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Algorithm performance evaluation is so entrenched in the machine learning
community that one could call it an addiction. Like most addictions, it is harmful
and very difficult to give up. It is harmful because it has serious limitations. Yet,
we have great faith in practicing it in a ritualistic manner: we follow a fixed set of
rules telling us the measure, the data sets and the statistical test to use. When we
read a paper, even as reviewers, we are not sufficiently critical of results that
follow these rules. Here, we will debate what are the limitations and how to best
address them. This article may not cure the addiction but hopefully it will be
a good first step along that road.
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1. Introduction

In the early days of machine learning research, testing was not a priority, but over time this
attitude changed. A report on the AAAI 1987 conference noted that ‘the ML community
has become increasingly concerned about validating claims and demonstrating solid
research results’ (Greiner, Silver, Becker and Gruninger 1988). In 1988, Langley wrote an
editorial for the journal Machine Learning, quickly expanded, in the same year, into
a workshop paper with co-author Kibler, arguing persuasively for greater focus on
performance testing. With this sort of accord in the community, performance testing took
on greater prominence. With the appearance, soon after, of the UCI collection of data sets
(Blake and Merz 1998) (the archive was, actually, created as early as in 1987 as an ftp
archive by David Aha and graduate students at UC Irvine), performance comparisons
between algorithms became commonplace. Today, publishing a machine learning paper
that does not include a section on performance testing is unthinkable.

Kibler and Langley are certainly not alone in stressing the important role of testing.
In the overarching field of artificial intelligence, Cohen and Howe (1988) and Simon (1993)
also stress this point. Carefully carried out experiments are what separates science from
other activities and in sciences, such as ours, experiments have an even greater role.
The experimental section is often the largest section in our publications and in many ways

*Corresponding author. Email: chris.drummond@nrc-cnrc.gc.ca

ISSN 0952–813X print/ISSN 1362–3079 online

� 2010 Taylor & Francis

DOI: 10.1080/09528130903010295

http://www.informaworld.com

D
ow

nl
oa

de
d 

by
 [

62
.1

51
.5

7.
15

1]
 a

t 1
0:

40
 0

6 
M

ay
 2

01
2 



it is considered the most important. Yet, how critically it is read by the community at
large, or even by the reviewers who accepted the article, is less clear. Our concern, and one
we address here, is that our experimental procedures have become a habit bordering on
ritual. By this we mean that we follow a fixed set of rules without a clear understanding
of what they mean. The ritual, itself, is over-valued as it is based on the assumption that if
the form is followed then the conclusions can be trusted. Readers of the article, including
the reviewers, are not sufficiently critical if the authors follow the rules.

In this article, we begin by exposing what we see as the main concerns with existing
experimental procedures. We will look at ways to address these problems. We do not
intend to offer a single view on these topics but rather two separate views. We follow this
procedure partly because the authors themselves cannot agree on every point, but also
because we think that there are many views within the community which need to be
expressing. If this article encourages widespread debate throughout the community, it will
achieve its main goal. We label these two opposing views as ‘Revision’ and ‘Reform’.
The former, although advocating changes, contends that much can be saved from our
existing procedures. The latter argues that a radical overhaul is needed.

We view artificial intelligence and the subfield of machine learning as science. As such,
we, as researchers, are committed to the scientific method. Unfortunately, it is far from
clear exactly what the ‘scientific method’ entails. Although some argue its merits (Platt
1964), the somewhat simple view of an observation/hypothesis/test cycle is certainly well
short of an exhaustive description of what scientists do (Kuhn 1962). As we have already
raised our concerns about ritual we feel that, before proposing any overarching method,
we need to consider why experiments are important to our field of research. The following
are two views on this issue.

Revision: No matter how sophisticated our proposed classifiers are and no matter what their
theoretical or cognitive qualities are, simply proposing a classification model, without testing
it thoroughly, is not sufficient for convincing anyone to use that model. Indeed, it is not
uncommon, especially in the field of artificial intelligence, that clever ideas or insights as to
how people perform certain tasks turn out not to be the best approach to solving the same
problem using computer power. A notable instance of this observation comes from the
subfield of natural language processing where brute-force statistical approaches currently
outperform their cognitive counterparts. Careful experimental evaluation is critical in
preventing delusion.

