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Abstract

Investmentdecision-makings modeledby meansof a Kohonenneural
net, whereneuronsrepresentirms. This is donein orderto modelinvest-
mentsin novel fields of economicactvity, thataccordingto this modelare
carriedoutwhenfirms recognizeéhe emegenceof a new technologicapat-
tern. Combinationof the equationof Kohonermodelneuronwith macroe-
conomicrelationshipgields disaggrgatedacceleratoequationswith flex-
ible coeficients,thatin the aggrgateandfixed-coeficientscaseboil dowvn
to the traditional acceleratoequations.A simulationteststhe modelin a
situationthatis remindful of the very beginning of economiaecoveries.
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1 The InvestmentAcceleration Principle

Thefirst clue of whatlaterwasto be known asinvestmentcceleation principle
canbefoundin awork publishedby Albert Aftalion at the beginning of the XX
century[3]. Aftalion arguedthat,if atemporaryincreaseof the demandor final
goodstriggersthe productionof capitalgoods,andif capitalgoodsbecomeavail-
able only whenthe demandfor final goodsis alreadybackat its original level,
thenthe economyfindsitself with anexcessof productie capacityanda crisisis
likely to begin.

A few yearslater, Clark [14] addeda distinction betweendemandper unit
time, which he calledspeed andthe acceleation of this demand.Clark argued
that, sincefirms adjusttheir productve capacityaccordingto variationsof de-
mand,investmentsiltimatelydependntheacceleratiorof demand At thattime,
this wasjust a felicitous expressionwaiting tot be translatednto formulas.

In thesubsequerdecadesnathematicalormulationsof theinvestmentccel-
erationprinciple becamea maincomponenbdf businesscycle models.Undoubt-
edly, it wasKaleckiwho providedthe mostrefinedmathematicainodelg[27], but
eventuallythe far simplerformulasproposedy Samuelsorj39] andHicks [26]
gaineda muchwider acceptanceAccordingto their proposalsaggregateinvest-
mentseither dependon aggreatevariationof consumption(1) or, alternatvely,
onlaggedaggreatevariationof income(2):

i = K(G—-C-_1) (1)
i = AY-1—Y2) (2)

wherel, C andY denoteaggrgateinvestmentsgonsumptiorandincome respec-
tively. Coeficientsk andA areconstants.
Behindtheseaggrgatemagnitudesidealarge numberof firmsthatcarryout
theirinvestmenplansindependentlyf oneanother Firmsinveston innovations
that openup new possibilitiesfor competition,eachfirm hopingto increaseits
own marketshare.Sinceeachfirm seekgo exploit thewholeincreaseof demand,
for any singlefirm it is rationalto committo investmentplansthat aretailored
for a larger market share. However, sincethe (eventually) higherdemandmust
distribute itself amongall firms, mostof themwill endup with anexcessof pro-
ductive capacity Ultimately, theinvestmentacceleratiorprinciple hasits rootsin

1In orderto avoid confusionwith other magnitudesusedin this paper constantshave been
denotedvy differentlettersfrom thoseusedby SamuelsomndHicks.



the very factthatwhatis rationalfor a singlefirm to do, may not be rationalfor
theeconomicsystemasawhole[36].

Thus,the very rationaleof the investmentscceleratiorprinciple canonly be
seemtthemicroeconomidevel. In fact,it is arationalethatinvolvesexpectations
andcorvictions,includingtheideathatvariationof demands therelevantsignal
for investing.

The economicliterature providesonly one exampleof an acceleratowith a
microeconomidoundation.Thisis theonethatwe canfind in Lucas’equilibrium
businesscycle model [33], whereeconomicagentsare distributed on "islands”
thatonly occasionallicommunicateln this model,the acceleratotakestheform
ke+1 O (k — k), wherek; denoteghelogarithmof aggreyatecapitalattimet, and
k: is the (correctly)estimatedneanvalueof the stochastidistribution of k; over
the”islands”.

Lucascarriedout a thoroughdiscussiorof his acceleratoequation.conclud-
ing thatinvestmentccelerations pronouncedf economicagents:

i. areresponsie to perceved future returnsof physical capital relative to
money capital;

ii. arecorvincedthatthe currentdemandor physicalcapitalrelativeto money
capitalis agoodindicatorof the futurereturnof physicalcapital;

iii. arecorvincedthat currentprice movementscontaininformationaboutthe
currentdemandor physicalcapitalrelative to money capital.

The mostremarkabléeatureof the above considerationss that Lucasspolke
of "perceivedfuture relative returns”, and of being”corvincedthat...”. Inter
estingly by moving from the macroeconomi¢o the microeconomidevel Lucas
cameto focuson availability of informationandtherelative importanceof differ-
entinformationsourcego differentdecision-makrs.

This article deependurtherthis line of reasoning.Specifically it makesuse
of a neuralnetin orderto modelthe formation of expectationsn the minds of
the managersvho decideto invest. By proceedingalongthis path,it arrivesat a
generalizatiomndmicroeconomic¢oundationof Goodwins "flexible” accelerator
[23]. Namely Goodwin's model marked a major cornerstonen the history of
investmentcceleratiorequations.

Early empiricalapplicationsof (1) and(2) hadshawvn that,in orderto fit with
empiricaldata,acceleratoequationsmusttake accountof available capitalstock
[12]. Goodwin's accelerato(3) is a simpletheoreticaimodelwhereinvestments
dependnthedifferencebetweeravailableK anddesied capitalé stock.
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It is anon-linearacceleratowhereinvestments switch betweerkK* andK**
accordingto the valuestakenby capitalK:

K* if K<€
= 0 if K=¢ (3)
K™ if K>¢&

whereg denoteglesired capitalstock.

Since Goodwin assumedhat desiredcapital  is proportionalto incomeY,
and sincecapital is accumulatedncome, Goodwin's acceleratomultimately de-
pendson pastincomevariations,just like (2). Rather its distinguishingfeature
is thataggreateinvestmentseactdifferentlyto incomevariationsthattake place
at differentlevels of capitalstock. Sincethis is equialentto having anacceler
ator with variablecoeficients(e.g. kK or A in equation(1) or (2), respectiely),
Goodwin's hasbeencalleda flexible acceleator.

