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a b s t r a c t

One variable is said to ‘‘stochastically dominate’’ another if the probability of observations smaller than
x is greater for one variable than the other, for all x. Inferring stochastic dominance from data samples
is important for many applications of econometrics and experimental psychology, but little is known
about the performance of existing inferential methods. Through simulation, we show that three of the
most widely used inferential methods are inadequate for use in small samples of the size commonly
encountered in many applications (up to 400 observations from each distribution). We develop two new
inferential methods that perform very well in a limited, but practically important, case where the two
variables are guaranteed not to be equal in distribution. We also show that extensions of these new
methods, and an improved version of an existing method, perform quite well in the original, unlimited
case.

© 2010 Elsevier Inc. All rights reserved.

Stochastic dominance denotes an order relationship between
cumulative distribution functions. A random variable Y is said to
‘‘stochastically dominate’’1 a random variable Z when FY (x) ≥
FZ (x) for all x, with strict inequality for some x. F(x) is the ran-
dom variable’s cumulative distribution function (hereafter the
distribution function), that is, F(x) = Pr(X ≤ x). The concept of
stochastic dominance has been extensively employed in a range
of scientific disciplines including economics, finance, agriculture,
marketing and operations research (see Levy, 1992, for a survey)
and in areas of psychology including decision making (e.g., Tver-
sky & Kahneman, 1992) and cognitive modelling (e.g., Townsend
& Nozawa, 1995). Townsend (1990) discusses the importance of
establishing order relationships induced by experimental manip-
ulations. He describes a ‘‘dominance hierarchy’’, whereby higher
order types of dominance logically imply lower order types of dom-
inance distributions (but not vice versa) in an almost distribution-
free manner. For example, dominance at the level of distribution
functions (stochastic dominance) entails the same ordering at the
level of means and medians.
In this paper we focus on distribution-free inferential tests of

stochastic dominance. Distribution-free statistical tests of domi-
nance have, mainly, been developed for econometric applications
where sample sizes are large (e.g., income distributions for na-
tions), and so power is high and asymptotic approximations hold to
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1 Some authors define dominance the other way, where FY < FZ , but this is
immaterial.

a good degree. In many practical applications, in contrast, sample
sizes can be severely limited. As well as reducing statistical power,
small sample sizes force a tradeoff for ‘‘histogram’’ based tests,
between the applicability of asymptotic approximations and the
resolution with which the distribution function is measured
(e.g., Anderson, 1996; Davidson & Duclos, 2000, see Appendix A).
These tests characterize distributions by counting observations
falling into bins (adjacent ranges). Narrower bins provide a more
accurate characterization of the distribution function, but also re-
duce the counts in each bin, making the application of asymptotic
results questionable. In the first part of this paper we investigate
the power in various, relatively small, sample sizes of the two his-
togram based tests, and a third test based on a finer grained repre-
sentation based on the empirical cumulative distribution function,
the Kolmogorov–Smirnov test.
In the second part of this paper we examine two new tests

that apply when the researcher wishes to discriminate between
three alternatives: (1) dominance of Y over Z , which we annotate
as Y >S Z (see Fig. 1(b) for an example), (2) dominance of Z over
Y (Z >S Y ) and (3) non-dominance, that is, the distribution function
FY is greater than FZ at some x values and, less than FZ for other x
values (which we denote Y <>s Z , the lower panels of Fig. 1 pro-
vide examples of non-dominance). Note that this trichotomy does
not include the null case, where Y and Z have exactly the same dis-
tribution (Y =s Z). An example frompsychologywhere such three-
outcome tests are applicable concerns experiments that identify
‘‘mental architecture’’ (e.g., serial vs. parallel arrangements of cog-
nitive processes). Techniques used in this application assume a
stochastically dominant selective influence of some experimen-
tal manipulation on the completion time of a cognitive process
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Fig. 1. Pairs of normal distribution functions, N(µ, σ 2), which were examined
in the simulation studies. In all cases the solid line shows a standard normal
distribution, N(0, 1). The dashed lines show distributions (a) N(0, 1), (b) N(0.5, 1),
(c) N(0, 1.52) and (d) N(0.5, 1.52).

(e.g., Townsend & Nozawa, 1995, see also Dzhafarov, Schweickert,
& Sung, 2004; Eidels, Townsend, & Pomerantz, 2008; Schweickert,
Giorgini, & Dzhafarov, 2000; Townsend & Thomas, 1994). In any
well-designed experiment for this application it seems reasonable
to rule out the null case (i.e., completely ineffectualmanipulations)
a priori. The null case is sometimes irrelevant in economic applica-
tions as well—for example, stochastic dominance of the outcomes
of one investment over another is an important property, but there
is no measurable chance that two distinct investments have iden-
tical probabilities for all outcomes. As we show, the benefit of not
considering the null case is a substantial increase in power associ-
ated with identifying the remaining three cases.
In the final part of this paper we propose extensions of one

of the novel three-choice tests and one of the existing tests to
the case where the null is not ruled out a priori. That is, the
extended tests, like the established tests we examine initially,
choose between four alternatives: Y >s Z, Y <s Z, Y <>s Z and
Y =s Z . We demonstrate that both extensions have greater power
than the existing tests examined in the first part of the paper in
identifying non-dominance.