Reform: Experiments are critical to machine learning, it is an experimental science after all.
But we should not equate experiments with hypotheses testing or, worse still, with statistical
hypotheses testing. The role of experiments in an experimental science is, and should be,
very broad. Experiments are used to explore ideas, discover relationships, compare
alternatives as well as testing hypotheses. The experimental results do often act as empirical
support for the views of the researcher, but to require that they be couched as a hypothesis test
is an unnecessary restriction. To insist that some sort of statistical test is required is to replace
personal judgement with an ill-understood test.

We expect that throughout the research field there is agreement in that, sooner or later,
the claims of different researchers must be subject to empirical validation. It is certainly
easy to delude oneself of the effectiveness of one’s algorithm and we should avoid having
this delusion spread to the field as a whole. What is more controversial is if this role is the
pre-eminent one for experimental work or if the more informal exchange of experimental
results might better serve the community. Let us continue the debate.

Revision: The need to test algorithms thoroughly is perhaps more salient today than it was in
the past, given the number of researchers working in the field and their geographical spread.
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When only a handful of thinkers, all European, studied problems, the issues were quite
different. In addition, these thinkers were not subjected to the same kind of economic
pressure as researchers are today, with industrial interests dictating the pace and direction of
scientific investigation. Long lost, at least in our field, is the time when researchers could
simply follow their interests and intuitions.
The purpose of these observations is not to praise today’s practices or to mourn those of
yesteryear. Instead, we argue that given the situation as it is now, the careful and thorough
testing of our algorithms is of utmost importance. Indeed, if all ideas were presented as equally
useful. How many dead-ends would we hit? How much time would we waste coding seemingly
promising algorithms that, in fact, have no chance at solving the task at hand? A lot of
resources would be wasted, both economical and intellectual. Our conferences and
journals would cease to serve any useful purpose and researchers would start to lose all
interest in the field.

Reform: Empirical validation is a necessary part of any science, but it is still possible to
overemphasise its importance. Other evidence is also required; it must fit with current
understanding within the research field. This is not to say that novel experimental results
should be disregarded, it is only to say that it is just one of the checks and balances. Empirical
evidence should lead to explanation, not stand in its stead. We might take inspiration from our
own algorithms. The view that learning is a search through hypothesis space suggests that it is
wise to entertain multiple hypotheses. We are still searching. So, eliminating ideas, or indeed
accepting them, too early is counterproductive.
Part of the emphasis on performance testing undoubtedly comes from application focused
research. Applications are useful to the field in exposing new problems, but we should not let
the tail wag the dog. Machine learning is not solely an engineering discipline. Further, too
much weight can be placed on experimental results. There are some well publicised examples
of questionable work being accepted in high ranking journals (Brumfiel 2002; Giles 2004;
Couzin 2006). Sometimes the rigour is superficial. Experiments rather than protecting us from
delusion can actively promote it.

In this debate, one side places a strong emphasis on the value of adopting a rigorous
method of evaluation. The other side argues that a more open exploratory process serves
us better. Even in statistics, many emphasise the exploratory role over the more traditional

confirmatory one (Tukey 1977). Each of the proponents claims that his or her approach
encourages more effective research. Perhaps the reader feels that a compromise could
be struck between the two views expressed above, that would allow researchers to spend

more time exploring and developing their ideas, and less time testing and confirming them.
Yet, confirmatory testing would remain an important part of the process. But the devil
is so often in the details and the emphasis we put on the different experimental roles

does matter.

2. What is wrong with what we are doing now?

Existing reviewing practices pressurise us to spend a great deal of our time testing in order
to publish. This might be time well spent if the conclusions we could draw from our tests
told us which theories were worth pursuing and which were not. Unfortunately, the testing

procedure is of questionable merit in distinguishing good theories from bad. There are
three components of this procedure that undercut its value: the measures used, the reliance
on null hypothesis testing and the use of benchmark data sets. Our measures do not

measure all that we care about. Null hypothesis statistical tests are widely misinterpreted.
The data sets are not a sample of any ‘real’ world. In this section, we address these
problems in turn.
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2.1. What are we measuring?