Goodwinintroducedhis flexible acceleratowith an eye to the upperturning
pointsof businesscycles[23], wherecrisesbegin becausef shortage®f credit
andlabor force. However, a justificationfor investmentacceleratiorto setin at
thelow turning pointsof businesgycleshasalwaysbeenregardedasmoreprob-
lematic. Namely why shouldfirmsinvestif they still have anexcessof productive
capacity?

Goodwin's answerwas that thoseinvestmentghat take an economyout of
a recessionnvolve machineriesof a novel kind. Accordingto Goodwin, it is
investment®ninnovationsthattriggereconomiaecovery [24]. However, amod-
elizationof innovationstriggeringinvestmentcceleratiomasnot beenattempted
hitherto.

Thisis namelytheaim of themodelpresentedherein,whichemploysaneural
netin orderto reproducdirms’ cognitive processesHowever, settingthe invest-
mentacceleratiorprinciple on one's own researctagendanay be regardedasan
anomaly In fact, with the notableexceptionof RobertLucas,rational expecta-
tionstheoristsrejectedtheinvestmentcceleratiorprinciple on the groundthatit
is not basedon utility optimization. Thus, after Lucas’ model[33], accelerators
disappeareffom theoreticaleconomics.

Nonethelessempiricalliteraturecontinuedto provide evidencethataccelera-
tor equationsexhibiteda muchbetterpredictve power thanarny competingmodel
[15] [8] [1]. Rationalexpectationgheoristsprovidedtwo justificationsfor this.

Both of themarebasedntheobsenationthatcapitalstocktime seriesareless
reliablethanincometime series.Thefirst justificationwasprovided by Sagent,



who obsenedthatsinceincometime seriesarelessaffectedby noisethancapital
stocktime seriesnoiseis likely to introducea spuriouscausalitylink fromincome
towardscapitalstock[40]. The secondustificationwasprovided by Acemoglu,
who maintainedhatfirms obsene statisticalreportswhenthey make investments
and,sincethey know thatcapitalstocktime seriesarenotveryreliable,they base
their decisionsonincometime serieq?2].

However, a secondtide of empirical studiesstressednce againthe ability
of acceleratoequationgo track investmentsn the mostdiverseeconomiesand
times,includingMalaysiafrom 1971to 1988[9], Francefrom 1972to 1991[35],
U.S.from 1948to 1985(7], FranceandU.S.from 1968to 1993[34], Cameroon,
Ghana,Kenya and Zimbabwefrom 1971to 1995[10] andthe CzechRepublic
from 1992to 1996[32]. Noneof thesestudiesrejectedalternatve modelssuch
asTobin’s g, but all of themascribedhe largestexplanatorypower to accelerator
equations.

Notably, the power of acceleratoequationsseemaot to be affectedby dif-
ferencesn datareliability acrosscountriesandtime. Althoughthis consideration
is far from beinga definitive proof, persistencef the predictve power of accel-
eratorequationsvis a vis the enormougmprovementin the quality of economic
datain industrializedcountriesmay castdoubtson the relevanceof Sagents ar
gumentationAs farasit regardsAcemoglus argumentevenif basinginvestment
decisionson statisticaldatahadever beena meaningfulstrateyy for firms operat-
ing in industrializedeconomiesit is surelyirrelevantin developingandtransition
economieswherestatisticaldataare generallyavailable with lags of yearsand
only in avery aggregateform.

Onthetheoreticakide,Velupillai obsenedthatmultiplier-acceleratomodels
actuallydoreflectrationaldecision-makindpecauséhey arisefrom decisionrules
that, althougheventuallydifferentfrom utility maximization,arenot necessarily
lessrational. On the contrary decisionrulesbasedon proceduratationality that
includeutility maximizationasa specialcaseareableto generatanorerealistic
andgeneraddynamicsjncludingdeterministicchaoq45] [46].

The paperis organizedasfollows. Firstly, Section2 introducesa few basic
conceptson cognition and neuralnets. SubsequentlySection3 derives disag-
gregatedacceleratoequationgrom ananalysisof informationflows in anecon-
omy with two productionstages.The core of the paperis entailedin Section4,
which makesuseof a neuralnetin orderto link the variationof the accelerator
coeficientsto the evolution of the mentalcateyoriesof the managersvho make
investmentdecisions.Finally, section5 illustratesthe meaningof the equations
derivedin the previous sectionsby meansof a numericalexampleand Section6
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concludes.

2 A Few Conceptson Cognition and Neural Nets

In very generalterms,one canclaim that the messof informationgeneratedy
continuougechnologicalnnovationconflictswith theboundedationalityof eco-
nomic agents,who are forcedto operatesomesimplificationin orderto make
senseof it [42]. However, sincehumanreasonings not quite the sameas ex-
ecutingan algorithm, it is not altogethercorrectto liken boundedrationality to
memoryandtime constraint®on electroniccomputersRather humanbeingssim-
plify the enormousamountof informationthatthey receve by classifyingit into
amaneageableumberof mentalcategories.

Interestingly mentalcategoriesarenot definedby pre-specifiesgimilarity cri-
teria that the objectsto be classifiedshouldfulfill. In fact, sincethe qualitatve
featuresof objectslik e future goodsandfuture technologiesannotbe known in
adwance,classificationcriteria that are absolutelycorrectcannotexist. Rather
mental categoriesare continuouslyconstructedand modified accordingto sim-
ilarity of a just-receved pieceof informationto the piecesof information that
have alreadybeenstoredin existing cateyories. Storedpiecesof informationthat
becomeayuidelineso subsequentlassificatiorarecalledprototyped5] [13] [25].

Notably, it is not evennecessaryo assumehatall itemsclassifiedin a cate-
gory sharecommonfeatures As anexample thereadeiis invitedto find whateser
featureall humanoccupationhave in common,that are subsumedy the men-
tal categyory labelledby the word game afew minutesreflectionaresufficient to
realizethat this is an impossibletask! On the otherhand,all we needin order
to usethe catgyory "game” is thatwe areableto evaluatethe similarity of a new
gameto someof theitemsalreadystoredin the category. Suchitemsareactingas
prototypedor future classificatio{31] [13].

Neuralnetsare ableto reproducethesefeaturesof humancognition. Thus,
neuralnetsmodelboundedationalityin termsof informationcategorization.

