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Abstract—Up-to-date information on urban air pollution is
of great importance for health protection agencies to assess air
quality and provide advice to the general public in a timely
manner. In particular, ultrafine particles (UFPs) are widely spread
in urban environments and may have a severe impact on human
health. However, the lack of knowledge about the spatio-temporal
distribution of UFPs hampers profound evaluation of these effects.
In this paper, we analyze one of the largest spatially resolved
UFP data set publicly available today containing over 25 million
measurements. We collected the measurements throughout more
than a year using mobile sensor nodes installed on top of public
transport vehicles in the city of Zurich, Switzerland. Based on
these data, we develop land-use regression models to create pol-
lution maps with a high spatial resolution of 100 m× 100 m. We
compare the accuracy of the derived models across various time
scales and observe a rapid drop in accuracy for maps with sub-
weekly temporal resolution. To address this problem, we propose
a novel modeling approach that incorporates past measurements
annotated with metadata into the modeling process. In this way,
we achieve a 26 % reduction in the root-mean-square error—a
standard metric to evaluate the accuracy of air quality models—
of pollution maps with semi-daily temporal resolution. We believe
that our findings can help epidemiologists to better understand
the adverse health effects related to UFPs and serve as a stepping
stone towards detailed real-time pollution assessment.

I. INTRODUCTION

Air pollution is a major concern in many cities worldwide.
Atmospheric pollutants considerably affect human health; they
are responsible for a variety of respiratory and cardiovascular
illnesses and are known to cause cancer if humans are exposed
to them for extended periods of time [1]. Additionally, air
pollution is responsible for environmental problems, such as
eutrophication and acidification of ecosystems.

Most countries have mass emission limits for particulate
matter PM10 and PM2.5 (i.e., particles with a diameter of less
than 10 μm and 2.5 μm, respectively), but have no restrictions
on ultrafine particles (UFPs). UFPs are particles with a diame-
ter of less than 100 nm. In ambient air, UFPs are mainly man-
made as byproducts of specific high temperature processes,
such as combustion reactions in car engines. The adverse
health effects of UFPs are most probably underestimated when
they are traditionally monitored by mass as part of PM10 and
PM2.5 [2]. This is because UFPs make a dominant contribution
to the total number of urban particle concentrations, but their
contribution to the total particle mass is small [3]. Therefore,
UFPs were not considered particularly hazardous in the past.
There are strong indications, however, that adverse health
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Figure 1. Novel ultrafine particle concentration maps for Zurich (Switzer-
land). The particle concentrations are higher during the week (Monday–
Saturday) than on weekends (Sunday) due to higher traffic volumes.

effects are more related to particle concentration rather than
to particle mass [2]. To better understand the adverse health
effects of UFPs, it is essential to have spatially resolved UFP
concentration measurements at hand [4].

Nowadays, air pollution is monitored by networks of static
measurement stations operated by official authorities. These
stations are highly reliable and able to accurately measure a
wide range of air pollutants. However, their high acquisition
and maintenance costs severely limit the number of instal-
lations. As a result, very little is known about the spatial
distribution of air pollutants in urban environments and there is
a lack of accurate intraurban air pollution maps. However, for
air pollutants with high spatial variability, such as UFPs, the
public availability of reliable pollution maps is essential. They
raise the citizens’ awareness about air pollution and empower
environmental scientists to craft and evaluate new policies.

Contributions and road-map. To tackle the challenges above,
we propose to use a mobile measurement system. Node mo-
bility trades off temporal resolution against spatial resolution,
enabling a high spatial resolution across large areas without
the need for thousands of fixed sensors. However, due to
the lower temporal resolution of any covered location, it is
a formidable challenge to derive pollution maps with a high
temporal resolution at daily or hourly time scales. In this
paper, we demonstrate that a mobile measurement system can
effectively be used to derive accurate UFP pollution maps with
high spatio-temporal resolution.



Our mobile measurement system consists of ten sensor
nodes installed on top of public transport vehicles, which cover
a large urban area on a regular schedule. The sensor nodes are
equipped with a novel measurement device (MiniDiSCs [5]) to
monitor UFP particle concentrations. Throughout more than a
year, we collected over 25 million UFP measurements. Based
on these data, we develop land-use regression (LUR) models
to produce accurate pollution maps with high spatio-temporal
resolution, such as those depicted in Fig. 1. LUR models
use a set of explanatory variables (land-use and traffic data)
to model pollution concentrations at locations not covered
by the mobile sensor nodes. In a first step, we evaluate
the dependencies between the explanatory variables and the
measurements. Then, we exploit these relationships to predict
the pollution levels for all locations without measurements but
with available land-use information. Using this method and
our mobile measurement system, we derive accurate and fine-
grained pollution maps, which are valuable to environmental
scientists, epidemiologists, and the general public.