The most common way of evaluating our classifiers is to use a single scalar measure. We
would argue that any single scalar measure has significant limitations. That is not to say
that using accuracy, as our sole performance measure, did not originally benefit the
research. Large gains unquestionably represented progress. But early on, the gains
achieved over very simple systems were shown to be quite small (Holte 1993). As time
passed these gains have become smaller, so it is less clear that they represent worthwhile
progress (Hand 2006). So what are the pros and cons of a single measure, the following
debates the issues.

Revision: The main advantage of a simple scalar measure – our preferred kind of evaluation
measure, nowadays – is that it is objective. It gives a clear and definitive answer, to which
algorithm is the best. If the algorithm being tested is well described and the experimental set up
is well specified, then the experimental results could be reproduced by another researcher.
What is more, as scalars are totally ordered, there could be no debate on what the results
show. The same conclusions would be drawn right across the field. Error rate, or accuracy, is
a good example of a simple scalar measure. Everybody would agree that making the fewest
mistakes is a good property for any classifier. It is true that accuracy has it weaknesses
(Provost, Fawcett and Kohavi 1998), but other scalar measures, such as ‘area under the ROC
curve’ (Bradley 1997), address many of its limitations. Adopting a few important measures
throughout our research field would still allow an easy comparison of results. Encouraging
a more promiscuous use of measures would serve more to confuse than to edify.

Reform: Objectivity is unquestionably desirable but only if ‘all other things are equal’, an
essential caveat. The measure must represent something we care about. There is great diversity
in the people who must be considered in this judgement: the particular researcher, the research
community as a whole, end users of applications and, of course, referees for conferences and
journals. It is impossible to capture all these concerns in a single scalar measure. Japkowicz
(2006) discussed problems with three popular ones: accuracy, precision and recall. Particular
attention was given to the extreme circumstances under which often they disagreed on the
classifiers’ performance ranking. As Drummond and Holte (2005) pointed out that some
algorithms fail to do better than trivial classifiers for extreme class skews is a concern that was
largely hidden by the standard practice. Many measures are needed to establish the worth of
a classifier. Graphical, multi-objective representations can be used to capture the inherent
complexities of algorithm performance. With graphical representations, humans can process
information faster and more effectively than using tables of scalar values.

Both views suggest that more than a single performance measure is probably needed
for research to progress, but how many and which ones? We might consider a classifier’s
error rate on each class separately (Provost et al. 1998). We might consider
misclassification costs (Pazzani et al. 1994). We might consider a classifier’s stability,
small changes in the data should not cause large changes in classification (Evgeniou, Pontil
and Elisseeff 2004). In application-oriented research, the measure should reflect the
concerns of the end users, typically hard to model precisely (Thearling and Stein 1998).
Having only a few, community approved, metrics may result in some important
characteristics being missed.

Although unquestionably the most widespread in the machine learning community,
scalar measures are not the exclusive way to evaluate algorithms in use today. Recently,
a small segment of the research community turned to the use of graphical approaches such
as ROC analysis (Provost and Fawcett 2001), cost curves (Drummond and Holte 2006)
and precision/recall curves (Davis and Goadrich 2006). Unfortunately, the largest segment
of the research population has been ignoring these newer developments. Even when they
are initially adopted, it seems to many the lure of simple scalar measures is too strong.
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As seen at an ROC workshop (Ferri, Flach, Hernández-Orallo and Lachiche 2004) many
researchers are now using the scalar measure ‘area under the ROC curve’. We are
concerned that we are simply replacing an old orthodoxy with a new one. So what should
we do?

Revision: Although it is hard to satisfy all the demands on what a measure should capture,
some things like error rate are more fundamental than others. For different applications there
may indeed be specific concerns. But unless they prove to be very general in nature they are
not likely to be important to the community at large. But whatever is of value does need
careful experimental evaluation. The heart of any real science is quantification, only by getting
a grip on the numbers does one get a grip on the subject. There is much to be admired in the
early days of machine learning, but as we matured as a community we recognised the
importance of careful evaluation. Evidence of an anecdotal nature was no longer enough, hard
evidence in the form of quantitative comparison became necessary for publication and
community acceptance. To retreat from this position would not serve the field well.