As such,neuralnetscould possiblybecomeaviablealternatve to utility max-
imization. A few attemptgo useneuralnetsin orderto modeldecision-makingdpy
economicagentshave alreadybeenmade[37] [11] [38] [19] [43] [44] [47] [48].

Neural netsfit into the framewvork of case-basedlecisiontheory[20] [21]
[22], whereindividualsmeasureghe similarity of a decisionproblemto the situa-
tionsthatthey encounteredh the pastandtake a courseof actionsthatis similar
to onethatin the past,in a situationthat is similar enoughto the presentone,



hadproducedsatishctoryresults. In this contect, decision-makrsdo not neces-
sarily maximizeutility, thoughthey eventuallyapproaclthe utility-maximization
solution. Furthermorejn this framevork experiencewith novel situationsmay
possiblychangeutility valuesovertime.

Thereexist mary kinds of artificial neuralnets,that are more or lessclose
to the biological neuralnetsthatinspiredthem. It is of paramounimportance
to distinguishneuralnetswherecateyory formationis supervisedyy an external
operatorfrom Kohonenneuralnets,where catgyory formationis left to the net
itself.

In the first casea neuralnetis only usedafterit underwenta training phase
wherethe externaloperatomwiresin the categoriesemployed by thenet. In prac-
tice,ahumanoperatorchoosesvhich patternghe netwill beableto recognize.

In thesecondcase no training phaseakesplaceprior to thenormaloperation
of the net. On the contrary the netforms and modifiesits cateyoriesaccording
to the patternscontainedin the informationthatit is classifying. Clearly, only
Kohonemetscangive usaclueof thebehaior of decision-makrswhoarefacing
novel situationsandrequirecontinuousadaptatiorof their mentalcategyories.

Kohonenneuralnets[29] [30] basetheir flexibility on feed-backand feed-
forward loopsthat allow adaptatiorto a changingervironment. In this respect,
Kohonenartificial neuralnetsaremostsimilar to the biologicalones[16].

Kohonens model neuronproducesan outputy € [0 by summinginputs xy,
X2,... XN € [0 by meansof coeficientsay, ap, ... an:

N
y=_;aaxa (4)

Evidently, for any setof coeficientsa; this simpledeviceis ableto distinguish
atleastsomeof thepossiblaenputvectorsx from oneanotheiby yielding different
outputsy. In fact,sincethereexist mary vectorsx whoseweightedsumyieldsthe
samey, evena singleneuronis ableto classifyinput vectorsinto cateyories.

The ability of a neuronto adaptthesecateayoriesto the patternsof input in-
formationstemsfrom afeed-backrom outputy anda feed-forwardfrom inputx,
towardscoeficientsa;:

da

i o(a,y)xi —y(ay)a Vi (5)

where@(a,y) andy(a,y) maybelinearor non-linearfunctions.



Equation(5) differentiateoperatorassistedeuralnetsfrom Kohonemeural
nets. In operatorassistecheuralnets, equation(5) doesnot exist. In fact, co-
efficientsg; arefixed during a training phasethat takes placebefore the normal
operationof the net.

Onthecontrary by meansof equation(5) a Kohonemetis ableto modify its
own cateyoriesandlearnsto recognizenovel patterns.Obviously, Kohonennets
pay a price for this flexibility: they areslower thanoperatofrassistedheuralnets.
Thisis the reasorwhy Kohonennetsareuncommonn commercialapplications,
althoughthey constitutea basicresearchool in artificial intelligence.

In equation(5), term @(a,y)x; enablegshe neuronto learninput patterns. It
entailsboth a feed-back(from y) and a feed-forward (from x;). This learning
term makes g increasevhenbothy andx; take high values,therebyenhancing
thosecoeficientsthat happenedo yield a high y whena particularx; washigh.
Thus,the structureof coeficientsvectora ultimately depend®n which vectorsx
appearednoreoftenasinput. Thesevectorsarethe prototypesaroundwhich the
netconstructsts categyories(remarkthatcateyories,in aneuralnet,areembedded
in coeficientsg;).

Onthecontrary termy(a,y)a; in equation(5) enableshe neuronto forgetin-
putpatternslt entailsafeed-backrom outputy and,mostimportantly coeficient
g; itself. By allowing the neuronto forget cateyoriesthatreferto patternghatno
longerappearthis forgettingtermeasesp the formationof novel categoriesthat
allow classificatiorof novel events.

Simple,but nontrivial examplesof equation(5) are:a = pyx —va, a = px —
Vya, a = UyX — Vya, a = Hyx — vy?a, wherep andv are constants. Figure (1)
illustratesthe feed-backand-forwardswithin a Kohonenmodelneuron.

In generalanetof neuronss ableto discriminate@nputinformationaccording
to muchfiner catggoriesthana single neuroncando. As arule, the greaterthe
numberof neuronsthe finer the categoriesthat the net constructs.However, a
neuralnetis usefulpreciselybecausét is ableto classifya hugeamountof infor-
mationinto afew broadcategories.If catgyoriesaresofinethatthey trackexactly
inputinformation,aneuralnetbecomesiselessThus,thenumberof neuronghat
anetshouldpossesslepend®n the variability of inputinformationaswell ason
userneeds.

However, the behaior of a neuralnetdoesnot only dependon the numberof
its neurongbut, to anevenlarger extent, on the structureof connectiondetween
them.In fact,justlik e the capabilitiesof Kohonemeuronsdependn feed-backs
and -forwards, the capabilitiesof a neuralnet dependon shortcutsthat eventu-
ally enableinformationto circulatealongloopsthatinvolve several neurons. If
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Figurel: Kohonenmodelneuron.The feed-backsand-forwardsareresponsible
for all notablepropertiesof Kohonennets, including the absenceof a training
phase Actually, atrainingphasecanbe seenasafeed-backand-forward passing
througha humanoperator

informationloopstake place thenthe netasa wholeacquiresamemory

It is calledadistributed associativanemory andit is fundamentallydifferent
in naturefrom the more usuallocalized memories. Localizedmemories,such
asbooks,disks,tapesetc., storeinformationat a particularpoint in space.This
information can only be retrieved if one knows whereits supportis (e.g. the
position of a book in a library, or the addressof a memorycell in a computer
disk).