In summary, this paper makes the following contributions:

• We introduce in Sec. II our mobile measurement sys-
tem, which is deployed in the city of Zurich (Switzer-
land) collecting a highly spatially resolved data set of
UFP measurements. As of today, we collected more
than 25 million measurements.

• Assessing the quality of the measurements is difficult
due to very sparse ground truth data. We post-process
the measurements (calibration and filtering) and pro-
pose in Sec. III a three-fold validation approach to
evaluate the quality of the processed data. Our analysis
indicates a high data quality.

• We use the validated measurements in Sec. IV to
derive LUR models for UFP pollution maps with a
high spatial resolution of 100 m× 100 m. In Sec. V
we apply standard metrics to analyze the quality of
the models from yearly up to semi-daily temporal
resolutions. We find a good quality of pollution maps
with yearly to weekly time scales, while models with
sub-weekly temporal resolutions perform less well.

• To tackle this problem, we propose in Sec. VI a novel
modeling approach that incorporates past measure-
ments (annotated with metadata, such as meteorologi-
cal conditions) into the modeling process. In this way,
we increase the quality of pollution maps with a high
temporal resolution. For example, we decrease the
root-mean-square error—a standard metric to evaluate
the accuracy of air quality models—of semi-daily
pollution maps by 26 %.

Using our measurement system and modeling approach, we
create UFP pollution maps with an accuracy that is comparable
to state-of-the-art air pollution maps [6], while achieving
unprecedented spatio-temporal resolution. We survey related
work in Sec. VII, and conclude in Sec. VIII.

II. MOBILE AIR POLLUTION MONITORING SYSTEM

Starting in 2012, we gradually equipped ten streetcars
of the public transport network in Zurich, Switzerland, with
air quality measurement stations as part of the OpenSense
project [7]. The sensor nodes cover on a regular schedule a

Figure 2. The air quality sensor node is equipped with UFP, O3, and
CO sensors. Geotagged and time-stamped measurements are transmitted over
GSM (cellular network) to the back-end server for further processing.

large urban area of 100 km2 and monitor a wide range of air
pollutants and environmental parameters. The measurements
are locally stored in a database and transmitted in real-time
over GSM (cellular network) to the back-end server running
Global Sensor Network (GSN) [8], a software middleware
that facilitates data collection in sensor networks. The sensor
readings are removed from the local database once their
reception is acknowledged by the back-end server. The web-
based caching and visualization tool Vizzly [9] displays the
measured particle concentrations on top of Google Maps. All
measurements are publicly available.1

A. Air Quality Sensor Node

The core of the sensor node, depicted in Fig. 2, is a
Gumstix (embedded computer) with a 600 MHz CPU running
an embedded Linux operating system. A GPS receiver supplies
the station with precise geospatial information. The station
supports bidirectional communication over GSM and WiFi.
The former is used under normal conditions while the latter is
for reliable access during debugging and maintenance phases.
While the streetcars are in operation they supply the nodes with
power. During the night, typically from 1:00 AM to 5:00 AM,
the streetcars are in their depots and the nodes are turned off.

All air intakes are equipped with protection covers against
water and dust. To monitor air pollution, the sensor nodes
are equipped with low-cost ozone (O3) and carbon monox-
ide (CO) sensors and a novel compact device to measure UFP
concentrations. Additionally, the nodes monitor environmental
parameters, including temperature and humidity. In this work,
we focus on analyzing the UFP measurements.

B. Data Set of Ultrafine Particle Concentrations

The sensor nodes are equipped with Miniature Diffu-
sion Size Classifiers (MiniDiSCs) [5] (see Fig. 2), a novel
tool for UFP monitoring. Traditionally, UFPs are moni-
tored by mass, hence their adverse health effects are very

1http://www.opensense.ethz.ch

http://www.opensense.ethz.ch
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(b) Accumulated number of measurements across all installed devices.

Figure 3. Number of UFP measurements per day and accumulated number of
measurements over the course of 14 months with three service phases (1)–(3).

likely underestimated [2]. Whereas the MiniDiSC, a compact
hand-held device (4 x 9 x 18 cm), is able to monitor particle
number concentrations. It can detect concentrations between
103–106 particles/cm3, so it embraces the average daily range
in urban environments of 104–105 particles/cm3.

