrant by de�nition and therefore maybe used to access shared data mutually exclusively. Instead of a set of di�erentfunctions as found in a monitor, di�erent messages may be sent to a handler,which is logically equivalent. But what about condition variables? Of course,there is no signal or wait; similar e�ects, however, can be achieved by meansof the save queue. It is easy to see that saving the message of a calling thread isequivalent to thewait operation of a condition variable. Reading and processinga saved message corresponds to a signal operation where the signalled threadis given precedence over the signalling one. It is therefore straightforward to usehandlers as synchronisation mechanism in the spirit of monitors, even thoughthe code will look quite di�erent.The same is obviously true for semaphores, which may be emulated by a han-dler with a single local variable used as semaphore counter. The P operationis substituted for a procure message that simply decrements the semaphorecounter if its value is greater than zero, otherwise the message is saved, e�ec-tively blocking the calling process. V operations conversely are substituted forvacate messages that cause a reply to a saved message or just an incrementof the semaphore counter if no thread is currently hold o�. Thinking aboutpriority inheritance [17] as a way to bound priority inversion, however, requiresadditional care. While calling a handler to perform some processing might re-sult in priority inversion, too, this is automagically detected by FREE JAZZ andappropriately signalled to the scheduler. With handlers as semaphores, how-ever, there is no association of a critical section and its protecting semaphore;appropriate signals must be generated by the handler manually. Though FREEJAZZ was developed with exactly this kind of user extension in mind, semaphoresare popular enough to provide them right out of the box just for the sake ofconvenience� it would have been no harder for the designer of a multi-threadedrun-time system to add these semaphores by herself.Memory Management.Since FREE JAZZ is targeting (soft) real-time environments, its memory manage-ment has been designed to be predictable with respect to utilisation as well asworst-case execution times.Utilisation predictability means that there are no hidden memory allocationswhich cause an application to become surprised by an out-of-memory error�provided the application-speci�c demands do not exceed the available memory,of course. Each memory allocation is only done in response to a user request.2The following arguments mostly hold for processes, too; however, it seems more naturalto use a handler for synchronisation purposes since it will not produce a context switch aslong as no serialisation is needed and incidentally inherits the priority of the invoking thread.6

Speci�cally, FREE JAZZ does not generate messages plainly out of thin air, noteven to signal hardware interrupts. The general policy, in contrast, is for anapplication to provide the message it would like to receive in response to ahardware interrupt, which is simply �bounced� as the interrupt occurs. Con-sider a timer interrupt, for instance. The application sends a message to theFREE JAZZ timer thread, denoting an interval after that it would like to be no-ti�ed as the message value. When the speci�ed period of time has expired, thetimer thread simply replies the given message without any memory allocationon its own. Since this approach is used throughout, memory utilisation is highlypredictable and allows the programmer to keep track of the available memoryquite easily.Predictability with respect to worst-case execution times, in contrast, isconcerned with the allocation and deallocation operations. While deallocationincluding any necessary coalescences of adjacent free blocks always can be donein constant time, that is O(1) steps, allocation can be worst-case bounded toO(logn) steps at best [11]. FREE JAZZ, however, obeys a user-de�ned bound kon the number of elements in the free list that are inspected as part of eachallocation operation. If no su�ciently large memory block can be found in the�rst k elements of the free list, memory allocation simply fails. This way a worst-case bound on memory allocation and deallocation can be derived, particularlysince FREE JAZZ optionally disables paging for all its memory via the mlock()system call. Going Meta.By now an alert reader will probably scratch his head and ask himself whatscheduling policy eventually is used in FREE JAZZ. Well, this one is easy. There isnone! 3 Yes, we already mentioned priorities, priority inheritance, and messageconstraints but recall what was stated in Section 1 as the primary reason forintroducing a meta interface in the beginning: �If a user-level threads packageis not useful to a system-level programmer, lack of control over scheduling iscommonly at the root of the cause.� [7]Consequently, we refrained from adding a covert scheduler, yet systemati-cally transformed thread state transitions into appropriate messages to be pro-cessed by user-implemented non-preemptive scheduling handlers. These han-dlers are responsible for ordering processing requests, assigning appropriatepriorities, and for signalling FREE JAZZ whenever a context switch should beperformed. To this end the user has complete control over the internal organi-sation of the ready queue, may it be a doubly linked list, a heap, or somethingelse the world has not seen before. What a priority looks like and the way itshould be interpreted are open issues, too, only to be resolved by the user.Foremost the transitions reported are when a thread becomes ready (markedas 1 in Fig. 2), when a reassignment of the CPU occurs due to preemptionor at the will of the active thread (2), or when the active thread runs outof messages to process and becomes idle (3). In contrast to OPENTHREADSthere are no messages when a thread has been newly created (remember thata thread only becomes ready when it receives a message) or is destroyed, nor3Well, not really, of course. A simple rate-monotonic scheduler with a quite rudimentaryunderstanding of what priority inheritance is about has been implemented and is included asfall-back policy. 7

