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Abstract. We give a review of semi-classical estimates for bound states
and their eigenvalues for Schrödinger operators. Motivated by the clas-
sical results, we discuss their recent improvements for single particle
Schrödinger operators as well as some applications of these semi-classical
bounds to multi-particle systems, in particular, large atoms and the sta-
bility of matter.

In this survey, we focus on results for bound states of Schrödinger oper-
ators related to the semi-classical limit and Coulomb potentials. We will
not discuss a large part of the existing literature on the general theory of
bound states for Schrödinger operators. With no attempt on completeness,
we would nevertheless like to mention at least some part of this literature:
For one particle Schrödinger operators, see, for example, [19, 149]. Two-body
cluster results are discussed in [4, 82, 140, 151, 152, 173], finiteness results of
the discrete spectrum for N -particle systems can be found in [1, 40, 164], and
for results on the Efimov effect see, for example, [3, 36, 123, 155, 160, 170].

1. Semi-classical bounds for single particle Schrödinger
operators

The origin of semi-classical estimates can be traced back to the dawn
of quantum mechanics in the beginning of the last century. Around 1912,
Hermann Weyl published a series of papers [166, 167, 168], see also [169],
on the frequencies of an oscillating membrane and the radiation inside a
cavity, verifying a conjecture of Jeans and Lorenz on the connection between
the asymptotic behavior of these frequencies and the volume of the cavity.
While in itself being a classical problem, this work was the starting point
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of a substantial branch of analysis and mathematical physics, especially in
quantum mechanics.

Consider a bounded domain Λ ⊂ Rd and the eigenvalue problem for the
Dirichlet Laplacian

−∆D
Λϕ = Eϕ,

that is, the partial differential equation

(1) −
d∑
j=1

∂2

∂x2
j

ϕ(x) = Eϕ(x) for x ∈ Λ and ϕ|∂Λ = 0.

Furthermore, let E1(Λ) < E2(Λ) ≤ E3(Λ) ≤ . . . be an ordering of the
eigenvalues of (1) and define the counting function

ND
Λ (E) :=

∑
Ej(Λ)<E

1

which counts the number of eigenvalues of −∆D
Λ below E. Weyl showed that

(2) ND(E) =
ωd

(2π)d
|Λ|Ed/2 + o(Ed/2) as E →∞.

Here ωd = πd/2

Γ(1+(d/2))
is the volume of the unit ball in Rd. Weyl’s formula

holds for all bounded domains Λ ⊂ Rd.
The origin of Weyl’s equality is easy to see: If Λ is a centered cube of side

length a, then the eigenfunctions and eigenvalues of the Dirichlet Laplacian
are known explicitly and given by

u(x) =
d∏

ν=1

sin(πnν
a
xν), nν ∈ N and

E =
π2

a2
|n|2 =

π2

a2

d∑
ν=1

n2
ν ,

that is, ND
Λ (E) is precisely the number of points n ∈ Nd within the ball of

radius a
π
E1/2, which behaves asymptotically as

(3)
ωd

(2π)d
adEd/2 + o(Ed/2) for E →∞.

Similarly, the counting function NN
Λ (E) of the Neumann Laplacian has the

same asymptotic as the Dirichlet Laplacian. They differ by a surface term
which is of lower order in the high energy asymptotic, at least for domains
with a nice boundary ∂Λ.
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Weyl’s crucial idea was to approximate a general domain Λ ⊂ Rd by cubes
and to use (3). Using variational arguments, he showed

lim
E→∞

E−d/2ND
Λ (E) = lim

a→0
ωd

( a
2π

)d
#{disjoint cubes of side length a in Λ}.

Since #{disjoint cubes of side length a in Λ} = a−d(|Λ|+ o(1)), one obtains
(2).

1.1. Pólya’s conjecture. In 1961, Pólya [125] conjectured that the asymp-
totic result (2) holds as a uniform bound on ND

Λ (E) for all E > 0 with some
constant P (d), that is,

(4) ND
Λ (E) ≤ P (d)|Λ|Ed/2 for all E ≥ 0,

or, equivalently1,

En ≥ (P (d)|Λ|)−2/d n2/d for all n ∈ N.

Pólya also conjectured that the sharp constant in (4) is given by Weyl’s
asymptotic result, P (d) = ωd

(2π)d
. He was able to prove this conjecture for

the special class of tiling domains Λ, that is, disjoint congruents of Λ are
assumed to cover Rd. The argument is rather simple. Scaling Λr := rΛ,
one gets another tiling domain with ND

Λ (E) = ND
rΛ(r−2E) (by scaling of the

kinetic energy). So with B = Ball of unit volume in Rd, we get

ND
rΛ(r−2E) ≤ ND

B (r−2E)

Ar

where Ar = #{ disjoint congruents of rΛ which are subsets of B}. Fix E >
0 and let r → 0. By Weyl’s asymptotic we know

ND
B (r−2E) = r−d

( ωd
(2π)d

Ed/2 + o(1)
)

and, obviously, Ar = r−d
(
|Λ|−1 + o(1)

)
as r → 0. Together these estimates

give the bound

ND
Λ (E) ≤ lim

r→0

ND
B (r−2E)

Ar
=

ωd
(2π)d

|Λ|Ed/2

for a tiling domain Λ.
Unfortunately, the sharp result is not known for general bounded domains.

The best result is due to Li and Yau [91], who showed

(5) ND
Λ (E) ≤

(d+ 2

d

)d/2 ωd
(2π)d

|Λ|Ed/2.

1Indeed, if N(E) ≤ CEα, then putting E = En one sees n = N(En) ≤ CEα
n , that is,

En ≥ C−1/αn1/α. Conversely, N(E) =
∑

Ej<E 1 ≤
∑

n1/α<C1/αE 1 ≤ CEα.
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More precisely, they proved the sharp bound
n∑
j=1

Ej ≥
d

d+ 2

( ωd
(2π)d

|Λ|
)−2/d

n1+ 2
d for all n ∈ N

and deduced (5) from this simply by observing En ≥ 1
n

∑n
j=1Ej.

Laptev [86] gave a much simpler argument than the original one by Li
and Yau in 1996. Moreover, he showed that if Pólya’s conjecture holds for a
domain Λ1 ⊂ Rd1 , then it holds for all domains Λ = Λ1 × Λ2 for all d2 ∈ N
and domains Λ2 ⊂ Rd2 . This paper was the first instance where the idea of
“stripping off” dimensions appeared, which later turned out to be the key
for a refined study of semi-classical inequalities for moments of eigenvalues
of Schrödinger operators, see section 1.7.

1.2. Weyl asymptotic for Schrödinger operators. In the early 1970’s,
Birman–Borzov, Martin, and Tamura, [17, 121, 159], proved semi-classical
asymptotic for the number of the negative eigenvalues2 of Schrödinger oper-
ators with a Hölder continuous and compactly supported potential V . Let
E1 < E2 ≤ E3 ≤ · · · ≤ 0 be a counting of the negative eigenvalues of −∆+V
on L2(Rd) and set

N(V ) := #{negative eigenvalues of −∆ + V }.
Assume that V is non-positive for the moment and introduce a coupling
constant λ. We want to study the large λ asymptotic of N(λV ). Assum-
ing the Dirichlet-Neumann bracketing technique developed by Courant and
Hilbert, a short argument can be given as follows; for details, see [126]. We
let Λa = {−a

2
< xj <

a
2
, j = 1, . . . , d} and define Λa,j = j + Λa for j ∈ aZd.

Assume that V is constant on the cubes Λa,j, that is, V (x) = Va,j for x ∈ Λa,j.
Using Dirichlet-Neumann bracketing, one gets∑

j∈aZd
ND

Λa,j
(λVa,j) ≤ N(λV ) ≤

∑
j∈aZd

NN
Λa,j

(λVa,j).

Applying Weyl’s asymptotic result (2) with E = λ|Va,j|,

N(λV ) =
ωd

(2π)d
λd/2ad

∑
j∈aZd

|Va,j|d/2 + o(λd/2) as λ→∞.

So if V is continuous, non-positive, and of compact support,

(6) N(λV ) =
ωd

(2π)d
λd/2

∫
Rd
V (x)

d/2
− dx+ o(λd/2).

This formula is, in fact, a semi-classical asymptotic. Let |ξ|2 +λV (x) be the
so-called classical symbol associated with the operator −∆ + λV . Using the

2For a probabilistic proof, see [76] or [150].
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Fubini-Tonelli theorem and scaling, the volume of the negative energy region
in phase space is given by∫∫

|ξ|2+λV (x)<0

1 dξdx = ωdλ
d/2

∫
Rd
V (x)

d/2
− dx.

Thus, formula (6) says that the number of negative eigenvalues of −∆ + λV
asymptotically, for large λ, behaves like the classical allowed phase-space
volume divided by (2π)d,

lim
λ→∞

λ−d/2N(λV ) =
1

(2π)d

∫∫
(|ξ|2 + V (x))0

− dξdx,

where we set r0
− = 1 for r < 0 and 0 for r ≥ 0. So each eigenfunction corre-

sponding to an negative eigenvalue occupies a volume (2π)d in phase-space.
This is in perfect agreement with the Heisenberg uncertainty principle, ac-
cording to which an electron occupies a volume of at least (2π)d in phase
space.