The functional principle of the MiniDiSC is based on
unipolar charging of aerosol particles, followed by detection
in two electrometer stages. In short, the particles are first
charged in a standard positive unipolar diffusion charger, which
imparts an average charge on the particles that is approximately
proportional to the particle diameter. The charged particles then
flow through a diffusion stage and generate a current, which is
dependent on the average particle size and is used to calculate
the number of particles per cm3.

We deployed the first five sensor nodes with integrated
MiniDiSCs in April and May 2012 and an additional five
devices in January 2013, as shown in Fig. 3. The MiniDiSCs
sample UFP every 50 ms. The measurements are aggregated to
one sample per 5 s, to reduce the amount of transmitted data.
Each sensor node transmits around 10,000 measurements per
day to the back-end infrastructure, as depicted in Fig. 3(a) (raw
data). In total, we collected over 25 million aggregated mea-
surements, as shown in Fig. 3(b). Further, we depict in Fig. 3
the three main service phases since the start of the deployment:
(1) Initial installation of the first five sensor nodes, (2) cleaning
of the MiniDiSCs on top of the streetcars (no deinstallation
required) to increase data quality, and (3) deinstallation of the
MiniDiSCs for cleaning and re-calibration, and installation of
five additional devices.

Data calibration and filtering. We ensure a high data quality
by calibrating and filtering the timestamped and geo-tagged
measurements. For one minute in every hour the devices
go into a self-calibrating phase to measure their null-offsets,
which we use offline to adjust the offset of all measured
particle concentrations. Then, we use a two-stage filtering
process to remove faulty and unreliable measurements.
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Governmental station

Our measurements

Figure 4. Ten mobile sensor nodes deployed on top of public transport
vehicles achieve a good coverage of the city of Zurich (Switzerland). The dots
denote locations with at least 50 measurements over the course of 14 months.

First, a GPS-based filter eliminates measurements with
horizontal dilution of precision (HDOP) values above 3. The
HDOP value specifies the GPS location’s precision based on
the geometric positioning of the GPS satellites. Values below
3 denote a good to excellent positioning within a few meters.
We consider only these measurements (99 % of the total).

The second filter examines the internal status variables of
the MiniDiSCs, which are transmitted to the back-end server in
addition to the particle concentration numbers. These variables
allow to draw conclusions about the proper functioning of the
devices. We discard measurements if a status variable indicates
a malfunctioning, such as a too low air flow. Additionally, the
MiniDiSCs need a warm-up phase; therefore, all measurements
within one hour after start-up are discarded. The two-stage
filtering process invalidates around 40 % of the measurements
(mainly the second filter), as shown in Fig. 3, but is crucial to
achieve high data quality, as we will detail in the next section.

Spatial coverage. A good spatial coverage of the measure-
ments is essential to precisely assess the concentration dis-
tribution in urban environments. The spatial coverage of the
filtered UFP measurements is shown in Fig. 4. The dots denote
locations (100 m× 100 m) with at least 50 measurements over
the course of 14 months. The ten mobile sensor nodes achieve
a good coverage, in particular compared to the single govern-
mental station monitoring UFPs in Zurich, denoted with a tri-
angle in Fig. 4. Our measurements cover a large set of diverse
location characteristics. For example, the data set includes
measurement locations at terrain elevations from 400–610 m
and at diverse traffic densities ranging from vehicle-free zones
to areas with over 90,000 vehicles per day.

III. DATA VALIDATION

Good data quality is a must for the development of reliable
pollution maps. Evaluating the quality of measurements spread
over a large urban area is a challenging task, especially if no
(or only sparse) ground truth is available. The MiniDiSC has
been thoroughly tested in laboratory environment and in the
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(b) Processed data.

Figure 5. The log-normal distribution (black) with mean and standard devia-
tion of the UFP data (gray). After calibration and filtering (processed data), the
log-normal distribution accurately fits the distribution of the measurements.

field [5]. However, despite these tests it is unclear whether the
harsh deployment setting on top of streetcars has an impact on
the quality of the measurements. Among others, the devices
have to endure mobility, constant vibrations, high temperature
and humidity variations, and long, unattended operating times.

Thus, we propose a three-fold validation approach to assess
the quality of our measurements. We analyze (i) the statistical
distribution of the monitored particle concentrations, (ii) the
baseline signal of each device, and (iii) compare our measure-
ments to data from two high-quality stations collected during
the same time period but at different locations in Switzerland.