0.1. Overview of test evaluations

The evaluations of test power reported in this paper were car-
ried out via simulation studies in which we compared samples
from two normal distributions in four different conditions, illus-
trated in Fig. 1 (we discuss further simulation studies using other
distributional forms below). In each condition, we compared a ref-
erence random variable Y ∼ N(0, 1) with a random variable
Z ∼ N(µ, σ 2). In the null case (Fig. 1(a)), the comparison distri-
bution was the same as the reference distribution, with µ = 0
and σ = 1. In the stochastically dominant case (Fig. 1(b)), the
comparison distribution has µ = 0.5 and σ = 1, meaning that
Y >S Z . There were also two non-dominant cases (Y <>S Z): ‘‘cen-
tral’’ non-dominance (Fig. 1(c): µ = 0 and σ = 1.5), where the
distributions cross once at the mean, and ‘‘tail’’ non-dominance
(Fig. 1(d): µ = 0.5 and σ = 1.5), where the distributions cross
once in the left tail. For each of the four conditions, we examined
test performance with a range of sample sizes, N = 50, 100, 200
and 400. In each combination of sample size and comparison dis-
tribution, we produced 1024 replicates, sufficient to make Monte
Carlo error negligible. Note that we did not consider the converse

of the cases in Fig. 1(b) and (d) (i.e., Y <S Z and crossing in the right
tail respectively) as they produce identical results, due to the sym-
metry of the normal distribution.
As will be shown, tail non-dominance is particularly difficult to

identify in data. This happens because, for most of the data range,
one distribution function is greater than the other. This means that
small samples of data often suggest stochastic dominance, rather
than non-dominance, and contrary evidence occurs only in one tail.
For example, in Fig. 1(d) the crossover occurs at around x = −1,
and FY (−1) ≈ 0.16, so contrary evidence is usually available for
only 16% of the sample. Central non-dominance is usually easier to
identify because the amount of evidence in one direction and the
other tend to be balanced. Stochastic dominance is even easier to
identify as evidence consistent with the dominant ordering tends
to be available over the whole domain, although it is weaker near
the ends for unbounded random variables as the two distribution
functions must eventually tend to equivalence.
Some important applications of the tests we examine are to dis-

tributions which are positively skewed and bounded below; for
example, response time distributions, and income or wealth dis-
tributions. To investigate whether our results extend to such cases
we also evaluated test performance with the Weibull distribution.
The results were essentially the same aswith normal distributions,
so we present these evaluations in Appendix B. We have not for-
mally investigated any non-dominant cases where the distribution
functions cross more than once, but limited informal investigation
suggested that all tests acted asmight be expected; power tends to
reduce asmore crossings occur because stronger evidence in either
direction becomes less common.
Before describing and evaluating the tests we emphasize that a

graphical examination of the data is always advisable as a prelude
to inferential analysis.Most statistical packages provide routines to
plot empirical cumulative distribution function (ECDF) estimates.
The ECDF estimator for sample y1, y2, . . . , yN is:

F̂y(x) =
1
N

N∑
i=1

1(x ≤ yi). (1)

The function 1() equals 1 if its argument is true and zero otherwise.
Fig. 2 illustrates such a plot using samples of 50 observations from
normal distributions with parameters corresponding to Fig. 1(d).
The challenging nature of tail non-dominance detection in small
samples is clearly illustrated.

1. Existing tests

Tse and Zhang (2003) reported a simulation study compar-
ing three stochastic dominance tests, including the highly cited
test developed by Anderson (1996), as well as tests proposed by
Davidson and Duclos (2000) and Kaur, Rao, and Singh (1994). They
found that the Davidson–Duclos test performed best, with the
Kaur–Rao–Singh test being overly conservative and less powerful
than the other tests. In light of their results, and the wide spread
use of Anderson’s test, we focused on the Anderson and David-
son–Duclos tests (see Appendix A for details of the test calcula-
tions).

1.1. Anderson and Davidson–Duclos tests

Both of these tests are of the ‘‘histogram’’ type and so require
a partition of the data range into K + 1 regions (‘‘bins’’) by
specifying K cut points (x1, . . . , xK ). As the tests are based on
asymptotic normal approximations at least 5 observations are
recommended in each bin. In theory, the cut points should be
chosen without reference to the data. In practice it is convenient
to use evenly spaced quantiles calculated from the union of the
two data samples, so each bin contains approximately the same
number of observations. Fig. 2 illustrates this approach showing
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Fig. 2. Empirical CDF plots of 50 samples from N(0, 1) (grey points and horizontal
lines) and N(0.5, 1.52) (black points and horizontal lines). The dotted vertical lines
indicate the 20th, 40th, 60th and 80th percentiles of the combined sample.