Onthecontrary in aneuralneteachneuronmay be partof anumberof infor-
mationcircuits whereinformationis "memorized’aslong asit doesnot stopto
circulate.Althoughthis is amemory onecannotsaythatinformationis storedin
ary particularplace.For thisreasonpnespeak®f a distributedmemory

Obviously, informationstoredin a distributedmemorycannotberetrieved by
meanf anaddressHowever, a pieceof informationflowing in aparticularloop
canberetrieved by someotherpieceof informationthatis flowing closeenough
to it. Thus,in a distributed memoryinformation can be retrieved by meansof
associationsof concepts,with a procedurethat remindsof humancapabilities
suchas "recognition” or "intuition” [29] [13]. For this reason,one speaksof
associativanemoryaswell.



The importanceof the capabilityof a neuralnetto implementan associatie
memorywill becomeclearin thefollowing sectionswhereit will be shovn that
the Keynesianmultiplier andthe acceleratoariseout of informationcircuitsthat
involve the outputsof atleasttwo productionstagesin thelight of theabove con-
siderationsthe ability of aneconomyto recognizetheimportanceof innovations
appeardo besimilarin natureto the ability of anindividualto recognizepatterns
andtracesimilarities.

3 The DisaggregatedAccelerator

The aim of this sectionis that of derving disaggrgatedacceleratorequations
from ananalysisof the structureof informationflows within aneconomy For this
limited purposeandonly in this sectionjnnovationwill beassumedway.

Theminimaleconomicstructurehatwe needo considelinvolveshouseholds,
firms that producefinal goods(hereafterlabelledfinal goodssecto) andfirms
that producecapitalgoods(hereaftedabelledcapital goodssectol). Eventually
existenceof a banking systemmust be assumedn orderto allow investments
beyondinternalfinancialresourceshut thiswill notbe modeledexplicitely.

Within this framework, 'investmentsare purchase®f capitalgoodscarried
out by firms that producefinal goods. For simplicity, let us supposea constant
numberof firmsin bothsectors.

Therearethreemarketsin this schemethe market for final goods the market
for capitalgoodsandthelabormarket. Themarketfor final goodsis assumedo be
in imperfectcompetitionbecausef qualitatve diversity of the goodsexchaged,
which canbe complementaryr substituteof oneanotherin ary degree.Onthe
contrary it is assumedhat at arny point in time only one kind of capital good
canbeproduced.Similarly, only onekind of job is availableat any pointin time.
However, understandingvhich firmswill needwhatamountof capitalgoodin the
next time stepis not a trivial taskso the situationis quite differentfrom perfect
competition.

Informationis freeto circulate,but only within certaininstitutionalchannels.
Theseaequire,coherentlywith traditionalassumptionsurroundingheinvestment
acceleratiomprinciple[3], thatfirmsin thefinal goodssectoronly obserne demand
for final goodsand firms in the capital goodssectoronly obsene demandfor
capitalgoods.

Furthermorelet usassumehat:

i. Firmsreactto changingdemandoy adjustingquantitiesnot prices;
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Ac | final goods Ak | capital goods

households sector sector
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Figure2: The structureof informationflows in aneconomywith two production
stages.Onefeed-backhroughthe labor market would be sufficient to generate
theKeynesiammultiplier, but atleasttwo feed-backsrenecessarfor investments
acceleratiorio take place.

ii. Populationdynamics,increaseof productvity andoscillationsof produc-
tion never combineto make laborarationedgood.

Thesetwo assumptionarenotrealisticin generalbut they arerealisticin the
particularsituationfor which this modelis thought,namelythe onsetof arecov-
ery. In fact,in this situationlaborforceis likely to be abundantandinflationary
pressurearelikely to be low. Furthermoredemandis still increasingat a low
pacesofirms areableto satisfyall requests.

Note that, underthe above assumptionsinformation flows are strictly uni-
directional. In fact, increasingdemandfor a certaingood never leadsto price
baigaining (which would imply information flowing back and forth), but rather
to promptdelivering. Thus,informationsimply flows in the oppositedirectionof
goods.

Ultimately, information corveyed by thesemarkets regard: 1) Final goods
requestedy households?) Capital goodsrequestedy the final goodssector;
3) Labor requestedy the final goodssector;4) Labor requestedy the capital
goodssector Figure (2) illustratesthe structureof information flows between
thesesectors.

It canbe notedthat,accordingto the schemeof figure(2), firmsin the capital
goodssectorproducecapitalgoodsout of laboronly. This may strike the reader
asunrealistic,but it is a mereartifact of having condensedll productionstages
into two aggrgates.Consequentlythe capitalgoodssectoractuallyencompasses
all productionstagesrom miningto productionof capitalgoodsfor its own use.

In figure (2), two feed-bacKoopscanberecognized.Theinneroneis dueto
laborrequestedy the final goodssector:throughhousehold€onsumptionthis
feed-backis sufficient to generatehe demandmultiplication effect. The outer
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oneis dueto laborrequestedby the capitalgoodssector:throughhouseholdson-
sumptionandfirms investmentsthis feed-backaddstheinvestmentscceleration
effect.

Let us assumehat both sectorsare composeddy N firms. The final goods
sectorproducesN differentgoodsfor a demandhatis not disaggrgatedacross
consumers.On the contrary the capitalgoodsectorproducesone single capital
goodsfor N firmsthatit distinguishegrom oneanother

Let N-dimensionalvectorsc, k, I’, I” denoteconsumptionof the N goods,
capitalendavmentsin the N firms of the final goodssectorand employmentin
the N firms of the final goodsandthe capitalgoodssectors respectiely. Note
that,sincein this scheméhouseholdsavingsdo not exist, aggrgateconsumption
coincideswith aggregjateincome.Obviously, it mustbec >0,k > 0,1’ > 0,1” > 0.

Accordingto Bateson[6], informationis not carriedby the valuestaken by
physicalmagnitudegout ratherby their changewith respecto a referencdevel.
For instance Shannors informationtheory[41] takesa messag®f equiprobable
charactersisareferencevalueof zeroinformation.