A. Statistical Distribution

The statistical distribution of data from many different
scientific disciplines, including the concentration of ambient
air pollutants, closely follows a log-normal distribution, i.e.,
the logarithm of the measurements is normally distributed [10].
Previous work indicates that also UFPs are approximately log-
normally distributed [11]. Here, we confirm that UFPs are
log-normally distributed in urban environments. We show in
Fig. 5 the distribution of the raw and processed (i.e., applied
calibration and filtering) data and the log-normal distributions
with mean and standard deviation of the raw and processed
data, respectively. Raw data are not log-normally distributed,
as apparent from Fig. 5(a). However, as we show in Fig. 5(b),
the distribution of the processed data nicely fits the log-normal
distribution Log-N (µ, σ2) with µ = 9.25 and σ2 = 0.51.

B. Baseline Signal

We examine the correct offset of the MiniDiSCs, by
looking at their baseline signals, i.e., low-pass filtered mea-
surements. We expect a similar baseline signal across all
devices, because they all take measurements in the same region
(streetcars are not bounded to specific lines). We construct the
baseline signal of each device with a simple low-pass filter.
We take for every 90 min time interval, the average time for
a streetcar to cross the city twice, the 20th percentile of the
measured concentrations. Our analysis confirms that over time
the baseline signals are similar across all ten devices.

C. Comparison to High-Quality Data Sets

We compare our data set to UFP concentrations measured
by static stations of the Swiss National Air Pollution Mon-
itoring Network (NABEL). Five out of 16 NABEL stations
are equipped with accurate UFP counters located in urban,
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Figure 6. Daily average UFP concentration measured by the mobile sensor
nodes in Zurich corresponds well to measurements of two static NABEL
stations with urban (Pearson r = 0.49) and suburban (r = 0.55) locations.

suburban, and rural environments. For the comparison we
choose data from the stations with urban heavy traffic (Bern–
Bollwerk) and suburban (Basel–Binningen) backgrounds, as
these locations reflect best the topographical extremes of our
measurement region in Zurich.

We compare the daily measured average particle concen-
trations from the mobile sensor nodes to data of these two
static stations. Thereof we depict in Fig. 6 an excerpt of 4
months. It shows that the three data sets have a similar trend,
further reflected by the good Pearson correlations of r = 0.49
and r = 0.55 between our processed data and the urban and
suburban located stations, respectively. The two NABEL data
sets have a slightly lower correlation of r = 0.46. Furthermore,
as we would expect, the daily average UFP concentration in
Zurich ranges between the daily averages measured at the
urban location with heavy traffic and at the suburban location.

The above analyses indicate a good quality of our data. In
the following, we use the processed data set to derive land-use
regression models for accurate high-resolution pollution maps.

IV. DEVELOPING LAND-USE REGRESSION MODELS
TO CREATE HIGH-RESOLUTION POLLUTION MAPS

Land-use regression (LUR) models are widely used to as-
sess spatial variation of air pollutants, typically at an intraurban
scale [6], [12]. LUR models use land-use and traffic charac-
teristics (explanatory variables) to predict pollution levels for
locations not covered by measurement devices. The general
concept is based on two steps:

1) At all measurement locations the dependencies be-
tween explanatory variables (e.g., population density,
traffic volume, and terrain elevation) and monitored
pollution levels are evaluated using linear regression.

2) The found relationships between monitored concen-
trations and explanatory variables are used to predict
concentration levels at locations without measure-
ments but with available land-use data.

There are different approaches to construct LUR mod-
els. We use Generalized Additive Models (GAMs) [13], be-
cause they support non-linear relationships between monitored
concentration levels and explanatory variables. Furthermore,
GAMs have been used recently to analyze and model the
spatio-temporal variability of particulate matter [14], [15].

A. Generalized Additive Models

We divide our data into different time scales and build
for each time scale a separate model. This yields 989 mod-



Table I. 12 EXPLANATORY VARIABLES ARE EXAMINED TO BUILD THE
AIR QUALITY MODELS FOR UFP POLLUTION MAPS.

Variable [unit] Variable [unit]

Population [inhabitants/ha] Industry [industry buildings/ha]
Building height [floor levels/ha] Heating [oil and gas heatings/ha]
Terrain elevation [average m/ha] Road type [busiest road type/ha]?

Distance to next road [m] Distance to next large road [m]†

Terrain slope [average degree/ha] Terrain aspect [average degree/ha]
Traffic volume [vehicles per day/ha] Distance to next traffic signal [m]

?Five road types: residential, tertiary, secondary, primary, and freeway.
†Road types classified as large: secondary, primary, and freeway.

els with yearly, seasonal, monthly, biweekly, weekly, daily,
and semi-daily (midnight–noon and noon–midnight) temporal
resolutions. For all models we use the following relationship
between pollution concentration and explanatory variables:

ln(cnum) = a+ s1(A1) + s2(A2) + · · ·+ sn(An) + ε, (1)

where cnum denotes the UFP concentration, a the intercept,
s1(A1) . . . sn(An) the smooth functions s1 . . . sn with ex-
planatory variables A1 . . . An, and ε the error term. The non-
parametric functions s1 . . . sn are smooth regression splines
with an upper limit of 3 on the degrees of freedom. Through
empirical evaluations we found that the logarithmic link func-
tion, ln(cnum) in (1), yields the best model residuals, which
are the differences between measured and predicted values.

