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This paper studies the reliability of infinite slopes in the presence of spatially variable shear strength
parameters that increase linearly with depth. The mean trend of the shear strength parameters increasing
with depth is highlighted. The spatial variability in the undrained shear strength and the friction angle is
modeled using random field theory. Infinite slope examples are presented to investigate the effect of spa-
tial variability on the depth of critical slip line and the probability of failure. The results indicate that the
mean trend of the shear strength parameters has a significant influence on clay slope reliability. The
probability of failure will be overestimated if a linearly increasing trend underlying the shear strength
parameters is ignored. The possibility of critical slip lines occurring at the bottom of the slope decreases
considerably when the mean trend of undrained shear strength is considered. The linearly increasing
mean trend of the friction angle has a considerable effect on the distribution of the critical failure depths
of sandy slopes. The most likely critical slip line only lies at the bottom of the sandy slope under the spe-
cial case of a constant mean trend.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Slope stability is a typical problem in geotechnical engineering
(e.g., [3,26,33]). It is well known that soil is a complex engineering
material that has been formed by a combination of various geo-
logic, environmental, and physio-chemical processes. Because of
these natural processes, all soil properties in situ will vary verti-
cally and horizontally [27]. Hence, a realistic assessment of slope
reliability should consider the spatial variability of shear strength
parameters [1,6].

Different aspects of spatial variability of shear strength param-
eters on slope reliability have been studied in the past (e.g.,
[15,12,24,32,8,16,13,17,40,41]). For example, Hicks and Samy [15]
studied the influence of heterogeneity of undrained shear strength
on the stability of a clay slope. Griffiths and Fenton [12] studied the
effect of spatial variability of the undrained shear strength on the
probability of failure of a slope. Low et al. [24] proposed a practical
EXCEL procedure to analyze slope reliability in the presence of spa-
tially varying shear strength parameters. Srivastava and Sivakumar
Babu [32] quantified the spatial variability of soil parameters using
field test data and evaluated the reliability of a spatially varying
frictional/cohesive soil slope. Cho [8] investigated the effect of
spatial variability of shear strength parameters accounting for
the correlation between cohesion and friction angle on slope reli-
ability. Hicks and Spencer [16] conducted a reliability analysis of
a long 3D clay slope. The influence of spatial heterogeneity on
the failure mode was studied. Griffiths et al. [13] performed a prob-
abilistic analysis to explore the influence of spatial variation of
shear strength parameters on the reliability of infinite slopes. Ji
et al. [17] adopted the First Order Reliability Method (FORM) cou-
pled with a deterministic slope stability analysis to search for the
probabilistic critical slip surface when spatial variability of shear
strength parameters is considered. Zhu et al. [41] explored the var-
iance of matric suction and factor of safety of a slope subjected to
steady-state rainfall infiltration in the presence of spatially varying
shear strength parameters.

In the majority of these studies, the spatial variability of shear
strength parameters was modeled as a stationary random field. In
other words, the means of the shear strength parameters are con-
stant with depth. However, it is well recognized that a soil property
fluctuates about a trend that typically increases with depth [27].
The fluctuating component is viewed as the inherent soil variability,
while the trend function is viewed as the mean of the soil property
at various depths. Many in-situ test data revealed that soil proper-
ties of a statistically homogeneous soil layer did exhibit non-
constant trends with depth [2,15,10,11,18,31,32,5,36,29,37,38].
For example, Wilson et al. [36,37] investigated the undrained
stability of circular and square tunnels where the shear strength
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Fig. 1. Trend of undrained shear strength of overconsolidated soil with depth.
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increases linearly with depth. Wu et al. [38] studied the reliability
of basal heave stability of deep excavations in which the undrained
shear strength varies with depth. Hence, while the detrended fluc-
tuations can be modeled as a zero-mean stationary random field,
the actual value of the soil property consisting of the trend and
the fluctuation is generally non-stationary (in the mean) and this
effect should be studied in slope reliability problems.

This paper aims to study the reliability of infinite slopes in the
presence of spatial varying shear strength parameters that increase
linearly with depth on the average. To achieve this goal, this article
is organized as follows. In Section 2, the mean variation of shear
strength parameters with depth is discussed. In Section 3, the spa-
tial variabilities in the undrained shear strength and the effective
stress friction angle are modeled by random fields, which are dis-
cretized by Karhunen-Loeve (KL) expansions. In Section 4, a meth-
od to determine the reliability of infinite slopes is presented. In
Section 5, infinite slope examples are analyzed to study the effect
of spatial variability in the presence of a linearly increasing mean
trend on the most likely depth of the critical slip line and the prob-
ability of failure. Discussions on shallow landslides related to spa-
tial variability are presented in Section 6.