When the investmentacceleratiorprinciple statesthat firms reactto varia-
tionsof demandjt implicitely assumeshatdecision-makrsconsidepastvalues
asreferencevaluesfor extractinginformationfrom the signalsthatthey receve.
Pastlevel of demandor final goodsis regardedasa stockvariablerelatedto con-
sumptionof generallyshort-lved goodsthat will have to be purchasedgainat
thenext time step.Thus,relevantinformationis carriedby variationsof this stock
variablewith time. By generalizingthis approachwe canstatethatfirms in the
capitalgoodssectorreactto request®f variationsof the stockof capitalgoodsin
thefinal goodssectoraswell asthathouseholdseactto variationsof employment
levels.

Thus,let usdefinethefollowing informationvectors:

Ac: Theinformationcarriedby variationsof consumptiorthat,sincewe assumed
savzings away, reflectvariationsof income.Sinceaccordingto the hypothe-
sesof the investmentscceleratiorprinciple the referencdevel of zeroin-
formationis pastdemand firms that producefinal goodsreceve informa-
tion from householddy meansof Ac; = ¢ — ¢;_1. Thei-th componenbf
this vectorrepresentshevariationof demandor thei-th final good.

Ak: Theinformationcarriedby variationsof the capitalstock,i.e. investments.
Sincecapitalgoodsby definition lastlongerthanproductiontime, we can
take the capital stock (integratedby replacementsiue to wear and tear)
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as a referencdevel of zeroinformation. Thus, informationis carriedby
variationsof capitalstockAk; = ki — ki 1. Theithcomponenbf thisvector
representghe variationof demandof the only capitalgoodby thei-th firm
of thefinal goodssector

Al': Theinformationcarriedby variationsof employmentin thefinal goodssec-
tor. Sinceproductiontime is generallyshorterthanthetime neededo hire
andfire workers,employmentcanbe consideredsa stockvariablejustlik e
capitalandits pastlevel canbetakenasthereferencdevel of zeroinforma-
tion. Thus,relevantinformationfor householdss carriedby variationsof

employmentAl’y = It —I't_1. Thei-th componenbf this vectorrepresents
variationsof employmentof the only kind of laborin thei-firm of thefinal
goodssector

Al”: The information carriedby variationsof employmentin the capital goods
sector Justlike in the caseof emplogymentin the final goodssector rele-
vantinformationfor householdss carriedby Al”; = 1"y —1”;_1. Thei-th
componenbf this vectorrepresentyariationsof employmentof the only
kind of laborin thei-firm of the capitalgoodssector

Sincewe assumedavings away, the outcomeof utility maximizationcanbe
subsumedby alinearfunction f thatdepend®n currentincomeonly:

Ac= f(Al) (6)

whereAl = Al' +Al”.

Likewise, let us assumehat the labor requestedy the final goodssectoris
linkedto theamountof capitalgoodsthatit requestdy meansof alinearfunction
o

Al' = g(2k) (7)
whereg ultimately depend®n technicalcoeficientsof capitalandlabor.

Functionsf andg areblack boxesthat hide partsof information processing
anddecision-makingln orderto understandnvestmenticcelerationtheseblack
boxescanremainsuch. On the contrary it is of paramounimportancethatwe
model(i) how firmsin thefinal goodssectorprocessnformationin orderto make
investmendecisionsand(ii) how firmsin the capitalgoodssectorprocessnfor-
mationin orderto make employmentdecisions.

By assumingconstantreturnsto scalein the final goodssectorwe canintro-
ducea coeficientsmatrix A andwrite:

Aky = AAC—1 (8)
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whereeachline representinformationprocessindy a differentfirm in thefinal
goodssector

In a similar way, by assumingconstantreturnsto scalein the capital goods
sectorwe canintroducea coeficientsmatrix D andwrite:

A"y = DAk;_1 (9)

whereeachline representsformationprocessingpy adifferentfirm in thecapital
goodssector

It is importantto stressthat the assumptionof constantreturnsto scaleis
limited to this sectiononly. In the ensuingsectionsyariablereturnsto scalewill
ariseout of technologicalnnovationsthataffect matricesA andD.?

MatricesA andD subsumdirms decision-makingln the staticframework of
this section,we canthink of A andD asarisingfrom maximizationof intertem-
poral profits T = Syplc—pfk — 3y p[ I andmik = pJk — 5 p['1”, respectiely.
On the contrary in the innovation-driven setting of the ensuingsectionA and
D will evolve accordingto entrepreneurs’animal spirits” concerningthe future
profitability of novel investmenbpportunitieg28]. Financialconsiderationsvill
eventuallyconstrainthe evolution of A andD, but they will notidentify aunique
pathof development.

From obsenation of figure (2) andconsideratiorof productiontime lagswe
canwrite:

Ak = AAG_1 (10)
Ak = Af (A'It,]_ + A'”t,]_) (11
Oky = Af(g(Ak-—1)+ DAkt ) (12)

Equations(10), (11), (12) aredisaggrgatedacceleratoequationsgquialentto
oneanother

It is easyto shav that(10) and(11) aredisaggrgatedversionsof (1) and(2),
respectrely. In fact, let us make the following positionsin orderto passto the

2Neoclassicakconomicsasa differentnotionof increasingdecreasingjeturnsto scalethan
the oneemployed herein. Accordingto the hypothese®f neoclassicabconomicsa setof dif-
ferenttechnologiess given andeachof themis appropriateto a particularscaleof production.
Consequentlyneoclassicakconomicss concernedwith equilibrium arising out of given tech-
nologies. On the contrary herethe focusis on recognitionand adoptionof novel technologies.
Consequentlythe model presentedereintells storiesaboutstriving to increasereturnsto scale
with novel means.
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macroeconomitevel:

pedc = C—Ci1 (13)
pRoky = I (14)
pralk = Yi—Y1 (15)

whereC, | andY represenaggregateconsumptionaggreateinvestmentaindag-
gregateincome,respectiely. Their aggrgationwascarriedout by meansof the
correspondingricevectorspe, px andp;, respectely.

If the economyis closeenoughto perfectcompetition,we canwrite px ~
Apc andp¢ ~ f(p;). By combiningtheseequationswith (14), (10) and(11) one
obtains:

12

plATAAC (16)
T (p)ATAT(A) (17)

12

which, keepingin mind equationg13) and(15), in theone-dimensionataseboil
down to (1) and(2), respectiely.?

