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Abstract: The literature assessing the efficacy of the Supplemental Nutrition Assistance Program (SNAP), formerly 

known as the Food Stamp Program, has long puzzled over positive associations between SNAP receipt and various 

undesirable health outcomes such as food insecurity.  Assessing the causal impacts of SNAP, however, is hampered 

by two key identification problems: endogenous selection into participation and extensive systematic underreporting 

of participation status.  Using data from the National Health and Nutrition Examination Survey (NHANES), we 

extend partial identification bounding methods to account for these two identification problems in a single unifying 

framework.  Specifically, we derive informative bounds on the average treatment effect of SNAP on child food 

insecurity, general poor health, obesity, and anemia across a range of different assumptions used to address the 

selection and classification error problems.  In particular, to address the selection problem we apply relatively weak 

nonparametric assumptions on the latent outcomes, selected treatments, and observed covariates.  To address the 

classification error problem, we formalize a new approach that uses auxiliary administrative data on the size of the 

SNAP caseload to restrict the magnitudes and patterns of SNAP reporting errors.  Layering successively stronger 

assumptions, an objective of our analysis is to make transparent how the strength of the conclusions varies with the 

strength of the identifying assumptions.  Under the weakest restrictions, there is substantial ambiguity: we cannot 

rule out the possibility that SNAP increases or decreases poor health.  Under stronger but plausible assumptions 

used to address the selection and classification error problems, we find that commonly cited relationships between 

SNAP and poor health outcomes provide a misleading picture about the true impacts of the program.  Our tightest 

bounds identify favorable impacts of SNAP on child health.    
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I.  Introduction 

The Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp Program, is 

by far the largest food assistance program in the United States and, as such, constitutes a crucial 

component of the social safety net in the United States.  In any given month during 2009, SNAP provided 

assistance to more than 15 million children (Leftin, Gothro, and Eslami 2010), and it is estimated that 

nearly one in two American children will receive assistance during their childhood (Rank and Hirschl, 

2009).  As a consequence, policymakers expect this program to have major beneficial impacts on 

numerous health and nutrition challenges facing the nation, particularly for low-income children who 

constitute half of the recipients.  Paradoxically, however, the vast empirical literature examining the 

impact of SNAP on health reveals little supporting evidence regarding the efficacy of the program in 

promoting food security and alleviating health problems.  Children residing in households receiving food 

stamps are substantially more likely to suffer from an array of health-related problems than 

observationally similar nonparticipating children (e.g., Currie 2003; Coleman-Jensen et al. 2011). 

While SNAP is associated with adverse health- and nutrition-related outcomes, drawing 

inferences on the efficacy of the program is complicated by two fundamental identification problems.  A 

selection problem arises because the decision to participate in SNAP is unlikely to be exogenous.  To the 

contrary, unobserved factors such as expected future health status, parents’ human capital characteristics, 

financial stability, and attitudes towards work and family are all thought to be jointly related to 

participation in the program and health outcomes (Currie, 2003).  Families may decide to participate 

precisely because they expect to be food insecure or in poor health.   

A nonrandom measurement error problem arises because large fractions of food stamp recipients 

fail to report their program participation in household surveys.  Using administrative data matched with 

data from the Survey of Income and Program Participation (SIPP), for example, Bollinger and David 

(1997) find that errors in self-reported receipt of food stamps exceed 12 percent and are related to 

respondents’ characteristics including their true participation status, health outcomes, and demographic 

attributes.  Meyer, Mok, and Sullivan (2009) provide evidence of extensive underreporting in the SIPP, 

the Current Population Survey (CPS), and the Panel Study of Income Dynamics (PSID).   
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While these identification problems have long been known to confound inferences on the impact 

of SNAP, credible solutions remain elusive.  In reviewing this literature, Currie (2003, p. 240) asserts that 

“many studies have […] simply ‘punted’ on the issue of identification.” Most studies treat selection as 

exogenous and receipt as accurate.  A few recent exceptions address the selection problem using 

instrumental variables within a linear response model (e.g., Gundersen and Oliveira 2001; DePolt, 

Moffitt, and Ribar 2009; Hoynes and Schanzenbach 2009).  Gundersen and Kreider (2008) formally allow 

for the possibility of misclassified program participation, but they focus on identifying descriptive 

statistics rather than causal parameters.   

In this paper, we consider what can be inferred about impacts of SNAP when formally accounting 

for the ambiguity created by the selection and measurement error problems.  This study is the first to 

simultaneously address both of these treatment effect identification problems within a single 

methodological framework.  To do so, we extend recently developed partial identification methods that 

allow one to consider weaker assumptions than required under conventional parametric approaches (e.g., 

Manski 1995; Pepper 2000; Kreider and Pepper 2007 and 2008; Gundersen and Kreider 2008; Kreider 

and Hill 2009; and Molinari 2008 and 2010).  Introducing a nonparametric regression discontinuity 

design, Gundersen, Kreider, and Pepper (2012) apply some of the methods developed in this paper to 

study effects of the National School Lunch Program.  Recent research in Nicoletti, Peracchi, and Foliano 

(2011) studies identification of marginal distributions (for poverty rates) using a framework that formally 

accounts for both classification errors and missing data.  

This partial identification approach is especially well-suited for studying the impact of SNAP 

where classical methodological prescriptions are often untenable.  The literature evaluating the impact of 

means-tested assistance programs typically relies on linear response models coupled with an assumption 

that some observed instrumental variable (IV), often based on cross-state and time variation in program 

rules and regulations, affects program participation but otherwise has no effect on the potential outcomes.  

Yet SNAP is mostly defined at the federal level and has not substantively changed since the early 1980s, 

so many of the key program rules and regulations are not as useful as instrumental variables.  Moreover, 

as is now widely recognized, the classical linear response model assumption is difficult to justify when 
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considering programs that are thought to have heterogeneous effects (Moffitt 2005).  Finally, the implicit 

assumption of accurate classification of participation status is known to be violated, yet addressing the 

problem of classification errors in a binary regressor is difficult.  The assumption of non-mean-reverting 

errors cannot apply with binary variables, and the systematic underreporting of SNAP participation 

violates the classical assumption that measurement error arises independently of the true value of the 

underlying variable (e.g., Bollinger 1996).   

The methods applied in this paper do not require the linear response model, the classical 

measurement error model, or an instrumental variable assumption.  Instead, we focus on weaker models 

that are straightforward to motivate in practice and result in informative bounds on the health 

consequences of SNAP.  In light of the methodological challenges in addressing these identification 

problems, deriving informative bounds under assumptions that may share some consensus seems like an 

important step.     

Using data from the National Health and Nutrition Examination Survey (NHANES), we assess 

the impact of SNAP on the health of children, an important subpopulation that comprises half of all 

recipients and whose well-being is followed closely by policymakers and program administrators.  A 

primary strength of the NHANES is the wealth of health-related information provided in the survey.  We 

exploit these data by assessing the impact of SNAP on food insecurity, obesity, poor general health, and 

anemia.  In what follows, we use the terms “SNAP” and “food stamps” interchangeably since benefits 

were called food stamps during the years data were collected for our analysis.  

After describing the data in Section II, we formally define the empirical questions and the 

identification problems in Section III.  Our analysis is complicated by two distinct identification 

problems: (a) the selection problem that arises because the data cannot reveal unknown counterfactuals 

(e.g., the outcomes of a nonparticipant in an alternate state of the world in which SNAP benefits are 

received) and (b) the measurement error problem that arises because the data cannot reveal respondents 

with misclassified participation status.   

In Section IV, we focus on the selection problem, abstracting away from classification errors. 

Following Manski (1995) and Pepper (2000), we begin by examining what can be learned without 
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imposing any assumptions on the selection process, and then consider the identifying power of several 

alternative assumptions.  We first consider the Monotone Treatment Selection (MTS) restriction (Manski 

and Pepper 2000) that formalizes the common assumption that the decision to participate in SNAP is 

monotonically related to poor latent health outcomes.  We then consider the Monotone Instrumental 

Variable (MIV) assumption that the latent probability of a poor health outcome is nonincreasing in 

household income (adjusted for family composition).  Requiring no a priori exclusion restriction, the 

MIV assumption can be plausible in many applications where the standard independence assumption is a 

matter of considerable controversy.  Finally, in parts of the analysis, we consider a Monotone Treatment 

Response (MTR) assumption that participation in SNAP does not worsen health status.  While recipients 

appear to be worse off on average than eligible nonrecipients, many have argued that participating in 

SNAP would not cause health or food security to deteriorate (e.g., Currie 2003).  Section IV concludes 

with a brief analysis of data from the 2003 CPS to assess whether the results are consistent across the 

surveys and to consider standard instrumental variables made available in the rich CPS covariate data.   

In Section V, we introduce classification errors in the model.  In doing so, we make two notable 

contributions to the literature.  First, departing from the usual treatment effects literature that formally 

acknowledges ambiguity associated with counterfactuals but not ambiguity associated with misreporting, 

our methods simultaneously account for both problems.  Second, we develop new methods that utilize 

administrative information on the size of the NSLP caseload to derive informative constraints on the 

classification error problem.  

We draw conclusions in Section VI and emphasize three findings.  First, the ambiguity associated 

with the selection and classification error problems can be substantially mitigated by applying some basic 

restrictions including MTS and no-false positive reports of participation (as discussed below, the 

empirical literature on SNAP suggests that errors of commission are negligible).  Second, under the joint 

MIV-MTS assumption, we find that SNAP reduces food insecurity rates.  This result holds even for 

modest degrees of misclassification error.  Finally, under the joint MIV-MTS-MTR assumption, we find 

that SNAP leads to a decline in food insecurity rates and other poor health outcomes even when allowing 

for high rates of classification error. 
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II.   Data 

To study the impact of SNAP on child nutritional health, we use data from the 2001-2006 NHANES.  The 

NHANES, conducted by the National Center for Health Statistics, Centers for Disease Control 

(NCHS/CDC), is a program of surveys designed to collect information about the health and nutritional 

status of adults and children in the United States through interviews and direct physical examinations.  

The survey currently includes a national sample of about 5,000 persons each year, about half of whom are 

children.  Vulnerable groups, including Hispanics and African-Americans, are oversampled.  Given the 

wealth of health-related information, NHANES has been widely used in previous research on health- and 

nutrition-related child outcomes (recent work includes, e.g., Gundersen et al. 2008).   