2. Spatial variability of soils

2.1. Trend of undrained shear strength with depth

The undrained shear strength is often used for undrained stabil-
ity analysis of clay slopes. It is well known that the undrained
shear strength is not a fundamental soil parameter, and its value
depends on the effective confining stress, among others. An in-
crease in effective confining stress generally causes an increase
in undrained shear strength. For slightly plastic and medium plas-
tic soil, the undrained shear strength, su, can be expressed as [19]:

su=r0v ¼ ð0:23� 0:04ÞOCR0:8 ð1Þ

where r0v is the effective vertical stress which can be calculated by
r0v ¼ c0Z, in which c

0
denotes the effective unit weight of the soil

and z denotes the depth below the ground surface. The OCR is the
overconsolidation ratio, which is defined as:

OCR ¼ r0p=r
0
v ð2Þ

where r0p is the effective preconsolidation stress, which is the max-
imum vertical effective stress experienced by a point in a soil mass
in the past. If the present ground surface is defined as z = 0 and the
maximum overburden depth in the past is d, r0p at any given depth z
would be c

0
(z + d). In this case, Eq. (2) can be written as:

OCR ¼ ðzþ dÞ=z ð3Þ

For normally consolidated soil, OCR is equal to 1. For overconsoli-
dated soil, OCR usually lies between 1 and 50. For highly plastic soil,
the undrained shear strength depends not only on the effective ver-
tical stress and the overconsolidation ratio, but also on the plasticity
index [19].

Eq. (1) is adopted to characterize the depth trend of the
undrained shear strength in an approximate but realistic way.
The following parameters are adopted: c

0
= 10 kN/m3, d = 35 m,

and the maximum value of the OCR is capped at 50. The lower
and upper bounds of su are calculated using Eq. (1), i.e. lower
bound = 0.19OCR0.8 and upper bound = 0.27OCR0.8. Fig. 1 shows
the variation of these lower and upper bounds with depth. A sim-
ple linear trend falling within these bounds is selected in this study
(i.e. the line with triangle marker in Fig. 1). Asaoka and A-Grivas [2]
also pointed out that su can increase linearly with depth from a
non-zero value for overconsolidated soils. This conclusion is con-
sistent with the simple model adopted in this study. A vertical line
representing a constant su = 50 kPa scenario is also plotted in Fig. 1.
This vertical line has been widely used in geotechnical engineering
practice due to its simplicity (e.g. [12,8,16,13,17]). It is evident that
the resulting undrained shear strength significantly exceeds the
upper bound of su when the depth is less than 1.2 m. Although this
difference looks minor, it can be important for shallow landslides.
2.2. Trend of effective friction angle with depth

Unlike the undrained shear strength, the effective friction angle
is a more fundamental soil parameter. For brevity, the effective
friction angle is referred to as the friction angle from hereon. The
trend function of friction angle with depth is not widely reported
in the literature, possibly because undisturbed sand samples are
difficult to obtain.

In this paper, some in-situ test data and an empirical relation
between friction angle and in-situ test data are used to estimate
a reasonable trend function for the friction angle. The following
empirical relation for sand is adopted in this study. It relates the
friction angle with the cone tip resistance measured in a cone pen-
etration test (CPT) [19]:

/ ¼ 17:6þ 11:0log10
qc=paffiffiffiffiffiffiffiffiffiffiffiffiffi
r0v=pa

p
 !

ð4Þ

in which / is the friction angle of sand; qc is the cone tip resistance,
and pa is the standard atmospheric pressure �100 kPa.