Goodwin’s accelerator(3) is more complex than Samuelsors and Hicks’,
sinceits coeficientsareallowedto changeat the turning points of businesscy-
cles. In the ensuingsection,we shallinterpretthe coeficientsof a disaggrgated
acceleratoasthe coeficientsof neuronghatrepresentlecision-making.

4 The Flexible Accelerator

Let us supposehat firms may facesituationsthat they never metbefore,oppor

tunities that involve producingand commercializingqualitatively novel goods,
which in their turn requirenovel productiontechnologiesandimply novel con-
sumptionhabits.If thisis the case undertakinganinvestmentloesnot meanthat
afirm is makinga plan aboutincreasingts endavmentof given machineriesn

orderto increasdts productie capacityof given goods. Rather undertakingan

investmentimeansguessinghe mostrecentdevelopmentof consumersdesires,
designingnovel goodsin orderto meetthesedesiresandorderingconstructiorof

propermachineriesn orderto producethem.

3Actually, equation(2) depend®nY;_1 — Y;_», whereashecorrespondingquatiorthatcanbe
derivedfrom (17) depend®nY; — Y;_1. However, this differencewould disappeaif consumption
would not be supposedo beistantaneou§.e. if f wouldintroduceatime delay).
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Thus,the crucialissueis classifyinginformationprovided by requestof ex-
isting goodsaswell asby novel techologicalpossibilities. However novel this
informationmight be, a firm mustbe ableto form cateyoriesfor kinds of invest-
mentthat can be reasonablydeemedto be more or less successfulindersev-
eral respects.Remarkablythe crucial stepis not that of attachingprobabilities
of monetaryreturnsto investmentf differentkinds, but ratherthat of defining
"kinds” thatareableto distinguishsuccessfuihvestment$rom unsuccessfudnes.
Clearly, cateyoriesof investmentsareformedby highlightingpatternsn incoming
information,suchaspatternsof requesbf goodsthatentailnew technologies.

In this section,the numberof final goodswill be kept fixedto N and the
numberof capitalgoodswill bekeptfixedto one. However, asa consequencef
technologicainnovationthe qualitatve featuresof goodsmay changewith time.
Informationto beclassifiedegardsboththedirectionof technologicathangeand
thereceptionof goodsthatentailthemby the public.

A Kohonenneuralnetwill beusedin orderto reproduceclassificatiorof sit-
uationsand investmentdecision-making. Eachneuronwill representecision-
makingby asinglefirm, sothenetasawholewill representheproductvesystem.
Notably, in this modelthe behaior of the productive systemasa whole depends
onthestructureof the connectiondetweerits components.

For eachneuronthelearningtermin equation(5) hasa straightforvardinter-
pretation.In fact,firms classifyinformationinto differentcateyoriesaccordingto
themarketin whichthey specializedyherein its turnfirm specializatiordepends
on physicalandhumancapitalaccumulategsa consequencef pastinvestment
decisions.This inertial factoris subsumedy @(a, y)x terms,which actaslocal-
izedmemoriedor firms decision-making.

However, renaval of capitalgoodsis easediy naturalageingof existing ma-
chinery Similarly, renaval of humancapitalis easeddy personneturnover. In
equation(5), forgettingtermsy(a, y)a; expressthis secondeffect. In otherwords,
@-termsaccounfor biasegposedo decision-makindy the existing capitalstock,
whereag/-termsaccountor thenew decisionpossibilitiesopenedup by wearand
tear

Clearly, decision-makings stronglypath-dependeni this model. Whatpre-
ventsfirms thatoperatee.g. in the furniture market from enteringe.g. the com-
putermarketis simply thefactthatthey neverdid this job: they arenotacquainted
with the computemarket, they never developedthe categyoriesthatwould enable
themto understandavhich itemsaremostprofitablein this market, they own com-
pletelydifferentcapitalgoods.

However, path-dependencgoesnot meanthatthe role of eachfirm is fixed
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onceandfor all. In fact, firms continuouslyinnovate their productsaswell as
their productiontechniquesandoccasionallyit doeshappernhatatechnological
breakthrougHeadsa firm into a completelydifferentfield of actiity. Neverthe-
less, pastexperienceggenerallyinfluencewhich innovationsare carriedout by

which firms, andevenfirms thatbelongto the sameindustrymay exhibit striking

differencesn theirrelative abilitiesto recognizehe profitability of aninnovation.

Onceagain,this ability dependon the categoriesemployedby a firm in orderto

classifyinformation.

Let us supposehat the currentstateof technologieds subsumedy an N-
dimensional.exogenousvectore. Thei-th componenbf e is the technological
contentof thei-th final good.

Let us assumethat, coherentlywith the assumptionf the investmentac-
celerationprinciple, managersare reactve to variations of technologies.Thus,
informationon new technologiess carriedby avectorAe, whereAg =g —g_1
with a vectorof zerosasinitial conditions. Thei-th componenbf Ae represents
theamountof technologicalnnovationthatcanimpactthei-th final good.

Let usassumehatinformationcarriedby Aeis freeandavailableto all firms.
NotethatvectorAe doesnotrepresentechnologicabletailsthataredevelopedby
firms themselesandthat are kept strictly private unlessacquiredunderlicens-
ing agreementRather Ae representall publicly availableinformationaboutnew
technologiesvhich caninducemanagerso investon a specificfield, eventually
developingprivateinformationasa consequencef this decision.It includesba-
sic researchmadeavailableby non-profitinstitutions,rumorsaboutcompetitors’
stratgies,aswell asinformationthatwasintendedto be privatebut which is ac-
tually difficult to appropriateandto trade,e.g. becauseof reverseengineering
[4].

Figure(3) illustratesthe neuralnetthatrepresentslecision-makingn thepro-
ductive system.Firmsin thefinal goodssectorarerepresentedtby the first layer
of neuronsthe oneon the left side. On the contrary firms in the capitalgoods
sectorarerepresentetby the secondayer of neuronsthe oneon the right side.
Justlike in figure (2), inner and outerfeed-backgive rise to the multiplier and
theacceleratqirespectiely.