We focus our analysis on households with children eligible to receive SNAP.  To be eligible for 

assistance during the time period of our study, a household’s gross income before taxes in the previous 

month cannot exceed 130 percent of the poverty line, net monthly income (gross income minus a standard 

deduction and expenses for care for disabled dependents, medical expenses, and excessive shelter costs) 

cannot exceed the poverty line, and assets must be less than $2,000.  Since the NHANES does not provide 

sufficient information to measure net income and assets, we focus on gross income eligibility.  Given our 

focus on children, however, this data limitation should not lead to substantial errors in defining eligibility 

(Gundersen and Offutt 2005).  In contrast, the asset test could be important for a sample that includes a 

high proportion of households headed by an elderly person (Haider, Jacknowitz, and Schoeni 2003).  

Virtually all gross income eligible households are also net income eligible. 

Our preliminary sample is comprised of 4690 children between the ages of two and 17 who reside 

in households with income less than 130% of the federal poverty line.  Children under the age of two are 

not included in the sample because there is no commonly accepted way to establish BMI percentiles for 

children this young.  After dropping additional observations for which information is missing about 

height and weight, we obtain our final sample of 4,418 income-eligible children.     

For each observation, we observe a number of socioeconomic and demographic characteristics 

including the ratio of income to the poverty line.  Our sample has an average household income level 
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equal to 75 percent of the poverty line.  To assess the characteristics of our sample relative to other 

national estimates, we examined data from the 2003 CPS, December Supplement (see Section IV.D for 

further details).  These data also indicate that income eligible children lived in families with average 

income equal to 75 percent of the poverty line. 

 

A.  Self-Reported SNAP Receipt Indicator 

Beyond demographic information, we also observe a self-reported measure of SNAP receipt over 

the past year.  SNAP participants receive benefits for the purchase of food in authorized retail food outlets 

where the benefit amount depends on net income.  Households with a net income of zero receive the 

maximum benefit, and benefits decline with income: for every additional dollar, the amount of SNAP 

benefits is reduced by 30 cents (except earned income, in which case the reduction is 24 cents).  In 2010, 

the average monthly benefit was $288/month for a family of four, with a maximum benefit of $668.  

These benefits can represent a substantial component of low-income households’ total income.  

In this survey, only 46% of the households classified as eligible for benefits claim to be 

participating in the program.  In part, this might reflect errors in classifying eligibility status: some 

respondents classified as eligible may, in fact, be ineligible (Gundersen et. al., 2012, address this 

classification error problem in their evaluation of the National School Lunch Program).  Even with 

classification errors, however, a large fraction of eligible households do not participate in SNAP. This 

nonparticipation is ascribed to four main factors.  First, there may be stigma associated with receiving 

SNAP.  Stigma encompasses a wide variety of sources, including a person’s own distaste for 

participation, fear of disapproval from others when redeeming food stamps, and the possible negative 

reaction of caseworkers (Moffitt 1983).  Second, transaction costs can diminish the attractiveness of 

participation.  To receive SNAP, households must personally verify their income and expenses and must 

visit a caseworker on a periodic basis to recertify their eligibility.  The initial visit and subsequent 

recertifications can be time consuming.  Third, the benefit level can be quite small for relatively higher 

income families – sometimes as low as $10 a month.  
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Finally, SNAP receipt is thought to be underreported.  Evidence of pervasive underreporting has 

surfaced in two types of studies, both of which compare self-reported information with official records.  

The first type has compared aggregate statistics obtained from self-reported survey data with those 

obtained from administrative data.  These studies suggest the presence of substantial underreporting  in 

many different surveys including the CPS, the SIPP, the PSID, and the Consumer Expenditure Survey 

(CES) (Trippe, Doyle, and Asher 1992; Bitler, Currie, and Scholz 2003; and Meyer, Mok, and Sullivan 

2009).  Meyer, Mok, and Sullivan (2009, Table 13), for example, find that self-reports in the CPS reflect 

just over half the number of food stamp recipients identified in administrative data.  Other studies have 

compared individual reports of food stamp participation status in surveys with matched reports from 

administrative data.  Using this method, researchers can identify both errors of commission (reporting 

benefits not actually received) and errors of omission (not reporting benefits actually received).  As 

discussed above, Bollinger and David (1997, Table 2) find that 12.0 percent of responses in the SIPP 

involve errors of omission while only 0.3 percent involve errors of commission (see also Marquis and 

Moore, 1990).    

 

B.  Outcomes 

A primary strength of the NHANES is the detailed information provided on dietary and health-

related outcomes, with distinct components of the survey providing information from self-reports, 

medical examinations, physiological measurements, and laboratory tests.  Since no single measure is 

thought to completely capture health and nutritional well-being, the detailed and varied health measures 

available in the NHANES make it a unique and important survey for studying the impact of nutritional 

programs on well-being.     

Because alleviating food insecurity is the central goal of SNAP (U.S. Department of Agriculture, 

1999), much of our attention focuses on this measure of nutritional health.  The extent of food insecurity 

in the United States has become a well-publicized issue of concern to policymakers and program 

administrators.  In 2010, 14.5% of the U.S. population reported that they suffered from food insecurity at 

some time during the previous year (Coleman-Jensen et al., 2011).  These households were uncertain of 
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having, or unable to acquire, enough food for all their members because they had insufficient money or 

other resources.   

To calculate these official food insecurity rates in the U.S., defined over a 12 month period, a 

series of 18 questions are posed in the Core Food Security Module (CFSM) for families with children.  

(For families without children, a subset of 10 of these 18 questions are posed.)  Each question is designed 

to capture some aspect of food insecurity and, for some questions, the frequency with which it manifests 

itself.  Examples include “I worried whether our food would run out before we got money to buy more” 

(the least severe outcome); “Did you or the other adults in your household ever cut the size of your meals 

or skip meals because there wasn't enough money for food?” and “Did a child in the household ever not 

eat for a full day because you couldn't afford enough food?” (the most severe outcome).  A complete 

listing of the food insecurity questions is presented in Appendix Table 1.  Following official definitions, 

we use these 18 questions to construct a comparison of children in food secure households (two or fewer 

affirmative responses) with children in food insecure households (three or more affirmative responses).  

In addition to studying the impact of SNAP on food insecurity rates, we also examine three other 

outcome variables: obesity, anemia, and an indicator of fair or poor general health.  Based on guidelines 

provided by the Centers for Disease Control and Prevention, a child is classified as obese if his or her 

body mass index (BMI) (kg/m²) is at or above the 95th percentile for the child’s age and gender.  In the 

NHANES, heights and weights used to calculate BMI are obtained by trained personnel (i.e., not self-

reported).  A child is classified as having anemia if, based on a blood test, the child is both iron deficient 

and has an abnormally low hemoglobin level.  The indicator of fair or poor general health is reported by 

the child’s parent.  In this paper, we treat these health outcomes as accurately measured.  While errors in 

measuring obesity and anemia are likely to be minimal (data on height and weight were collected by 

trained personnel and anemia is measured using a blood test), this assumption may be violated for the 

general health and food insecurity outcomes.  In general, measurement error in the outcome variables 

would widen the bounds established in this paper. 

Together, these four measures reflect a wide range of health related outcomes that might be 

impacted by SNAP.  All four outcomes are also known to be associated with a range of negative physical, 
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psychological, and social consequences that have current and future implications for health, including 

reduced life expectancy.  With a maximum pair-wise correlation of only 0.12 (between food insecurity 

and poor general health), these four outcomes are related but clearly measure different aspects of well-

being.  The outcomes have also attracted different levels of attention in the existing food stamp literature.  

Food insecurity and obesity are of central concern to policymakers and researchers studying the impact of 

SNAP on health (e.g., Kaushal 2007; Meyerhoefer and Pylypchuk 2008).  To the best of our knowledge, 

this paper is the first to investigate (using any methods) the impacts of SNAP on self-reported general 

health and anemia.  

Table 1 displays means and standard errors for the variables used in this study.  The estimates in 

this table (and elsewhere in the paper) are weighted to account for the complex survey design used in the 

NHANES.  Consistent with previous work on this topic, SNAP recipients tend to have worse health 

outcomes than eligible nonparticipants.  For example, 45% of children reported as SNAP recipients are 

food insecure, nine percentage points higher than the 36% food insecurity rate among eligible 

nonparticipants (a statistically significant difference at better than the 5% level).  Compared with eligible 

nonrecipients, SNAP recipients are also slightly more likely to be obese, be in fair or poor general health, 

and have anemia.   

 

III.   Identifying the Average Treatment Effect 

Our interest is in learning about the average treatment effect (ATE) of SNAP receipt on each of 

our health-related outcomes among food stamp eligible households. Focusing on binary outcomes, the 

ATE is given by 

 

ATE(1,0 | ) [ (1) 1| ] [ (0) 1| ]X P H X P H X          (1) 

  

where H is the realized health outcome, H(1) denotes the health of a child if he or she were to receive 

food stamps, H(0) denotes the analogous outcome if the child were not to receive food stamps, and 

X   denotes conditioning on observed covariates whose values lie in the set  . Thus, the average 
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treatment effect reveals how the mean outcome would differ if all eligible children received food stamps 

versus the mean outcome if all eligible children did not receive food stamps.  In our analysis, H = 1 

denotes a poor health outcome with H = 0 otherwise. 

 In what follows, we simplify the notation by suppressing the conditioning on subpopulations of 

interest captured in X.  For this analysis, we focus on eligible children.  In much of the literature 

examining the impact of SNAP, other observed covariates are motivated as a means of controlling for 

factors influencing a family’s participation decision.  In the usual regression framework, researchers 

attempt to “correctly” choose a set of control variables for which the exogenous selection assumption 

applies.  Inevitably, however, there is much debate about whether the researcher omitted “important” 

explanatory variables.  In contrast, conditioning on covariates in our approach serves only to define 

subpopulations of interest as there are no regression orthogonality conditions to be satisfied.  The problem 

is well-defined regardless of how the subpopulations are specified (Pepper 2000).   