To characterize the trend of friction angle with depth using Eq.
(4), CPT data for sandy soils at four different sites are used. Based
on these data, the /-z functions can be obtained using Eq. (4) as
shown in Fig. 2. Note that c

0
= 10 kN/m3 is adopted for calculating

r0v in Fig. 2(a, b, d) because the sandy soil layers are below the
ground water table while c

0
= 20 kN/m3 is adopted in Fig. 2(c) be-

cause the ground water table is very deep at the site. It can be seen
that the friction angle increases with depth. This is consistent with
the trend of friction angle of fine to medium-grained sand layer in
Nakdong River Delta [30]. The normalization using r0v in Eq. (4)
does not remove the depth trend in the CPT data, although it is
tempting to think that this will happen and the friction angle can
be assumed to be constant along depth. It should be pointed out
that there also exists a trend of friction angle decreasing with
depth due to the reduced dilatancy of sand with increasing stress
level. However, only the case of friction angle of sandy soil increas-
ing with depth is investigated in this study for consistency. More-
over, since all the qc data in Fig. 2 are collected from field cone
penetration tests, it is reasonable to assume that the trend of
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Fig. 2. Trend of friction angle with depth.
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friction angle increasing with depth does exist in geotechnical
practice.
3. Simulation of spatial variability of shear strength parameters

Several methods such as the midpoint method, the local aver-
age subdivision (LAS) method, the shape function method and
the KL expansion method can be used to discretize the random
field (e.g., [35]). For computational efficiency, the KL expansion is
used to simulate the spatial variability of shear strength
parameters.

3.1. Simulation of undrained shear strength

As discussed in Section 2.1, the undrained shear strength is
likely to increase linearly with depth for overconsolidated soils
as follows:

su ¼ ar0v þ b ¼ ac0zþ b ð5Þ

where a is the rate of change of the mean undrained shear strength
with depth; b is the mean value of the undrained shear strength at
the ground surface (z = 0). A large value of a will result in a signifi-
cant difference in the undrained shear strength at various depths; a
small value of a will produce an almost constant profile. Values of a
and b can be estimated using the linear regression approach (e.g.,
[35]). These values are not widely reported in the literature, possi-
bly because they are site-specific and therefore not of general inter-
est. This study adopts a linear trend that falls between the lower
and upper bounds of the undrained shear strength as shown in
Fig. 1. In addition, the coefficient of variation (COV) of unit weight
of soils is below 0.1 [27]. Hence, it can be treated as a deterministic
value rather than a random variable. The parameter b is also consid-
ered to be deterministic for simplicity. The spatial variability of su is
modeled by treating the parameter a as a homogeneous random
field [38]. The mean and standard deviation of su are respectively gi-
ven by:
tsuðzÞ ¼ lar0v þ b ¼ lac0zþ b

rsuðzÞ ¼ COValar0v ¼ COValac0z

�
ð6Þ
in which tsu(z) and rsu(z) are the mean and standard deviation of su;
la is the mean of a; COVa is the COV of a which is the ratio of the
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standard deviation of a to the mean of a. The COV of su, COVsu, can be
derived as

COVsu ¼
COValac0

lac0 þ b=z
ð7Þ

As for the distribution of a, Lacasse and Nadim [20] suggested
that both normal and lognormal distributions can be approxi-
mately used for describing a. To avoid negative values, the mar-
ginal distribution of a is considered to be a lognormal
distribution. Hence, the mean and standard deviation of the natu-
ral logarithm of a are respectively given by [22,7]:

kln a ¼ lnðlaÞ � 0:5 lnð1þ COV2
aÞ

nln a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ COV2

aÞ
q

8<
: ð8Þ

in which kln a and nln a are the mean and standard deviation of the
natural logarithm a. The simulation steps are given elsewhere [39].

The autocorrelation function is an important parameter for
characterizing a random field. For simplicity and convenience [8],
a common single exponential autocorrelation function is adopted
for ln(a) as follows:

qðz1; z2Þ ¼ exp � jz1 � z2j
lv

� �
ð9Þ

where q is the correlation coefficient between ln(a(z1)) and
ln(a(z2)); z1 and z2 are depth coordinates; lv is the correlation length
of ln(a) in the depth direction. For slope reliability analysis with a
slope height H, the correlation length is commonly represented in
a normalized form D = lv/H. As pointed out by Wu et al. [38], the
correlation length of a is conceptually the same as that of the un-
drained shear strength.