WAITING READY BLOCKEDRUNNINGcreated terminated1 123 (4)Fig. 2: Thread state transitions.does FREE JAZZ report system idle times to the scheduler. The user, however,might easily allocate some kind of idle thread to gather load statistics or mightadd create/destroy messages to be handled by a suitable scheduling component.Furthermore, the scheduler may request always to be called whenever a threadis blocked at a semaphore or while calling a handler, or only for threads thatshould endure bounded priority inversion at worst (4). The former is reasonableif the execution of the �rst thread in the ready queue might be cancelled due toa missed time constraint, for instance, while the latter allows the scheduler toadjust the priority of a lower-priority thread, e�ectively bounding the blockingtime of higher-priority threads. As soon as the blockade has been raised, amessage requests the scheduler to reset the inherited priority to its originalvalue and to reassign the CPU in favour of the waiting higher-priority thread.The scheduler also might take care of nested or multiple priority inheritanceon the grounds of internally assigned unique identi�ers that link correspondinginherit/reset requests.Beside these pre-de�ned messages, the user is free to de�ne additional onesas part of an admission test, for example. After all, a scheduling policy usuallya�ects not only a thread's priority but must also be pervasively re�ected byits new queue at least. The default policy is FIFO because the aforementionedconstraint �eld of a message is completely user-de�ned. It is therefore up tothe user to enhance the doubly linked FIFO queue with an appropriate sortfunction when needed or to provide a complete replacement. Speci�cally, thesort function may deny a message, which cannot be processed with respect tothe constraint given. And �nally, although this is not an issue of priorities, athread might use its own save queues as replacement of or in addition to thestandard FIFO save queue.This only leaves the waiting queues of semaphores open for discussion, which,of course, should be priority-driven, too. However, since FREE JAZZ again doesnot prescribe the structure of a thread's priority similar to the constraint �eld ofa message, it cannot anticipate a reasonable sorting policy on its own. Queueingat semaphores is therefore done in FIFO order by default but may be overriddenby any user-implemented policy.4 FACING THE INTERFACEWhile a neat concept surely is more than half the battle, an equally well-devisedprogrammer's interface is needed to keep the promises. What follows shouldprovide enough information to round out the conceptually-driven presentationof the previous section with some practical insight.8