 As discussed above, two identification problems arise when assessing the impact of SNAP on 

children’s health outcomes.  First, even if participation were observed for all eligible households, the 

potential outcome H(1) is counterfactual for all children who did not receive food stamps, while H(0) is 

counterfactual for all children who did receive food stamps.  This is referred to as the selection problem.  

Using the Law of Total Probability, this identification problem can be highlighted by writing the first 

term of Equation (1) as  

 

* * * *[ (1) 1] [ (1) 1| 1] ( 1) [ (1) 1| 0] ( 0)P H P H FS P FS P H FS P FS              (2) 

 

where FS* =1 denotes that a child is in a household that truly receives food stamps and FS*=0 otherwise. 

If food stamp receipt is observed, the sampling process identifies the selection probability, *( 1)P FS  , the 

probability an eligible child does not receive food stamps, *( 0),P FS   and the expectation of outcomes 

conditional on the outcome being observed, 
* *[ (1) 1| 1] ( 1| 1).P H FS P H FS      Still, the sampling 
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process cannot reveal the mean outcome conditional on the outcome being counterfactual,

*[ (1) 1| 0]P H FS  .  Thus, [ (1) 1]P H   is not point-identified by the sampling process alone.   

 Second, true participation status may not be observed for respondents.  This is referred to as the 

measurement or classification error problem.  Instead of observing FS*, we observe a self-reported 

indictor, FS, where FS = 1 if a child is in a household that reports receiving food stamps and 0 otherwise.  

Without assumptions restricting the nature or degree of classification errors, the sampling process does 

not reveal useful information on food stamp receipt, FS*, and thus all of the probabilities on the right hand 

side of Equation (2) are unknown.    

 To highlight this measurement problem, let the latent variable Z* indicate whether a report is 

accurate, where Z* =1 if FS*= FS and Z*= 0 otherwise.  Using this variable, we can further decompose the 

first term of Equation (1) as  

*
1 1

*
1 0 1 0

[ (1) 1] [ (1) 1, 1] (3)

[ (1) 1| 0][ ( 0) ( ) ( )],  

P H P H FS

P H FS P FS

 

   

 

   

     

       
 

where * *( , 1, 0) and ( , 0, 0)j jP H j FS Z P H j FS Z          denote the fraction of false positive 

and false negative classifications of food stamp recipients, respectively, for children realizing health 

outcome j = 1, 0.  The first part of Equation (2), * *[ (1) 1| 1] ( 1)P H FS P FS   , is not identified because 

of the classification error problem.  The second part of Equation (2) is not identified because of both the 

selection and classification error problems.  As above, the data cannot reveal the counterfactual outcome 

distribution, *[ (1) 1| 0]P H FS  , regardless of whether participation is measured accurately, and, in the 

presence of classification errors, the sampling process does not reveal the proportion of respondents that 

received assistance, 
*( 1)P FS  .

 
 

IV.   The Selection Problem  

 The literature evaluating the effect of SNAP on health has implicitly assumed that respondents 

accurately self-report of program participation.  To provide a direct comparison to the existing literature, 

we begin by focusing on this special case and study what can be learned about the average treatment 
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effect using existing methods.  In Section V below, we develop new methods for simultaneously 

addressing the selection and classification error problems.   

 A natural starting point is to ask what can be learned in the absence of any assumptions invoked 

to address the selection problem (see Manski, 1995 and Pepper, 2000).  Since the latent probability 

*[ (1) 1| 0]P H FS   must lie within [0,1], it follows that  

 

* * *( 1, 1) [ (1) 1] ( 1, 1) ( 0)                                  (4)P H FS P H P H FS P FS          

 

where, in the absence of classification errors, the lower and upper bounds are identified by the sampling 

process.  An analogous result applies for [ (0) 1]P H  .  In this worst-case scenario where there is no 

additional identifying information, the data alone cannot reveal whether SNAP leads to better or worse 

mean health outcomes (see Manski, 1995, for further details).  

 

A.  Monotone Instrumental Variable Models 

 To derive more informative inferences about the impact of SNAP on health, prior information to 

address the selection problem must be brought to bear.  While the exogenous selection assumption 

*[ (1) 1] [ (1) 1| ]P H P H FS    maintained in much of the literature seems untenable, there are a number 

of middle ground assumptions that narrow the bounds by restricting the relationship between SNAP 

participation, health outcomes, and observed covariates.  In this section we apply two Monotone 

Instrumental Variable (MIV) assumptions that certain observed covariates are known to be monotonically 

related to the latent response variable.  

First, we consider the Monotone Treatment Selection (MTS) assumption (Manski and Pepper 

2000) that children receiving food stamps are likely to have worse latent health outcomes on average than 

nonparticipants.  Monotone Treatment Selection is a special case of MIV in which the treatment itself is a 

monotone instrument.  This selection model formalizes the most common explanation for the positive 

association between participation and poor health: unobserved factors associated with poor health are 
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thought to be positively associated with the decision to participate (e.g., Gundersen and Oliveira 2001; 

Currie 2003).  For example, families may participate precisely because they expect to be food insecure.  

Formally, the MTS assumption is given by 

 

* *[ ( ) 1| 0] [ ( ) 1| 1]   for 0,1.                                     (5)P H j FS P H j FS j       

  

That is, for latent potential outcomes H(0) and H(1), eligible households that receive food stamps, FS*=1, 

have no better latent health outcomes on average than eligible households that do not receive food stamps, 

FS* = 0.  While the MTS assumption serves to reduce the upper bound on the ATE, the assumption alone 

does not identify the sign of the average treatment effect (see Manski and Pepper 2000).  

Second, we consider the relatively innocuous assumption that the latent probability of negative 

health outcomes weakly decreases with income adjusted for family composition.  A large body of 

empirical research supports the idea of a negative gradient between reported income and the health 

outcomes studied in this paper (e.g., Coleman-Jensen et al. (2011) for food insecurity; Case, Lubotsky, 

and Paxson (2002), and Deaton (2002) for general health; Newacheck (1994) for anemia; and Shrewsbury 

and Wardle (2008), and Jolliffe (2011) for obesity).  To formalize this idea, let v be the monotone 

instrumental variable such that  

 

1 2 2 1  implies [ ( ) 1| ] [ ( ) 1| ] [ ( ) 1| ] for 1,0.        (6)u u u P H t v u P H t v u P H t v u t              

 

These conditional probabilities can be bounded using the various nonparametric models described 

throughout this paper.  Let LB(u) and UB(u) be the known lower and upper bounds evaluated at v = u, 

respectively, given the available information.  Then the MIV assumption formalized in Manski and 

Pepper (2000, Proposition 1) implies: 
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Bounds on the unconditional latent probability, P[H(t) =1], can then be obtained using the law of total 

probability.  

 Following the approach developed in Kreider and Pepper (2007), we estimate these MIV bounds 

by first dividing the sample into equally sized groups (more than 200 observations per cell) delineated by 

an increasing ratio of income to the poverty line.  Then, to find the MIV bounds on the rates of poor 

health outcomes, one takes the average of the plug-in estimators (weighted to account for the survey 

design) of lower and upper bounds across the different income groups observed in the data.  We use 20 

groups, although the qualitative results in this paper are unchanged when we use 15 or 25 income groups.  

Since this MIV estimator is consistent but biased in finite samples (see Manski and Pepper, 2000 and 

2009), we employ Kreider and Pepper’s (2007) modified MIV estimator that accounts for the finite 

sample bias using a nonparametric bootstrap correction method.  Chernozhukov, Lee, and Rosen (2009) 

formalize an entirely different approach for estimation, inference, and bias correction that involves 

applying a precision correction to their estimated boundary functions before taking the intersections. In 

the context of monotone instrumental variables, their approach is designed to estimate the expected 

response functions conditional on a particular value of the instrumental variable (see Proposition1 in 

Manski and Pepper, 2000), but not the unconditional mean response function (see Corollary 1 in Manski 

and Pepper, 2000) that is the focus of this paper.  Recent work by Hirano and Porter (forthcoming) raises 

some concerns about applying bias corrections when estimating intersection bounds, showing that it may 

be impossible to completely eliminate bias and that reducing bias too much leads to large increases in 

variance.  With more than 200 observations per cell, however, the bias correction in our application plays 

a relatively modest role in our estimates (see tables below).   

 

B.  Results for the no errors case    

For each of the four outcomes, Table 2 presents bias-corrected bounds, confidence intervals, and 

estimated finite-sample biases under a variety of different models for the no errors case.  In the first row, 

we make no assumptions about how eligible households select into the program.  The width of the ATE 

bounds always equals 1, and the bounds on the ATE always include zero (see Manski, 1995).  These wide 
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bounds highlight a researcher’s inability to make strong inferences about the efficacy of the food stamps 

without making assumptions that address the problem of unknown counterfactuals.  In the absence of 

restrictions that address the selection problem, we cannot rule out the possibility that SNAP has a large 

positive or negative impact on the likelihood on poor health outcomes.  These bounds can be narrowed 

substantially, however, under common monotonicity assumptions on treatment selection (MTS) and 

relationships between the latent outcome and observed instrumental variables (MIV).   

To narrow the bounds, we apply the MTS and joint MTS-MIV assumptions.  These results are 

presented in the middle two rows of Table 2, respectively.  The MTS assumption alone is not strong 

enough to identify the sign of the impact of SNAP on the health outcomes, but it does dramatically reduce 

the upper bounds on the average treatment effects.  For example, the upper bound for food insecurity falls 

from 0.555 to 0.093 such that ATE [-0.445, 0.093] .  The upper bounds on the other three outcomes drop 

even further, falling to 0.015 for poor health, 0.012 for obesity, and 0.003 for anemia.  Thus, under the 

MTS assumption alone, the estimated bounds rule out the possibility that SNAP leads to large increases in 

poor health, obesity and anemia.  Instead, SNAP may lead to substantial reductions in these adverse 

health outcomes and, at worst, have slightly deleterious effects.  