K = 4 cut points placed at the 20th, 40th, 60th and80thpercentiles
as vertical dotted lines. In investigations not reported here, we
did not find any substantive difference in using fixed or data
dependent partitions.
The cut points in Fig. 2 illustrate a problem caused by wide

intervals: inconsistency, that is, a failure to converge on the true
answer as sample size increases. A test based on the intervals in
Fig. 2 would be unlikely to detect the reversal in the lower tail
even with large sample sizes. In all of the evaluations reported
here we divided the data using semi-deciles (i.e., 5th, 10th, . . . ,
95th percentiles, with K = 19) to minimize such inconsistency.
However, we note that in small samples this strategy can lead
to very few observations in some bins. We also repeated all our
simulations using the widely spaced cut points from Fig. 2 (i.e., the
20th, 40th, 60th and 80th percentiles). Those simulations showed
that performance was very similar to the semi-decile binning, but
with slightly improved accuracy at detecting stochastic dominance
in smaller samples, and slightly decreased accuracy at detecting
tail non-dominance in all sample sizes.
We adopted the method outlined by Tse and Zhang (2003) to

choose between four possible outcomes of the Davidson–Duclos
and Anderson tests. Each test produces K test statistics, T (xi),
one for each cut point. The Type 1 error (α) for the overall null
is controlled by comparing each to the ‘‘studentized maximum
modulus statistic’’ for K and∞ degrees of freedom, MK

∞,α , which
was tabulated by Stoline and Ury (1979) for K < 20. The
overall null hypothesis, which we denote HY=Z , is the logical
intersection of the K null hypotheses over xi. Similarly, the
overall alternative hypotheses for non-dominance (HY<>Z ) and for
dominance (HY>Z and HY>Z ) are the logical union of the alternative
hypotheses. One of these four mutually exclusive hypotheses is
chosen as follows:

If |T (xi)| < MK∞,α for i = 1, . . . , K do not reject HY=Z

If − T (xi) > MK∞,α for some i and

T (xi) < MK∞,α for all i, accept HY>Z

If T (xi) > MK∞,α for some i and

−T (xi) < MK∞,α for all i, accept HZ>Y

If T (xi) > MK∞,α for some i and

−T (xi) > MK∞,α for some i, accept HY<>N .

1.2. Kolmogorov–Smirnov test

We also evaluated a third existing test, the Kolmogorov–Smir-
nov (KS) test, developed by Kolmogorov (1933) for the one sample
case and extended by Smirnov (1939) to the two sample case that
is relevant here (see Johnson, Blaha, Houpt, & Townsend, 2010, for
a recent application). The KS test is not subject to consistency
problems caused by wide binning, because it is based on the ECDF,
and so represents the distribution function with the maximum
possible resolution given the sample size. To test Y >s Z the test
uses a statistic proportional to the largest positive difference
between the two CDFs:

T Y>Z =
√
nYnZ
nY + nz

sup
x∈R
(F̂Y (x)− F̂Z (x)). (2)

Similarly, to test Z >s Y , (2) is used with FZ (x) and FY (x) swapping
roles. If Z >s Y then FZ (x) − FY (x) will tend to be large, whereas
if Y >s Z then FY (x) − FZ (x) will tend to be large. In the null case,
when Y =S Z , both differences will tend to be small. In the non-
dominant case, where Z <>S Y , both differences will tend to be
large, althoughwith tail non-dominance one of the differencesmay
be smaller.
The cumulative distribution function of (2) is Pr

(
T Y>Z ≥ t

)
=

e−2t
2
in the limit as nY , nZ → ∞ (Doob, 1949). We found the

limiting distribution to be a very accurate for all of the sample sizes
we examined. Hence the limiting distribution was used to obtain a
vector of right-tail probabilities, p∗, corresponding to observations
tY>Z and tZ>Y : p∗ = exp

(
−2

(
tY>Z , tZ>Y

)2). Assuming a pre-
set Type I error rate, α, the outcome of the test can be decided by
comparing the two elements of p∗ against α as follows:

1. Fail to reject HY=Z if both elements of p∗ > α.
2. AcceptHY>Z if only the first element of p∗ > α. (i.e., the element
corresponding to T Y>Z ).

3. Accept HZ>Y if only the second element of p∗ > α (i.e., the
element corresponding to T Z>Y ).

4. Accept HY<>Z if both elements of p∗ > α.

For all simulations, we used α = 0.05. Fig. 3 shows power
(i.e., the probability of choosing the data generating model). All
tests were calibrated for the null, detecting the truth around 95%
of the time, for all sample sizes. All tests also did well detecting
dominance in larger sample sizes (N = 400) with the KS test
clearly best for smaller samples. However, no test ever detected tail
non-dominance (in over 12,000 attempts), and all three tests were
poor at detecting central non-dominance. Below, we propose a
modified version of the KS test that improves its poor performance
with the non-dominant cases.

2. Three-choice tests

In some applications it makes sense to reject the null hypo-
thesis a priori. For these situations we propose tests which choose
amongst only HY>Z ,HZ>Y and HY<>Z . Our first test is based
on Klugkist, Kato, and Hoijtink’s (2005) Bayesian ‘‘encompassing
prior’’ approach to testing hypotheses about orders. We know of
one other Bayesian test for stochastic dominance (Chotikapanich
& Griffiths, 2006), but we do not examine that test in detail, as it
requires parametric assumptions about the distributions (our test
is non-parametric in the sense that we model the data by a multi-
nomial distribution at the histogram level). Unlike the histogram
tests described earlier, consistency problems in the encompassing
prior Bayesian test can be minimized by using a large number of
cut points, as the test does not depend on large sample approxi-
mations.
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Fig. 3. Simulation results for existing tests.