Reform: Unfortunately, if a quantitative measure is needed to make a paper publishable,
things which cannot be quantified are unlikely to be studied. In the early days of machine
learning, how easily a classifier could be understood by a human was considered very
important (Michalski 1983). Although there is still some interest, notably at an artificial
intelligence workshop (Oblinger, Lau, Gil and Bauer 2005) rather than a machine learning
one, it has declined over the years. This is at least partially attributable to the inability to
measure it. As Kodratoff (1994) says ‘This attitude can be explained by the fact that we have
no way of measuring or even analysing what a ‘good’ explanation is . . .’. Some measures are
inherently qualitative, but that does not mean they are unimportant and should be ignored.
Yet, forcing them into a quantitative form would be an uncertain process and do little to
improve objectivity.

A measure may capture something of importance but not everything of importance.
A single scalar measure can over-simplify complex questions, combining things together
which should be kept separate. When we spend all our time improving on a single scalar
measure the gains inevitably get progressively smaller. As that measure captures only part
of what we care about, progress in our field must suffer. Thus, any advantage indicated by
a simple scalar measure may be illusory if it hides situation-dependent performance
differences. Single scalar measures are summaries of a system’s performance. Since many
such summaries, each with a different twist could be generated, it seems mistaken to stick
with a single one. But, will a few well chosen measures solve our problems? Or, should we
be much more open to reporting results using many different measures and even allowing
qualitative claims to be published?

2.2. What does a statistical test buy us?

Although we use null hypothesis statistical tests extensively – they are often considered
essential for a paper to be published – our understanding of what they mean is limited.
We often misinterpret them, reading much more into the results than they can reasonably
support. Here, we debate the value of such tests. We note that this debate has been going
on for some time in other fields. There is an enormous amount of literature on this issue,
stretching back more than 60 years (Hagood 1941). The controversy is particularly evident
in psychology as seen in the response from critics that accompanied a paper (Chow 1998)
in the journal Behavioral and Brain Sciences.

Revision: Statistical testing is necessary when the data set on which we are experimenting is
small or non-uniform. The purpose of these tests is to tell us whether the results that we have
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obtained on our experiments can be generalised to future cases. A relatively involved testing
approach is commonly used in the data mining/machine learning community, involving such
concepts as that of cross-validation and statistical validity testing using the Student t-test.
However, these methods are often used blindly, by researchers who are not very well versed in
Statistics. As a result, they may not always be applied properly, and thus, the results obtained
may not be valid. Some researchers (Salzberg 1997; Hand 2006) claim that the improvements
observed by our current evaluation methods are, in fact, much less impressive than they may
appear.

Reform: The evaluation of algorithms is inherently a statistical question, we only have
a sample of the problem in our data set. It would therefore seem sensible to use statistical
hypothesis tests. One problem with such tests is tendency for people to read into the results
what they would like to believe. That this is such a strong temptation is, at least partly, due to
the tests, when correctly interpreted, saying remarkably little. Certainly, they say nothing as
strong as we would hope, such as the probability that the claim is true. The main advantage of
null statistical hypothesis tests is the apparent rigour they bring to our field. The results we
publish are not just wishful thinking, they have been empirically evaluated. The contention
here is that their value is considerably overstated and that they act more to confuse than to
clarify.

Both viewpoints point out the lack of understanding in the use of statistical tests.
That people routinely misinterpret tests has been discussed elsewhere. Cohen (1994) gives
some examples: ‘near-universal misinterpretation of p as the probability that Ho is
false, the misinterpretation that its complement is the probability of successful replication,
and the mistaken assumption that if one rejects Ho one thereby affirms the theory that
led to the test’. Following procedures with little understanding is what we see as the
ritualistic nature of our experimental procedures.

To address this problem, the first view advocates greater knowledge of the various
statistical methods used so that appropriate tests can be chosen under the different sets of
circumstances that arise. The second view questions their overall value. The issue, as in
psychology, is whether or not their advantages outweigh their disadvantages. Some would
argue strongly for their continued use, such as Hagen (1997) whose paper is titled ‘In
Praise of the Null Hypothesis Statistical Test’. Others are much less complimentary,
Gigerenzer states that (Chow 1998, p. 199) ‘[the test] is an inconsistent hybrid of Fisherian
and Neyman–Pearsonian ideas. In psychology it has been practiced like ritualistic
handwashing and sustained by wishful thinking about its utility’. At the very least,
researchers in our field should be aware of the controversy. It may be that statistical tests
are useful but in a much more limited role than at present. Perhaps as Shafto (Chow 1998,
p. 199) says ‘[tests] may be most clearly and directly useful . . . as a safeguard against over-
interpretation of subjectively large effects in small samples’.