Perhaps the most important results are found when we combine the MTS assumption with the 

MIV assumption that the probability of poor health weakly decreases with family resources, as measured 

by the ratio of income to the poverty line.  The upper bound is negative for all four outcomes in this joint 

MTS-MIV model, though the confidence interval includes zero for obesity and anemia.  For example, the 

estimates suggest that SNAP reduces the prevalence of food insecurity by at least 12.8 points and poor 

health by 6.1 points.  These numbers suggest that food stamps have substantial beneficial effects.  In the 

absence of SNAP, our estimates of P[H(0)=1] indicate that at least 45.9 percent of eligible children would 

be food insecure and 11.2 percent would be in poor health.  Thus, the estimates indicate that the program 

has reduced the prevalence of food insecurity by at least 28% (= 12.8/45.9) and poor health by at least 

54% (=6.1/11.2). 
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C.  Monotone Treatment Response Model 

 Despite the observed positive correlations in the data between SNAP participation and 

unfavorable outcomes, there is a general consensus among policymakers and researchers that SNAP does 

not increase the rate of food insecurity (Currie, 2003).  Given this general consensus, we consider the 

identifying power of the Monotone Treatment Response (MTR) assumption (Manski, 1995 and 1997; 

Pepper 2000) that formalizes the common idea that SNAP does not lead to a reduction in health status: 

(1) (0)H H .  In this case, the average treatment effect of receiving food stamps must be nonpositive.   

 Since MTR rules out the possibility of deleterious effects of food stamps on health by 

assumption, it is not helpful in resolving the health outcomes paradox.  Nevertheless, for outcomes in 

which MTR is thought to be credible, it can help shed light on the magnitudes of any identified beneficial 

effects of the program.  In particular, MTR may interact with the MTS and MIV assumptions to bound 

the ATE further away from zero than can be attained under the MTS-MIV assumptions alone.  

 For the food insecurity, general health, and anemia outcomes, the MTR assumption seems 

relatively innocuous in that it is difficult to imagine how receiving food stamps would lead to worse 

health outcomes.  Previous work has demonstrated that each additional dollar in benefits leads to marginal 

increases in food expenditures (e.g., Breunig and Dasgupta 2002; Levedahl 1995).  If food is a normal 

good, SNAP should weakly increase the consumption of food and, in turn, decrease the incidence of food 

insecurity, poor or fair health, and anemia.  For obesity, however, the assumption is more tenuous.  Better 

access to nutritious foods through SNAP may lead to healthier eating and less obesity, but potential 

increases in caloric intake could result in weight gains.   

 The bottom rows of Table 2 present results under the joint MTS-MIV-MTR assumption.  While 

the MTR assumption is less credible for obesity than for the other outcomes, we present MTS-MIV-MTR 

estimates for each outcome to make transparent the identifying power of the MTR assumption in each 

case.  Without measurement error, the MTR assumption does not notably reduce the estimated upper 

bounds on the ATE relative to the estimates derived under the MTS-MIV assumptions alone.  With 

classification errors (see Section V), however, the MTR assumption turns out to have substantial 

identifying power in this application.  
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D. Sensitivity Analysis Using Data from the CPS 

To assess the sensitivity of our findings to the data source, we estimate these models using 

analogous data from the December Supplement of the 2003 CPS.  The CPS has been widely applied to 

evaluate the association between SNAP and food insecurity (e.g., Jensen 2002; Wilde and Nord 2005; 

Gundersen and Kreider 2008), and is used by the USDA to establish the official food insecurity rates for 

the United States (e.g., Coleman-Jensen et al., 2011).   

Using the sampling design in Gundersen and Kreider (2008), our data for this sensitivity analysis 

includes 2,707 households with children reporting incomes less than 130 percent of the poverty line.  As 

with the NHANES, we observe a self-reported measure of food stamp receipt over the past year, food 

insecurity over the past year, and the ratio of income to the poverty line.  The CPS does not include 

information on the other three outcomes (poor general health, obesity, and anemia) revealed in the 

NHANES data.  The summary statistics from the CPS data are similar to what we find in the NHAMES 

(see Table 2 in Gundersen and Kreider 2008):  just over 40% of the households report receiving food 

stamps, and the food insecurity rate among self-report recipients is 17.9 percentage points higher than 

among eligible nonrecipients (52.3% versus 34.4%).   

The bottom panel of Table 2 presents estimates using the CPS data.  The estimates are similar to 

what we find using data from the NHANES, although the estimated upper bound under the MIV-MTS 

model is positive.  The estimated upper bound remains negative, however, when we impose the MIV-

MTS-MTR assumption.  In part, differences in estimates reflect the smaller sample size in the CPS data 

which leads to less precise estimates and larger bias corrections in the MIV models.  Differences may also 

reflect the fact that classification errors in the CPS have been found to be more extensive than in the 

NHANES (Meyer, Mok, and Sullivan 2009).  

Although these data have very limited information on health outcomes compared with the 

NHANES, they are rich enough to allow us to construct some standard instrumental variables for SNAP 

participation used in the existing literature.  In particular, state identifiers in the CPS allow us to apply a 

more traditional instrumental variable (IV) assumption based on cross-state variation in program 
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eligibility rules.  To do so, we merge the Urban Institute’s database of state program rules (see Finegold, 

Margrabe, and Ratcliffe 2006) with the CPS data to create two instrumental variables: an indicator for 

whether the state uses a simplified semi-annual reporting requirement for earnings (47%) and an indicator 

for whether cars are exempt from the asset test (30%).  Suppose these two variables have no impact on the 

expected food insecurity status except indirectly through SNAP participation. When combined with the 

traditional linear response model, the ATE is point identified and the Wald estimator of the average 

treatment effect ranges from -0.23 (when the indicator for whether cars count in the asset test is used as an 

IV) to -0.62 (when the indicator for whether the state uses a simplified reporting requirement is used as an 

IV).   

Notice that the -0.62 estimate lies outside of the worst-case bounds reported in Table 2, 

suggesting that either the IV assumption or the linear response model assumption is invalid.  If instead of 

applying the linear response model we estimate Shaikh and Vytlacil’s (2011) nonparametric threshold 

crossing model, SNAP is found to reduce food insecurity by at least 3 percentage points when using the 

asset test instrument and at least 5 points when using the reporting requirement instrument.  The estimate 

based on the reporting requirement instrument is significantly different than zero at the five-percent level, 

but the asset test instrument is not statistically significantly different than zero.  

Combining these traditional instruments with sufficiently strong assumptions reveals consistent 

evidence that SNAP reduces the rate of food insecurity.  Yet while these estimated negative average 

treatment effects are qualitatively similar to our primary results found using the MIV and MTS 

assumptions, we caution against drawing strong conclusions on the efficacy of SNAP based on these 

findings alone.  In particular, there may be good reasons to doubt the excludability assumption that the 

instruments are mean independent of the latent food insecurity outcome.  State-specific food insecurity 

rates are well documented (e.g. Coleman-Jensen et al. 2011), and states may choose SNAP rules and 

regulations within USDA guidelines partially in response to food insecurity levels.  Thus, these state 

program rules may not be independent of the state food insecurity rate.  Finally, while the Shaikh and 

Vytlacil threshold-crossing model provides a constructive middle-ground model that allows one to 

impose some additional structure, the linear response model imposes the strong homogeneity restriction 
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on the response function that seems unlikely to hold in practice.  The finding that one of the linear IV 

estimates lies outside of the worst case bounds suggests that this assumption may be violated.  

 

V.  The Selection and Classification Error Model: A Unified Approach 

While our findings thus far imply that SNAP plays an important role in improving children’s 

health, we have not yet accounted for classification errors.  In this section, we introduce new methods that 

explicitly acknowledge the presence of SNAP reporting errors and incorporate auxiliary administrative 

data on the size of the SNAP caseload to restrict the magnitudes and patterns of such errors. 

With classification errors, FS* is not observed and the Manski (1995) worst-case selection bounds 

are not identified.  In particular, defining  Θ ≡ ሺߠଵ
ି ൅ ଴ߠ

ାሻ െ ሺߠ଴
ି൅ߠଵ

ାሻ, we augment the Manski bounds 

as follows: 

 

   ሾെܲሺܪ ൌ 1, ܵܨ ൌ 0ሻ െ ܲሺܪ ൌ 0, ܵܨ ൌ 1ሻሿ ൅ Θ  

             ൑ ሺ1,0ሻܧܶܣ ൑           (7) 

   ሾܲሺܪ ൌ 1, ܵܨ ൌ 1ሻ ൅ ܲሺܪ ൌ 0, ܵܨ ൌ 0ሻሿ ൅ Θ. 

 

Thus, without restrictions on the measurement error process, the false reporting rates ߠ are not identified, 

and the data are uninformative about the ATE.  We use two sources of information to restrict Θ.  First, 

auxiliary data on size of the SNAP caseload provides informative restrictions on the classification error 

components, ߠ.  Second, the relevant validation literature provides informative restrictions on the 

magnitude and patterns of the classification error problem.   

 

A.  The Classification Error Model 

To draw inferences in light of the classification error problem, we exploit two sources of 

additional information.  First, we combine readily available auxiliary data on the size of the caseload from 

the administrative data collected by the USDA with survey data from the NHANES to estimate the true 

participation rate, ܲሺܵܨ∗ ൌ 1ሻ.  In Proposition 1 below, we show how knowledge of the true and the self-
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reported rates implies meaningful restrictions on the classification error probabilities, ߠ.  In particular, 

knowledge of ܲ∗ ≡ ܲሺܵܨ∗ ൌ 1ሻ and ܲ ≡ ܲሺܵܨ ൌ 1ሻ implies the following three restrictions: 

               ሺߠଵ
ି ൅ ଴ߠ

ିሻ െ ሺߠଵ
ା൅ߠ଴

ାሻ ൌ Δ          (8a) 

௜ߠ   
ି ൑ minሼܲሺܪ ൌ ݅, ܵܨ ൌ 0ሻ, ܲሺܵܨ∗ ൌ 1ሻሽ ≡ ௜ߠ

௎஻ି ,   ݅ ൌ 1, 0      (8b)   

௜ߠ               
ା ൑ minሼܲሺܪ ൌ ݅, ܵܨ ൌ 1ሻ, ܲሺܵܨ∗ ൌ 0ሻሽ ≡ ௜ߠ

௎஻ା,   ݅ ൌ 1, 0      (8c) 

 

where Δ ≡ ܲ∗ െ ܲ.  Equation (8a) restricts the net fraction of false negative reports to equal the difference 

in the true and self-reported participation rates.  Equations (8b) and (8c) place meaningful upper bounds 

on the fraction of false negative and positive reports.    