2.1. Encompassing prior Bayesian test

In overview, the Bayesian test divides the data into a number
of bins, and determines the proportion of prior and posterior
probability estimates which conform to the joint order constraints
dictated by each hypothesis. Denote an observed frequency vector
as nij and corresponding population probabilities pij, where the
index i = 1, . . . , K + 1 denotes the bin and j = Y , Z denotes
the population from which the sample is drawn. We assume the
frequencies follow a multinomial distribution, with density:

f (nj | pj) =
Nj!

K+1∏
i=1
nij!

K+1∏
i=1

p
nij
ij ; Nj =

K+1∑
i=1

nij. (3)

We further assume a Dirichlet prior with parameter vector
β,Dir (β), with density (note that Γ is the Gamma function):

f (pj | βj) =
1
B(β)

K+1∏
i=1

pβi−1ij ; B(β) =

K+1∏
i=1

0(βi)

0

(
K+1∑
i=1
βi

) . (4)

The Dirichlet prior is conjugate to the multinomial, which means
that the posterior distribution of p is also has a Dirichlet distribu-
tion; Dir (β+n). Ferguson (1973) made an early application of the
Dirichlet process to non-parametric distributionmodelling, and ar-
gued that it was appropriate for use with continuous distributions
because a continuous distribution can be approximated arbitrar-
ily well by the discrete multinomial distribution. Finally, we as-
sume that the βi parameters for each bin are equal and sum to
one:

∑K+1
i=1 βi = 1, which causes the prior to have a minimal in-

fluence on posterior estimates. In particular, the prior has an influ-
ence equal to one observation.
We choose amongst the three hypotheses (HY>Z ,HZ>Y and

HY<>Z ) using Bayes factors. A Bayes factor (BF, see Kass & Raftery,
1995) is the ratio of the marginal probability of the observed data,
D, given one hypothesis (Hi) divided by that marginal probabil-
ity of the observed data given another hypothesis (Hk) : BFik =
m(D|Hi)/m(D|Hk). The marginal probability equals the likeli-
hood of the data given a model with parameters θ (e.g., the
multinomial pij parameters in our application), f (D|M, θ), inte-
grated over the prior probability distribution of the parameters,

p(θ |H) : m(D|H) =
∫
f (D|H, θ)p(θ |H)d(θ). The Bayes factor

quantifies the evidence that the data provide for one model vs. an-
other, and it represents ‘‘the standard Bayesian solution to the hy-
pothesis testing and model selection problems’’ (Lewis & Raftery,
1997, p. 648).
Bayes factors for the hypotheses HY>Z ,HZ>Y and HY<>Z were

evaluated relative to an ‘‘encompassing’’ hypothesis, which in our
case is simply the unconstrainedmultinomial. Each of the hypothe-
ses of interest is a special case of the encompassing hypothesis
which constrains sums of the estimated prior or posterior multi-
nomial parameters to follow a particular order. For HY>Z the con-
straint, for all i, is that

∑i
j=1 p̂jY >

∑i
j=1 p̂jZ , whereas for HZ>Y the

constraint, for all i, is that
∑i
j=1 p̂jZ >

∑i
j=1 p̂jY . For HY<>Z the

constraint is that
∑i
j=1 p̂jY >

∑i
j=1 p̂jZ for some i and

∑i
j=1 p̂jZ >∑i

j=1 p̂jY for the remaining i.

Although this characterization makes it clear that, all other
things being equal, it is easier to fulfil the non-dominant model’s
order constraint (i.e., it is a more flexible or complex model), as
Myung, Karabatsos, and Iverson (2008) state: ‘‘Bayes factor based
model selection automatically adjusts for model complexity and
avoids overfitting, thereby representing a formal implementation
of Occam’s razor’’ (p. 6). Liu and Aitkin (2008) raised concerns
about undue influence from the prior when using Bayes factors
to select between models with different parameterizations. In the
present context, all of the models (hypotheses) have the same
parameterization, differing only in the order constraints amongst
those parameters. As discussed by Klugkist, Kato et al. (2005),
Klugkist, Laudy, and Hoijtink (2005) this results in a negligible
influence of the prior on the Bayes factor for reasonable prior
choices.We confirmed this to be true in our application by informal
numerical investigations (not reported here).
Estimation of Bayes factors is usually computationally difficult

in high dimensional models, such as those considered here, be-
cause high dimensional integration is required. Klugkist et al. ’s
(Klugkist, Kato et al., 2005; Klugkist, Laudy et al., 2005) method
avoids this difficulty by estimating Bayes factors based on simple
counts of prior and posterior parameter estimates that conform to
the order constraints of a hypothesis. Note that all estimates auto-
matically conform to the encompassing hypothesis, because it was
defined to be unconstrained. The algorithm for estimating the BF
for each of the constrained hypotheses (HY>Z ,HZ>Y andHY<>Z ) vs.
the unconstrained (encompassing) hypothesis takes the following
form:

1. Take samples from the encompassing prior, Dir(β), and poste-
rior, Dir (β + n).

2. Count the proportion of prior (π) and posterior (Π) samples
that conform to the order dictated by each of the three con-
strained hypothesis.