2.3. What do our data sets represent?

The main advantage of benchmark data sets is our familiarity with them. When we read
a paper discussing experiments, using some subset of the UCI collection, we have natural
intuitions about the results. In all probability, we have used most of the data sets ourselves,
or read about their use elsewhere. We can therefore easily compare the results with our
own experience or the results from other papers. A question remains about how well
experimental results will generalise to other yet unseen problems. More than 15 years ago,
Holte (1993) raised this concern saying that ‘one may doubt if the [benchmark] datasets
used in this study are ‘‘representative’’ of the datasets that actually arise in practice’.
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Other researchers are clearly convinced they are not (Saitta and Neri 1998). It seems
a fair assumption that the UCI data sets are not a random sample of the world. But just
how valuable are they?

Revision: Although the UCI domains do have many limitations, they have been, and will
continue to be, an important resource for our community. They certainly represent a slice of
reality, albeit not capturing all possible aspects of the world, since most of them were gathered
from real applications. A number of researchers have claimed that the very familiarity with
these data sets has led to over-fitting (Salzberg 1997; Bay, Kibler, Pazzani and Smyth 2000).
Yet, given their diversity, it is worth wondering whether the type of learning algorithms
machine learning researchers develop can, truly, over-fit them. If an algorithm can do well
on, say, 30 of these domains, are we right to assume that it is over-fitting them? This is an
open empirical question that is worth exploring further. It is true that the UCI domains
are not sufficient, both because they are limited in the kind of problems they illustrate –
class and attribute noise, missing features, class imbalances, cost issues, and so on, and are
only a small subset of all the situations that can arise in real-world situations – and because
they are quite small. But it should be remembered that the UCI collection is far from static;
new data sets are being added all the time. This should go a long way towards addressing any
concerns.

Reform: Not only do the data sets not truly represent the world, but also the instances they
contain are often not random samples of the application domain. Take the class distribution in
the two UCI credit application datasets. They contain very different numbers of credit
approvals. It might be a difference in local practice but more likely it represents a difference in
how the data were collected. The splice dataset has an equal number of positive and negative
examples, in actual DNA sequences the ratio is more like 1:20 (Saitta and Neri 1998). It is also
doubtful that the distribution of instances over the attribute space reflects reality. It is more
likely an artefact of how the data set was constructed. Not knowing how the instances were
collected undercuts the value of any statistical tests. The basic assumption on which they
are founded, that the sample is random, is questionable. It is clear that we should not place too
much weight on results from experiments on such data sets. We should not be very surprised
when they do not generalise well to more practical problems. We should also question the
value of doing a simple experiment over a large number of UCI data sets. ‘More is better’ is
a questionable adage in this case.

The two points of view presented above are not completely contradictory. They clearly
agree that the nature of the data sets contained in the UCI repository is more of the
problem than the mere existence of the repository and the practice of community
experiments. Something must be done about how we deal with this collection of data sets,
how we review experimental results arising from them and how we get the resources
needed to make our experiments more trustworthy.

3. What is the alternative?

One attraction of the present way of carrying out experiments is that it codifies a simple
recipe for testing algorithms; use cross-validation to estimate accuracy, or AUC, on lots of
UCI data sets, run a t-test on the results and count up wins losses and draws. But the
ritualistic adherence to this recipe is one of the main objections raised in this article.
Certainly, we feel the existing recipe is too rigid and greater flexibility is needed. Just how
flexibile is the area of debate in this section. Let us begin by looking at two views on the
future role for experiments in machine learning research.

Revision: It is important to recognise that as a community we have settled on a simplified, and
perhaps confused, view of evaluation. We separate the notion of testing from the normal
conduct of research. During the development of our research, as we design our algorithms and
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refine them, we constantly need to test our ideas to see if they are on the right track.
The testing that takes place at the end of the endeavour, for the purpose of reporting
our findings, is a continuation of that process. That being said, as testing is such
a fundamental part of our research, it is crucial not to water it down by confusing it with
the overall design/testing process. We must keep a high level of care in the reporting of our
final results. With a good understanding of the meaning of statistical tests, with a careful
choice of ways to measure and visualise our results, and with the right selection of data sets,
we will achieve an effective experimental procedure that can be adopted throughout our
community.