In contrast to the approach chosen by OPENTHREADS, the functional inter-face and the meta interface are not strictly separated in FREE JAZZ. It seemedto be more convenient and natural to mix up both kinds of parameters to a cer-tain extend rather than to introduce dedicated functions for meta parametersarti�cally. Thread Creation.From a programmer's point of view, a thread is just a C function that agreeswith the following prototype:4int (*Code)(void *environment, Object *from,long id, long value, long constraint);The environment parameter points to a user-de�ned struct of variables local tothat thread, whereas the remaining four parameters describe the message thatcaused the thread to become active.5 The return value of a thread's functionmust be set to STOP if the thread has terminated and should be disposed of,while any value equal to or greater than 0 ensures that the thread is kept around.All messages in FREE JAZZ adhere to a �xed format of four �elds. The fromparameter always identi�es the sender of the message and is set automaticallyas part of any send operation, while structure and content of id, value, andconstraint are entirely user-de�ned.6 Both id and value are evaluated bythe recipient of a message only and, thus, their meaning need not be relatedto their names in any way. The constraint parameter, on the other hand, isintended to prescribe any restrictions or special boundary conditions associatedwith a message (e. g., a deadline). The recipient aside, it may (and probablywill) be evaluated by the sort function of the recipient's new queue and by somescheduling components to adjust the priority of the recipient accordingly. Thescheduler is not called in if the constraint parameter equals No_constraint,a user-de�ned global variable that allows FREE JAZZ to distinguish whether aconstraint potentially a�ects the recipient's priority or not.7Calling new_process() or new_handler() transforms any suitable C func-tion into a thread. Since handlers must �borrow� their contexts from the in-voking thread, the parameters needed to create a new handler are merely asubset of those needed to create a process. Hence, common parameters are dis-cussed �rst. While environment should point to a struct containing a thread'slocal variables as described before,8 the queue parameter may be used to over-ride the implementation of the thread's new queue whenever the default doublylinked FIFO queue is inappropriate. Instead of a complete reimplementation itis also possible to stick to the doubly linked list and only to replace the FIFO4The inevitable pre�x FJ_ of all FreeJazz function and struct names has been removedfor brevity.5The environment comes �rst to provide for C++member functions instead of plain C func-tions, in which case it is equal to the this pointer and need not be declared explicitely.6Albeit their declaration as longs it should be noted that any pointer may be passed alonginstead with the appropriate casts at both ends. Thus, all three parameters e�ectively cancarry any amount of data.7Recall that a constraint's structure and content are not restricted in any way and, thus,No_constraint is not a pre-de�ned constant either.8If a C++ member function is used as thread function, the environment parameter mustbe a pointer to an object of the corresponding class.9

policy on demand by overriding the put() and get() function pointers of theMessage_Queue struct.Object* new_process(Code code, Message_Queue *queue, char *stack,long stack_size, Memory *memory, long prio, int tame_prio_inv,void *environment);Object* new_handler(Code code, Message_Queue *queue,int tame_prio_inv, void *environment);The meaning of the tame_prio_inv �ag di�ers for handlers and processes. Re-call that a handler is not allowed to block and, thus, cannot sustain priorityinversion at all. However, since handlers are left only as soon as their newqueue has been emptied completely, these pending messages may cause a vir-tually unbounded priority inversion when the handler is invoked from within acritical section or another handler. A higher-priority thread waiting at an outerhandler or critical section generally cannot estimate the number of messageswaiting at the inner handler and therefore has no idea how long its blocking willlast even in the worst case. Consequently, a handler with the tame_prio_inv�ag set automatically becomes non-preemptive when called from within anotherhandler or a critical section.For processes, on the other hand, the tame_prio_inv �ag indicates whetheror not blocking at handlers or semaphores should be reported to the schedulerto allow for some sort of priority inheritance. Furthermore, if such a threadinvokes an inside handler in the sense as described in the former paragraph, thehandler again is invoked non-preemptively, because a process that does not wantto su�er from unbounded priority inversion should not cause it either. With theremaining parameters stack and stack_size a user may provide some pre-allocated stack space to be used by that process or may request FREE JAZZ toallocate the stack from the free space designated, while prio denotes the initialpriority of the new process.9Inter-thread Communication.As mentioned before, messages may either be sent synchronously or asynchro-nously. In general, both the aynchronous send() and the synchronous call()must allocate a new message if the recipient is either a handler currently in useor a process. Otherwise message allocation is avoided for the time being dueto some lazy allocation scheme that sets aside one pre-allocated message bu�erper handler. The asynchronous reply() simple reuses the current bu�er.int send(Object *to, long id, long value, long constraint);int call(Object *to, long *id, long *value, long *constraint);int reply(long id, long value, long constraint);On the recipient's side we must consider reading the next message from the newqueue, saving a message that cannot be processed immediately, and fetchingthese messages from a save queue later on again.int read(Object **from, long *id, long *value, long *constraint, int mode);int save(long id, long value, long constraint, Message_Queue *queue);int read_saved(long selection, Object **from, long *id,long *value, long *constraint, Message_Queue *queue);9Albeit its declaration as long it should be noted that any pointer may be stored withinall priority �elds (similar to the message parameters).10