One should also note that Weyl’s original result fits very well into this more
general framework. Indeed, and again somewhat formally, for a bounded
open set Λ one can recover the Weyl asymptotic by setting V = ∞1Λc − 1Λ

(with the convention ∞ · 0 = 0). Then (6) gives

ND
Λ (E) = N(EV )

=
1

(2π)d

∫∫
|ξ|2+EV (x)<0

dξdx+ o(Ed/2)

=
ωd

(2π)d
|Λ|Ed/2 + o(Ed/2)

which is Weyl’s asymptotic.

1.3. The Birman-Schwinger principle. Around 1961, Birman [16] and
Schwinger [137] independently found a way to reduce an estimate on the
number of negative bound states to the study of a bounded integral operator.
The idea of their argument is as follows: First assume that V = −U is non-
positive. Let ϕ be an eigenvector of −∆−U for the negative energy E. That
is, (−∆ − U)ϕ = Eϕ, with E < 0. Rearranging gives (−∆ − E)ϕ = Uϕ,
which in turn is equivalent to ϕ = (−∆−E)−1Uϕ, since for E < 0, (−∆−E)

is boundedly invertible. Multiplying this with
√
U and setting ψ =

√
Uϕ we

see −∆−U has a negative eigenvalue E if and only if the Birman-Schwinger
operator

(7) KE =
√
U(−∆− E)−1

√
U
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has eigenvalue 1. Moreover, since the map E → nth eigenvalue of KE is
(strictly) monotone increasing, a careful analysis shows that the correspond-
ing eigenspaces have the same dimension. In short, denoting λ1(KE) ≥
λ2(KE) ≥ · · · ≥ 0 the eigenvalues of the Birman-Schwinger operator KE

and by E1 < E2 ≤ E3 ≤ . . . ≤ 0 the negative eigenvalues of −∆ − U , the
Birman-Schwinger principle is the statement that

(8) 1 = λn(KEn) for all n.

If V is not non-positive, one uses the min-max principle to see that NE(V ) ≤
NE(−V−). Here NE(V ) = #{eigenvalues of − ∆ + V ≤ E} Thus, setting
U = −V−, using the Birman-Schwinger principle, and the monotonicity of
λn(KE), one sees

NE(V ) ≤ #{eigenvalues of KE ≥ 1}.
In particular, NE(V ) ≤ tr[Kn

E] for all n ∈ N. On R3, KE is a Hilbert-Schmidt
operator with integral kernel

KE(x, y) =
√
V−(x)

e−
√
−E|x−y|

4π|x− y|
√
V−(y),

implying the bound

NE(V ) ≤ tr[K2
E] =

1

(4π)2

∫∫
V−(x)V−(y)

|x− y|2
e−2

√
−E|x−y| dxdy.

As E → 0, we get the Birman-Schwinger [16, 137] bound

(9) N(V ) = N0(V ) ≤ 1

(4π)2

∫∫
V−(x)V−(y)

|x− y|2
dxdy.

Note that (the negative part of) a potential V− is in the Rollnik class [146]
if and only if the right-hand side of (9) is finite.

On the other hand, this simple bound does not have the right large cou-
pling behavior since it only shows that N(λV ) ≤ (const)λ2 which grows
much faster than the asymptotic growth λ3/2 shown by large coupling as-
ymptotic. Nevertheless, the Birman-Schwinger principle is at the heart of
all proofs of semi-classical eigenvalue bounds.

1.4. The CLR and Lieb-Thirring bounds. The semi-classical Weyl-type
asymptotic for the number of bounds states leads naturally to the question
whether there is a robust bound of the form

N(V ) ≤ C0,d

(2π)d

∫∫
|ξ|2+V <0

1 dξdx

= L0,d

∫
Rd
V−(x)d/2 dx

(10)
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for arbitrary potentials V for which the right hand side is finite3. Here L0,d =
C0,dωd/(2π)d, where ωd is the volume of ball of radius one in d dimensions.

More generally, one can ask a similar question for higher moments4 of the
negative eigenvalues. That is, whether there is a semi-classical bound for

(11) Sγ(V ) = tr[(−∆ + V )γ−],

of the form

(12) Sγ(V ) ≤ Cγ,d
(2π)d

∫∫
(|ξ|2 + V (x))γ− dξdx.

Or, equivalently, whether

(13) Sγ(V ) ≤ Lγ,d

∫
V (x)

γ+d/2
− dx

with Lγ,d = Cγ,dL
cl
γ,d, where Lcl

γ,d = 1
(2π)d

∫
(|ξ|2 − 1)γ− dξ = Γ(γ+1)

2dπd/2Γ(γ+1+d/2)
is

the so-called classical Lieb-Thirring constant. In particular, Lcl
0,d = ωd/(2π)d

and Lcl
1,d = 2

d+2
ωd

(2π)d
. Of course, one has to assume that the negative part of

the potential V− ∈ Lγ+d/2(Rd). One recovers N(V ) from Sγ(V ) by N(V ) =
S0(V ) = limγ→0 S

γ(V ).
Of course, the physically most interesting cases are γ = 0, the counting

function for the number of bound states, and γ = 1, which gives a bound for
the total energy of a system of non-interacting fermions in an external po-
tential given by V . Also a simple approximation argument, see, for example,
[147], shows that a bound of the form (10) allows to extend the semi-classical
asymptotic (6) to all potentials in Ld/2(Rd).

It is easy to see that bounds of the type (12) can only hold for γ > 0 in
d ≤ 2 and γ ≥ 0 in d ≥ 3. In fact, since any non-trivial attractive potential
has at least one bound state [148, 81] and [85, pages 156-157], there can be
no semi-classical bound of the form (13) for γ = 0 in d = 2, and in one
dimension, this bound is even impossible5 for 0 ≤ γ < 1/2.

The inequalities (12) and (13) were proven by Lieb and Thirring [114, 115]
in 1975-76 in the cases γ > 1/2 in d = 1 and γ > 0 for d ≥ 2.

The proof of (10), the famous Cwikel-Lieb-Rozenblum bound, is consid-
erably more complicated than the proof for γ > 0. It also has an interesting

3More precisely, V+ should be locally integrable and V− ∈ Ld/2(Rd).
4Often called Riesz’ moments.
5Let c > 0, δ be the Dirac measure at 0, and note that, by a one-dimensional Sobolev

embedding, the operator −∂2 − cδ is well-defined as a sum of quadratic forms. Take
a sequence of approximate delta-functions δn converging weakly to δ. Then −∂2 − cδn

converges to −∂2−cδ in strong resolvent sense. If γ < 1/2, the right-hand side of (13) goes
to zero, but the ground state of −∂2 − cδn stays bounded away from zero (it converges,
in fact, to −c2/4 = single negative eigenvalue of −∂2 − cδ).
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history: Rozenblum announced his proof of (10), which is based on an ex-
tension of a machinery developed by Birman and Solomyak [18], in 1972
in [128]. This announcement went unnoticed in the west. Independently of
Rozenblum, Simon established in [147] a link between the bound (10) and the
then conjectured fact that the Birman-Schwinger operator K0 given in (7)
for E = 0 is a certain weak trace ideal6 for d ≥ 3. This conjecture by Simon
on the asymptotic behavior of the singular values of K0 motivated Cwikel
and Lieb for their proofs of the CLR bound. In [30], Cwikel proved Simon’s
conjecture and Lieb, [92], used semigroup methods to bound tr[F (K0)] for
suitable functions F . Rozenblum’s proof appeared in 1976 in [129], Lieb’s
was announced in [92] in 1976 and Cwikel’s proof was published in 1977. Of
the three methods, Lieb’s gives by far the best estimates for the constants
C0,d. A very nice and readable discussion of Lieb’s method can be found in
Chapter 9 of [150] and Chapter 3.4 of Röpstorff’s book [127]. In particular,
Röpstorff discusses the fact that an extension of Lieb’s method to higher mo-
ments γ > 0 gives the upper bound Cγ,d ≤

√
2π(γ + d/2)(1+O((γ+d/2)−1))

as γ + d/2 →∞.
Later proofs of the CLR bound were given by Li and Yau [91], and Conlon,

[26], see also [90, 130].
The Lieb-Thirring inequalities (12)fit beautifully into the large coupling

asymptotic. At least on a formal level, it is easy to lift the asymptotic for
N(λV ) = S0(λV ) to moments γ > 0 by the following observation: For any
γ > 0,

(s−)γ = γ

∫ s−

0

tγ−1 dt = γ

∫ ∞

0

(s+ t)0
− t

γ−1 dt

for all real s (here s0
− = 1 if s < 0 and zero if s ≥ 0). Freely interchanging

integrals and traces gives

Sγ(λV ) = tr(−∆ + λV )γ− = γ

∫ ∞

0

tr(−∆ + λV + t)0
− t

γ−1dt

= γ

∫ ∞

0

( 1

(2π)d

∫∫
(|ξ|2 + λV (x) + t)0

− dξdx + o(λd/2)
)
tγ−1dt

=
1

(2π)d

∫∫
(|ξ|2 + λV (x))γ− dξdx+ o(λγ+d/2).