3. Calculate BFY>Z = ΠY>Z/πY>Z , BFZ>Y = ΠZ>Y/πZ>Y and
BFY<>Z = ΠY<>Z/πY<>Z (note that Π = π = 1, by defini-
tion, for the encompassing hypothesis).

The relative evidence for each hypothesis can be quantified by its
posterior model probability. For example, Pr(HY>Z ) = BFY>Z/
(BFY>Z + BFZ>Y + BFY<>Z ). In our evaluations we simply chose
as the test outcome the hypothesis with the largest BF.
In all of the simulations reported here we used a large number

of bins created by K = N − 1 cut points, where N is the number
of observations in the combined samples. Cut points were placed
at the average of each pair of order statistics for the combined
sample (i.e., the average of the smallest and 2nd smallest values,
the average of the 2nd and 3rd smallest values and so on). This
ensures that, for the combined sample, each of theK bins contained
exactly one datum, and so each individual sample (Y or Z) has
either one or no observations in each bin. Our chosen binning
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method creates a dependence between the two samples (i.e., in
any particular bin, a zero count for Y implies a one count for Z
and vice versa). Alternative binning schemes, such as using a fixed
number of quantile defined bins or bins defined without reference
to the data, can remove this dependence. However, they did not
produce different results to those presented below, except when
the number of binswas small, which caused consistency problems.
We present results for our chosen binning method because it is
easy to apply and minimizes consistency problems.
We found the computational cost of obtaining accurate Bayes

factor estimates was similar to that of obtaining accurate boot-
strap test estimates,2around 20 s for data samples of size N =
400, on a standard desktop computer. Note that no Markov chain
Monte Carlo sampling is required; independent samples can be ob-
tained directly from the Dirichlet distribution through evaluating
the Gamma function, which has fast and accurate numerical ap-
proximations.

2.2. Minimally dominant (MD) bootstrap test

The second three-choice test we develop avoids the null case
by making stochastic dominance the null hypothesis—bootstrap
samples are drawn from a distribution created by a minimal
adjustment of the observed data to fulfil dominance. We call this
test the minimally dominant (MD) bootstrap test. The distribution
from which bootstrap samples are drawn is constructed to ensure
that either Y >s Z or Z >s Y , according to the following two part
algorithm.We assume that each sample is of equal size N , and that
ties are broken randomly. The first step in this test is to identify
whether the observed samples are closer to fulfilling Y >s Z , or
Z >s Y (the other is rejected):
1. Sort sY and sZ (i.e., get the order statistic vectors oY and oZ ).
2. Calculate OY>Z =

∑N
i=1 1(oi,Y > oi,Z ).

3. If OY>Z > N − OY>Z reject HZ>Y , otherwise reject HY>Z .

This results in one dominance hypothesis being selected to
play the role of the null, call that hypothesis H>. The second step
chooses between the selected dominance hypothesis and non-
dominance, HY<>Z . Denote the count of orders consistent with the
selected hypothesis as O>, and let B be the number of bootstrap
samples.
1. Create data samples x>Y and x

>
Z that accordwithH> by swapping

the (minority) of order statistic pairs that violate it. That is, for
those i where oi,Y > oi,Z , swap oi,Y with oi,Z (if H> is HY>Z , and
vice versa otherwise).

2. Set b = 1.
3. Resample from x>Y and x

>
Z and use these to calculate O

∗

>,b.
4. Set b = b+ 1.
5. If (b < B) go to #3.
6. Accept HY<>Z if O> falls above the (1 − α) quantile of the
distribution of {O∗>,b : b = 1, . . . , B} and otherwise accept H>.

Thus, the MD test first exchanges the minimal number of
data values between samples Y and Z until perfect stochastic
dominance has been achieved. Next, this perfectly dominant set
of samples is used to perform bootstrap draws; for each bootstrap
draw, we tally the number of changes needed to again achieve
perfect dominance. This yields a distribution of the number of

2 Equal numbers of samples were taken from the prior and posterior, with the
number of samples, S, chosen to obtain a numerical accuracy for the posteriormodel
probability estimate corresponding to the hypothesis relative to the encompassing
hypothesis (i.e., BFh/(1 + BFh) = Πh/(Πh + πh)), to be less than 0.005.
Numerical error was determined by first calculating the 95% credible intervals for
the proportion (p∗) estimates corresponding toΠh andπh assuming a uniform prior
(i.e., for a Beta(Sp∗+1, S(1−p∗)+1) distribution). The end points of these interval
estimates, [Π Lh ,Π

U
h ] and [π

L
h , π

U
h ], were then combined to calculate a worst-case

estimate of numerical error: [Π Lh/(π
U
h +Π

L
h),Π

U
h /(π

L
h +Π

U
h )].