B. Selecting Explanatory Variables

We collected a set of 12 explanatory variables, as listed
in Table I. Data to calculate population density, industry
density, building heights, heating type, and elevation, slope,
and aspect of the terrain are from the Swiss Federal Statistical
Office. Road types and distances to next road and traffic
signal are extracted from OpenStreetMap data. Average daily
traffic volumes are obtained from the Department of Waste,
Water, Energy, and Air of the Canton of Zurich. Some of
the data sets are based on measurements from 2007–2010.
We assume that these explanatory variables did not change
considerably compared to 2012/2013, which is the monitored
and modeled time period. Most explanatory variables have a
100 m x 100 m (1 ha) resolution, which we use in general for
all variables, as indicated in Table I. This automatically sets
the spatial resolution of the generated pollution maps.

It is crucial to examine the correlation between each pair
of explanatory variables. Removing variables that have high
correlation with each other helps to better distinguish individ-
ual contributions of different variables to the modeled particle
concentration and prevents redundancy in the model [16]. We
do not use population density and number of gas and oil
heating households as both have a strong linear relationship
with each other and with the number of floor levels (R2 is
larger than 0.6 [14]). Using the distance to the next traffic
signal did not improve any of the tested models, and is,
therefore, also removed from the modeling process.

The terms on the right side in (1) have a multiplica-
tive relationship with the particle concentration cnum, i.e.,
cnum = ea · es1(A1) · es2(A2) · · · . Thus, we can specify the
influence of each explanatory variable An as a multiplicative
influence factor esn(An). Fig. 7 depicts typical influence factors
observed in our models. Building height and daily traffic vol-
ume have an amplifying while terrain elevation has a reducing
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Figure 7. Typical influence factors. Building height and traffic volume have a
positive while terrain elevation has a negative impact on UFP concentrations.

impact on the particle concentration. The rugs on the x-axis
show that a reduced number of measurements is available at
the extremes resulting in decreased confidence bands.

C. UFP Data Aggregation

According to the resolution of the explanatory variables,
the measured UFP concentrations of one year (April 2012 to
March 2013) are projected on a grid with 13,200 cells, each of
size 100 m× 100 m, covering the complete region of interest
depicted in Fig. 4. The used subset of the data depends on
the desired temporal resolution of the model, i.e., for daily
maps we consider measurements from a single day while for
seasonal maps those from the entire season. For each grid cell
i, we fetch the ni measurements located in the cell to calculate
the mean pollution concentration cmi . The applied GPS filter
ensures that the localization is precise enough to correctly
assign the measurements to their cells with high probability.

The measurements are (unevenly) distributed among 300–
1300 different cells depending on the analyzed temporal subset
of the data. For example, every black dot in Fig. 4 denotes a
cell with at least 50 measurements when projecting the full
14-month data set onto the grid. As model input we use the
200 cells with the highest number of measurements, which are
mainly cells containing a streetcar stop. This ensures that the
calculated means cmi are reliable and provides a good trade-
off between spatial input distribution and model performance,
as we will show in Sec. V. Introducing prior weights on the
cells (e.g., using number of measurements per cell) does not
improve the models.

D. Model Output: High-Resolution Pollution Maps

We use the described method above to develop models
for pollution maps with different temporal resolutions. For
instance, the output of the models with seasonal resolution
(winter, spring, summer, and fall) is shown in Fig. 8. In general,
terrain elevation, building heights, and traffic density have the
highest influence on the predicted pollution levels. Further, we
see that the pollution levels are higher in winter and fall than
in spring and summer. This is due to frequent high-inversion
fog in Zurich from October to March preventing the pollutants
to be lifted from the surface and therewith increasing pollution
concentration near the ground [17]. The topographical structure
around Zurich makes the city prone to inversion fog as it is
closely surrounded by hills in the north-east and south-west.
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Figure 8. Seasonal UFP pollution maps with a spatial resolution of 100 m× 100 m for Zurich (Switzerland), based on data collected by mobile sensor nodes
throughout a year. Terrain elevation, building heights, and traffic density have the highest impact on the modeled particle concentrations. Frequent high-inversion
fog in winter and fall lead to higher particle concentrations than in spring and summer.