6A compact operator is in a trace ideal Sp if its singular values are in the space lp(N)
and it is in the weak trace ideal Sp

w if its singular values are in the weak-lp space lpw(N),
see, for example, [154].
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Thus

lim
λ→∞

λ−(γ+d/2)Sγ(λV ) =
1

(2π)d

∫∫
(|ξ|2 + V (x))γ− dξdx

= Lcl
γ,d

∫
V (x)

γ+d/2
− dx.

(14)

Of course, to make this sketch rigorous, one needs to handle the error terms
more carefully, which we skip. This large coupling asymptotic shows that the
best possible constants Lγ,d in the Lieb-Thirring inequality have the natural
lower bound Lγ,d ≥ Lcl

γ,d, or, equivalently, Cγ,d ≥ 1.

1.5. A Sobolev inequality for fermions. Besides being mathematically
very appealing, the γ = 1 version of the Lieb-Thirring bound gives a Sobolev
inequality for fermions whose d = 3 version has a nice application to the
Stability-of-Matter problem. For notational simplicity, we will not take the
spin of the particles into account. The following gives a duality between a
Lieb-Thirring type bound and a lower bound for the kinetic energy of an
N-particle fermion system. It is an immediate corollary of the Lieb-Thirring
bound for γ = 1.

Theorem 1. The following two bounds are equivalent for non-negative con-
vex functions G and F : R+ → R+ which are Legendre transformation of
each other. The Lieb-Thirring bound:

(15)
∑
j

|Ej| = trL2(Rd)(H0 + V )− ≤
∫
G((V (x))−) dx.

(Usually with H0 = −∆, but this does not matter in the following.)

The Thomas-Fermi bound:

(16) 〈ψ,
N∑
n=1

H0ψ〉VN L2(Rd) ≥
∫
F (ρψ(x)) dx,

for all antisymmetric states ψ ∈
∧N L2(Rd) with norm one. Here

ρψ(x) := N

∫
RN−1d

|ψ(x, x2, . . . , xN)|2 dx2 . . . dxN

is the so-called one particle density associated with the antisymmetric N-
particle state ψ.

For an explicit relation between F and G see (18) and (19).
Using the traditional Lieb-Thirring bound with γ = 1, one gets the fol-

lowing immediate
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Corollary 2. For normalized ψ ∈
∧N L2(Rd),

〈
ψ,−

N∑
j=1

∆jψ
〉
L2(RNd) ≥ C

−2/d
1,d KTF

d

∫
Rd
ρψ(x)

d+2
d dx

with

KTF
d =

d

d+ 2

(d+ 2

2
Lcl

1,d

)−2/d
=

d

d+ 2

4π2

ω
2/d
d

.

On should note that the right hand side of this bound is exactly the
Thomas-Fermi prediction for the kinetic energy of N fermions and KTF

d is
the Thomas-Fermi constant, see section 2.2. In particular, if C1,d is one, then
the Thomas-Fermi ansatz for the kinetic energy, a priori only supposed to
be asymptotically correct for large N , should be a true lower bound for all
N . This is a situation very much similar in spirit to Pólya’s conjecture.

Remark 3. Taking the spin of electrons into account, i.e., assuming that
ψ ∈

∧N(L2(Rd,Cq)) is normalized (and q = 2 for real electrons) one has the
lower bound

(17) 〈ψ,
N∑
j=1

−∆jψ〉 ≥ (qC1,d)
−2/dKTF

d

∫
ρψ(x)(d+2)/d dx.

Proof of Theorem 1: This proof is certainly known to the specialist, but we
include it for completeness. In fact, the reverse implication is the easy one,
(15) ⇐ (16):
Fix N ∈ N and let E1 < E2 ≤ · · · ≤ EN ≤ 0 be the first N negative
eigenvalues of the one-particle Schrödinger operator H = H0 + V . Usually,
H0 = −∆, but this does not really matter. By the min-max principle, we
can assume without loss of generality that V is non-positive, V = −V− =
−U . If H has only J < N negative eigenvalues, then we put Ej = 0 for
j = J + 1, . . . , N .

Consider HN =
∑N

j=1(H0,j −U(xj)) on
∧N L2(Rd) be the sum of N inde-

pendent copies of H (more precisely, one should write HN =
∑N

j=1Hj with

Hj = 1× · · · × 1︸ ︷︷ ︸
j times

×H × 1× · · · × 1︸ ︷︷ ︸
N−j−1 times

).

Let ϕ1, . . . , ϕN be the normalized eigenvectors corresponding to the eigen-
values Ej (if J < N pick any orthonormal functions for j > J) and put

ψ := ϕ1 ∧ . . . ∧ ϕN ∈
N∧
L2(Rd),
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the normalized antisymmetric tensor product of the ϕj’s. Then

N∑
n=1

|En| = −
N∑
n=1

En = −〈ψ,
N∑
n=1

Hnψ〉

= −〈ψ,
N∑
n=1

H0ψ〉+ 〈ψ,
N∑
n=1

Unψ〉.

Since
∑N

n=1 Un is a sum of one-body (multiplication) operators, we have

〈ψ,
∑N

n=1 Unψ〉 =
∫
U(x)ρψ(x) dx, by the definition of the one-particle den-

sity. Thus, taking (16) into account one gets

N∑
n=1

|En| ≤
∫
U(x)ρψ(x) dx−

∫
F (ρψ(x)) dx

=

∫
(U(x)ρψ(x) dx− F (ρψ(x))) dx

≤
∫

sup
t≥0

(U(x)t− F (t)) dx =

∫
G(U(x)) dx

where we were forced to put

(18) G(s) := sup
t≥0

(st− F (t))

since we only know that ρψ(x) ≥ 0.
(15) ⇒ (16): This is certainly standard, the argument in the original case

goes through nearly without change. By min-max and the Lieb-Thirring
inequality (15), we know that for any non-negative function U and any nor-
malized antisymmetric N -particle ψ,

〈ψ,
N∑
n=1

(H0 − U)ψ〉 ≥ − tr(H0 − U)− ≥ −
∫
G(U(x)) dx.

Thus

〈ψ,
N∑
n=1

H0ψ〉 ≥ 〈ψ
N∑
n=1

Unψ〉 −
∫
G(U(x)) dx

=

∫
U(x)ρψ(x) dx−

∫
G(U(x)) dx

=

∫ [
U(x)ρψ(x)−G(U(x))

]
dx
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again by the definition of the one-particle density. Hence

〈ψ,
N∑
n=1

H0ψ〉 ≥ sup
U≥0

∫ [
U(x)ρψ(x)−G(U(x))

]
dx

=

∫
sup

U(x)≥0

[
U(x)ρψ(x)−G(U(x))

]
dx

=

∫
sup
s≥0

[
sρψ(x)−G(s)

]
dx =

∫
F (ρψ(x)) dx,

where, of course, we put

(19) F (t) := sup
s≥0

(st−G(s)).

�

Remark 4. Since F and G are Legendre transforms of each other and since
the double Legendre transform of a convex function reproduces the function
(under suitable semi-continuity and convexity assumptions), we see that the
Lieb-Thirring type inequality (15) and the Thomas-Fermi type kinetic energy
bound (16) are dual to each other. In particular, one implies the other with
the corresponding optimal constants. This could be interesting in the hunt
for sharp constants, since Eden and Foias gave in [35] a direct and rather
simple proof of the kinetic energy lower bound in one dimension.

Following Lieb and Thirring, the bound in Theorem 1 has a beautiful
application to the Stability-of-Matter problem which we will discuss a little
bit in section 2.3.

The Lieb-Thirring inequalities also found other applications, especially in
the theory of non-linear evolution equations, as a tool to bound the dimension
of attractors [28, 53, 57, 98, 131, 162].

1.6. Classical results for the Lieb-Thirring constants. The moment
inequalities due to Lieb and Thirring are an important tool in the theory
of Schrödinger operators since they connect a purely quantum mechanical
quantity with its classical counterpart. Moreover, as we saw already, a dual
version of it, the Sobolev inequality for fermions, is related to the theory of
bulk matter. So a good understanding of the Lieb-Thirring coefficients is of
some importance for our understanding of quantum mechanics.

In general dimensions d ∈ N one now knows the following properties of
Cγ,d:

• Cγ,d ≥ 1, which follows from the Weyl-asymptotic.
• Monotonicity in γ: Cγ,d ≤ Cγ0,d for all γ ≥ γ0 (Aizenman and Lieb

[2]).
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• Cγ,d > 1 as soon as γ < 1 (Helffer and Robert [62]7).
• The best bounds on Cγ,d are due to Lieb [98], but they are explicitly

dimension dependent and grow like Cγ,d =
√

2πa as a = γ+d/2 →∞,
see [127, Chapter 3.4].

• Some special bounds in small dimensions: The bounds

C1,1 ≤ 2π

C1,2 ≤ 6.03388

C1,3 ≤ 5.96677

are due to Lieb [98] and, after 12 years of additional work, were
slightly improved by Blanchard and Stubbe [20] in 1996

C1,1 ≤ 5.81029

C1,2 ≤ 5.17690

C1,3 ≤ 5.21809.