 Second, the range of studies examining the validity of self-reports provide additional information 

on the degree of misreporting.  As discussed above, evidence from validation studies find errors of 

commission to be negligible, with the overall rate of misreporting estimated to be no greater than about 25 

percent.  To incorporate information on the overall rate of misreporting, we consider the identifying 

power of a restriction on the maximum amount of data corruption in the spirit of Horowitz and Manski 

(1995).  That is, let   

  P(Z* = 0) ≤ Qu      (9)  

where Qu is a known upper bound on the degree of SNAP misclassification.  Given knowledge of P*, this 

value must logically lie within the range ሾ|ܲ∗ െ ܲ|, 1ሿ.  In the polar case that Qu is set equal to 1, the 

researcher is setting no restriction on the proportion of false reports in the data beyond that implied by 

restrictions (8a)-(8c).  We refer to this as the “arbitrary errors model.”  In the other polar case that Qu is 

set equal to |ܲ∗ െ ܲ|, the researcher is imposing a “no excess errors” restriction that there are no data 

errors beyond the proportion necessary to generate the discrepancy (distance) between the true 

participation rate, P*, and reported rate, P.  For the case of systematic underreporting in our application, 

Δ ൒ 0, setting Qu equal to its minimum allowed value |ܲ∗ െ ܲ| is equivalent to imposing a “no false 

positives” assumption that respondents do not falsely claim to participate in the program (and similarly a 

“no false negatives” assumption in applications involving Δ ൑ 0ሻ.  The no false positives assumption 

serves as a useful benchmark for the receipt of SNAP in our application since validation data suggest very 
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few instances of households falsely claiming to receive food stamps (e.g., Bollinger and David 1997; 

Marquis and Moore 1990).  Middle-ground positions are obtained by setting Qu between |ܲ∗ െ ܲ| and 1.    

The restrictions in Equations (8) and (9) imply informative bounds on the unknown parameter, Θ, 

where the upper bound is found by maximizing ሺߠଵ
ି ൅ ଴ߠ

ାሻ and minimizing ሺߠ଴
ି൅ߠଵ

ାሻ, and vice versa for 

the lower bound.  In particular, we derive the following bounds on Θ:  

 

Proposition 1: Given restrictions (8a)-(8c) and (9),  

 Θ  ∈ ሾ݉ܽݔሼെܳ௨,െ2ߠଵ
௎஻ା െ ,߂  െ2ߠ଴

௎஻ି ൅ ሽ߂  ,݉݅݊ሼܳ௨, ଵߠ2
௎஻ି െ ,߂ ଴ߠ2

௎஻ା ൅  .ሽሿ߂

      

See Appendix B for a proof of this result.   

 Using this proposition, we can directly bound the average treatment effect when there are 

classification errors.  In particular, bounds on the ATE follow directly by combining the Proposition 1 

bound on  with Equation (7).  Notice that allowing for ambiguity created by the reporting error problem 

(weakly) widens the treatment effect bounds.  At the same time, Θ might be bounded to lie in a strictly 

positive or negative range.  Thus, the upper bound on the ATE can decrease, or the lower bound increase, 

even as the overall width of the ATE bound expands.  Applying Proposition 1 above to evaluate the 

impacts of the National School Lunch Program, Gundersen, Kreider, and Pepper (2012) provide an 

example in which it is easier to identify the sign of their ATE of interest in the presence of classification 

errors (when the error patterns are constrained as described above) than under the standard implicit 

assumption of perfectly measured data.    

Additional analysis is required to address the classification error problem under the MTS 

assumption.  Under this assumption, the upper bound on the ATE can be written as the difference of 

conditional means: 

ሺ1,0ሻܧܶܣ ൑ ܲሺܪ ൌ ∗ܵܨ|1 ൌ 1ሻ െ ܲሺܪ ൌ ∗ܵܨ|1 ൌ 0ሻ. 

 

In the absence of classification errors, this upper bound is simply the difference in the observed poor 

health rate among recipients and nonrecipients.  With classification errors, we can write 
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ሺ1,0ሻܧܶܣ              ൑   
௉ሺுୀଵ,ிௌୀଵሻାఏభ

షିఏభ
శ

௉ሺிௌ∗ୀଵሻ
െ

௉ሺுୀଵ,ிௌୀ଴ሻାఏభ
శିఏభ

ష

௉ሺிௌ∗ୀ଴ሻ
,     (10) 

 

where information on the true participation rate, P(FS* = 1), implies bounds on these conditional 

probabilities.  In particular, we can narrow the Proposition 1 bounds as follows: 

Proposition 2: Given the MTS assumption in Equation (5) and the classification error model restrictions 

in Equations (8) and (9), it follows that  

 

                                                                                                                                                            ሺ1,0ሻܧܶܣ

൑

ە
ۖ
۔

ۖ
ۓ ܲሺܪ ൌ 0ሻ

ܲሺܵܨ∗ ൌ 0ሻ
                                                                               if  0 ൏ ܲሺܵܨ∗ ൌ 1ሻ ൏ ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻ

ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻ ൅ ଵߠ
௎஻ି∗

ܲሺܵܨ∗ ൌ 1ሻ
െ
ܲሺܪ ൌ 1, ܵܨ ൌ 0ሻ െ ଵߠ

௎஻ି∗

ܲሺܵܨ∗ ൌ 0ሻ
     if  ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻ ൑ ܲሺܵܨ∗ ൌ 1ሻ ൏ 1

 

where *
1
 ≡݉݅݊ሼܳ௨, ܲሺܪ ൌ 1, ܵܨ ൌ 0ሻ, ܲሺܵܨ∗ ൌ 1ሻ െ ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻሽ.   

See Appendix B for a proof this result.  

Except for the true participation rate, ܲ∗ ൌ ܲሺܵܨ∗ ൌ 1ሻ, all of the probabilities in Propositions 1 

and 2 can be consistently estimated using data from the NHANES.  To infer ܲሺܵܨ∗ ൌ 1ሻ, we combine 

auxiliary data on the size of the caseload with data from the NHANES on the size of the eligible 

population.  Administrative data from the USDA reveals that from 2001-2006 there was an average of 

nearly 11 million children receiving food stamps per year (calculated using annual reports from Rosso 

2002; Genser 2003; Cunnyngham and Brown 2004; Poikolainen 2005; Barrett 2006; and Wolkwitz 

2007).  From the NHANES, we estimate that 22 million children were eligible to receive assistance.  

Thus, the implied participation rate is about 0.50, 4 points higher than the reported rate of 0.456.  We note 

that a net false negative reporting rate of 4% is consistent with the results Meyer, Mok, and Sullivan 

(2009) when evaluating misreporting the SIPP, but much smaller than found in the CPS and PSID.  Using 

the CPS, for example, the participation rate is estimated to be around 70% (Cunnyngham 2005).  Given 

this variability in the estimated participation rates and the possibility that errors in classifying eligible 
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children may bias the estimated participation rates, we assess the sensitivity of the bounds to variation in 

the true participation rate.    

 
B. Results 

Our analytical approach allows us to trace out sharp bounds on the ATE under different 

assumptions about selection and measurement error.  To do so, we evaluate the bounds as a function of 

the unknown SNAP participation rate, P*, under various assumptions about the selection process.  By 

layering successively stronger assumptions, our analysis reveals how the strength of the conclusions 

varies with the strength of the identifying assumptions.  We begin in Section B.1 by focusing on bounding 

the impact of SNAP participation on food insecurity.  We then extend the discussion to the three other 

health outcomes in Section B.2.   

 

B.1.  Food Insecurity  

Figure 1 traces out the estimated Proposition 1 and 2 bounds – that is, the worst-case and MTS 

bounds – for the ATE on the food insecurity rate across all values of P* between 0 and 1.  The 

accompanying table highlights these results for P* equal to (a) the NHANES self-reported participation 

rate of P = 0.456, (b) our preferred estimated true participation rate of 0.50 based on administrative data 

from the USDA, and (c) a higher rate of 0.70 chosen to be consistent with the participation rate found 

using the CPS (Cunnyngham 2005).  The solid lines in the figures trace out the estimated arbitrary error 

bounds (i.e., ܳ௨ ൌ 1) in which there are no restrictions imposed on the nature or degree of errors except 

those implied by the knowledge of P and P* as captured by Equations (8a)-(8c).  The dashed lines display 

the estimated bounds under the further restriction of no excess errors: ܳ௨ ൌ |ܲ∗ െ ܲ|.  Recall that for the 

underreporting cases (the most relevant cases in our application) in which P* lies to the right of P = 0.456, 

this no excess error model is equivalent to no false positive reports.  The table also provides Imbens-

Manski (2004) confidence intervals that cover the true value of the ATE with 90% probability.   

As noted above, the worst-case bounds on the ATE if SNAP receipt is accurately reported (P* = P 

and no excess errors) have a width of one and always include zero.  For food insecurity, these worst-case 
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no errors bounds are [-0.445, 0.555] as depicted in the figure by the solid vertical line at P* = P (see also 

Table 2).  Allowing for classification errors notably increases the width of these bounds.  For example, 

suppose the true participation rate remains equal to the self-reported rate of 0.456, but now one only 

imposes the assumption of no net reporting errors such that the rate of false positives equals the rate of 

false negatives.  Then, as shown in Figure 1 and the accompanying table, the ATE bounds on the food 

insecurity rate expand from [-0.445, 0.555] to [-0.855, 0.944], with a width of 1.799.  If the true 

participation rate is 0.50 (the rate consistent with the USDA administrative data) instead of 0.456, the 

bounds change to [-0.900, 0.900] with a width of 1.800.  These findings reveal the important negative 

result that the ambiguity created by classification errors can be substantial even if the true and self-

reported rates are similar.  

The upper bounds when P* is near P, however, are markedly reduced by introducing the MTS 

assumption, especially when combined with the no excess errors assumption (no false-positives when 

ܲ∗ ൒ ܲ).  With P* = 0.50, for example, the no false positives bounds are [-0.489, 0.599], with a width of 

1.088.  Adding the MTS assumption further reduces the upper bound to 0.198.  Thus, the no false 

positives assumption decreases the ambiguity associated with measurement error from 1.800 to 1.088, a 

40% reduction, and the MTS assumption further reduces the width of the bound to 0.687, more than 60% 

narrower than the width of the worth-case bounds when P* = 0.50.  While these two assumptions have 

substantial identifying power in this application, these wide bounds presented in Figure 1 highlight the 

difficulty of making strong inferences in light of the selection and measurement error problems.  In the 

absence of additional restrictions that address the selection problem, we cannot rule out the possibility 

that SNAP has a large positive or negative impact on the likelihood of poor health.   