Fig. 3 shows the measured su–z curve based on CPT data re-
ported in [14] and three simulated su–z curves using the parame-
ters derived from the measured su–z curve. It can be observed
that the measured undrained shear strength generally increases
with depth. The simulated su–z curves using the random field mod-
el are consistent with the measured su–z curve. Note that the var-
iance of su, rsu, increases significantly with depth. This result
agrees well with Eq. (6) in which the rsu is proportional to depth.
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Fig. 3. Comparison between measured su–z curve and simulated su–z curves.
3.2. Simulation of effective friction angle

Following Phoon and Kulhawy [27], the spatial variation of the
friction angle can be decomposed into a smoothly varying trend
function, t/(z), and a fluctuating component, w/(z), as follows:

/ðzÞ ¼ t/ðzÞ þw/ðzÞ ð10Þ

where /(z) is the friction angle and z is the depth. The fluctuating
component represents inherent spatial (soil) variability. It is cus-
tomary to assume that w/(z) is a zero-mean statistically homoge-
neous random field. The trend function can be viewed as the
mean of the friction angle. Phoon et al. [28] and Baecher and Chris-
tian [3] suggested that the form of trend function should be the sim-
plest one that would produce statistically homogeneous
fluctuations. With this parsimonious principle in mind, a linear
function is selected as the trend function of the friction angle:

t/ðzÞ ¼ a/zþ b/ ð11Þ

in which a/ is the rate of change of the mean friction angle with
depth and b/ is the mean value of the friction angle at the ground
surface (z = 0). Values of a/ are not widely reported in the literature.
However, it is reasonable to estimate the value of a/ from the /-z
curves shown in Fig. 2. These curves were derived using CPT data
and an empirical correlation shown in Eq. (4). The values of a/ esti-
mated using these /-z curves fall within the range of [0.24�/m,
2.38�/m]. Thus, a/ within this range can be adopted to perform
parameter analysis.

Similarly, the marginal distribution of / is considered to be log-
normal to avoid negative values. The mean and standard deviation
of the natural logarithm / are respectively given by:

kln / ¼ lnðt/Þ � 0:5 lnð1þ COV2
/Þ

nln / ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ COV2

/Þ
q

8<
: ð12Þ

in which kln / and nlnu are the mean and standard deviation of the
natural logarithm /; t/ is the mean of / whose value is determined
by the trend function shown in Eq. (11); COV/ is the COV of / which
is the ratio of the standard deviation of w/(z) to t/. Unlike the stan-
dard deviation of undrained shear strength that increases linearly
with depth (Eq. (6)), the standard deviation of /(z), (or w/(z)), at dif-
ferent depths are the same, because an additive model in the form
of Eq. (10) has been adopted. The simulation steps are the same as
those for the undrained shear strength. Moreover, the same auto-
correlation function as ln(a), namely the single exponential autocor-
relation function in Eq. (9), is adopted for ln(/).

Similarly, Fig. 4 shows the measured /-z curve derived from CPT
data reported in Singh and Chung [30] and the simulated /-z
curves using the parameters derived from the measured /-z curve.
There exists a general trend of the mean of friction angle increasing
with depth. Additionally, the variance of / is basically constant
with depth even though the mean of / increases with depth, be-
cause of the additive model (Eq. (10)).

It should be pointed out that two different random field models
are adopted for modeling the spatial variability of undrained shear
strength and friction angle. This is briefly explained as below. As
pointed out by Lumb [25], there are three different forms of spatial
variability for a soil parameter as shown in Fig. 5. Case 1 refers to
the soil property v being normally distributed about the mean.
Both the mean and standard deviation of v are constant with depth.
Case 2 refers to v being normally distributed about a linear trend,
and the variance of v is independent of depth. Case 3 represents
the case that v is normally distributed about a linear trend and
the variance of v increases with depth. It is evident from the in-situ
data that the adopted spatial variability model of undrained shear
strength in Section 3.1 corresponds to Case 3 in Fig. 5(c) while the
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adopted spatial variability model of friction angle in Section 3.2
corresponds to Case 2 in Fig. 5(b). Hence, two different random
field models are adopted here to obtain a linearly increasing stan-
dard deviation with depth for the undrained shear strength and a
constant standard deviation with depth for the friction angle,
respectively. The undrained shear strength is simulated through
the relationship between su and a, i.e. Eq. (5). The spatial variability
of su is transformed into the spatial variability of a [38]. The friction
angle is simulated directly using the random field model in Eq.
(10).