V. REVEALING THE TEMPORAL RESOLUTION LIMIT

This section evaluates the performance of the 989 generated
air quality models with yearly to semi-daily temporal resolu-
tions based on our measurements from April 2012 to March
2013. Our evaluation reveals the following findings:

• Models for pollution maps with yearly to weekly time
scales have an accuracy that is comparable to recently
published state-of-the-art air quality models.

• Pollution maps with daily and semi-daily temporal
resolutions are less accurate, because a lower number
of measurements are available to build the models.

A. Metrics and Evaluation Methodology

We use three standard metrics to evaluate our models [18].

Factor of 2 measure (FAC2): Quantitatively analyzes scatter
plots (predicted concentrations plotted against measured con-
centrations) by evaluating the fraction of data points that lie
inside the factor two area, i.e., fraction of data that satisfy:

0.5 ≤ cpi
cmi
≤ 2.0, (2)

where cpi is the model predicted and cmi is the average
measured concentration of grid cell i. This measure is based
on the belief that an accurate model for pollution maps should
have a relative scatter less than a factor of two [18].

Adjusted coefficient of determination (R2): Indicates from
0 to 1 how well the predicted concentrations fit the mea-
surements (R2=1 denotes a perfect fit). R2 reflects the linear
relationship between predicted and measured values, hence, it
is insensitive to additive and multiplicative errors.

Root-mean-square error (RMSE): Quantifies the difference
between the predicted and measured particle concentrations:

RMSE =
(∑N

i=1 (c
p
i − cmi )

2

N

)0.5
, (3)

where N denotes the number of cells used in the evaluation.

For all evaluations we perform a 10-fold cross-validation.
That is, we randomly remove 10 % of the measurements and
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Figure 9. Scatter plots. Model predicted versus measured UFP concentra-
tions (particles/cm3) for seasonal pollution maps. The dashed lines depict the
factor of two area (slopes of 0.5 and 2) and the 1-to-1 relation (slope of 1).
All linear regression lines (solid) are very close to the 1-to-1 lines.

create (calibrate) the model using the remaining 90 % of the
data. We use the predictions at the locations of the removed
10 % to evaluate the metrics above. We repeat this procedure
40 times to have a good coverage of the complete data set.

B. Model Performance

We first ensure that the models have no systematic bias
and then use the metrics above to evaluate their accuracy.

Trustworthy models should not have any systematic bias
in their predictions. In general, the predictions did not show
any bias. We show this exemplary in Fig. 9 on scatter plots
of seasonal pollution maps (see Fig. 8). The dashed lines
denote the factor of two area, i.e., slopes of 0.5 and 2, and the
optimal 1-to-1 relation, i.e., slope of 1. The linear regression
lines (solid) are very close to the 1-to-1 lines for all depicted
seasons, indicating the absence of systematic model errors.

Fig. 10 shows the three metrics for all analyzed temporal
time scales. Models with yearly to weekly temporal resolutions
have very high FAC2s, while daily and semi-daily predictions
have a considerable number of models with lower FAC2
values, i.e., many predictions are more than a factor of two
off. The RMSEs grow with increasing temporal resolution.
Yearly to weekly pollution maps have low RMSEs, which are
in range of recently published air quality models [6]. Models
with higher temporal resolutions, such as daily and semi-daily
pollution maps, have on average 38 % higher RMSEs.

The average R2 of yearly to monthly maps is 0.38, and
slightly decreases for shorter time scales. Recently published
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Figure 10. Models with yearly to weekly temporal resolutions have a good
quality with high FAC2 values, low RMSEs, and acceptable R2 coefficients.
Models with higher temporal resolutions perform less well.

air quality models for particulate matter have R2 values in
0.17–0.82 [6]. Most of these models are based on installations
that are just in place for a short time (i.e., days or weeks)
with measurement devices employed at a carefully selected
set of around 40 locations, on average. In our deployment we
have a large number of measurement locations, but (perhaps
counterintuitively) with many locations it is more difficult to
get predictions with high R2 values [19], [20]. We found that
a restriction to 200 grid cells leads to a good trade-off among
the considered metrics, as exemplified in Fig. 11 for yearly
pollution maps. Models created with a small number of grid
cells have good R2s but their validity at locations not covered
by the input cells is limited, which results in poor FAC2 and
RMSE values. Models developed with many grid cells (> 300)
have poor R2s and RMSEs. Among others, this is because the
number of cells with unreliable average cell concentrations
increases as the calculated means are more and more based on
a limited number of measurements (remember that the cells are
favored according to the number of measurements per cell).