Reform: It is too simple a view that science progresses by individual scientists proposing
hypotheses which are either falsified, or corroborated, by an experiment. This view is
neither historically accurate nor a particularly good practical methodology. Having our
papers reflect this structure is therefore questionable. We should encourage papers that
are much more exploratory in nature. Experimental results are only one aspect of
support for various claims by researchers, it is also necessary to have a well-reasoned
argument that appeals to other researchers’ intuitions. Hypothesis testing is important, but
it should address more substantive issues than ‘my algorithm is better than yours’, which
is too often the case. An answer to a statistical question is not an answer to a substantive
one. Until we have clear substantive questions to answer, hypothesis tests are
not warranted. Except in very limited cases, null hypothesis statistical tests are not
warranted at all.

As is clear so far in this article, the views expressed do not support the status quo.
Too often, in our papers, the hypothesis being tested is often not clearly stated nor is it
clear how the test corroborates it. We feel that many experiments, in fact, do little
more than the test if ‘algorithm A is better than algorithm B’. Setting aside, for the
moment, questions about our confidence in the experiments themselves, it is not clear how
an answer to such a question advances our field. So how should we address these
problems?

Revision: There should be two separate branches to machine learning research: one that
continues what we do now, designing and testing new algorithms, using the most up-to-
date evaluation techniques proposed; and another, more philosophical research, that
explores the nature of the field, designing new evaluation methods, thinking up the
standards by which to measure progress. Both kinds of papers are important and should
be published for the time being. Eventually, the philosophical side should produce results
bearing on the algorithm design and test side. At that point, the philosophical side may
disappear, perhaps reappearing periodically thereafter, while the design and test side
continues, but in a new format. Without this kind of reflection, the field is at an impasse
that prevents it from progressing and remaining relevant. It is not necessary, however, that
the practice we are currently using be totally abandoned. It is unlikely that the
philosophical research will revolutionise how to evaluate algorithms, the process will only
need to be refined.

Reform: The broad aim of any research field is to progress in the understanding of its topic. It
is debatable if our field is mature enough to have strong overarching theories. An early view in
AI was that our programs themselves were theories. But even in this case (Simon 1995) warned
‘we must take care to define what characteristics of the programs represent the theory, and
what parts constitute boundary conditions and initial conditions for a particular application
of the theory’. Presently, when we do hypothesis testing, it is often for very particular claims
which do little to advance the field. We would be better off sharing the results of more general
experiments and exploring our insights. Our aim should be ‘rules of thumb’ much like the
earlier laws of Physics, capturing empirical relationships. If this means that there would be few
hypothesis tests published, so be it. Most research is exploratory. True hypothesis tests, those
of a substantive nature, will be rare. Yet, they will mark important milestones in our collective
research.
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3.1. What should we measure?

Both sides of the debate are clear that a single scalar measure, adopted community wide, is
of questionable value. They also agree in that experiments should do much more than just
compare the performance of two algorithms. Yet, the two views below are very much in
opposition as to where we should go from here.

Revision: It is unlikely that more than a few community wide scalar measures will be needed.
So, the best way of displaying results is still in tables. Tables of results have served us well in
the past. Readers of papers are familiar with this form of representation. Graphical methods
have too much inherent flexibility, making results difficult to interpret and therefore little help
in making a decision. To be able decide between alternatives in fundamental to our testing.
For applications, we must decide which algorithm to use. As researchers, we must decide what
research avenues are most profitable to explore. As reviewers, we must decide which papers to
accept. A greater reliance on a subjective interpretation of the results would make all these
decisions more time consuming. In particular, reviewers would find it much harder to judge
papers and more discussion among reviewers would be necessary. This is infeasible given the
reviewing load many researchers already have. Yet, papers including tables for multiple
measures, accompanied by an interpretation of the results, should result in little extra
reviewing load. In fact, current research suggests we may be able to summarise various
measures into a single one (Caruana and Niculescu-Mizil 2004; Huang and Ling 2006),
simplifying the tables once again.