To narrow the bounds, we assess the identifying power of the joint MTS-MIV and joint MTS-

MIV-MTR assumptions.  These results are traced out in Figure 2A and the corresponding table for the 

most relevant cases in our application in which P* lies between 0.456 and 0.700.  In drawing this figure, 

we assume that the fraction of misreporters does not vary across MIV groups. Focusing on the no-false 

positive classification error model, we begin by combining the MTS assumption with our MIV 

assumption that the probability of good health weakly increases with family resources, as measured by the 
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ratio of income to the poverty line.  In this joint MTS-MIV model, we can often sign the ATE as strictly 

negative without imposing the MTR assumption.  Specifically, Figure 2A reveals that we can identify 

ATE to be negative as long as food stamp misreporting is confined to no more than about 6% of 

households, ranging from a 12.8 percent reduction at P* = 0.456 to no effect at P* = 0.52.  When P* = 

0.50, the estimates imply that SNAP reduces food insecurity by at least 2.7 percentage points, although 

this upper bound is not statistically different than zero at the ten percent significance level.  

Under the joint MTR-MTS-MIV assumption, the average treatment effect is strictly negative 

even for large degrees of arbitrary food stamp misreporting.  Under this joint assumption, our estimated 

bounds on the ATE vary from [-0.808, -0.081] when P* = 0.456 to [-0.754, -0.081] when P* = 0.70.  In all 

cases, the estimates are statistically different than zero at the ten percent significance level.  Thus, under 

this model, we find that SNAP reduces the food insecurity rate by at least 8 percentage points and perhaps 

much more.  These results suggest that SNAP dramatically improves the likelihood of becoming food 

secure.   

 

 B.2. Other Health Outcomes 

We also consider what can be learned about the effects of food stamps on the three other negative 

health outcomes: self-reported fair/poor general health, childhood obesity, and anemia.  For brevity, we 

concentrate on results for cases when we impose the MTS-MIV and MTS-MIV-MTR models.  These 

results are summarized in Figures 2B-2D.   

As above for the case of food insecurity, we can identify strictly negative average treatment 

effects for each health outcome under the joint MTS-MIV assumption for sufficiently small degrees of 

food stamp reporting error.  For example, without any errors – i.e., when P* = 0.456 with no excess errors 

– the average treatment effects for fair/poor health, obesity, and anemia are identified to be no greater 

than -0.061, -0.033, and -0.032, respectively.  Identification of the ATE decays rapidly with P* for each of 

the health outcomes, however, and each upper bound becomes positive if fewer than 4 percent of the 

households might misreport food stamp participation status (under either arbitrary errors or no false 

positives).  Still, if the true participation rate is 0.50 (the rate consistent with the USDA administrative 
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data) under no false positives, the estimated upper bounds rule out the possibility the SNAP substantially 

increases the incidence of these poor health outcomes.  For example, the estimated bounds on the rate of 

poor general health is [-0.500, 0.005].  Thus, these results imply that SNAP may dramatically improve 

childhood health, as measured by poor health, obesity, and anemia, with little downside risk that the 

program instead has a deleterious average effect.   

 Finally, to shed additional light on the magnitudes of any identified beneficial effects of the 

program, we apply the MTR assumption that SNAP cannot lead to worse health outcomes.  Under the 

joint MTS-MIV-MTR, we estimate strictly negative (beneficial) and substantial impacts for each health 

outcome across all values of P* ∈ [0.456, 0.700], even for the case of arbitrary reporting errors.  In 

particular, at P* = 0.50 we find that SNAP reduces the rate of poor general health by at least 0.031 (from 

0.089 to 0.058), obesity by at least 0.053 (from 0.218 to 0.165), and anemia by at least 0.016 (from 0.020 

to 0.004).  

 

VI.  Conclusion 

The literature assessing the efficacy of SNAP has long puzzled over its positive associations with various 

undesirable health-related outcomes such as food insecurity.  These associations are often ascribed to the 

self-selection of less healthy households into SNAP.  Identification of the causal impacts of participation 

on health status is also confounded by systematic underreporting of food stamp recipiency.  In this paper, 

we reconsidered the impact of SNAP on child food insecurity and other health outcomes by developing 

methods that account for both of these identification problems in a single unifying framework.  Within 

this framework, we combine information from household self-reports with administrative data on the size 

of the SNAP caseload to derive formal restrictions on the magnitudes and patterns of household reporting 

errors.  While introducing measurement error widens Manski’s (1995) classic worst-case selection 

bounds, we show how restricting the magnitudes and patterns of errors can, in some cases, make it easier 

to sign the average treatment effect than under the standard implicit assumption of perfectly measured 

data.  Acknowledging the presence of nonrandom measurement error need not necessarily hinder 

inference on the sign of the average treatment effect.  
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Our partial identification approach is well-suited for this application in which conventional 

assumptions strong enough to point-identify the causal impacts are not necessarily credible and there 

remains much uncertainty about even the qualitative impacts of SNAP.  Using data from the National 

Health and Nutrition Examination Survey (NHANES), we make transparent how assumptions on the 

selection and reporting error processes shape inferences about the causal impacts of SNAP on health 

outcomes.  The worst-case selection bounds always include zero, and classification errors can generate 

substantial additional uncertainty about the efficacy of SNAP in alleviating food insecurity and other 

health outcomes.  This ambiguity, however, is substantially mitigated by applying relatively weak 

assumptions on the selection and classification error processes.    

 Our middle-ground MTS-MIV model allows us to identify strictly beneficial impacts of SNAP on 

food insecurity and other health outcomes as long as the degree of misreported participation status is not 

too large.  In the absence of measurement error, the joint MTS-MIV model reveals that SNAP reduces the 

prevalence of food insecurity by at least 12.8 percentage points (28%), from 0.459 to 0.331.  The strength 

of this finding naturally weakens when we allow for misclassified participation status.  Nevertheless, we 

can still identify that SNAP reduces the prevalence of food insecurity by at least 2.7 percentage points 

(6.5%), from 0.417 to 0.390, when allowing for errors of omission in participation status to be consistent 

with the estimated true participation rate of P* = 0.50.  Identification decays rapidly with the degree of 

misreporting, however, and confidence intervals for the average treatment effect include zero unless it can 

be known that only a small fraction of households misreport.    

Under the stronger joint MTS-MIV-MTR model, which may be less credible for obesity than the 

other health outcomes, the basic conclusion that SNAP improves health outcomes holds even for large 

degrees of measurement error.  Given errors of omission consistent with P* = 0.50, SNAP is estimated to 

reduce the prevalence of child food insecurity by at least 8.9 percentage points, poor general health by 3.1 

percentage points, obesity by 5.3 percentage points, and anemia by 1.6 percentage points.  These impacts 

are significantly different from zero for food insecurity and poor health.  These finding suggest that at 

least some of the potentially troubling correlations between SNAP and poor health outcomes provide a 

misleading picture of the true impact of SNAP.  The program appears to lead to at least modest reductions 
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in food insecurity and other poor health outcomes, with little downside risk that the program has 

significant deleterious effects.  Our estimated bounds are also consistent with the possibility that SNAP 

dramatically improves the well-being of children in the United States.  
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Table 1: Means by Reported Food Stamp Program Participation 

 
 
Variable 
 

 
Income-eligible children

 
   Recipients (FS=1) 

 
 Nonrecipients (FS=0) 

Age in years       9.108  (0.099)     8.607***  (0.127)      9.527   (0.132)
Ratio of income to the 
poverty line 

      0.75 4  (0.011)     0.631***  (0.016)      0.857   (0.014)

    
Food stamp recipient       0.456  (0.022)   
    
Food insecure        0.400  (0.015)     0.450**   (0.023)      0.357   (0.024)
Poor or fair health       0.080  (0.005)     0.088      (0.008)      0.073   (0.007)
Obese       0.185  (0.008)     0.191     (0.014)      0.179   (0.012)
Anemiaa       0.012  (0.002)     0.013     (0.003)      0.010   (0.003)
    
 
Notes: Sample estimates weighted using the medical exam weight.  Standard errors in parentheses account for the 
sample design using the synthetic strata and PSU variables.  The estimated means for the SNAP recipient population 
are superscripted with *, **, or *** to indicate that they are statistically significantly different from the means for 
the nonrecipient population, with p-values less than 0.1, 0.05, 0.01, respectively, based on Wald statistics corrected 
for the sample design. 

  
a The sample size for anemia is 3,871 (with 1,888 food stamp recipients) due to missing observations.  The sample 
size for the other three outcomes is 4,418. 
 