4. Reliability analysis of an infinite slope

The infinite slope model is one of the most popular models that
is widely used in slope reliability analysis. For illustration, the infi-
nite slope example studied by Griffiths et al. [13] is investigated
again, which is shown in Fig. 6. In Fig. 6, H is the depth of soil above
bedrock; z is the depth of the soil layer from ground to the potential
slip line; b is the slope inclination; c and / are the effective cohesion
and friction angle at the base of the potential slip line, respectively;
c is the total unit weight; u is the pore pressure at the base of the
potential slip line. The factor of safety, FS, is given by

FS ¼ ðzc cos2 b� uÞ tan /þ c
zc sin b cos b

ðz 6 HÞ ð13Þ
z z

Case 1 Case 2

Fig. 5. Different forms of spatial variabili
The performance function of slope reliability analysis is often
expressed as g(X) = FS-1, in which X represents the input random
variables associated with slope reliability analysis. When FS is cal-
culated using Eq. (13), the slope reliability can be readily evaluated
using the FORM when all the six parameters in Eq. (13) are treated
as random variables. An example of such an analysis is given by
Griffiths et al. [13]. When spatially variable shear strength param-
eters are taken into consideration, the procedure for evaluating the
infinite slope reliability is summarized as follows:

(1) The infinite slope can fail along a potential slip line running
parallel to the ground surface at depth z. Two hundred
potential slip lines are created by discretizing the soil depth
into equal parts. Note that the choice of 200 potential slip
lines is a reasonable compromise after performing paramet-
ric studies. In the illustrative example discussed below with
H = 5 m, this implies generating potential slip lines at 25 mm
intervals.

(2) The value of su for the undrained clay slopes or the value of /
for the sandy slopes at the base of each slip line is obtained
from a KL expansion.

(3) The factor of safety for each slip line is calculated using Eq.
(13). For the case that the soil column is modeled by 200 slip
lines, this approach will produce 200 different factors of
safety for the infinite slope. The minimum FS among the
200 factors of safety is taken as the ‘‘correct’’ value for
the particular simulation, and its corresponding depth is
the critical depth.

(4) The aforementioned procedure is repeated N times, i.e. the
sample size of the Monte Carlo simulation is N. This
approach will lead to N factors of safety for the infinite slope.
Then, the probability of failure is calculated simply as the
proportion of the number of results in which FS < 1 to N.
Note that the accuracy in the probability of slope failure
z

Case 3 

ty for a soil parameter m with depth.
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increases with increasing number of simulations. However,
more computational efforts will be incurred because of more
simulations. The choice of 200 slip lines is generally found to
produce satisfactory results. To lead to sufficiently accurate
reliability results, the required number of simulations
should be more than 105 in this study.

5. Illustrative example

5.1. Infinite clay slope

The first infinite slope example considered here only treats su as
a spatially varying random variable. Among the other five param-
eters in Eq. (13), the friction angle and pore water pressure are
set to zero (the ground water table is assumed to be at or below
the bottom of soil slope and the soil is saturated, i.e. u = 0), and
parameters c, H and b are constants. Then, Eq. (13) can be simpli-
fied as

FS ¼ su

zc sin b cos b
ðz 6 HÞ ð14Þ

For illustration, the following parameters are adopted: c = 20 kN/
m3, H = 5 m and b = 30�. Parameter a in Eq. (5) is assumed to be a
lognormal distribution with a mean of 0.8 and a COV of 0.4. Param-
eter b in Eq. (5) is a constant with a value of 30 kPa. Based on these
parameters, the mean and COV of su at the bottom of the slope, cal-
culated by Eqs. (6) and (7), are obtained as 70 kPa and 0.23, respec-
tively. The mean and COV of su at the mid-depth of the slope are
50 kPa and 0.16, respectively. Since the COV of su increases with
depth as shown in Eq. (7), the maximum COV of su = 0.23 is found
at the bottom of the slope. It falls within the typical range [0.1,
0.5] as reported in Phoon and Kulhawy [27]. These results indicate
that the adopted value of COVa = 0.4 is reasonable tentatively. For
comparison, it is assumed that the mean and COV of su for the un-
drained shear strength constant with depth are the same as those at
the mid-depth of the slope for the undrained shear strength linearly
increasing with depth. This assumption is made due to the follow-
ing reasons. If a set of spatially varying su data are treated using the
H

z

(a) tsu linearly increasing with depth

Fig. 7. Typical realizations
constant trend model and the linear trend model respectively, the
tsu for the constant trend model is the same as the tsu at the mid-
depth of the slope for the linear trend model. Moreover, the COV
of su derived from the linear trend model highly depends on the
depth as shown in Eq. (7), whereas it is a constant for a constant
trend model. For simplicity, the COV of su for the constant trend
model is assumed to be the same as that at the mid-depth of the
slope for the linear trend model. Under this assumption, the result-
ing mean and COV of su at the mid-depth of the slope are 50 kPa and
0.16, respectively. Eight values of 4 = lv/H = 0.05, 0.1, 0.2, 0.4, 0.8,
1.2, 1.6, and 2 are adopted in the parametric studies.