Reform: For applications, a measure of performance is needed to compare algorithms, but it is
not the only thing needed. Users are often reluctant to accept a system based on performance
figures alone, even when these figures show large gains over standard practice. For the
research field as a whole, experimental results are only a small part of a much larger argument
about the value of any approach. Even when a solid gain in performance is achieved, it is
unclear what it says about the merits of a particular algorithm. For instance, sometimes small
changes can reverse the ranking of algorithms (Caruana and Niculescu-Mizil 2006). Even if
the results are unassailable, the interpretation of the results is not. How to generalise beyond
them is not inherent in the results themselves. In the choice of measure, it is less important
to abide by a community standard than it is to be well justified, fitting well into the broader
argument. Our focus on performance testing has detracted from the bigger picture of why
something is interesting and matters to the field. Requiring that experimental results be based
on community wide measures is part of this dependence. Using different measures in different
circumstances, and generally de-emphasising the role of performance testing, will promote
broader research.

The above discussion suggests that we should be more flexible in what we measure.
Flexibility is also needed in the way we judge the results, increasing the reliance on human
judgement. One view argues, however, that too much flexibility could throw us back to
a time where machine learning algorithms were not well validated. This would lead to
some useless systems ‘polluting’ the research landscape, generating unwarranted
discussions and follow-ups given their low performance, and ultimately, their lack of
interesting and practical insights. The other view is that research output is as much a well-
reasoned argument as it is performance evaluation. For example, were Mitchell’s (1977)
version spaces or Michalski’s (1973) AQ systems as well validated as more recent
algorithms? Probably not. Yet, these systems offered useful conceptualisation of the
machine learning problem (‘machine learning as search’ and ‘learning by recognition vs.
learning by discrimination’). This view argues that performance testing is only part of
a larger experimental process, itself part of a larger exercise. Too strong a focus on
performance testing has resulted in progress becoming a matter of small gains based on
questionable measures. Removing this focus would allow researchers to spend more time
investigating higher-level concepts, of much more value to the field in the long run.
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3.2. What tests should we do?

Many problems arise because of our lack of understanding of statistical testing. We are
therefore susceptible to misinterpreting the results, and making claims that are not
supported by our experiments. Even those with a deeper understanding often lack
sufficient clarity in their writing to explain to others what our experiments mean. One
answer would clearly be to improve rigour in our field, this is one view taken in the debate.
The other view is that this rigour would be of questionable value.

Revision: Rigour is important but that does not mean ritualistically following simple
evaluation recipes. Machine learning researchers should consider a range of possibilities, from
which particular re-sampling regimens and statistical tests should be selected on a case by case
basis. For such a choice to be done properly, the person testing the classifier must be
sufficiently knowledgeable in statistics. It is, thus, of utmost importance that we bring machine
learning practitioners to a level of sophistication in statistical analysis sufficient to conduct
evaluation of classifiers properly. To improve the rigour in our field, we should use the
appropriate statistical language when describing the outcome of experiments. We should
better educate our graduate students in how research papers should be written. We should
better educate them in how to carry out experiments and the meaning of any statistics used.
That is not to suggest that we all become statistical experts. Instead, we should develop a level
of knowledge in these issues, similar to the one researchers in psychology or economics have
that allows them to craft experiments and validate models more rigorously than we do. We
should insist that papers are accompanied by the algorithms and data used in the experiments,
so that exactly what has occurred can be verified by others.

Reform: Additional rigour would buy us little and the effort is not worth the return. In many
ways, it is the attempt to be rigorous that has led us down to this particular path and it could
do so again. In the traditional sciences, such as physics and chemistry, there is little use
of statistical testing. As the famous physicist Ernest Rutherford once said that ‘If your
experiment needs statistics, then you ought to have done a better experiment’. So, it might be
worth asking ourselves if the questions we are trying to answer are the right ones. If we were
to look to physics for some scientific hypothesis, we might take Boyle’s law, pressure times
volume is a constant. This says nothing about the null hypothesis or indeed any alternative
hypothesis.
Rigour, certainly when it becomes formulaic, tends to diminish careful consideration by the
authors of a paper, as well as the readers and reviewers. Too often statistical tests fail to
combat delusion but rather encourage it. People looking at graphs and tables can, and should,
make their own interpretation of the results. As one statistics researcher put it, people can use
‘visual perception as a statistical test’ (Buja and Cook 1999). Most certainly, we should be
clear of the difference between a scientific hypothesis and a statistical one.