The meaning of these functions and most of their parameters should be self-evident. The mode parameter of read() distinguishes between blocking readoperations that only return when there is actually a message to read, and non-blocking ones reporting an error code if the new queue is currently empty.10To retrieve a particular message from a save queue the selection parameterof read_saved() is interpreted as a bit �eld that speci�es whether and whichof the other parameters contain values that should match the message to read.Further on, any number of save queues may be used in parallel, with a doublylinked list sorted by value as default queue whenever queue is a null pointer.Synchronisation.Since there are no dedicated synchronisation primitives in FREE JAZZ apart fromsemaphores, the programmer's interface in the area of synchronisation is quiteeasy to survey (cf. the discussion in Section 3).Semaphore *new_semaphore(long count, Queue *queue);int free_semaphore(Semaphore *semaphore);A semaphore's count parameter prescribes the number of threads that are al-lowed to stay inside the critical section protected by this semaphore simulta-neously. Whenever FIFO queueing at a semaphore is inappropriate, the user isfree to provide an alternative implementation via the queue parameter.int procure(Semaphore *semaphore, int mode);void vacate(Semaphore *semaphore);procure() may be called either in blocking and non-blocking mode similarto read(), speci�cally since handlers are not allowed to block. A non-blockingprocure, however, not necessarily ensures access to the critical section but simplymay return an error code rather than blocking the calling thread, leaving it upto the user to proceed accordingly.Scheduling.A thread's facilities with respect to scheduling are basically limited to yieldingthe processor or toggling its preemption status.void schedule(void);int preemption(int switch_flag);While calling preemption() only a�ects the preemption status of the runningthread, going non-preemptive silences all other threads until the running threadis done with the current message, blocked during a call or at a semaphore, orreleases the CPU at its free will. It should be noted, however, that when turningpreemption temporarily o�, it is, as a rule, imprudent to simply turn it on againsubsequently. It might have been already turned o� in the beginning for goodreason and, thus, the old preemption status returned by preemption() shouldbe restored instead.And now for something completely di�erent: The scheduling meta interface.As mentioned before, scheduling components in FREE JAZZ, which must be non-preemptive handlers actually, only react to scheduling messages, pre-de�ned as10Handlers are not allowed to block and, thus, are restricted to non-blocking reads.11

well as user-de�ned ones. The entire collection of pre-de�ned scheduling mes-sages as derived from Fig. 2 is summarised in Table 1 for easy reference and willbe explained step-by-step subsequently. Basically, a scheduling handler neverever performs a context switch by itself, yet directs FREE JAZZ to activate the�rst thread in the ready queue by setting the global �ag Passivate_running.Each scheduling handler may be registered for one or more message types.register_scheduler() returns the handler previously registered for this mes-sage type to allow for some kind of internal stacking, that is, the new schedulinghandler may forward corresponding messages accordingly.Object *register_scheduler(Object *object, long msg_type);void scheduler_install();During system startup, with no scheduling handler registered at all, FREE JAZZcalls the user-de�ned function scheduler_install(), within the user mustnominate (not necessarily di�erent) scheduling handlers to process ready andschedule messages. If priority inversion should be tackled, suitable schedulinghandlers for all of the remaining signals (i. e., call, procure, and nice) mustbe registered, too. Besides the user is free to de�ne new message types, registerappopriate scheduling handlers, and even to modify the scheduling con�gurationat run time if needed.The Thread struct as de�ned in FREE JAZZ already comprises a number ofrelevant �elds with respect to scheduling. While some of these should be quiteobvious in their meaning, others probably deserve a few words of explanation.Since FREE JAZZ makes no assumptions about the size of the thread struct, ad-ditional �elds may be easily appended whenever the default set is found lacking.typedef struct Thread_Struct {struct Thread_Struct *next, *prev; /* doubly linked */long prio, save_prio /* priority fields */long restore_prio, restore_reason; /* priority inheritance */Message_Queue *new_queue; /* thread's new queue */Semaphore *semaphore; /* blocked at semaphore? */...} Thread;Two �elds have been set aside to easily collect threads of similar state or impor-tance in doubly linked lists, which is the default implementation of the readyqueue by the way.11 The scheduler (i. e., more precisely, the team of cooperat-ing scheduling handlers), however, may exert any number of user-implementedready queues in parallel, activating the one for FREE JAZZ to use on demand.Using the term queue in its broadest sense, a call to ready_queue() dynamicallyactivates a new ready queue and returns the replaced one.Queue *ready_queue(Queue *new_queue);The internal structure may di�er from queue to queue as well, provided the �rsttwo �elds are arranged to point to the queue's put() and get() functions.The priority scheme of FREE JAZZ is speci�cally designed with soft real-timethreading in mind. While a single priority �eld would be usually su�cientfor non-real-time threading, life is not that easy as soon as priority inversion11Free Jazz automatically keeps track of blocked threads, that is, there is usually no needto maintain a dedicated list for this purpose.12