 

Table 2.  Sharp Bounds on the ATE of SNAP Participation Under No Measurement Error 

  
NHANES Outcomes: 

 
                       Food Insecurity    Poor Health      Obesity        Anemia 
                  
 Worst-Case:      p.e.†  [-0.445,  0.555]   [-0.455,  0.545]   [-0.466,  0.534]   [-0.460,  0.540] 

           CI‡  [-0.460   0.570]   [-0.470   0.559]   [-0.482   0.549]   [-0.474   0.555]  
 
 MTS:          p.e.  [-0.445,  0.093]   [-0.455,  0.015]   [-0.466,  0.012]   [-0.460,  0.003] 

           CI   [-0.460   0.139]   [-0.470   0.048]   [-0.482   0.050]   [-0.474   0.008] 
 

 MTS-MIV:      p.e.  [-0.366, -0.128]   [-0.398, -0.061]   [-0.411, -0.033]   [-0.391, -0.032] 
           CI   [-0.433  -0.034]   [-0.453  -0.005]   [-0.474   0.033]   [-0.450   0.006] 
           bias*    +0.027   -0.039      +0.019    -0.021     +0.022   -0.072      +0.008    -0.006 

  
 MTS-MIV-MTR:   p.e.  [-0.366, -0.149]   [-0.398, -0.061]   [-0.411, -0.041]   [-0.391, -0.034] 

           CI   [-0.433  -0.062]   [-0.453  -0.009]   [-0.474   0.000]   [-0.450   0.000] 
             bias   +0.027  -0.043      +0.019    -0.027        +0.022    -0.073      +0.008    -0.005 

 
 
 

                      Food Insecurity  
                   in the CPS    
                  
 Worst-Case:      p.e.  [-0.399,  0.601]   

           CI   [-0.412   0.614]    
 
 MTS:          p.e.  [-0.399,  0.178]     

           CI   [-0.501   0.406]     
 

 MTS-MIV:      p.e.  [-0.376,  0.138]    
           CI   [-0.412   0.205] 
           bias       +0.025    -0.083 

  
 MTS-MIV-MTR:   p.e.  [-0.376, -0.049]    

           CI   [-0.412   0.000] 
           bias   +0.025    -0.039 

  
                                                    
   † Point estimates (p.e.) and  ‡ 90% Imbens-Manski confidence intervals (CI) using 1,000 pseudosamples  
 * Corrected finite sample bias 
 
 
 
 
 
  



 

Figure 1.  Sharp Bounds on the ATE for Food Insecurity as a Function of P*, the Unobserved 
 True SNAP Participation Rate:  Worst-Case and MTS Bounds 

 
 
 

 
                
       

      P* = P = 0.456             P* = 0.50                     P* = 0.70  
     

             
 Arbitrary errors     p.e.†  [-0.855,  0.944]       [-0.900,  0.900]       [-0.900,  0.700]  

                CI‡   [-0.868   0.956]       [-0.912   0.912]       [-0.913   0.712]      
                

No excess errors    p.e.   [-0.445,  0.555]        [-0.489,  0.599]       [-0.689,  0.700]   
               CI    [-0.460   0.570]       [-0.506   0.619]       [-0.706   0.712]        

                
                  

 Arbitrary errors     p.e.   [-0.855,  0.877]        [-0.900,  0.799]      [-0.900,  0.571]   
                  CI    [-0.868   0.904]       [-0.912   0.824]      [-0.913   0.589]      
                

 No excess errors    p.e.   [-0.445,  0.093]       [-0.489,  0.198]      [-0.689,  0.571]    

               CI    [-0.460   0.139]      [-0.506   0.238]        [-0.706   0.589]     
                                                    
   † Point estimates (p.e.) and  ‡ 90% Imbens-Manski confidence intervals (CI) using 1,000 pseudosamples  
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  Figure 2A. Sharp Bounds on the ATE for Food Insecurity as a Function of P*, the Unobserved 
          True SNAP Participation Rate:  MTS-MIV and MTS-MIV-MTR Bounds 

 
 

 
                               
 
                              P* = P = 0.456           P* = 0.50              P* = 0.70  
       
   (a)  MTS-MIV,          p.e.   [-0.808,  0.402]   [-0.815,  0.368]   [-0.754,  0.368]  
       arbitrary errors       CI    [-0.874   0.543]   [-0.879   0.509]   [-0.816   0.511] 
                        bias†     +0.032   -0.051      +0.032   -0.046      +0.025    -0.054 
        
   (b)  MTS-MIV,          p.e.   [-0.366, -0.128]   [-0.488, -0.027]   [-0.689,  0.208]  
       no false positives      CI    [-0.433  -0.034]   [-0.553   0.074]   [-0.723   0.353] 
                        bias     +0.027   -0.039      +0.025   -0.039      +0.028    -0.063 
 
   (c)  MTS-MIV-MTR,       p.e.   [-0.808, -0.081]   [-0.815, -0.081]   [-0.754, -0.081]  
       arbitrary errors       CI    [-0.874  -0.015]   [-0.879  -0.015]   [-0.816  -0.014] 
                        bias     +0.032   -0.032      +0.032   -0.032      +0.025    -0.032 
        
   (d)  MTS-MIV-MTR,       p.e.   [-0.366, -0.149]   [-0.488, -0.089]   [-0.689, -0.081]  
       no false positives      CI    [-0.433  -0.062]   [-0.553  -0.013]   [-0.723  -0.013] 
                        bias     +0.027   -0.043       +0.025   -0.042      +0.028    -0.032 
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Figure 2B.  Sharp Bounds on the ATE for Poor Health as a Function of P*, the Unobserved 
            True SNAP Participation Rate:  MTS-MIV and MTS-MIV-MTR Bounds 

 
 

 
                               
 
                              P* = P = 0.456           P* = 0.50              P* = 0.70  
       
   (a)  MTS-MIV,          p.e.   [-0.475,  0.104]   [-0.514,  0.094]   [-0.664,  0.068]  
       arbitrary errors       CI    [-0.529   0.133]   [-0.572   0.122]   [-0.745   0.088] 
                        bias     +0.008   -0.010      +0.010   -0.009      +0.017    -0.006 
        
   (b)  MTS-MIV,          p.e.   [-0.398, -0.061]   [-0.500,  0.005]   [-0.664,  0.068]  
       no false positives      CI    [-0.453  -0.005]   [-0.552   0.075]   [-0.739   0.100] 
                        bias     +0.019   -0.021      +0.022   -0.014      +0.017    -0.010 
 
   (c)  MTS-MIV-MTR,       p.e.   [-0.475, -0.031]   [-0.514, -0.031]   [-0.664, -0.031]  
       arbitrary errors       CI    [-0.529   0.000]   [-0.572   0.000]   [-0.745   0.000] 
                        bias     +0.008   -0.025      +0.010   -0.025      +0.017    -0.025 

 
   (d)  MTS-MIV-MTR,       p.e.   [-0.398, -0.061]   [-0.500, -0.031]   [-0.664, -0.031]  
       no false positives      CI    [-0.453  -0.009]   [-0.552   0.000]   [-0.739   0.000] 
                        bias     +0.019   -0.027      +0.022   -0.026      +0.017    -0.025 
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Figure 2C.  Sharp Bounds on the ATE for Obesity as a Function of P*, the Unobserved 
             True SNAP Participation Rate:  MTS-MIV and MTS-MIV-MTR Bounds 

 
 

 
                               
 
                              P* = P = 0.456           P* = 0.50              P* = 0.70  
       
   (a)  MTS-MIV,          p.e.   [-0.587,  0.256]   [-0.625,  0.233]   [-0.764,  0.172]  
       arbitrary errors       CI    [-0.652   0.361]   [-0.695   0.329]   [-0.852   0.222] 
                        bias     +0.011   -0.074      +0.013   -0.056      +0.034    -0.020 
        
   (b)  MTS-MIV,          p.e.   [-0.411, -0.033]   [-0.510,  0.057]   [-0.710,  0.102]  
       no false positives      CI    [-0.474   0.033]   [-0.564   0.153]   [-0.772   0.218] 
                        bias     +0.022   -0.072      +0.023   -0.066      +0.034    -0.047 
 
   (c)  MTS-MIV-MTR,       p.e.   [-0.587, -0.053]   [-0.625, -0.053]   [-0.764, -0.053]  
       arbitrary errors       CI    [-0.652   0.000]   [-0.695   0.000]   [-0.852   0.000] 
                        bias     +0.011   -0.045      +0.013   -0.045      +0.034    -0.045 
        
   (d)  MTS-MIV-MTR,       p.e.   [-0.411, -0.053]   [-0.510, -0.053]   [-0.710, -0.053]  
       no false positives      CI    [-0.474   0.000]   [-0.564   0.000]   [-0.772   0.000] 
                        bias     +0.022   -0.073      +0.023   -0.049      +0.034    -0.045 
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Figure 2D.  Sharp Bounds on the ATE for Anemia as a Function of P*, the Unobserved 
             True SNAP Participation Rate:  MTS-MIV and MTS-MIV-MTR Bounds 

 
 

 
                               
                              P* = P = 0.46             P* = 0.50              P* = 0.70  
       
   (a)  MTS-MIV,          p.e.   [-0.402,  0.010]   [-0.437,  0.009]   [-0.601,  0.006]  
       arbitrary errors       CI    [-0.460   0.016]   [-0.499   0.014]   [-0.689   0.010] 
                        bias     +0.005   -0.003      +0.005   -0.002      +0.007    -0.002 
        
   (b)  MTS-MIV,          p.e.   [-0.391, -0.032]   [-0.437,  0.009]   [-0.601,  0.006]  
       no false positives      CI    [-0.450   0.006]   [-0.498   0.028]   [-0.688   0.010] 
                        bias     +0.008   -0.006      +0.005   -0.008      +0.007    -0.002 
 
   (c)  MTS-MIV-MTR,       p.e.   [-0.402, -0.018]   [-0.445, -0.016]   [-0.601, -0.018]  
       arbitrary errors       CI    [-0.460   0.000]   [-0.499   0.000]   [-0.689   0.000] 
                        bias     +0.005   -0.004      +0.005   -0.004      +0.007    -0.004 
        
   (d)  MTS-MIV-MTR,       p.e.   [-0.391, -0.034]   [-0.437, -0.018]   [-0.601, -0.018]  
       no false positives      CI    [-0.450   0.000]   [-0.498   0.000]   [-0.688   0.000] 
                        bias     +0.008   -0.005      +0.005   -0.004      +0.007    -0.004 
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Appendix A:  

Table A1 

 

Food Insecurity Questions in the Core Food Security Module 
 

1. “We worried whether our food would run out before we got money to buy more.”  Was that often, 
sometimes, or never true for you in the last 12 months?

2. “The food that we bought just didn’t last and we didn’t have money to get more.”  Was that often, 
sometimes, or never true for you in the last 12 months?

3. “We couldn’t afford to eat balanced meals.”  Was that often, sometimes, or never true for you in the last 12 
months? 

4. “We relied on only a few kinds of low-cost food to feed our children because we were running out of money 
to buy food.” Was that often, sometimes, or never true for you in the last 12 months? 

5. In the last 12 months, did you or other adults in the household ever cut the size of your meals or skip meals 
because there wasn’t enough money for food? (Yes/No)

6. “We couldn’t feed our children a balanced meal, because we couldn’t afford that.”  Was that often, 
sometimes, or never true for you in the last 12 months?