For comparison, Fig. 7(a) and (b) show typical realizations of
random field of su for the tsu constant along depth and linearly
increasing with depth, respectively. In these two figures, light col-
ors represent low values of su, and dark colors represent high val-
ues of su. It can be seen from Fig. 7(a) that su at the bottom of the
slice take high values because the tsu linearly increases with depth.
While for the tsu constant with depth, su at the bottom of the slice
may take low values, which is less realistic in comparison with the
results in Fig. 1.

Table 1 shows the probabilities of failure for various correlation
lengths. The probabilities of failure for the tsu linearly increasing
with depth are significantly lower than those for the tsu constant
with depth. For normalized correlation length D = 2, the probabil-
ities of failure are 0.40% for the tsu linearly increasing with depth
and 20.84% for the tsu constant along depth, respectively. The latter
is about 50 times the former. These results imply that the slope
reliability will be underestimated greatly if the mean trend of su

linearly increasing with depth is ignored. As expected, the proba-
bility of failure decreases with correlation length. Furthermore, it
converges to a certain value as the correlation length becomes lar-
ger. This is consistent with the observation reported in Griffiths
et al. [13].

Fig. 8(a) compares the factors of safety of the infinite slope for
the tsu constant along depth with those for the tsu linearly increas-
ing with depth. The factors of safety are computed using the mean
value of the undrained shear strength. Generally, the factors of
safety decrease with depth. Hence, the minimum factor of safety
lv,lna

(b) tsu constant with depth 

of random field of su.



Table 1
Probability of slope failure considering spatially varying undrained shear strength.

D = lm/H 0.05 0.1 0.2 0.4 0.8 1.2 1.6 2.0

la = 0.8 1.59% 1.12% 0.79% 0.59% 0.47% 0.45% 0.42% 0.40%
la = 0 57.02% 42.87% 33.14% 26.80% 23.31% 22.83% 21.93% 20.84%
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and the corresponding critical slip line occur at the base of the
slope. This is because the factor of safety is proportional to the va-
lue of su/z (Eq. (14)) when the deterministic analysis is performed
for the infinite slope. Since the tsu at the bottom of the slope for tsu

linearly increasing with depth is higher than that for tsu constant
with depth, the factor of safety for the former is larger than that
for the latter. Meanwhile, the standard deviation of FS for the tsu

linearly increasing with depth, rFS1(z), can be derived as

rFS1ðzÞ ¼
COValac0z

zc sin b cos b
¼ COValac0

c sin b cos b
ð15Þ

It is evident that the resulting rFS1(z) is constant with depth. Simi-
larly, the standard deviation of FS for the tsu constant with depth,
rFS2(z), can be derived as

rFS2ðzÞ ¼
COValac0ð0:5HÞ

zc sin b cos b
ð16Þ
Note that the resulting rFS2(z) decreases with depth.
It is well known that the reliability index can be approximately

calculated using (lFS-1)/ rFS, as shown in Fig. 8(b). It can be ob-
served that the values of (lFS-1)/rFS decrease with depth for both
cases. Moreover, the values of (lFS-1)/rFS for the tsu linearly
increasing with depth are significantly larger than those for the
tsu constant with depth. Consequently, the probability of slope fail-
ure for the tsu linearly increasing with depth is considerably smal-
ler than that for the tsu constant with depth.

Taking the normalized correlation length D = 0.05 as an exam-
ple, the distribution of the depths of the critical slip line is plotted
in Fig. 9. The frequency is calculated by the ratio of the number of
critical slip lines at a specific depth to the total number of simula-
tions, and the interval of depth is set as 0.1 m. Note that the critical
depth is most likely to occur at the bottom of the slope whether the
tsu linearly increases with depth or is constant with depth. For the



1 2 3 4 5
1.5

1.6

1.7

1.8

1.9

F
S

Depth (m)

a
φ
=0o/m (constant t

φ
 )

a
φ
=0.7o/m

a
φ
=1.4o/m

a
φ
=2.0o/m

Fig. 11. Factor of safety of the infinite sand slope for various rates of change in t/.