• There is a natural lower bound on C0,d using the fact that the CLR
bound implies a Sobolev inequality8 [56], [115, eq. (4.24)], see also
the discussion in [150, page 96–97], In three dimensions it gives

4.6189 ≤ C0,3 ≤ 6.869

where the upper bound is from Lieb [92]. In particular, this shows
that in dimension 3, Lieb’s result is at most 49% off the best possible.
In fact, the above lower bound is conjectured to be the correct value
[56, 115, 150].

The monotonicity in γ is probably easiest to understand in the phase space
picture (12) of the Lieb-Thirring bounds: Let s− = (s)− = 1

2
(|s| − s) be the

negative part of s. For any 0 ≤ γ0 < γ there exists a positive (!) measure µ
on R+ such that9

(s)γ− =

∫ ∞

0

(s+ t)γ0− µ(dt).

7In particular, this disproved part of a conjecture of Lieb and Thirring made in [115].
8More surprisingly, the Sobolev inequality together with the fact that −∆ generates a

Markov semigroup implies the CLR bound, see [90].
9In fact, µ(dt) = ctγ−γ0−1 dt for an explicit constant c; just do the integral on the right

hand side by scaling.
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With this we have

tr(−∆ + V )γ− =

∫ ∞

0

(tr(−∆ + V + t)γ0− µ(dt)

≤ Cγ0,d
(2π)d

∫ ∞

0

∫∫
R2d

(|ξ|2 + V (x) + t)γ0− dξdx µ(dt)

=
Cγ0,d
(2π)d

∫∫
R2d

∫ ∞

0

(|ξ|2 + V (x) + t)γ0− µ(dt) dξdx

=
Cγ0,d
(2π)d

∫∫
R2d

(|ξ|2 + V (x))γ− dξdx,

by freely interchanging the integrations (and the trace). In particular, this
shows

Cγ,d ≤ Cγ0,d.

Thus monotonicity in γ is just a simple consequence of the Fubini-Tonelli
theorem and scaling.

In one dimension much more is known:

• C3/2,1 = 1 (Gardener, Greene, Kruskal, and Miura 1974 [55]; Lieb
and Thirring 1976 [115]). By monotonicity, this implies, Cγ,1 = 1 for
γ ≥ 3

2
.

• For 1
2
≤ γ ≤ 3

2
, an explicit solution10 of the variational problem

supV 6=0
|E1(V )|R
V γ+1/2 leads to

Cγ,1 ≥ 2

(
γ − 1/2

γ + 1/2

)γ−1/2

.

(Keller 1961 [77], later rediscovered by Lieb and Thirring 1976 [115]).
In particular, Cγ,d > 1 for γ < 3

2
.

• C1/2,1 <∞ (Timo Weidl 1996 [165]).

The sharp result C3/2,1 = 1 follows from the lower bound Cγ,d ≥ 1 and a sum
rule for one dimensional Schrödinger operators from the theory of the KdV
equation. It reads

3

16

∫ ∞

−∞
V (x)2 dx =

∑
j

|Ej|3/2 + “scattering data”.

As noted on page 115 of [55], the contribution from the scattering data is
non-negative, so one can drop it to get an inequality for the 3

2
moment of

the negative eigenvalues11. It remains to note that Lcl
3/2,1 = 3

16
.

10See also the very nice discussion in [15].
11It might be amusing to note that dropping the contribution of the eigenvalues gives

an upper bound for the contribution of the scattering data which was the key to proof of a
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Lieb and Thirring [115] did not settle the critical case γ = 1/2 in one
dimension. The question whether C1/2,1 is finite or not was open for twenty
years until Weidl [165] showed that C1/2,1 < 4.02. But, despite some con-
siderable interest, and in contrast to other results on sharp inequalities (see,
e.g., on [23, 24, 97] on Sobolev inequalities) the only sharp bound for the
Lieb-Thirring inequalities for more than twenty years was the original result
by Lieb and Thirring.

This was especially tantalizing since, depending on the dimension, there
are obvious conjectures for the sharp Lieb-Thirring constants,

Conjecture 5. In dimension d ≥ 3: C1,d = 1. In particular, the Thomas-
Fermi type bound for the kinetic energy of N fermions should hold with the
Thomas-Fermi constant.

In one dimension:

Cγ,1 = 2

(
γ − 1/2

γ + 1/2

)γ−1/2

for 1/2 < γ ≤ 3
2

(with C1/2,1 = limγ→1/2Cγ,1 = 2) and the extremizers in the one-bound-state
variational problem studied by Keller [77] and by Lieb and Thirring in [115]
should also be extremizers in the Lieb-Thirring inequality. That is, up to
scaling and translations the extremizing potentials V in (13) for d = 1 and
1/2 ≤ γ < 3

2
are of the form

V (x) = − 1

γ2 − 1/4

(
cosh(

x

γ2 − 1/4
)

)−2

.

In particular, for γ = 1
2
, C1/2,1 = 2 and the extremizing potential should be a

multiple and translate of a delta function. For the first moment one should
have C1,1 = 2/

√
3 < 1.155.

Shortly after Weidl’s result, Hundertmark, Lieb, and Thomas proved the
γ = 1

2
part of the one-dimensional Lieb-Thirring conjecture in [68].

Theorem 6 (Hundertmark-Lieb-Thomas, 1998). Suppose ν is a non-negative
measure with ν(R) < ∞ and let E1 < E2 ≤ E3 ≤ . . . ≤ 0 be the negative
eigenvalues counting multiplicity of the Schrödinger operator −∂2

x−ν (if any)
given by the corresponding quadratic form. Then

∞∑
i=1

√
|Ei| ≤

1

2
ν(R)

with equality if and only if the measure ν is a single Dirac measure.

conjecture of Kiselev–Last–Simon, [80] on the ac spectrum of one dimensional Schrödinger
operators with L2 potentials by Deift and Killip [32]. Sum rules have also turned out to
be instrumental in the study of other related spectral problems, [78, 79, 83, 122, 134, 135]
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Since Lcl
1/2,1 = 1/4, this shows C1/2,1 = 2, confirming the left endpoint

of the one-dimensional Lieb-Thirring Conjecture 5. It might be interesting
to note that Schmincke, [136], proved a corresponding sharp lower bound
for one-dimensional Schrödinger operators with a potential. That is, for
−∂2

x + V , he showed

−1

4

∫
R
V (x) dx ≤

∞∑
i=1

√
|Ei|.

Schmincke’s proof uses Schrödinger’s factorization method, see also [29, 31],
and has been extended in [124] to some higher moments.

1.7. The Laptev–Weidl extension of the Lieb-Thirring bounds. The
last few years saw a dramatic increase in our understanding of the Lieb-
Thirring inequalities:

• Cγ,d = 1 for γ ≥ 3
2

all d (Laptev and Weidl 2000 [88]).
• C1,d ≤ 2 for all d (Hundertmark, Laptev, and Weidl 2000 [67]). Hence

also Cγ,d ≤ 2 for 1 ≤ γ < 3
2
, by monotonicity in γ.

• C0,d ≤ 81 all d ≥ 3 (Hundertmark 2002 [66]).

The key observation of Laptev and Weidl [88], which was already noted
in Laptev [86], was to do something seemingly crazy: Extend the Lieb-
Thirring inequalities from scalar to operator-valued potentials. They consid-
ered Schrödinger operators of the form −∆ ⊗ 1G + V on the Hilbert space
L2(Rd,G), where V now is an operator-valued potential with values V (x)
in the bounded self-adjoint operators on the auxiliary Hilbert space G, and
asked whether a bound of the form

(20) trL2(Rd,G)(−∆⊗ 1G + V )γ− ≤
Cop
γ,d

(2π)d

∫∫
RdRd

dξdx trG(|ξ|2 + V (x))γ−

holds. Or, again doing the ξ integral explicitly with the help of the spectral
theorem and scaling,

(21) trL2(Rd,G)(−∆⊗ 1G + V )γ− ≤ Lop
γ,d

∫
Rd
dx trG(V (x)

γ+d/2
− ).

This seemingly purely technical extension of the Lieb-Thirring inequality
turned out to be the key in proving at least a part of the Lieb-Thirring
conjecture. In fact, using this type of inequality Laptev and Weidl noticed
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the following12 monotonicity properties of the operator-valued Lieb-Thirring
constants Cop

γ,d in the dimension:

1 ≤ Cop
γ,d ≤ Cop

γ,1C
op
γ,d−1 and

1 ≤ Cop
γ,d ≤ Cop

γ,1C
op

γ+ 1
2
,d−1

(22)

Assume that one knows Cop
3/2,1 = 1. Then using the first part of (22) repeat-

edly, we get
1 ≤ Cop

3/2,2 ≤ Cop
3/2,1C

op
3/2,1 = 1 · 1 = 1,

that is, Cop
3/2,2 = 1 and hence

1 ≤ Cop
3/2,3 ≤ Cop

3/2,1C
op
3/2,2 = 1

also. Thus an obvious induction in d shows

1 ≤ Cop
3/2,d ≤ Cop

3/2,1C
op
3/2,d−1 = 1

and with the monotonicity in γ one concludes

Cop
γ,d = 1 for γ ≥ 3/2 and all d ∈ N.