id value contraintready thread to insert constraintschedule nop, prio save/restore, next constraintcall stymie descriptor constraintprocure stymie descriptor unusednice address of semaphore/handler unusedTable 1: Scheduling messages as de�ned by FREE JAZZ.becomes an issue. In general, both �xed-priority scheduling algorithms, whichassign priorities to threads once and for all, as well dynamic-priority ones, whichevaluate the assigned priority from request to request, are supported by FREEJAZZ, with rate-monotonic scheduling (RMS) and earliest deadline �rst (EDF)being their most prominent exponents, respectively. For �xed-priority schemeswe assume that the constraint �eld of each message is always set to the user-de�ned global variable No_constraint, while otherwise the scheduler is calledwhenever a thread reads or receives a message to adjust the thread's priorityaccordingly. Anyway, prio is intended to hold the basic priority of a thread,that is, the one used to decide which thread should run next.12 The prior-ity of the root thread may be initially set via the user-de�ned global variableRoot_priority.The scheduling message most easily explained is ready, which tells thescheduler that a new thread has become ready and should be inserted into theready queue. Its new priority should re�ect the constraint passed on, which istaken from the message that caused the thread to become ready. As always,the scheduler may request a context switch to be performed subsequently if thepriority of the just inserted thread exceeds the priority of the running one.Whenever a handler's priority depends on the constraint associated withthe current message to process, its priority usually would override the priorityof the thread to whom the context belongs. Hence, FREE JAZZ automaticallygenerates a schedule message with a prio save value to indicate that thecurrent priority should be saved before a new one, re�ecting the accompaniedconstraint, is calculated. The scheduler must store a saved priority (unequalto the user-de�ned global variable No_save_prio) in the save_prio �eld torequest an appropriate restore message (prio restore) as soon as the handleris actually left, that is, its new queue became empty. Furthermore, it mightbecome necessary to save more than one priority whenever a handler itself sendsmessages to another handler that is temporarily idle. In this case the schedulershould stack the saved priorities accordingly and use the save_prio �eld aspointer to an associated user-maintained stack space (not to be confused with athread's function-call stack space). Note that in either case FREE JAZZ interpretssave_prio simply as a �ag that indicates whether or not a priority actually hasbeen saved and, thus, a corresponding restore message is expected.schedule messages with a nop value, on the other hand, simply grant areassignment of the CPU, either on behalf of the currently running thread ordue to a preemption signal whose frequency also is user-de�ned via the global12Again, albeit their declaration as longs it should be noted that any pointer may be storedwithin each priority �eld. 13