A differencewith the previous Sectionis that now firms in the final goods
sectorreceve exogenousnformation aboutinnovationsbesidesnformation on
consumerslemand.Thus,equationg10), (11), (12) become:

Ak = AAci-1+Ble_; (18)
Ak = Af(A|It_1+A|”t_1) +BAg_1 (19
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Figure 3: Decision-makingin the productve system,describedoy meansof a
neuralnet. Eachneuronrepresentsiecision-makingy onefirm. Theleft layer
representfirms thatproducefinal goods theright layerrepresentéirms thatpro-
ducecapitalgoods. Two information feed-backghroughthe labor market give
riseto the multiplier adthe acceleratqrespecitiely.
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Ak = Af (g(Akt,l) + DAkt,Z) +BAg 1 (20)

whereB is theN x N matrix of the coeficientsby which informationon innova-
tion is processed.

Ultimately, neuronsare devices that operatelinear combinationsof the in-
formationvectorsthatthey receve asinput. Thus, matricesA, B andD canbe
interpretedasneuronscoeficients.

In particular the i-row of thesematricescontainsthe coeficients of thei-th
neuronof its industrialsector In particular the rows of matricesA andB contain
coeficientsof the neurondn theleft layer (final goodssector) whereaghe rows
of matrix D containcoeficientsof the neuronsin theright layer (capitalgoods
sector).Note thatneurongn theleft layer have two setsof coeficients,the first
onefor weighinginformationaboutconsimers’demandand the secondonefor
weighinginformationon new technologies.

SincematricesA, B, D changewith time accordingto equation(5), equa-
tions (18), (19), (20) now describea flexible acceleratorNote alsothat, sinceA,
B, D have becomevariablesacceleratoequationsareno longerlinear.

Equation(5) canbe operationalizedn mary ways, accordingto the choice
of @ andy. A simple choicethatis goodenoughin the early stagesof pattern
recognitionis [29]:

C;—? = pAKACT —vA (21)
?j—'f’ = pAkAe' —vB (22)
(31_? pAl’AkT —vD (23)

wherematrix derivative applieselementoy element.

In equationg21), (22), (23) thelearningtermenhancesoeficientsthatyield
a high outputfor a high input. On the contrary the forgettingterm scalesdown
coeficientsexponentiallywith time.

MatricesA, B, D specify the structureof information circuits that, passing
throughthe two feed-backsreatedoy the labor market, cantraversethe produc-
tive systemalonga numberof differentpaths. Eachparticularstructureof these
pathscorrespondgo certainfirms having specializedinto certaintechnologies
with varying degreesof success.Thus, matricesA, B, D specifythe distributed
memoryof the productie systemiits collective behaior whenit is confronted
with informationon novel technologiesnjectedby Ae.
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However, a productive systemis likely to learn to dealwith innovationsand
exploit the novel possibilitiesthatthey openup. Equationg21), (22), (23) tell us
how the productie systemcandevelopa new structureby transformingthe paths
of its informationcircuitsandmemorizea new configuration.

5 A Numerical Example

The acceleratoequationsderived so far aimedat describinginvestmentsat the
very beginning of recovery phases. Thus, they should be evaluatedwhen the
productve systenrecevesthefirst hintsof thenovel technologieshatwill trigger
anew phaseof expansion.

Sucha situationis characterizedy the slow emegenceof patternsin a sea
of indistinctchaos.Informationon technologicapatternss madeof rumorsand
hints that, for instance,biotechnologiesare going to have a future in the first
decade®f the XXI century Thus,it makessenseo investthere.

In the simulationpresentedherein,the stateof technologyis representetty a
sinusoidthatis slowly emeging out of white noise. This sinusoidis definedover
goodsandrepresenttheir developmenpossibilitiesopenedup by new technolo-
giesat eachtime step. Productionof goodsthat are positively affectedby novel
technologiess lik ely to expandandtheir qualitative featuress lik ely to change.

During 100 time stepsthis sinusoidspans100 goodswith 5 periodsof 20
goodseach.However, its amplitudeAni, = O attimet = 1increasedinearly upto
Anax= 2 attimet = 100. Thus,the patternexpressedy this sinusoidis invisible
att = 1 andbecomesncreasinglyevidentwith time. Uponthis pattern,a noise
generatedby anormaldistributionwith zeromeanrepresentambiguityregarding
which goodswill beblessedy novel technologiesHowever, the varianceof this
distribution decreasefrom Vmax= 1 attimet = 1 to Vpyin = 0 attime t = 100.
Thus,theoverall effectis thatof a sinusoidapatternslowly emegingfrom chaos.

Figure(4) illustratesthe sequenc®f vectorson the stateof technologye that
will be employedin the simulation. Sincea three-dimensionafjraphwould be
difficult to read,this figure showns its horizontalsectionat e = 0. Black areasde-
notethe partsof thethree-dimensionajraphwheree > 0, white areaslenotethe
partsof thethree-dimensionajraphwheree < 0. Thus,emegenceof a sinusoid
reflectsin theformationof stripesout of irregularspots.

Information on technologicalnoveltiesis carriedby Ae, which is obtained
by differentiationof e. However, sincemanagersarelikely to attachcomparable
importancdo informationoninnovationandinformationstemmingrom demand,
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Figure4: A sequencef vectorse front = 1 to t = 100, horizontalsectionsat
e= 0. Blackareascorrespondo e > 0, white areascorrespondo e < 0. In order
to simplify the imageonly one out of four firms andone out of four time steps
have beenshavn, resultingin a25 x 25grid.
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vectorsAe and Ac shouldbe of similar size. Thus, at eachsimulationstepthe
interval spannedy Ae hasbeenadjustedo theonespannedy Ac andthemedian
of Ae hasbeenshiftedto thatof Ac.

By insertingequationg6), (7) and(9) into (18), it is possibleto obtainin-
vestmentik from informationon innovation Ae andprevious valuesof Ac, Ak,
Al’, Al”. Thus,simulationsbasicallyconsistof feedingthe above equationswith
aseriesof vectorsAe like theoneillustratedin figure (4) andobservinghecorre-
spondingAk.