The beauty (and simplicity!) of this observation is that C3/2,1 = 1 is well-
known (already in [115]) and Laptev and Weidl were able to prove that
Cop

3/2,1 = 1 by extending the Buslaev-Faddeev-Zakharov sum rules for the

KdV equation,[22, 171], to matrix-valued potentials.

Theorem 7 (Laptev and Weidl, 2000 [88]). One has

Cop
3/2,1 = 1.

For a nice alternative proof, which avoids the use of sum rules see [14].
However, as beautiful as this result is, it sheds no light on the physically

most important constants C1,d. Recently, Benguria and Loss [15] developed
a new viewpoint on the Lieb-Thirring conjecture in one dimension. They
connected a simplified “2 bound state version” with an isoperimetric problem
for ovals in the plane. However, no progress has been made so far using this
viewpoint.

The second submultiplicativity property of Cop
γ,d, together with the sharp

bound due to Laptev and Weidl, shows that Cop
1,2 ≤ Cop

1,1C
op
3/2,1 = Cop

1,1. Again

by induction this implies

Cop
1,d ≤ Cop

1,1 for all d ∈ N.
12In fact, they observed that Lcl

γ,d = Lcl
γ,1L

cl
γ+ 1

2 ,d−1
by explicitly multiplying Γ-functions.

So if (21) holds with the classical constant for some γ, then using monotonicity in γ one
can start an induction in the dimension argument. We prefer to avoid multiplying Γ-
functions and to think of this in terms of the Cop

γ,d’s, using a Fubini type argument on the
operator side instead.
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In particular, if the one dimensional version of the Lieb-Thirring conjecture,
see Conjecture 5, were true for operator-valued potentials, the uniform bound
Cop

1,d < 1.16 would follow.
Using ideas from [68], Hundertmark, Laptev, and Weidl extended the

sharp bound in the critical case in one dimension to operator-valued po-
tentials [67]. Together with the Aizenman-Lieb monotonicity in γ, this gives
the uniform bound Cop

γ,d ≤ Cop
1
2
,1

= 2, for 1 ≤ γ < 3
2
. Together with the sharp

result from Laptev and Weidl, this gives

Theorem 8 (Hundertmark-Laptev-Weidl, 2000). The bounds

Cγ,d ≤ 2 for 1 ≤ γ and all d ≥ 1,

Cγ,d ≤ 4 for 1/2 ≤ γ < 1 and all d ≥ 2

on the Lieb-Thirring constants hold.

Moreover, the same estimates for the Lieb-Thirring constants for magnetic
Schrödinger operators hold. This follows from the proof of this estimates.
One strips off one dimension, but in one dimension there are no magnetic
fields, since any “vector” potential in one dimension is gauge equivalent to
the zero potential. Thus, by induction in the dimension, the magnetic vector
potential simply drops out, see [67] for details.

It soon became obvious, that one is not restricted to stripping off only
one dimension at a time. More precisely, one has the following two general
submultiplicativity properties of Cop

γ,d,

Theorem 9 (Hundertmark, 2002 [66]). For 1 ≤ n ≤ d:

1 ≤ Cop
γ,d ≤ Cop

γ,nC
op
γ,d−n and

1 ≤ Cop
γ,d ≤ Cop

γ,nC
op
γ+n/2,d−n.

In particular, stripping off n = 3 dimensions, and using that Cop
γ+3/2,d−3 = 1

for d ≥ 3 by the Laptev-Weidl result, one immediately sees that

(23) Cop
γ,d ≤ Cop

γ,3 for all γ ≥ 0 and d ≥ 3.

Ari Laptev asked the question [87], see also [89], whether, in particular,
the Cwikel-Lieb-Rozenblum estimate holds for Schrödinger operators with
operator-valued potentials. The proof of this fact was also given in [66]

Theorem 10 (Hundertmark, 2002). Let G be some auxiliary Hilbert space
and V a potential in Ld/2(Rd,Sd/2(G)) with Sd/2 the von Neumann-Schatten
operator ideal on G. Then the operator −∆⊗ 1G + V has a finite number N
of negative eigenvalues. Furthermore, one has the bound

N ≤ L0,d

∫
Rd

trG(V (x)
d/2
− ) dx
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with
L0,d ≤ (2πKd)

dLcl
0,d,

where the constant Kq is given by

Kq = (2π)−d/q
q

2

(
8

q − 2

)1−2/q (
1 +

2

q − 2

)1/q

.

This shows C0,d ≤ (2πKd)
d. The constant Kd is exactly the one given by

Cwikel [30]. The proof of the above theorem is by extending Cwikel’s method
to an operator-valued setting. Thereby one recovers Cwikel’s bound Cop

0,3 ≤
81, which is 17 times larger than Lieb’s estimate (however, for the scalar
case). Nevertheless, using the submultiplicativity, it gives the uniform bound
Cop

0,d ≤ Cop
0,3 ≤ 81 which, by monotonicity in γ, also extends to moments

0 < γ < 1/2.
We will not discuss the by now rather big literature on Lieb-Thirring

inequalities for the Pauli operator, see, for example, the review article by
Lászlo Erdős, [39], nor the quite extensive literature on quantum graphs, see
[84], or the results on quantum wave guides, see, for example, [38, 41, 42],
but we would like to mention one more recent and, at least for us, rather
surprising result on Lieb-Thirring inequalities.

1.8. The Ekholm-Frank result. It is well known that an attractive po-
tential does not necessarily produce a bound state in three and more dimen-
sions. This follows, for example, from Hardy’s inequality, which says that in
dimension three and more the sharp operator inequality

(24)
(d− 2)2

4|x|2
≤ −∆

holds. Using this, one can refine the usual Lieb-Thirring inequalities in the
following way: Using Hardy’s inequality, for any ε ∈ (0, 1) one has

−∆ + V ≥ −ε∆ + (1− ε)
(d− 2)2

4|x|2
+ V.

Thus with the known Lieb-Tirring inequality, one gets

tr(−∆ + V )γ− ≤
Cγ,d

(2π)dεd/2

∫∫
Rd×Rd

(
|ξ|2 + (1− ε)

(d− 2)2

4|x|2
+ V (x)

)γ
− dξdx

= Lγ,dε
−d/2

∫
Rd

(
(1− ε)

(d− 2)2

4|x|2
+ V (x)

)γ+d/2
− dx.

(25)

Of course, as ε → 0, the constant in front of the integral diverges. Very
recently, Ekholm and Frank established that one can nevertheless take the
limit ε→ 0. They proved the rather surprising result
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Theorem 11 (Ekholm and Frank 2006, [37]). For moments γ > 0 the in-
equality

tr(−∆ + V )γ− ≤
CEF
γ,d

(2π2)

∫∫
Rd×Rd

(
|ξ|2 +

(d− 2)2

4|x|2
+ V (x)

)γ
− dξdx

= LEFγ,d

∫
Rd

((d− 2)2

4|x|2
+ V (x)

)γ+d/2
− dx

holds in dimension three and more.

Thus, as far as moments are concerned, only the part of the potential below
the critical Hardy potential is responsible for bound states. This amounts
to an infinite phase-space renormalization on the level of the Lieb-Thirring
inequality. Note that the Ekholm Frank bound cannot hold for γ = 0. Also,
effective bounds on CEF

γ,d , resp. LEFγ,d , are not known.

2. Multi-particle Coulomb Schrödinger operators

2.1. The Coulomb Hamiltonian. The Hamiltonian for N electrons in the
field of M nuclei is given by

(26) H = HN,Z,R = T + Vc = T + Vc

where T =
∑N

j=1−∆j is the kinetic energy of N electrons and

(27) Vc = Ven + Vee

with

Ven = −
N∑
j=1

M∑
α=1

Zα
|xj −Rα|

,

the electron-nucleus interaction,

Vee =
∑
i<j

1

|xi − xj|
,

the electron-electron repulsion. Sometimes, one also considers

Vnn =
∑
α<β

ZαZβ
|Rα −Rβ|

,

the repulsion of the M nuclei at positions R = (R1, . . . , RM) ∈ R3M . We
keep the position of the nuclei fixed, for simplicity. The electrons have spin
q. In real life q = 2. Thus the N -electron operator HN,Z,R is defined on∧N(L2(R2), Cq), the antisymmetric subspace of L2(R3N , CqN), since electrons
are fermions. Note that in the unit we use, the ground state energy of
Hydrogen is 1/4.
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Zhislin’s theorem [172], see also [145] for a simple proof, guarantees the
existence of a ground state if N <

∑
α Zα + 1. One of the problems is to

compute the ground state and the ground state energy, that is,

(28) EQ(N,Z,R) = inf
(
〈ψ,HN,Z,Rψ〉|ψ ∈

N∧
(L2(R3,Cq)), ‖ψ‖ = 1

)
and the minimizing groundstate wavefunction. The catch is that, although
the Schrödinger equation is a linear equation, even the problem of two elec-
trons in the field of one nucleus is not exactly solvable. Moreover, due to the
exponential scaling of the degrees of freedom, there are no efficient methods
to solve the Schrödinger equation approximately, even for moderate numbers
of electrons.