constant Timer_quantum. As far as schedulemessages are concerned, this onlyleaves the next value open for discussion. Whenever a thread is blocked thatdoes not care about priority inversion, the scheduler nevertheless may requestalways to be called in with a schedule/next message, contrary to the defaultbehaviour of advancing to the �rst thread in the ready queue automatically. Theblocked thread, for instance, might have consumed more processing time thananticipated, jeopardising the constraint of the message to be processed by the�rst thread in the ready queue. Hence, processing this message might cause adomino e�ect, endangering the constraints of even more messages. It is thereforesometimes reasonable to cancel the processing of a single message before it hasstarted (even though it is not necessarily the message of the �rst thread in theready queue that must be sacri�cied). To this end, the scheduler has access toa thread's new queue to modify the contents of a cancelled message, e�ectivelytelling the recipient about its decision. It is not allowed, however, to remove amessage; any error handling required should be performed by the recipient only.As soon as priority inversion must be bounded to allow for (soft) real-timereasoning, additional measures must be taken. Again, a combination of schedul-ing messages and variables of Thread is used. Priority inversion may occurwhile calling a handler or procuring a critical section. For processes blocked ata semaphore and with their tame_prio_inv �ag set, procure() sends an appro-priate procure message to the scheduler, uniquely identifying the semaphoreand providing a pointer to the list of threads currently inside the critical sectionas part of the stymie13 descriptor. In response, the scheduler may increase thepriority of some or all of the threads inside to minimise and, more importantly,bound the waiting thread's blocking time. The blocking threads, however, maybe blocked themselves at another semaphore, making it necessary to update thewaiting lists of the semaphores concerned in accordance with the priority justinherited. Even more the priority of any threads inside these seamphores shouldbe possibly adjusted, too, causing some kind of transitive priority inheritance.The thread's semaphore �eld therefore always points to the semaphore a threadis currently waiting for.Anyway, the priority to restore must be saved in the restore_prio �eld tomake sure that vacate(), conversely, generates a corresponding nice messagewhenever a thread with an inherited priority �nally leaves a critical section inquestion.14 Thus, the scheduler may be called in twice within a single call tovacate(). The �rst message of type ready concerns the process chosen toenter the critical section next and is sent always. The second message, however,is of type nice and therefore only sent if the priority of the vacating thread hasbeen increased before due to some priority-inheritance protocol. Consequently,the scheduler is expected to perform a context switch in response to the readymessage whenever the priority of the unblocked process exceeds the priorityof the vacating thread, and should wait for the corresponding nice messageotherwise.For processes blocked while calling a handler and with their tame_prio_inv�ag set, an appropriate call message is sent to the scheduler, uniquely iden-tifying the handler in question and providing a pointer to the thread currently13sty-mie n 1 (in golf) situation on the green in which an opponent's ball is betweenone's own ball and the hole. 2 (�g infml) awkward or di�cult situation. (Oxford AdvancedLearner's Dictionary, 4th ed.)14Note that restore_prio is interpreted by Free Jazz as a �ag only, similar to save_prio.14

using the handler as part of the accompanied stymie descriptor. The constraint�eld is taken from the message the thread was blocked on to judge the priorityof the call correctly. Again, the priority to restore as soon as the handler is leftby the blocking thread must be stored in the restore_prio �eld to receive anappropriate nice message later on.The restore_reason �eld, �nally, may point to a user-implemented structthat records the unique identi�ers mentioned before, since with nested prior-ity inheritance it becomes necessary to associate the numerous nice messagesaccordingly. 5 PERFORMANCETo demonstrate the viability of our approach a number of experiments on variousplatforms have been performed, the results of four of which are summarised inTable 2. Of course, �exibility cannot be expected to come for free, yet toexactly quantify the overhead caused by opening the threads package a black-box variant of FREE JAZZ has been implemented. Numbers in bold face denotethe measured results for the open implementation�giving an impression of theabsolute performance of FREE JAZZ�and their relative performance in percentcompared to those measured for the black-box implementation, which are shownin plain text.It should be noted that all overhead denotes a worst-case loss in the sensethat an application's overall performance will su�er from such a slow down onlyif it does virtually no processing besides sending messages and causing contextswitches. Consequently, the real-world overhead imposed by factoring out thescheduler will be somewhere between virtually nothing and the percentage givenin Table 2, while exact �gures are necessarily application-dependent.The `send ! process' benchmark measures the time needed to send a sin-gle message from one process to another one asynchronously, that is, withouta context switch. Such a send operation mainly consists of allocating a newmessage and appending it to the recipient's new queue in FIFO order. The re-cipient is assumed to be in a ready-to-run state prior to receiving this messageand, thus, there is no scheduler intervention at all. Within the `send! handler'benchmark, in contrast, the handler is assumed to be not in use and is thereforeinvoked synchronously for the message within the context of the sending pro-cess.15 The handler itself does nothing in response to the message but simplyreturns.The `call � process' and `call � handler' benchmarks, on the other hand,quantify the round-trip time of calling a process or handler, respectively, with anempty message. Again no processing is done by the recipient despite returningthe message �elds unmodi�ed. For processes (`call � process') this operationcauses, message allocation aside, two context switches and two scheduler in-vocations of type ready. Neither of these is needed when calling a handler(`call � handler') which explains the evident discrepancy in execution time.Although two scheduler invocations require two send operations to a schedulinghandler, the overhead if compared to the black-box implementation is less thanthe time of two handler invocations (i. e., two `send ! handler' operations).15If the handler would be assumed to be in use, this benchmark and its results would beequal to the `send ! process' benchmark. 15