C. Challenges of Developing Temporal High-Resolution Maps

We observe on all examined performance metrics that
for higher temporal resolutions it is more difficult to derive
accurate pollution maps. The main problem is the lower num-
ber of measurements available to calculate the mean particle
concentration per cell, leading to the following complications:

• The calculated mean of a grid cell is less robust as it
is based on a smaller number of measurements.

• Erroneous and inaccurate measurements (e.g., due to
outliers, sensor noise, and outdated calibration) have
a higher impact on the mean value of a cell.
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Figure 11. Yearly pollution maps modeled with 20–1200 grid cells. The
models achieve a good performance trade-off with 200 cells (dashed line).
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Figure 12. With increased number of measurements the RSE of the cells’
mean decreases. Models based on cells with small RSEs have low RMSEs.

To quantitatively support our claims, we examine the
relative standard error (RSE) of each cell, which is a good
indicator of the reliability of a cell’s mean:

RSEi =
σm
i√

ni · cmi
· 100, (4)

where σm
i is the standard deviation of the ni measurements of

cell i. Fig. 12(a) illustrates how the average RSE declines with
increasing number of measurements per cell. Models derived
from cells with small RSEs have lower RMSEs, as shown in
Fig. 12(b). The RSE increase from 4 % to 8 % results in a
60 % rise of the models’ RMSEs. Note that we verified that
using the median instead of the mean of a cell does not yield
improved model performance.

In the following, we propose a new modeling approach to
increase the number of measurements per cell and, therewith,
improve the accuracy of models with high temporal resolution.

VI. PUSHING THE TEMPORAL RESOLUTION LIMIT

We propose a novel modeling approach, which is able to
make use of past pollution measurements to increase the ac-
curacy of highly temporally resolved pollution maps. For that,
we introduce a history database containing our measurements
from the last 12 months annotated with metadata describing the
environmental conditions at time of measurement. We exploit
that concentrations of air pollutants show a high correlation
with various environmental conditions (e.g., temperature) and
the current weekday [15], [21], [22]. The data selector depicted
in Fig. 13, selects from the history database those measure-
ments that were performed on the same weekday and under
similar environmental conditions as the average condition of
the modeled time period. These historical measurements (β)
are used together with measurements from the modeled time
period (α) to calculate temporally resolved pollution maps, as
shown in Fig. 13. For example, we want to create a pollution
map for a sunny but windy Saturday, hence, we enrich the



Figure 13. Additional data (β) from a database with historical measurements
is used to enhance the original data set (α) to derive pollution maps with
high temporal resolutions. The data selector ensures that only those historical
measurements are used, which were measured under similar environmental
conditions as the average condition of the modeled time period.
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Figure 14. Average semi-daily concentrations based on the history database
closely matches ground truth data measured on these days (Pearson r = 0.74).

original measurements (α) from that Saturday with historical
measurements (β) gathered on a past sunny, windy Saturday.

In the following, we show the feasibility of this novel ap-
proach on the case study of semi-daily pollution maps, where
the standard model did not deliver a satisfactory accuracy.

A. Data Annotation

We feed the history database with 15 million UFP measure-
ments from a complete year (April 2012 to March 2013). We
annotate the measurements with the environmental conditions
measured in the city center during this time period by a high-
quality static station. The station provides 30 min averages of
a diverse set of environmental variables, namely humidity, at-
mospheric pressure, radiation, precipitation, temperature, wind
direction, wind speed, and nitrogen oxide (NOx) concentration.

B. Data Selector and Quality of Selected Data

The data selector, depicted in Fig. 13, fetches based on
the average environmental condition of the modeled half-day
those measurements from the history database, which are most
likely to be similar to the real measurements from that half-day.
To find the best data selector, we evaluate all possible combi-
nations of environmental variables. We introduce a deviation
parameter, which controls how closely the metadata of the
fetched measurements has to match the given conditions. For
example, allowing 20 % deviation and a temperature of 15 ◦C,
the data selector returns all data measured at 15 ◦C ± 20 %,
whereas 100 % refers to the maximum range in the database.

We evaluate the best data selector by comparing for a com-
plete year the average semi-daily UFP concentration supplied
by the two input data sets (β) and (α) depicted in Fig. 13. We
observe that the fetched data from the history database (β) are
closest to the actual measured concentrations (α) if the selec-
tion is based on the following three criteria: temperature, wind
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Figure 15. The novel method with a history database helps to increase the
quality of semi-daily pollution maps. On average, the RMSE is 26 % lower
using the novel model compared to the standard model.

direction, and NOx concentration with an allowed deviation of
10 %. The two data sets have a high Pearson correlation of 0.74
and a low average absolute difference of 2,500 particles/cm3,
as shown on a three-month extract in Fig. 14. In this way,
we attain on average a 14x increase in data volume from
19,000 (α) to 260,000 (α+β) measurements per half-day.