Nevertheless, one can give a rather complete answer in the limit of large
atoms or molecules. As shown by Lieb and Simon, Thomas-Fermi theory
becomes exact in this case.

2.2. Thomas-Fermi theory. Thomas-Fermi theory is a simplification of
the usual Schrödinger equation. For an excellent review and proofs of results
see [95]. A fundamental object in this theory (or approximation) is not the
wave function any more, but the so-called single-particle density. Given a
normalized wave function ψ ∈

∧N L2(R3, Cq), recall that its single particle
density is given by

(29) ρψ(x) = N
∑

σj=1,...,q

∫
|ψ(x, σ1, x2, σ2, . . . , xN , σN)|2 dx2 . . . dxN .

The electron nucleus interaction is easily expressed in terms of the density,

(30) 〈ψ, Venψ〉 = −
M∑
j=1

∫
R3

Zj
|x−Rj|

ρψ(x) dx.

The kinetic energy T = 〈ψ,H0ψ〉 cannot be expressed by density ρ, but it
can be approximately expressed by the density. For a free electron gas in a
container of sidelength L in d dimensions, with periodic boundary conditions,
say, the ground state energy is given by

T =
∑

(n,σ)∈Zd×{1,...,q}
|n|≤n0

(2π

L

)2

|n|2.

In the limit N →∞ one has

N =
∑

(n,σ)∈Zd×{1,...,q}
|n|≤n0

1 −→ q

∫
|n|≤n0

dn = qωdn
d
0.
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with ωd the volume of the sphere of radius one. Also, again in the limit
N →∞,

T = q
(2π

L

)2
∫
|n|≤n0

n2 dn =
d

d+ 2
ωd

(2π

L

)2

nd+2
0

=
d

d+ 2

(2π)2

(qωd)2/d

N (d+2)/d

L2
.

Thus the kinetic energy density should be given by

T

Ld
=

d

d+ 2

(2π)2

(qωd)2/d

(N
Ld

)(d+2)/d

= q−2/dKTF
d ρ(d+2)/d

with the density ρ = N/Ld and the Thomas-Fermi constant KTF
d = d

d+2
(2π)2

ω
2/d
d

.

For slowly varying densities, the above suggest that the kinetic energy of
N electrons (in the large N limit) is well-approximated by

(31) T = q−2/dKTF

∫
Rd
ρ(x)(d+2)/d dx with KTF

d =
d

d+ 2

4π2

ω
2/d
d

.

In fact, the duality of the Lieb-Thirring bound and the kinetic energy
bound for Fermions shows that as an inequality, this holds with the Thomas-
Fermi constant, if the Lieb-Thirring inequality is true with the classical con-
stant, that is if C1,d = 1.

Now let’s concentrate on the physical relevant case of three space dimen-
sions. Similarly as for the kinetic energy, the Coulomb repulsion of the elec-
trons cannot be expressed by the density alone, but, keeping fingers crossed,
it should be well-approximated by the Coulomb integral. In fact, up to a
small error, the Coulomb integral is a lower bound, see Lieb and Oxford
[111], Lieb [94]:
(32)

〈ψ,
∑
i<j

1

|xj − xj|
ψ〉 ≥ 1

2

∫∫
R3×R3

ρψ(x)ρψ(y)

|x− y|
dxdy − cLO

∫
Rd
ρψ(x)4/3 dx

where 1.234 < cLO ≤ 1.68. For an alternative derivation, with a slight loss
in the constants, see, for example, [119].

Ignoring the error terms and putting the above together, one is lead to
the Thomas-Fermi energy functional

E(ρ) = E(ρ, Z,R) = q−2/3KTF
3

∫
R3

ρ(x)5/3 dx−
∫

R3

V (x)ρ(x) dx

+
1

2

∫∫
R3×R3

ρψ(x)ρψ(y)

|x− y|
dxdy

(33)
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with V (x) =
∑M

n=1
Zn

|x−Rn| for Coulomb matter. N(ρ) =
∫

R3 ρ(x) dx = N is

the number of electrons (although in this formulation it does not have to
be an integer). The functional is well-defined on the spaces S = {ρ|ρ ≥
0, ρ ∈ L5/3(R3) ∩ L1(R3)}, Sλ = {ρ ∈ S|

∫
ρ(x) dx ≤ λ}, and S∂λ = {ρ ∈

S|
∫
ρ(x) dx = λ}.

The Thomas-Fermi energy is given by

(34) ETF (N,Z,R) = inf
ρ
{E(ρ, Z,R)|ρ ∈ S∂N}.

The catch with this definition is that S∂λ is not a convex set. But for
N ≤

∑
Zn, it is shown in [112], that the minimum over the convex set SN

exists and gives the same energy as ETF (N,R,Z). This follows from the
strict convexity of the Thomas-Fermi functional.

One can show, see [112, 95] that for Coulomb matter the function λ →
ETF (λ, Z,R) is strictly convex on [0,

∑
Zn] and constant if λ is bigger than

the total charge of the nuclei. Moreover, for λ less or equal to the total
charge, the minimizing density of the TF functional exists and is unique and
is a solution of the so-called Thomas-Fermi equations.

The Thomas-Fermi energy functional and the Thomas-Fermi energy have
a natural scaling. For any δ > 0, let ρδ(x) = δ2ρ(δ1/3x). Then

(35) E(ρδ, δZ, δ
−1/3R) = δ7/3E(ρ, Z,R).

So for a Coulomb system with nuclear charges Z = (Z1, . . . , ZM) at positions
R = (R1, . . . , RM), this implies the scaling law

(36) ETF (δN, δZ, δ−1/3R) = δ7/3ETF (N,Z,R).

The main quantum mechanical limit theorem, proved by Lieb and Simon
in [112] is that asymptotically, the Thomas-Fermi energy gives the correct
answer for the ground state energy of atoms or molecules with a large nuclear
charge.

Theorem 12 (Lieb and Simon 1977).

lim
δ→∞

EQ
δλ(δZ, δ

−1/3R)

δ7/3
= ETF (λ, Z,R).

Moreover, the quantum m-point densities, suitably rescaled, converge to
a product ρ(x1) . . . ρ(xm) of Thomas Fermi densities. Originally, the above
result was proved using a decomposition of the space into boxes together
with Dirichlet Neumann decoupling techniques. Motivated by a result of
Thirring, [163], Lieb used in [95] coherent states techniques.

In addition, much more is known by now about lower order terms in the
asymptotic for large atoms and in part for molecules. The energy has the
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asymptotic

EQ(Z,R) = −αTF
∑
n

Z7/3
n +

1

2

∑
n

Z2
N + c1Z

5/3 +O(Z5/3−ε)

here αTF is the Thomas-Fermi prediction. The second term in this asymp-
totic is the Scott correction, see [138], for molecules it was formulated in
[95]. The second term asymptotic was established in a series of papers for
atoms by Hughes [65] and Siedentop and Weikard [142, 143, 144]. For mole-
cules it was established by Ivrii and Sigal [75], see also [158]. There are
also some results on the convergence of suitably scaled ground-states, the
so-called strong Scott conjecture, see [71, 72, 73]. The next higher correc-
tion due to Dirac and Schwinger was established for atoms in a monumental
series of papers by Fefferman and Seco [52]. The Fefferman-Seco proof is a 2
step proof. First one reduces the problem, with an error less than O(Z5/3−ε),
to the study of an effective one-particle Hamiltonian which is given by the
mean-field approximation. The second step then consists of a very detailed
analysis of the bound states of this mean-field Hamiltonian. Based on his
work on error bounds for the Hartree-Fock approximation in [5], Bach gave
in [6] a much simpler proof of the first step, the reduction to the mean-field
Hamiltonian. For a variation on Bach’s proof, see [58]. Bach’s proof also
works for molecules and not only atoms, but the spectral properties of the
mean-field Hamiltonian have been established to the needed accuracy only
for atoms. In this case, the mean-field Hamiltonian is rotationally symmet-
ric and the study of its bounds states, within accuracy of O(Z5/3−ε), can be
done by a quite delicate WKB analysis.

The above mentioned landmark paper of Simon and Lieb established many
more interesting results for the Thomas Fermi theory of matter, for example,
a rigorous treatment of the Thomas Fermi theory of solids. Also Teller’s
no-binding result for Thomas Fermi theory. It says that, taking the nucleus-
nucleus repulsion into account, the Thomas-Fermi energy of a molecule is
always bigger than the sum of the energies of the individual atoms. Thus
binding, which is due to the outermost electrons in atoms, is not correctly
described by TF theory.

For any nuclear charge vector Z = (Z1, . . . , ZM) and positions of nuclei
R = (R1, . . . , RM) define

eTF (λ, Z,R) = ETF (λ, Z,R) +
∑
n<m

ZnZm
|Rn −Rm|

the energy with nucleus-nucleus repulsion. Then
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Theorem 13 (Teller’s no-binding theorem). For any strictly positive Z =
(Z1, . . . , ZM), that is, Zj > for all j, and R and λ > 0, one has

eTF (λ, Z,R) > min
0≤λ′≤λ

[
eTF (λ′, ZA, RA) + eTF (λ− λ′, ZB, RB)

]
for any decomposition ZA = (Z1, . . . , Zk), ZB = (Zk+1, . . . , ZM) and simi-
larly for RA and RB.