send ! process call � processSunOS 4.1.3 2:21 68:84SPARC10 Model 20 2:34 (+5:9%) 71:90 (+4:4%)LynxOS 2.5.0 0:60 15:43P166 0:60 (�0:0%) 16:07 (+4:1%)Linux 2.0.30 0:59 2:78P166 0:59 (�0:0%) 3:50 (+25:9%)Linux 2.0.30 0:49 2:20P200MMX 0:49 (�0:0%) 2:72 (+23:6%)send ! handler call � handlerSunOS 4.1.3 3:98 5:01SPARC10 Model 20 4:26 (+7:0%) 5:28 (+5:4%)LynxOS 2.5.0 1:04 1:25P166 1:06 (+1:9%) 1:30 (+4:0%)Linux 2.0.30 1:03 1:23P166 1:02 (�1:0%) 1:26 (+2:4%)Linux 2.0.30 0:85 0:97P200MMX 0:79 (�7:1%) 0:95 (�2:1%)Table 2: FREE JAZZ performance �gures measured in �s.Since scheduling handlers are necessarily non-preemptive it was possible to cutcorners within FREE JAZZ and to speed up scheduler invocations beyond thetime needed for the invocation of a standard, possibly preemptive handler.On the SPARC processor the overhead of the open implementation versus itsblack-box variant a�ects all benchmarks, yet is thoroughly quite low. On thePENTIUM processor, in constrast, the overhead mainly shows up when schedulerinvocations are involved. The bad absolute performance of the `call � process'benchmark under LynxOS is most probably due to a very slow implementationof the setjmp() and longjmp() library functions, as the otherwise competetiveresults indicate. These library functions are used in FREE JAZZ to performcontext switches and, thus, their performance is crucial. The absolute overhead,however, is comparative to the one measured under Linux.Under Linux in general and with the PENTIUMMMX processor in particular,slight cache anomalies show up, suggesting that the open implementation evencan outperform the black-box variant for some benchmarks. For real-worldapplications, however, we expect that such e�ects will wear away.16

6 CONCLUSIONSAs stated in the introduction, no user-level threads package has gained widepopularity among designers of multi-threaded run-time systems or middlewarecomponents at the time of writing. This is caused by adhering to the black-boxprinciple, which has been the predominant line of thought when developing user-level threads packages in the past. However, due to the inherent in�exibility thatresults from this approach, design dilemmas must be solved once and for all,more often than not in mismatch with the requirements a developer of multi-threaded run-time systems tries to meet later on. As a consequence, developerscommonly refrain from using a readily available user-level thread packages atall and usually develop yet another one on their own in the end.Although the open implementation design methodology was speci�cally de-veloped as a way to open traditional black boxes, the idea of a meta interfacewas systematically employed for a user-level threads package only recently byHaines, whose OPENTHREADS, however, are not concerned with (soft) real-timethreading in particular [7]. With FREE JAZZ we propose an open user-levelthreads package that tries to �ll this gap. The chosen interface, foremost in-tended as proof of concept, admittedly still must stand the test of time and,thus, re�nements in response to future experience with FREE JAZZ are down-right inevitable. Nevertheless, the performance �gures suggest that the adoptedcourse is promising at least and we will continue to explore the opportunities aswell as the limitations of our approach likewise.Speci�cally, we are in the process of developing an object-oriented variantof FREE JAZZ, called COOL JAZZ, that will provide the �exibility of FREE JAZZvia type-safe customisation. COOL JAZZ will become the execution environmentof our QoS-supporting middleware architecture currently under development[12]. As part of this work we will also investigate ways to integrate user-levelschedulers and kernel-level schedulers hierarchically [1, 6, 13], that is, we areultimately aiming at �rst-class real-time threads.