Here the two views diverge. The first argues that the problems can be solved by
carefully adhering to a strong, yet transparent, statistical methodology. We can no longer
treat statistical tests as black boxes. We need to, and so do our graduate students, better
understand what different statistical tests mean, and how and when they should be used.
The second view argues that this would take time and the time would not be well spent.
Statistical tests even when applied appropriately simply do not tell us what we want to
know. The rigour they provide is of questionable value.

3.3. What data should we use?

As we saw earlier, both views agreed that the UCI data sets are not sufficient to draw
conclusive results. We need more data from a wider set of conditions that better reflect all
aspects of the world. In the following, to achieve this, one view is that better ways of
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collecting data from real domain experts is needed. The other view suggests that much
more can be obtained by using artificial data, generated the right way.

Revision: The view taken here is that we need to strongly encourage the collection of more real
data sets to test our algorithms. A weakness in our present approach, which needs addressing,
is the reliance on old, or artificial, data. The old data has been used too frequently and for far
too long, so results based on them are untrustworthy. Artificial data, which does not represent
real situations, is often misleading and encourages the investigation of imaginary problems.
The UCI data sets have some limitations but the collection is not a static with new data sets
being collected over time. There are also other sites (Meyer and Vlachos 1989; Hettich and Bay
1999; Tsang 2000) which are good sources of real data.
What we lack is data focused on particular topics. A website where one could exchange data
for analyses would help. It could be advertised in medical, environmental and other circles.
Researchers in practical domains would upload their data and receive, in exchange, a free
analysis of their domain. They would describe the data, explain their expectations, and so on.
Machine learning researchers would send their results, with an explanation to the person who
posted the data. It would clearly require additional work on both sides but the benefits to all
should outweigh this. With sufficient data sets, should we want certain statistical guarantees
on our results, we would have domains that represent the necessary characteristics. This would
give considerably more confidence in our performance measures, error estimation method and
our statistical tests.

Reform: Although there is unquestionable value in real data, this does not mean it is the only
data that should be used in experiments. The idea that artificial data is somehow dangerous is
one we would reject strongly. In fact, we would argue that not using artificial data is much
more dangerous. Real data is good at telling us different aspects of the world, some of which
we may have overlooked. But artificial data allows us to explore variability not found in the
real data we have collected yet and we can reasonably expect to encounter in practice. Of equal
importance is that such data allows us tighter control, giving rise to more carefully constructed
and more enlightening experiments.
A discussion that arose at a workshop (Drummond, Elazmeh and Japkowicz 2006) suggested
the generation of artificial data sets based on reality. The idea would be to create an artificial
data set generator that takes as input a real domain, analyses it automatically and generates
deformations of this data set that follow certain high-level characteristics. Narasimhamurthy
and Kuncheva (2007) describe some of the deformations that might be applied. For example,
the user could request noise of certain type to be injected in the domain. She or he could also
ask for segments of the population to be made rarer, or for imbalances to be created.
The generator would offer a number of options that could be used to extend the data. A
particular advantage of this approach is that an unlimited number of data points could be
generated, thus, eliminating the need for statistical analysis altogether.

Our challenge as always, is limited data. It would be ideal if we had some massive
collection of real data that represented all the problems we might encounter. But given that
this ideal will not be achieved any time soon we must find the best compromise. One view
argues that the best we can do is experiment on real industrial weight problems. Artificial
data just generates artificial problems. But our aim is always to generalise beyond the
immediate results, and the other view claims that artificial data will best aid this process;
one more issue that is open to debate.

4. Conclusions

In this article, we have highlighted the limitations of our current experimental procedures
and ways that they might be improved. We gave two alternate views, at least in part, to
capture the range of opinions held by some within the community. Our hope is to
encourage a much more widespread debate. To promote this aim, we have been holding
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workshops (Drummond et al. 2006; Drummond, Elazmeh, Japkowicz and Macskassy
2007, 2008) and will continue to do so at different venues. We believe that this topic is of
sufficient importance that this debate should not be short lived. How we carry out
experiments is an area of research in its own right. At the very least, we feel this warrants
special issues of a journal, from time to time, perhaps even its own small conference. We
ask those who share this view to contact us. Generally, we would welcome any debate on
this interesting topic with members of this community.
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