7. In the last 12 months, did you ever eat less than you felt you should because there wasn’t enough money for 
food? (Yes/No) 

8. (If yes to Question 5) How often did this happen—almost every month, some months but not every 
month, or in only 1 or 2 months? 

9. “The children were not eating enough because we just couldn’t afford enough food.”  Was that often, 
sometimes, or never true for you in the last 12 months?

10. In the last 12 months, were you ever hungry, but didn’t eat, because you couldn’t afford enough food? 
(Yes/No) 

11. In the last 12 months, did you lose weight because you didn’t have enough money for food? (Yes/No)
12. In the last 12 months, did you ever cut the size of any of the children’s meals because there wasn’t enough 

money for food? (Yes/No) 
13. In the last 12 months did you or other adults in your household ever not eat for a whole day because there 

wasn’t enough money for food? (Yes/No)
14. In the last 12 months, were the children ever hungry but you just couldn’t afford more food? (Yes/No)
15. (If yes to Question 13) How often did this happen—almost every month, some months but not every 

month, or in only 1 or 2 months? 
16. In the last 12 months, did any of the children ever skip a meal because there wasn’t enough money for food? 

(Yes/No) 
17. (If yes to Question 16) How often did this happen—almost every month, some months but not every 

month, or in only 1 or 2 months? 
18. In the last 12 months did any of the children ever not eat for a whole day because there wasn’t enough 

money for food? (Yes/No) 
 

Note:  Responses in bold indicate an affirmative response. 

 
  

  



  

Appendix B: 

Proof of Proposition 1: Subject to the restrictions in Equations (8) and (9), the upper bound is found by 

maximizing ሺߠଵ
ି ൅ ଴ߠ

ାሻ and minimizing ሺߠ଴
ି൅ߠଵ

ାሻ, and vice versa for the lower bound.  

 

For ≥ For the upper bound, first consider the case that ߠଵ
௎஻ି ൒ Δ.  Then ሺߠ଴

ି൅ߠଵ
ାሻ is minimized at 

zero, and Equation (8a) simplifies to ߠଵ
ି െ ଴ߠ

ା ൌ Δ.  Given Equations (8a)-(8c), we know that ߠ଴
ା cannot 

exceed minሼߠ଴
௎஻ା, ଵߠ

௎஻ି െ Δሽ and ߠଵ
ିcannot exceed minሼΔ ൅ ଴ߠ

௎஻ା, ଵߠ
௎஻ିሽ.  From Equation (9), we know 

that ߠଵ
ି ൅ ଴ߠ

ା cannot exceed Qu.  The upper bound follows directly.  Second, consider the case that  ߠଵ
௎஻ି ൏

Δ.  From Equation (8b), we know that ߠଵ
ି cannot exceed ߠଵ

௎஻ି and, to satisfy the restriction in Equation 

(8a), ߠ଴
ି must be no less than Δ െ ଵߠ

௎஻ି.  As before, ߠଵ
ା is minimized at zero.  From Equation (8c), we 

know that ߠ଴
ା can exceed zero but Equation (8a) implies that that any conjectured increase in the false 

positive error rate must be offset by an equivalent increase in the false negative error rate.  So, in this case, 

the upper bound would be unchanged by increasing ߠ଴
ା above zero.  Thus, we have the upper bound of 

ଵߠ2
௎஻ି െ Δ which can be shown to be no greater than 2ߠ଴

௎஻ା ൅ Δ. 

     For the lower bound, first consider the case that ߠ଴
௎஻ି ൒ Δ.  Then, ሺߠଵ

ି ൅ ଴ߠ
ାሻ is minimized at zero, 

and Equation (8a) simplifies to ߠ଴
ି െ ଵߠ

ା ൌ Δ.  Given (8a)-(8c), we know that ߠଵ
ା cannot exceed 

minሼߠଵ
௎஻ା, ଴ߠ

௎஻ି െ Δሽ and ߠ଴
ି cannot exceed minሼߠଵ

௎஻ା ൅ Δ, ଴ߠ
௎஻ିሽ . From Equation (9), we know that 

଴ߠ
ି ൅ ଵߠ

ା cannot exceed Qu.  It follows that maxሼെܳ௨,െ2ߠଵ
௎஻ା െ Δ,െ2ߠ଴

௎஻ି ൅ Δሽ provides a lower bound 

on Θ.  Second, consider the case that ߠ଴
௎஻ି ൏ Δ.  From Equation (8b), we know that ߠ଴

ି cannot exceed 

଴ߠ
௎஻ି and, to satisfy the restriction in Equation (8a), ߠଵ

ି must be no less than Δ െ ଴ߠ
௎஻ି.  As before, ߠ଴

ାis 

minimized at zero.  From Equation (8c), we know that ߠଵ
ା can exceed zero but Equation (8a) implies that 

any conjectured increase in the false positive error rate must be offset by an equivalent increase in the false 

negative error.  So, in this case, the lower bound would be unchanged by increasing ߠଵ
ା above zero.  Thus, 

we have the lower bound of െ2ߠ଴
௎஻ି ൅ ∆ which can be shown to be no smaller than -2ߠଵ

௎஻ା െ ∆.  

For < For the upper bound, first consider the case that ߠ଴
௎஻ା ൒ െΔ.  Then ሺߠ଴

ି൅ߠଵ
ାሻ is minimized at 

zero, and Equation (8a) simplifies to ߠଵ
ି െ ଴ߠ

ା ൌ Δ.  Given Equations (8a)-(8c), we know that ߠଵ
ି cannot 

exceed minሼߠଵ
௎஻ି , ଴ߠ

௎஻ା ൅ Δሽ and ߠ଴
ା cannot exceed minሼߠଵ

௎஻ି െ Δ, ଴ߠ
௎஻ାሽ. From Equation (9), we 

know that ߠଵ
ି ൅ ଴ߠ

ା cannot exceed Qu. The upper bound follows directly.  Second, consider the case where 

଴ߠ
௎஻ା ൏ െΔ.  From Equation (8b), we know that ߠ଴

ା cannot exceed ߠ଴
௎஻ା and, to satisfy the restriction in 

Equation (8a), ߠଵ
ା must be no less than െΔ െ ଴ߠ

௎஻ା.  As before, ߠ଴
ି is minimized at zero.  From Equation 



  

(8c), we know that ߠଵ
ି can exceed zero but the restriction in Equation (8a) implies that that any conjectured 

increase in the false negative error rate must be offset by an equivalent increase in the false positive error 

rate.  So in this case, the upper bound would be unchanged by increasing ߠଵ
ି above zero.  Thus, we have the 

upper bound of 2ߠ଴
௎஻ା ൅ Δ which can be shown to be no greater than 2ߠଵ

௎஻ି െ Δ.  

     For the lower bound, first consider the case that ߠଵ
௎஻ା ൒ െΔ.  Then, ሺߠଵ

ି ൅ ଴ߠ
ାሻ is minimized at 

zero, and Equation (8a) simplifies to ߠ଴
ି െ ଵߠ

ା ൌ Δ.  Given (8a)-(8c), we know that ߠ଴
ି cannot exceed 

minሼߠ଴
௎஻ି, ଵߠ

௎஻ା ൅ Δሽ and ߠଵ
ା cannot exceed  minሼߠ଴

௎஻ି െ Δ, ଵߠ
௎஻ାሽ. From Equation (9), we know that 

ሺߠ଴
ିሻ ൅ ሺߠଵ

ାሻ cannot exceed Qu.  It follows that maxሼെܳ௨,െ2ߠଵ
௎஻ା െ Δ,െ2ߠ଴

௎஻ି ൅ Δሽ provides a lower 

bound on Θ.  Second, consider the case that ߠଵ
௎஻ା ൏ െΔ.  From Equation (8b), we know that ߠଵ

ା  cannot 

exceed ߠଵ
௎஻ା and, to satisfy the restriction in Equation (8a), ߠ଴

ା must be no less than െΔ െ ଵߠ
௎஻ା.  As 

before, ߠଵ
ି is minimized at zero.  From Equation (8c), we know that ߠ଴

ି can exceed zero but Equation (8a) 

implies that any conjectured increase in the false negative error rate must be offset by an equivalent 

increase in the false positive error.  So, in this case, the lower bound would be unchanged by increasing ߠ଴
ି 

above zero.  Thus, we have the lower bound of െ2ߠଵ
௎஻ା െ ∆ which can be shown to be no smaller than 

െ2ߠ଴
௎஻ି ൅ ∆.�



Proof of Proposition 2: The objective is to maximize 1
  and minimize 1

  subject to each conditional 
probability lying between 0 and 1 and the constraints in Equations (8) and (9).   
 

Case (i): When ܲ∗ ൏ ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻ, the first ratio in Equation (10) exceeds 1 unless 1
  is at least as 

large as ߠଵ
ା∗ ≡ ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻ െ ܲ∗.  At this value, the first ratio still exceeds 1 unless *

1 0   .  The 

upper bound for this case is maximized at *
1
  and *

1
 , with the difference in Equation (10) reducing to 

௉ሺுୀ଴ሻ

௉ሺிௌ∗ୀ଴ሻ
.  All constraints in Equations (8) and (9) are satisfied.  Case (ii): When ܲ∗ ൒ ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻ, 

set *
1 0   and recall that ߠଵ

ି ൑ minሼܳ௨, ܲሺܪ ൌ 1, ܵܨ ൌ 0ሻ, ܲሺܵܨ∗ ൌ 1ሻሽ by Equations (8b) and (9). Also, 

the first ratio in Equation (10) exceeds 1 unless ߠଵ
ି ൑  ܲሺܵܨ∗ ൌ 1ሻ െ ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻ, which is 

nonnegative by assumption in Case (ii).  Thus, set   

*
1
 ൌ minሼܳ௨, ܲሺܪ ൌ 1, ܵܨ ൌ 0ሻ, ܲሺܵܨ∗ ൌ 1ሻ, ܲሺܵܨ∗ ൌ 1ሻ െ ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻሽ 

ൌ minሼܲሺܪ ൌ 1, ܵܨ ൌ 0ሻ, ܲሺܵܨ∗ ൌ 1ሻ െ ܲሺܪ ൌ 1, ܵܨ ൌ 1ሻሽ.  Again, all of the constraints in Equations 

(8) and (9) are satisfied.   � 

 
 