ACKNOWLEDGEMENTSFirst of all special thanks to Peter Buhler for providing the black-box threadpackage that served as the starting point for FREE JAZZ. Approximately 50%of the original code survived virtually unchanged. Additional thanks (in alpha-betical order) to Lothar Baum, Volker Hübsch, Rainer Koster, and ReinhardSchwarz for their valuable comments on this report during its various stages ofpreparation. 17

REFERENCES[1] T. E. Anderson, B. N. Bershad, E. D. Lazwoska, and H. M. Levy. Scheduleractivations: E�ective kernel support for the user-level management of par-allelism. In Proceedings of the Thirteenth Symposium on Operating SystemPrinciples (SOSP), October 1991.[2] T. E. Anderson, E. D. Lazowska, and H. M. Levy. Performance implica-tions of thread management alternatives for shared memory multiproces-sors. IEEE Transactions on Computers, 38(12):1631�1644, December 1989.[3] B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO: A system forobject-oriented parallel programming. Software�Practice and Experience,18(8):713�732, August 1988.[4] B. N. Bershad, E. D. Lazwoska, H. M. Levy, and D. B. Wagner. An openenvironment for building parallel programming systems. ACM SIGPLANNotices, 23(9):1�9, September 1988.[5] D. Finkelstein, N. C. Hutchinson, D. J. Makaro�, R. Mechler, and G. W.Neufeld. Real-time threads interface. Technical Report TR-95-07, Depart-ment of Computer Science, University of British Columbia, Canada, 1995.[6] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU scheduler for mul-timedia operating systems. In Proceedings of the Second Symposium onOperating Systems Design and Implementation (OSDI). USENIX, October1996.[7] M. Haines. On designing lightweight threads for substrate software. In Pro-ceedings of the 1997 Annual Technical Conference, pages 243�255. USENIX,1997.[8] D. Keppel. Tools and techniques for building fast portable threads packages.Technical Report UWCSE 93-05-06, Department of Computer Science andEngineering, University of Washington, May 1993.[9] G. Kiczales, R. DeLine, A. Lee, and C. Maeda. Open implementationanalysis and design of substrate software. In Tutorial Notes, OOPSLA '95.ACM/SIGPLAN, October 1995.[10] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the MetaobjectProtocol. MIT Press, 1991.[11] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms(Third Edition). Addison Wesley, 1997.[12] T. Kramp and R. Koster. A service-centred approach to QoS-supportingmiddleware. Work-in-Progress Paper presented at Middleware '98 (IFIPInternational Conference on Distributed Systems Platforms and Open Dis-tributed Processing), September 1998.[13] S. L. Ann Lo, N. C. Hutchinson, and S. T. Chanson. Architectural consid-erations in the design of real-time kernels. In Proceedings of the FourteenthReal-Time Systems Symposium, pages 138�147. IEEE, December 1993.18

[14] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-class user-level threads. In Proceedings of the Thirteenth Symposium onOperating System Principles (SOSP), October 1991.[15] S. Oikawa and H. Tokuda. User-level real-time threads: An approach to-wards high performance multimedia threads. In Proceedings of the FourthInternational Workshop Network and Operating System Support for DigitalAudio and Video (NOSSDAV), pages 66�76, November 1993.[16] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in systemdesign. ACM Transactions on Computer Systems, pages 277�288, 1984.[17] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:An approach to real-time synchronisation. IEEE Transactions on Comput-ers, pages 1175�1185, September 1990.

19