Fig. 4. Simulation results for three-choice tests. Note that results are shown for the
minimally dominant bootstrap test using α = 0.2 (‘‘2’’) and α = 0.5 (‘‘5’’).

required changes to achieve stochastic dominance, under the null
hypothesis that the data are minimally stochastically dominant.
The choice of the minimally dominant null hypothesis was
motivated by earlier work (Hall & van Keilegom, 2005); the
advantage of this null is that it provides awell specified hypothesis
about dominance that is as close as possible to the observed data.
In our test evaluations the number of bootstrap samples used for a
MD test was chosen so that the width of the 99% credible interval
for p∗ = 1

B

∑B
b=1 1

(
O∗>,b > O>

)
was less than 0.005, assuming a

uniformprior. Hence, the credible intervalwas calculated by taking
the difference between the 99.5% and 0.5% points of the Beta(Bp∗+
1, B(1− p∗)+ 1) posterior distribution of the p∗ estimate.
We evaluated the performance of both our new three-choice

tests in the same way as for the existing tests. Fig. 4 shows the
results, using the same format as for Fig. 3 (except that the upper
left panel is nowempty, sinceweno longer test the null hypothesis,
Y =s Z). Both three-choice tests are markedly superior to all of the
existing tests in detecting both dominance and non-dominance.
Even in the extremely difficult case – tail non-dominance (Panel d)
– performance is quite good for larger sample sizes. Setting aside
any benefit due to the particular tests used, there is clearly a large
advantage in power that attends not having to consider the null
case.
Note that Fig. 4 shows results for theminimally dominant boot-

strap tests using α = 0.2 (‘‘2’’) and α = 0.5 (‘‘5’’). We examined
a range of α values, and found none worked in all situations. As
shown in Fig. 4, for example, α = 0.5 worked well in the non-
dominant cases and α = 0.2 in the dominant case; this is to be
expected given that α sets a bias towards accepting the hypothesis
of non-dominance. Of course, in applications one can never know
the truth, so some automatic calibration procedure would be nec-
essary to set α for each test. In the absence of such a procedure, we
attempted to extend only the Bayesian test to the four-choice sit-
uation (i.e., including the null). We describe this extension, along
with a modification that improves the performance of McFadden’s
(1989) test in detecting non-dominance, in the next section.

3. New four-choice tests

Our evaluation of existing tests revealed particularly low power
to detect non-dominance. To address this issue we propose an
adjustment to the KS test, which performed best in the detection
of dominance. The adjustment involves adopting one criterion
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value for rejecting the null hypothesis, and a different criterion
for accepting the remaining three alternatives. This was motivated
by the observation from Fig. 3, that KS test is biased against
non-dominance. The second criterion requires knowledge of the
quantiles of the distribution of T Y>Z conditional on the value of
T Z>Y . As we do not know of an analytic result for this conditional
distribution we first estimated the joint distribution using a
bootstrap algorithm outlined by Abadie (2002) based on the work
of McFadden (1989). Let T = (T Y>Z , T Z>Y ) denote the pair of test
statistics and s = (sY , sZ ) the union of the two observed samples
from Y and Z . Draw B bootstrap samples using the following
algorithm:

1. Calculate the pair of statistics T for the original samples.
2. Set b = 1.
3. Resample s∗ (with replacement) from s, divide randomly into
s∗Y and s

∗

Z of sizes equal to sY and sZ , and calculate the pair of
statistics T ∗b .

4. Set b = b+ 1.
5. If (b < B) go to #3.
6. Calculate a pair of p-values corresponding to T : p∗ =∑B

b=1 1(T
∗

b > T )/B.

The number of bootstrap sampleswas determined in the sameway
as for the MD test.
Given the set of bootstrap samples we propose the following

test, which we describe as the adjusted McFadden test:

1. Test the null as before. Call the critical value corresponding to
α, calculated as above, c1. If the null is not rejected, stop.

2. Otherwise use a new critical value, c2 to decide which of HY>Z ,
HZ>Y and HY<>Z to accept. Select c2 to equate the probability
of HY>Z ,HZ>Y and HY<>Z under the bootstrap null distribution.
That is, set c2 to be the quantile of the bootstrap distribution
corresponding to a lower tail probability of α/

(
3
√
1− α

)
.

3. Accept HY>Z if T Y>Z > c1 and T Z>Y < c2.
4. Accept HZ>Y if T Z>Y > c1 and T Y>Z < c2.
5. Accept HY<>Z T Y>Z > c2 and T Z>Y > c2.