52 D.-Q. Li et al. / Structural Safety 49 (2014) 45–55
tsu linearly increasing with depth, only about 14% of the critical slip
lines occur at the base. This is because there is a greater probability
of the minimum su/z occurring higher in the slope. In comparison
with tsu constant along depth, the percentage of critical slip lines
occurring at the base of the slope decreases as it is less likely that
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Fig. 12. Distribution of the depth of
the minimum factor of safety occurs at the base of the slope. The
reason is that the values of (lFS-1)/rFS at the bottom of the slope
for the tsu linearly increasing with depth are slightly higher than
those for the tsu constant with depth (see Fig. 8(b)).

5.2. Infinite sandy slope

In this section, the effect of spatially variable / on slope reliabil-
ity is illustrated using an infinite sandy slope where the ground
water table is very deep, i.e. no pore water pressure is present at
the base of potential slip lines. Only / is modeled as a spatial var-
iable. The other parameters are considered to be deterministic. The
factor of safety in Eq. (13) can be further simplified as

FS ¼ c
zc sin b cos b

þ tan /
tan b

ðz 6 HÞ ð17Þ

The following values are adopted: H = 5.0 m, b = 25�, c = 20 kN/m3,
and c = 2 kPa. The friction angle follows a lognormal marginal distri-
bution with a COV / = 0.15. To account for / varying with depth, a
few linearly increasing trend functions are considered. Four sets of
a/ and b/ parameters are considered: (0�/m, 35�), (0.7�/m, 33.25�),
(1.4�/m, 31.5�), and (2.0�/m, 30�). The selection of a/ has been
discussed in Section 3.2. The t/ is constant with depth when
a/ = 0�/m. Different values of b/ are chosen here to ensure that
the mean value of / in the mid-depth of the slope is fixed at 35�.
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Fig. 10 shows the probabilities of slope failure for various
rates of change in t/. As expected, the probability of slope failure
decreases with correlation length. The probability of slope failure
first decreases and then increases slightly with increasing a/. If
the trend of the friction angle linearly increasing with depth is
not taken into consideration, the probability of slope failure will
be overestimated, which is conservative for slope safety
assessment.

To explain the results in Fig. 10, the factors of safety of the
sandy slope with various rates of change in t/ are plotted in
Fig. 11. Note that the factors of safety are computed using the
mean values of the friction angle at the slip lines. Compared
with the results in Fig. 8, the factors of safety do not monoton-
ically decrease with depth. This is because when the friction an-
gle is constant with depth or slightly increases with depth, the
slope stability is mainly dominated by the depth of critical slip
line. The minimum factor of safety still occurs at the base of
the slip line due to the prior influence of the depth of critical
slip line. However, when the friction angle significantly increases
with depth, the slope stability is influenced by the cohesion, the
friction angle and the depth of critical slip line simultaneously.
Consequently, the minimum factor of safety does not necessarily
occur at the base of the slip line. It should be noted that the var-
iation of reliability index (lFS-1)/rFS is similar to that of lFS be-
cause the rFS is constant for various rates of change in t/ and
depths. Hence, the behavior of (lFS-1)/rFS with depth is similar
to Fig. 11, which is not repeated again.
(a) Murru Mannu land sli
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(b) Majiagou landslid

(c) Bazimen landslide
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Fig. 13. Landslid
Fig. 12 shows the distribution of the depth of the critical slip
line for D = 0.05. The distribution of the depth of the critical slip
line is significantly influenced by spatially varying friction angle.
When the friction angle is constant with depth (see Fig. 12(a)),
the critical slip line is most likely to occur at the bottom of the
slope, such observation is consistent with Fig. 9 associated with
the undrained slope. When the friction angle increases slightly
with depth (see Fig. 12(b)), the distribution of the depth of the crit-
ical slip line displays a rather uniform frequency at the medium
and bottom of the slope (see Fig. 12(b)). When the friction angle in-
creases greatly with depth, the depth of the critical slip line is most
likely to occur at the mid-depth of the slope (see Fig. 12(c)) or at
the top of the slope (see Fig. 12(d)). These results clearly indicate
that if the trend of friction angle increasing with depth is ignored,
a less reasonable conclusion that the critical slip line occurs at the
bottom of the slope will be drawn.