C. Increased Quality of Semi-Daily Pollution Maps

The extended number of measurements helps to derive pol-
lution maps with a higher accuracy. We compare our modeling
approach with the standard approach using the three perfor-
mance metrics. Fig. 15 shows that using our novel modeling
approach increases FAC2s by 2 %, R2s by 6 %, and decreases
RMSEs by 26 %, on average. The semi-daily pollution maps
created with the new models achieve a similar accuracy as the
weekly pollution maps created with the standard models.

This new modeling approach advances the generation of
accurate pollution maps with high temporal resolutions and
simultaneously enables the forecasting of pollution maps for
specific environmental conditions, e.g., by using weather fore-
cast data to create pollution maps for the next hours or days.

VII. RELATED WORK

Monitoring airborne pollutants with mobile, low-cost sen-
sors has gained much attention in recent years. Low-cost gas
sensors are often embedded in custom-built, personal sensor
nodes that are part of participatory sensing networks [23], [24].
Participants can directly monitor the exposure level at locations
where they spent their time. However, reaching the critical
mass of users to get a coherent picture of the exposure situation
in the area of interest is a formidable challenge and may require
hundreds to thousands of contributors. Our approach uses a
small number of non-personal sensor nodes deployed on top
of public transport vehicles to automatically obtain a constant
coverage in the area of interest.

There are different kinds of models that can be developed to
predict intraurban pollution concentrations, such as proximity-
based assessment, statistical interpolation, LUR, and line dis-
persion models [12]. In this work, we develop LUR models
since they have, compared to other models, a relatively low
computational overhead, which is beneficial when deriving
many hundreds of models. Above all, in the past, LUR models
were applied to predict the concentration of a wide range of
air pollutants [6]. Most of these models are based on data from
static monitoring stations installed at a small set of hand-picked



locations (typically around 40) for some days or couple of
weeks [6]. In contrast, our mobile sensor nodes cover a much
larger number of locations, i.e., every day around 300 grid
cells of size 100 m x 100 m. Therewith, we develop pollution
maps with a high spatio-temporal resolution.

A number of studies address the challenge of develop-
ing models with high temporal resolutions. Liu et al. [15]
derive daily PM2.5 maps with a spatial resolution of 4 km
by using satellite data in combination with meteorological
features. Su et al. [19] extend their NO2 and NO models with
hourly meteorological conditions, such as wind speed and wind
direction, to create pollution maps with an hourly resolution.
However, it remains unclear how much the meteorological data
helps to improve their models. Furthermore, the performance
of the hourly resolved pollution maps was not evaluated.

Clifford et al. [21] and Mølgaard et al. [11] develop UFP
models with high temporal resolutions by using not only traffic
and land-use characteristics data but also meteorological vari-
ables as model covariates. Both works solely model temporal
variability as their data originates from a single static station.

Many of the above works use meteorological data to
enhance their models, i.e., [11], [15], [19], [21]. However, their
methods of integrating meteorological data into the modeling
process only works if (i) the specific meteorological conditions
are known at each measurement location and (ii) the meteo-
rological conditions are significantly different among locations
for a given instant in time. Most often, both conditions do not
apply for spatially resolved intraurban data sets.

VIII. CONCLUSIONS

Today, little is known about the spatial distribution of air
pollutants in urban environments. We address this problem
by deploying mobile sensor nodes on top of public transport
vehicles in the city of Zurich, Switzerland. We take advantage
of the transport network’s coverage and regular schedule to
collect one of the largest spatially resolved data set containing
over 25 million ultrafine particle measurements. We develop
land-use regression models to create pollution maps with a high
spatial resolution and study their temporal resolution limit. We
reveal that the accuracy of pollution maps with sub-weekly
temporal resolution suffers from the limited number of mea-
surements available to model the pollution concentrations. We
tackle this problem by proposing a novel modeling approach,
which is able to make use of past measurements to increase
the available data volume. Therewith, we develop accurate
ultrafine particle pollution maps with a high spatio-temporal
resolution. These maps are valuable to the general public as
well as to environmental scientists and epidemiologists to shed
more light on the adverse health effects of ultrafine particles.
We believe that our findings promote the accurate, detailed,
and timely assessment of air quality in urban environments.
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