This theorem is at the heart of the proof of stability of matter by Lieb
and Thirring.

The no-binding lower bound and the behavior of the Thomas-Fermi energy
in terms of λ together with scaling implies, in particular, that

(37) eTF (λ, Z,R) ≥
K∑
n=1

ETF (Zn, Zn) = ETF (1, 1)
K∑
n=1

Z7/3
n .

By scaling, one has

ETF (1, 1) = −ε
TF

K
.

with K = q−2/3KTF
3 . Numerically, it is known that εTF = 2.21. So with

the classical value of KTF and q = 2 for real electrons, one has ETF (1, 1) ≥
−0.385.

On the other hand, it is known by now that molecules do bind in mod-
ifications of the Thomas-Fermi model, for example, the Thomas-Fermi-von
Weizsäcker model, as was established by Catto and Lions [25].

2.3. Stability of matter. Following Lieb and Thirring, Teller’s no-binding
theorem for Thomas Fermi theory and the kinetic energy lower bound in
Theorem 1 has a beautiful application to the Stability-of-Matter problem.
A basic fact of astrophysics claims that bulk matter undergoes gravitational
collapse in the absence of nuclear forces. Onsager asked in the 1930’s why
bulk matter does not undergo an electrostatic collapse, too. This is due to
the Pauli principle. The first proof of this fact is due to Dyson and Lennard
in the 1960’s [33, 34]. However their proof was rather complicated.

On the other hand, this defect of Thomas-Fermi theory is in turn a chance
to give a physically motivated and very appealing proof of stability of quan-
tum mechanical matter, as soon as one can give a lower bound of the quantum
mechanical energy of an antisymmetric N -fermion wave function ψ in terms
of the Thomas Fermi energy of its one-particle density ρψ. The lower bound
provided in Theorem 1 was the main tool of Lieb and Thirring [114], leading
to a much simpler proof of stability of matter than the original one by Dyson
and Lennard. At the same time, by relating the stability of matter question
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to the Thomas-Fermi model, it provided considerable new physical insight
in the mechanism which prevents this collapse. (See [93, 100, 101] for a
nice presentation of the physical and mathematical aspects of this problem.)
Also, it turned out that not only the existence of these bounds, but good es-
timates on the constants in these inequalities are of considerable importance
for a rigorous understanding of the properties of matter [27, 44, 45, 61]

We will only sketch this application here. Note that the kinetic energy
lower bound and the Lieb-Oxford bound give the following lower bound for
the quantum mechanical energy

〈ψ, (HC + Vnn)ψ〉 ≥ ETFK (ρψ)− cLO

∫
ρψ(x)4/3 dx.

Here ETFK is the Thomas-Fermi functional with KTF in the kinetic energy
term replaced by (qC1,d)

−2/3KTF . Recall that q = 2 for electrons, cLO ≤ 1.68,
and that the equality C1,d = 1 is a longstanding open conjecture. The best
known bounds so far say that C1,d ≤ 2.

Using Hölder’s inequality, one has∫
ρψ(x)4/3 dx ≤

( ∫
ρψ(x) dx

)1/2( ∫
ρψ(x)5/3 dx

)1/2 ≤ γ̃

4
N+

1

γ̃

∫
ρψ(x)5/3 dx

for any γ̃ > 0. Thus, with γ̃ = cLOγ,

〈ψ, (HC + Vnn)ψ〉 ≥ ETFK (ρψ)− (cLO)2

4
γN − 1

γ

∫
ρψ(x)5/3 dx

= ETFK−1/γ(ρψ)− (cLO)2

4
γN.

Taking the no-binding result of Thomas-Fermi theory into account the right
hand side is bound below by

− εTF

K − 1/γ

∑
n

Z7/3
n − (cLO)2

4
γN = −εTFN

( 1

K − 1/γ

∑
n Z

7/3
n

N
− cγ

)
with c = (cLO)2/(4εTF ) < 0.3193. Maximizing w.r.t. γ leads to the bound

〈ψ, (HC + Vnn)ψ〉 ≥ −(qC1,3)
2/3 ε

TF

KTF
N

(√
c+

√∑
n

Z
7/3
n /N

)2

Using this, together with the easy bound 2ab ≤ a2 + b2 one gets

〈ψ, (HC + Vnn)ψ〉 ≥ −(qC1,3)
2/3 ε

TF

KTF

(
1 + c

)(
N +

∑
n

Z7/3
n

)
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which, in the case of real fermions with q = 2, the estimates C1,3 ≤ 2, and
c ≤ 0.3193 gives

(38) 〈ψ, (HC + Vnn)ψ〉 ≥ −0.804
(
N +

∑
n

Z7/3
n

)
.

As shown by Thirring, [163], it is also known that, asymptotically, Thomas-
Fermi theory is, indeed, the correct lower bound for the stability of matter
result,

〈ψ, (HC + Vnn)ψ〉 ≥ −0.385
K∑
n=1

Z7/3
n (1 +O(Z−2/33

n ),

where the constants in the error term O(Z
−2/33
n ) depend on the number of

electrons. Somewhat better error estimates were established in [120]. In
particular, the robust estimate in (38) is not far from the truth. Note also
that, following the route leading to (38), the best possible lower estimate for

the Coulomb energy is −0.5078(N +
∑

n Z
7/3
n ) (using the conjectured value

C1,3 = 1 and q = 2).

Remark 14. On can also use Thomas-Fermi theory to get a lower bound for
the electron-electron repulsion: Reshuffling the terms in the stability result
for Thomas-Fermi theory13,

1

γ

∫
ρ5/3 dx−

N∑
j=1

∫
1

|xj − y|
ρ(y) dy+D(ρ, ρ)+

∑
1<i<j<N

1

|xj − xi|
≥ −εTFγN,

gives∑
1<i<j<N

1

|xj − xi|
≥

N∑
j=1

∫
1

|xj − y|
ρ(y) dy −D(ρ, ρ)− εTFγN − 1

γ

∫
ρ5/3 dx.

Noting 〈ψ,
∑N

j=1

∫
1

|xj−y|ρ(y) dyψ〉 = 2D(ρψ, ρ) and choosing ρ = ρψ one
sees

〈ψ,
∑
i<j

1

|xi − xj|
ψ〉 ≥ D(ρψ, ρψ)− εTFγN − 1

γ

∫
ρ

5/3
ψ dx.

This way one get’s the lower bound

〈ψ, (HC + Vnn)ψ〉 ≥ −ε
TF

K
N

(
1 +

√∑
n

Z
7/3
n /N

)2

Again, using Cauchy-Schwartz, a similar lower bound as before follows from
this, with the factor 1 + c replaced by 2. The “best possible” lower bound

13This was the route originally taken by Lieb and Thirring in [114]
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for the energy of real matter this way is

〈ψ, (HC + Vnn)ψ〉 ≥ −0.77(N +
∑
n

Z7/3
n ),

see, for example [20, 121], which should be compared with (38). Of course,
this is not best possible, since, as demonstrated above, using the Lieb-Oxford
bound improves the estimate quite a bit.

We will not discuss other approaches to this circle of problems, [59, 60, 43],
nor the extension of the stability results to other models of real matter, for
example, the Pauli operator, [54, 104, 107, 46, 47], or relativistic models,
[50, 117, 118, 108, 109, 110], and, more recently, matter interacting with
quantized electromagnetic fields, [48, 49, 105, 106], but point the interested
reader to the excellent reviews by Lieb [102, 103]. There is also a growing
literature on stability/instability of the relativistic electron–positron field in
Hartree-Fock approximation, see, for example, [7, 8, 9, 21, 63, 64, 69].

3. More on bound states for atoms

It is known that an N -electron Coulomb system has a bound state as
long as the number of electrons is lower than the total charge of the nuclei
(plus one). This is known as Zhislin’s theorem [172]. In nature, one can
observe once negatively charged free atoms, but not twice or more negatively
charged atoms. Formulated conservatively, one expects the maximal negative
ionization to be independent of the nucleus charge Z. This is known as the
ionization conjecture, see, e.g., the review article by Simon [153]. For a more
precise form of this conjecture, let

(39) HN,Z =
N∑
j=1

(
−∆j −

Z

|xj|
)

+
∑

1≤i<j≤N

1

|xi − xj|

be the Hamiltonian for N electrons in the field of an atom of charge Z. For
fermions, the Hilbert space

∧N L2(R3,C2).
Define

(40) E(N,Z) = inf σ(HN,Z)

and the ionization energy

(41) I = I(N,Z) = inf σess(HN,Z)− inf σ(HN,Z).

By the HVZ theorem, σess(HN , Z) = [E(N − 1, Z),∞), so

I(N,Z) = E(N − 1, Z)− E(N,Z).

Note that HN,Z has a bound state, a discrete eigenvalue below its essential
spectrum, if and only if I(N,Z) > 0.
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Due to electrostatic reasons, one expects that there should be an Ncr(Z)
such that

E(N,Z) = E(N − 1, Z) for all N ≥ Ncr(Z).

that is, the atom can bind only a finite number of electrons. The picture is
not that simple, however. Heuristically, ignoring all many-body effects, the
potential felt by the N th electron is given by the effective potential

(42) Ueff(x) = − Z

|x|
+

∫
1

|x− y|
ρψ(y) dy

where ρψ is the single-particle density of the other N − 1 electrons. The
physics of the system should be somehow described by the effective Hamil-
tonian

(43) Heff = −∆ + Ueff.