Furthermore pne shouldconsiderthat decision-makings rational only if it
is channeledwithin a setof logical constraintd45], [46]. In this model, let the
outcomeof neuronse constrainedy thefollowing two rules:

1. Outputis not allowedto be negative. Thus,in the shortrun capitalequip-
mentcannotbe disinvestedandworkerscannotbefired.

2. Credit exists, but loanscannotbe indefinetlylarge. Sinceit is likely that
capitalstocksenesascollateral,it is assumedhat the outputof a neuron
cannotbe largerthancumulative output(this rule is not appliedif cumula-
tive outputis zero).

Initial conditions,keepingin mind that we are describingthe onsetof a re-
covery, areobviouslyc=0,k =0,1"=0, I” =0andAc=0, Ak = 0, Al' =0,
Al” = 0. Learningandforgettingparameterfiave beensetat = 0.1 andv = 0.1,
respectrely. MatricesA, D andB have beeninitialized by meansof a normal
distribution with varianceéV = 100.

Figure (5) illustratesaggreateinvestmentgduring a hundredtime steps,in
logarithmicscale.Dashedinesrepresenthe outcomeof tendifferentsimulations
whereaghethick line resultsfrom their average.

The mostinterestingfeatureof the investmenturvesillustratedin figure (5)
is the discontinuitythatthey all exhibit betweerthe 50" andthe 60™" time step.
In fact,this pointin time correspondso theemepgenceof a patternin information
oninnovationasit is illustratedin figure(4). It is evidentthatrecognitionof novel
investmenpossibilitiestakesplaceatonce whenfirms suddenlyunderstanavhat
apatternis emeping from chaos.

Figure(6) illustratesthreeindicatorsa, [3 andd of thevariationof A, B andD,
respectrely. Indicatorsa, 3 andd have beendefinedasthe sumof the absolute
variationsof all elementof A, B andD, respectiely.

Figure(6) makesclearthatA, B, D behae very similarly to oneanother In
fact, all threematricesvary accordingto an exponentialpaththat hastwo sharp
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Aggregate Investments
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Figure5: Aggregateinvestmentsn logarithmic scale,100 time steps. Dashed
lines illustrate aggregate investmentduring ten simulationruns with the same
parameterset,thethick line resultsfrom their average.ln orderto representero
valueson a logarithmic scale,a one hasbeenaddedto all valuesof aggreate
investments.
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o, B2 Variation of A, B, D: Average of ten runs
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Figure6: Variationof A, B, D in logarithmicscale.Indicatorsa, 3 andd express
the sumof the absolutevariationsof the elementsof A, B andD, respectiely.
Valueshave beenaveragedovertensimulations.

discontinuitiesthefirst oneatthe very beginning of the simulation,whencoefi-
cientsmove away from initial valuesthathadbeensetatrandomandthe second
one aroundthe 50" time step,whenfirms recognizea novel technologicalpat-
tern. Sincewe areobservingtheinitial phaseof anexponentialdynamicsandnot
acycle, acceleratocoeficientsentailedby A, B andD tendto grow indefinetly
However, by detrendingalongthe growth pathwe would obtainthe valuesof a
fixed-coeficientsacceleratoequationbeforle andafter recognitionof technologi-
calinnovations.

Aggregatedynamicsariseout of microeconomidnvestmentghat are likely
to be differentacrossfirms. Actually, the rationalefor usinga neuralnetis that
firms specializanto differentfields of actiity, thatarelik ely to be hit by techno-
logical innovationto varying extentandgeneratenvestmentsn varying degrees.
Figure(7) illustratesinvestmentdy eachfirm duringonesimulation.

Figure(7) shaws that, althoughall firms behae in phasebecausehey all ac-
cesghesamenformation,differentinitial conditionswith respecto physicaland
humancapitalexpressedy A, B, D attimet = 0 make themgrow accordingto
exponentialpathsthatmay have very differentslopes.In otherwords,depending
ontheirinitial endavmentfirms developidiosyncraticknowledgethatis specific
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Investments by each single firm, One run
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Figure 7: Investmentsoy eachsingle firm. This pictureillustratesAk; for i =
1,2,...100along 100 time stepsof onesingle simulation. In orderto represent
zerovalueson alogarithmicscale a onehasbeenaddedo all componentsf Ak.

to particularfields of actwity characterizetby differentgrowth paths.

6 Conclusions

This article presented cognitive modelof the very beginning of the processof
investmentsccelerationa phasethatis crucialto theonsetof economiaecover
ies. Notably, it isamodelthatoperatestthe microeconomi@andmacroeconomic
level at the sametime. This resultcould be achiezed becausédhe structure of
interactiondbetweernindustrialsectorsvasdescribed.

Structureembodiesthe distributed knowledge of an economy representing
which kinds of technologiest is ableto exploit andimplement. Ultimately, this
dependson the history of an economyrepresentedby the initial conditionsof
matricesA, B, D andlater on by their evolution with time. Sincethis evolution
dependsn the sequencef exogenousvectorsAe, this modelis definitely path-
dependenin spirit andpractice.

The modelprove to be quite stablewith respectto parametersbut not with
respecto decisionrules(1) and(2) of Section5. In fact,differentdecisionrules
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implementalternatve procedurarationalitiesthatultimatelyleadto oppositeout-
comes.In this paperonly very simpleruleshave beenused.

MatricesA, B, D link theacceleratocoeficientto firms’ experienceembod-
ied in their knowledge,both at the individual andthe systemiclevel. Analytical
treatmentwas kept at a basiclevel, but further investigationsare availablein a
companiorpaper17].

Possibilitiesfor empirical applicationsare hinderedby the evident difficulty
of encodingrumorson technologicahoveltiesinto stringsof zerosandones,as
vectorsAe are. Note thatthis is not a difficulty in principle, but it is in practice
becausaet is difficult to think of homogeneousmpiricaldocumentatiorof what
managersatary precisepointin time, knew abouttechnologicaperspecties.

However, it is easyto think of anapplicationof areducedrersionof themodel
presentedherein,wherethetwo informationfeed-backsrecutandempiricaldata
on demandare used. By doing this, one canthink of modelingmanagerstea-
soningin orderto derive disaggrgatedinvestmentgrom disaggrgateddemand,
wherethe performancenf the modelcould be chacled againstempiricaldataon
investments.Actually, a first attemptin this directionyieldedvery encouraging
results[18].
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