We also examined a number ofways of extending the Bayes test
to four choices. One possibility is to convert the set of three Bayes
Factors to posterior model probabilities, ph = BFh/

∑3
i=1 BFi, and

fail to reject the null if no probability is above a critical probability,
α. However, we found that this option performed poorly and that
to obtain the best (but still not good) performance, calibration
of α was required on a case-by-case basis. A second possibility
follows a suggestion by Klugkist, Laudy et al. (2005) counting prior
and posterior samples as favoring an equality hypothesis if they
are equal within some tolerance ±δ. We examined a range of
δ values and found that detection of dominance was not much
affected relative to the performance with the three-choice version.
However, detection of the null was poor for smaller values of δ.
For larger values, detection of the null improved somewhat but
was accompanied by a large degradation in detection of non-
dominance. Further, larger values of δ caused detection of non-
dominance to become inconsistent, with power decreasing for
larger sample sizes. Given these results we did not investigate this
approach further, although that does not rule out the possibility
that other related approachesmay bemore effective (e.g., Wetzels,
Grasman, & Wagenmakers, 2010).
Our final approach involved a hybrid test; first applying the

KS test of the null, followed by the Bayesian three-choice test in
cases where the null was rejected. Fig. 5 compares performance of
this approach (denoted B–K) and the adjustedMcFadden bootstrap
test (denoted M–A). As shown in Fig. 5, the performance of both
tests was almost identical. As would be expected from the results
for existing tests in Fig. 3, both tests were well calibrated for
the null. The adjusted McFadden test performed similarly to the

Fig. 5. Simulation results for the new four-choice tests.

original for the dominant case, but the performance of the hybrid
Bayes test was worse, at least for the two smaller sample sizes.
For the central non-dominance case, the adjusted McFadden test
performed markedly better than the KS test (see Fig. 3), whereas
the hybrid Bayes test was clearly worse than the three-choice
version for all but the largest sample size (see Fig. 4). The results
for the hybrid Bayes test illustrate the marked gains in power that
can be achieved if it is possible to rule out the null a priori.
Finally, the performance of the adjusted McFadden test in the

tail non-dominance case was vastly improved on the original KS
test (see Fig. 3), but remains clearly worse than the hybrid Bayes
test for the smallest sample size. The performance of the hybrid
Bayes test was equivalent to that of the three-choice Bayes test
with tail non-dominance, indicating that there was little or no cost
associated with testing the null.

4. General discussion

The aim of this paper was to evaluate and develop tests
of stochastic dominance and non-dominance suited to smaller
samples. To that end we compared the performance in samples
ranging from 50 to 400 of three existing tests (Anderson, 1996;
Davidson & Duclos, 2000; Kolmogorov, 1933; Smirnov, 1939), two
new three-choice tests (a Minimally Dominant bootstrap test and
an encompassing prior Bayesian test, Klugkist, Kato et al., 2005;
Klugkist, Laudy et al., 2005), and two new four-choice tests (vari-
ations of McFadden’s, 1989, test and the encompassing Bayesian
test). The performance of the Anderson and Davidson–Duclos tests
was clearly inadequate for all but the largest sample size. The KS
test had adequate power (operationalized as around 0.8 or better)
in detecting the dominant case for 100 or more observations, and
the others for 200 or more observations, but no existing test had
adequate power in detecting either non-dominant case at any sam-
ple size. These results indicate that the existing tests are unlikely
to be adequate for small sample applications. Some improvements
could be gained by using less strict significance criteria, but only at
the costs of decreased power in the null case.
Fortunately, the new tests that we proposed fared much better.

Two of these tests apply when the null case can be ruled out
a priori, which is often reasonable in practical applications. For
these tests, power was generally more than adequate even at the
smallest sample size when detecting dominance and central non-
dominance. For the difficult tail non-dominance case, power was
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generally adequate for sample sizes of 100 or more. For practical
application we recommend the Bayesian test over the Minimally
Dominant (MD) bootstrap test, as it requires no calibration. In
contrast, we found that the performance of the MD bootstrap test
was sensitive to the choice of critical value, so some method of
choosing the appropriate value is required for general application.
A further advantage of the Bayesian test is that it is relatively
straightforward to extend to more complicated settings (e.g.,
hierarchical models and tests of higher order dominance, see
e.g., Levy, 1992).
We also proposed two new tests for the situation in which

the null cannot be ruled out a priori. One of these tests adjusts
the decision procedure proposed by Abadie (2002) for use with
McFadden’s (1989) test statistic. The other combines the Bayesian
three-choice test with a first stage based on a KS test of the
null. Overall, this hybrid Bayesian test performed a little better,
although its advantage was restricted to the tail non-dominance
case at the smallest sample size. Both tests combined control of
Type 1 error at the nominal level with adequate power for sample
sizes of 100 or more for detecting dominance and 100–200 for
detecting both types of non-dominance. These new four-choice
tests provided much greater power for the non-dominant cases
comparedwith the existing tests, but still their powerwas less than
that of the three-choice Bayesian test. Hence, we recommend that
researchers carefully considerwhether it is reasonable to reject the
null a priori in their application.
Hitherto, we reported the results of test evaluations conducted

on data sampled from normal distributions. Economists and
psychologists are often interested in random variables which are
non-negative and positively skewed (e.g., income and response
times). In Appendix B we report the results of a parallel set of test
evaluations for one such distribution (the Weibull). These results
were generally consistent with those for the normal distribution
evaluations, suggesting that our conclusions from the latter case
have some generality, and in particular might be applicable to
response time and income distributions. Hence, we conclude that
the new tests developed in this paper enable testing of stochastic
dominance with the sample sizes and types of distributions
common inmany applications. Implementations in the R statistical
environment (R Development Core Team, 2007) of all of the tests
examined here can be obtained from the authors.