When N increases, ρψ increases and hence Ueff should increase at least in
some average sense. Moreover, when N > Z, Newton’s theorem implies
Ueff(x) > 0 for large x. But for x near zero, Ueff is very negative since
due to the uncertainty principle, the electrons cannot concentrate too much
close to zero. Hence the attraction of the nucleus is never fully screened.
Nevertheless, eventually, Ueff will cease to have a bound state.

Note that there is a big difference between fermions and bosons from this
viewpoint: Whereas in order to bind N bosonic “electrons” the effective
one-particle Hamiltonian should have at least one bound state, for fermionic
systems, due to the Pauli principle, if one wants to bind N electrons the
effective one particle Hamiltonian needs to have at least N bound states.
For real atoms, this N th bound state seems to disappear precisely when
N ∼ Z+1. Bosons, however, should be much more easily bound to an atom
than fermions.

Thus, one expects the atomic Hamiltonian (39) not to have a bound state
if N > Ncr = Z + Q, where Z is the total charge of the nucleus and Q > 0
some fixed positive number, hopefully of the order of one.

This innocent looking conjecture, known as the ionization conjecture, see,
e.g., the review article by Simon [153], has withstood all attempts to prove
it, even for very large but fixed excess charge Q. Only partial results are
known.

3.1. Ruskai-Sigal type results. We are far from understanding the ion-
ization conjecture rigorously, at least for fermions. One of the first results in
this direction is the result by Ruskai [132, 133] and Sigal [140, 141].

Theorem 15 (Ruskai, Sigal). For any Z there exist Ncr(Z) such that

I(N,Z) = E(N − 1, Z)− E(N,Z) = 0
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for all N ≥ Ncr(Z). In addition, for fermions, one has the bound

lim sup
Z→∞

Ncr(Z)

Z
≤ 2.

This theorem was proven independently by Ruskai [132, 133] and Sigal
[140, 141]. A huge improvement of this theorem is due to Lieb. He showed

Theorem 16 (Lieb, 1984 [99]). Independently of the statistics of the parti-
cles,

Ncr(Z) < 2Z + 1

In fact, Lieb also treats molecules and other refinements like magnetic
fields and relativistic kinetic energies, see also Ichinose [74].

Another improvement of the Ruskai-Sigal bound is given by Lieb, Sigal,
Simon and Thirring, [116]. They showed that large atoms are asymptotically
neutral,

(44) lim
Z→∞

Ncr(Z)

Z
= 1.

Unfortunately, their proof used a compactness argument in the construc-
tion of suitable localizing functions and did not give any quantitative infor-
mation or error estimates for finite nuclear charges Z. The first quantitative
result seems to have been given by Fefferman and Seco in 1990. They proved

Theorem 17 (Fefferman and Seco 1990, [51]).

Ncr(Z) ≤ Z +O(Zα) with α =
47

56
.

Shortly afterwards, this approach was simplified by Sigal, Seco, and Solovej
[139] who gave the estimate

Theorem 18. One has the bound

I(N,Z) ≤ C1Z
4α/3 − C2(N − Z)Zα/3

for the ionization energy and as a consequence also

Ncr(Z) ≤ Z + CZα.

Here α = 47/56 as in the Fefferman-Seco theorem.

Nevertheless, these bounds are still far from the (expected) truth, since
Ncr(Z)− Z and I(Z,Z) should be bounded in Z.
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3.2. Existence of highly negative ions for bosonic atoms. As dis-
cussed above, for an atom to bind N electrons, the effective one particle
Hamiltonian Heff should have at least N bound states. For bosons, however,
it is enough that it has at least one bound state. Thus a “bosonic” atom
should be able to bind many more particles than one might naively expect
from purely electrostatic reasons. This is indeed the case,

Theorem 19 (Benguria and Lieb, [12]). For bosonic atoms

lim inf
Z→∞

Ncr(Z)

Z
≥ 1 + γ

Here 0 < γ < 1 is defined via the ground state of the Hartree functional:
Let ψ be the unique positive solution of the non-linear Hartree equation

−∆ψ −
( Z

|x|
− |ψ|2 ∗

)
ψ = 0.

Then

(1 + γ)Z =

∫
R3

|ψ(x)|2 dx.

Benguria, see [95] for a reference, showed that 0 < γ < 1. Moreover, numer-
ically it is known that γ = 0.21, see [11].

Later, Solovej proved a corresponding upper bound using similar ideas as
in [139],

Theorem 20 (Solovej 1990,[156]). For bosonic atoms

Ncr(Z) ≤ (1 + γ)Z + CZ7/9.

In particular,

lim
Z→∞

Ncr(Z)

Z
= 1 + γ.

3.3. Solution of the ionization conjecture in Hartree-Fock theory.
In Hartree-Fock theory (or better in the Hartree-Fock approximation) one

does not consider the full N -body Hilbert space
∧N L2(R3,C2), but restricts

the attention to pure Slater determinants

(45) ψ = v1 ∧ . . . ∧ vN
where the single particle orbitals vj ∈ L2(R3, C2). In other words, the density
matrix

γψ(x, α, y, β) =∑
σ

∫
. . .

∫
ψ(x, α, x2, σ2, . . . , xN , σN)ψ(y, β, x2, σ2, . . . , xn, σN) dx2 . . . dxN

(46)
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is assumed to be a projection operator. Note that in general, for arbitrary
ψ ∈

∧
L2(R3,C2), is a bounded operator with 0 ≤ γψ ≤ 1 on L2(R3,C2).

The Hartree-Fock energy of an atom of charge Z with N electrons is then
defined to be

(47) EHF = EHF(N,Z) = inf
γ2
ψ

=γψ

〈ψ,ψ〉=1

〈ψ,HN,Zψ〉.

A little bit of calculation shows that for Slater determinants ψ

〈ψ,HN,Zψ〉 = EHF(γψ)

with

(48) EHF(γ) = trL2(R3,C2)

(
−∆− Z

|x|
)

+D(γ)− Ex(γ)

where

D(γ) =
1

2

∫∫
trC2(γ(x, x)γ(y, y))

|x− y|
dxdy

is the direct part of the Coulomb energy and

Ex(γ) =
1

2

∫∫
trC2 |γ(x, y)|2

|x− y|
dxdy

the exchange term. In particular,

EHF(γ) = inf
{
EHF(γ)| γ∗γ = γ, tr γ = N

}
.

The existence of a minimizing projection operator γ forN < Z+1 was proven
by Lieb and Simon, [113]. Moreover, given the Hartree-Fock functional, one
can relax the assumption that γ is a projection operator, as was shown by
Lieb, [96]

EHF(N,Z) = inf
{
EHF(γ)|0 ≤ γ ≤ 1, tr(γ) = N

}
.

For a simple proof of this see [5].
For the Hartree-Fock approximation, Solovej gave a proof showing the

ionization energy and maximum surcharge an atom can bind to be bounded
uniformly in Z.

Theorem 21 (Solovej 2003, [157]). For a neutral atom, the ionization energy
in Hartree-Fock approximation is bounded, that is,

IHF(Z,Z) = EHF(Z − 1, Z)− EHF(Z,Z) = O(1) as Z →∞.

Moreover, there exists a finite Q > 0 such that for all N ≥ Z + Q there
are no minimizers for the Hartree-Fock functional among N-dimensional
projections.
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A related result for the Thomas-Fermi-von Weizsäcker model was shown
in [13]. Unfortunately, all results of this precise form are so far for models
which shed no light on the Schrödinger case.
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spectral analysis of one-dimensional Schrödinger operators. Commun. Math. Phys.
194 (1998), 1–45.

[81] M. Klaus: On the bound state of Schrödinger operators in one dimension. Ann.
Physics 108 (1977), no. 2, 288–300.

[82] M. Klaus and B. Simon: Coupling constant thresholds in nonrelativistic quantum
mechanics. II. Two-cluster thresholds in N -body systems. Comm. Math. Phys. 78
(1980/81), no. 2, 153–168.

[83] S. Kupin: Spectral properties of Jacobi matrices and sum rules of special form. J.
Funct. Anal. 227 (2005), no. 1, 1–29.

[84] P. Kuchment: Quantum graphs: I. Some basic structures. Waves Random Media 14
(2004), S107–S128.

[85] L. D. Landau and E. M. Lifshitz: Quantum Mechanics. Non-relativistic theory.
Volume 3 of Course of Theoretical Physics, Pergamon Press 1958.

[86] A. Laptev: Dirichlet and Neumann eigenvalue problems on domains in Euclidian
spaces. J. Funct. Anal. 151 (1997), 531–545.

[87] A. Laptev: Private communication.
[88] A. Laptev and T. Weidl: Sharp Lieb-Thirring inequalities in high dimensions. Acta

Math. 184 (2000), no. 1, 87–111.
[89] A. Laptev and T. Weidl: Recent results on Lieb-Thirring inequalities. Journées
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