5.3. Discussion

It is well known that the cohesion and friction angle are nega-
tively correlated. The Mohr-Coulomb failure envelope is generally
nonlinear and this negative correlation between cohesion
(y-intercept) and friction angle (gradient) is an outcome of fitting a
linear line to this failure envelope (e.g., [27,8,13,21]). Hence, the
cohesion and friction angle should be modeled as a correlated vector
field from a physical point of view. In this study, the cohesion is as-
sumed to be deterministic (c = 2 kPa) due to the following reasons:
de (Canuti et al. [4]) 

e (Li et al. [23]) 

 (Du et al. [9]) 

145m

es in reality.
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(1) The in-situ data related to the shear strength parameters
varying with depth are limited in geotechnical engineering
practice. The trend function for the undrained shear strength
or friction angle is determined through the empirical rela-
tion between them and in-situ data obtained from CPT or
SPT. For cohesive soil, such an empirical relation is often
used to estimate the undrained shear strength. For cohesion-
less soil, such an empirical relation is used to estimate
friction angle. To the best of our knowledge, there is no
empirical relation to estimate cohesion and friction angle
simultaneously based on in-situ data. Hence, the trend func-
tions for cohesion and friction angle cannot obtained simul-
taneously from a practical point of view although the trend
functions for negatively correlated shear strength parame-
ters can be obtained theoretically.

(2) If the assumed trend functions for cohesion and friction
angle are used and a negative correlation coefficient of
q = �0.5 between cohesion and friction angle is imposed
on the detrended fluctuations, the slope reliability results
can also be obtained using the proposed method. It is found
that the negative correlation between cohesion and friction
angle has a slight effect on the depth of the critical slip line,
i.e. results similar to Fig. 12 are obtained. The probability of
slope failure will be reduced significantly when the negative
correlation between cohesion and friction angle is taken into
consideration, but the trend is similar to Fig. 10. This obser-
vation is consistent with those made in many past studies
(e.g., [8,13,34]).

6. Cases of shallow landslides

The probability of failure and the depth of critical slip line of
the infinite slopes in the presence of spatially varying shear
strength parameters that linearly increase with depth have been
studied. In this section, several typical shallow landslides re-
ported in the literature [4,9,23] are collected to assess the above
results. The three considered landslides are listed as follows:
Murru Mannu landslide in Western Sardinia, Italy [4], Majiagou
landslide [23] and Bazimen landslide [9] in the Three Gorges
Reservoir Region, China. The landslide profiles are shown in
Fig. 13. Note that the sliding surfaces associated with the three
landslides are all parallel to the slope surface. Moreover, the
length-to-depth ratios of the landslide mass are extremely large.
These characters are consistent with the shallow landslides that
are often simplified as the infinite slopes. Additionally, all the
sliding surfaces pass through statistically homogeneous soils
rather than the base of homogeneous soils. These results further
demonstrate that the critical slip surface underlying the infinite
slope does not necessarily occur at the bottom of slope, which
is consistent with the observation obtained from this study.
Hence, a realistic assessment of slope safety should consider
the non-constant mean trend of shear strength parameters.
Otherwise, misleading results associated with slope reliability
analysis may be obtained.
7. Conclusions

The reliability of infinite slopes in the presence of spatially
varying shear strength parameters that linearly increase with
depth is studied. The KL expansion is adopted to discretize the
random fields of spatially varying shear strength parameters.
The following conclusions are drawn based on illustrative
examples:
(1) The mean trend of the shear strength parameters has a sig-
nificant influence on slope reliability. The probability of
slope failure will be overestimated if a linearly increasing
trend underlying the shear strength parameters is ignored
or simplified as a constant trend.

(2) The critical slip line in an infinite clay slope is most likely to
occur at the bottom of the slope even though the trend of the
undrained shear strength is considered. Compared with the
undrained shear strength constant with depth, the possibil-
ity of critical slip lines occurring at the bottom of the slope
decreases considerably in the presence of linearly increasing
mean trend.

(3) The mean trend of the friction angle has a considerable influ-
ence on the distribution of the critical failure depths of an
infinite sandy slope. The most likely critical failure line does
not occur at the bottom of the slope when the mean trend is
increasing with depth. It can occur at the mid-depth or at the
top of the infinite slope.
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