Acknowledgments

Thanks are due to Prof. Murray Aitkin for advice on the Bayesian
test, to Trish Van Zandt for pointing out the ideas underpinning
the MD test, and the University of Newcastle Academic Research
Computing Support Unit for help in running the simulation studies
on their grid computing infrastructure, and to an anonymous
reviewer formany useful suggestions. This studywas supported by
a Keats Endowment grant to Ami Eidels and a Vidi grant from the
Dutch Organization for Scientific Research to E.J. Wagenmakers.

Appendix A

A.1. Anderson test statistic

Anderson’s (1996) method divides the range of Y and Z into i =
1, . . . , K + 1 mutually exclusive regions. Let pij be the probability
of an observation in the i’th region for population j = Y , Z ,
and denote pj = (pj,1, . . . , pj,K+1)′. The two test hypotheses are:
H0 : If (pY − pZ ) = 0 and H0 : If (pY − pZ ) > 0, where If is a
K × K + 1 matrix with unit entries except for zeros above the
main diagonal. If H0 is rejected we conclude that Y >s Z . Suppose
we have NY observations from Y and NZ observations from Z with

associated frequency vectors nj = (n1,j, n2,j, . . . , nK+1,j)′. Under
the null FY = FZ and pj = p = (p1, p2, . . . , pK+1). Denote:

v =
nY
NY
−
nZ
NZ

(5)

Ω =

p1(1− p1) −p1p2 · · · −p1pK+1
−p1p2 p2(1− p2) · · · −p2pK+1
· · · · · · · · · · · ·

−p1pK+1 p2pK+1 · · · pK+1(1− pK+1)

 . (6)

Anderson showed that nj/Nj ∼ N(p,Ω/Nj) and v ∼ N(0,mΩ)
where m = (NY + NZ )/(NYNZ ). This result holds asymptotically
(i.e., Nj →∞with Njpi > 5 for i = 1, . . . , K + 1). Hence:

If v −→
D
N(0,mIfΩI ′f ). (7)

To estimateΩ we replace p by p̂ = (nY + nZ )(NY + NZ ). Denoting
the i’th element of If v as Iv(i) and the i’th diagonal element of
mIf Ω̂If bymIf Ω̂I(i, i) the Anderson test statistic, A ∼ N(0, 1) is:

Ai =
Iv(i)√
mIΩ̂I(i, i)

. (8)

A.2. Davidson–Duclos test statistic

Consider the following sample statistics, where (z)+ = max
(z, 0).

D̂Y (x) =
1
N

N∑
i=1

(x− yi)+ (9)

D̂Z (x) =
1
N

N∑
i=1

(x− zi)+ (10)

V̂Y (x) =
1
N

[
1
N

(
N∑
i=1

(x− yi)2+

)
− D̂Y (x)2

]
(11)

V̂Z (x) =
1
N

[
1
N

(
N∑
i=1

(x− zi)2+

)
− D̂Z (x)2

]
(12)

V̂ZY (x) =
1
N

[
1
N

(
N∑
i=1

(x− zi)+(x− zi)+

)
− D̂Y (x)2D̂Z (x)2

]
. (13)

Denoting V̂ (x) = V̂Y (x) + V̂Z (x) − 2V̂YZ (x) we obtain the test
statistic:

DD(x) =
D̂Y (x)− D̂Z (x)√

V̂ (x)
. (14)

In the case where observations from Y and Z are independent the
VYZ estimate can be assumed zero. Davidson and Duclos (2000)
showed that underH0 : DY (x) = DZ (z) thatDD(x) is asymptotically
distributed N(0, 1).

Appendix B

Fig. 6 shows the 9 positively skewed cases which we evaluated
using Weibull distributions. Each case used a referent distribution
that was a Weibull distribution with shape = 2, variance param-
eter σ = 1, and an offset of µ = 0.25, that is, with support on
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X

Fig. 6. Weibull distribution functions examined in the simulation studies.

Fig. 7. Simulation results for existing tests.
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Fig. 8. Simulation results for three-choice tests. Note that results are shown for the minimally dominant bootstrap test using α = 0.2 (‘‘2’’) and α = 0.5 (‘‘5’’).

Fig. 9. Simulation results for the new four-choice tests.

Please cite this article in press as: Heathcote, A., et al. Distribution-free tests of stochastic dominance for small samples. Journal of Mathematical Psychology (2010),
doi:10.1016/j.jmp.2010.06.005



ARTICLE  IN  PRESS
10 A. Heathcote et al. / Journal of Mathematical Psychology ( ) –

the range [0.25,∞). The nine comparison distributions were gen-
erated using all combinations of σ = (3/4, 1, 4/3) – the rows in
Fig. 6 – and µ = (0, 0.25, 0.5)—the columns. Fig. 7 shows the re-
sults of evaluations of the three existing tests. Fig. 8 shows the re-
sults of the evaluations of the three-choice tests. Fig. 9 shows the
results of evaluations of the new four-choice tests.
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