
Behavior-Based Planning for Intelligent Autonomous Vehicles

Julio K. Rosenblatt*
University of Maryland Institute for Advanced Computer Studies

A.V. Williams Building, College Park, MD 20742, USA
julio@cs.umd.edu, http://www.cs.umd.edu/~julio

Abstract

* New address as of November 3, 1997:
Dept. of Mechanical & Mechatronic Engineering
University of Sydney, NSW 2006, Australia

An architecture is presented in which distributed
decision-making processes cooperatively determine a
mobile robot’s path by sending votes to a centralized
arbiter. One type of arbiter defined within this DAMN
architecture performscommand fusion to select that
action which best satisfies the combined behavior votes,
allowing multiple goals and constraints to be considered
simultaneously. Another type of arbiter performs action
selection viautility fusion. Within the utility fusion
framework, behaviors indicate the utility of various
possible world states and the arbiter determines the next
action based on the maximization of expected utility.
Thus, DAMN performs centralized arbitration of votes
from distributed behaviors and in so doing provides
coherent, rational, goal-directed behavior while
preserving real-time responsiveness to its immediate
physical environment

Keywords: behavior-based architectures, autonomous
vehicles, distributed planning, navigation

1 ARCHITECTURAL ISSUES

In domains such as mobile robot navigation, the
dominant characteristics which must be addressed by an
intelligent agent are the incomplete and uncertain
knowledge of its environment, uncertainty in the current
state of a complex system, as well as uncertainty in the
effects of the agent’s own actions. In order to function
effectively in unstructured, unknown, and dynamic
environments, planning systems cannot generate a plan
a priori that can be expected to perform reasonably in
the face of such uncertainty, nor can they anticipate all
contingencies that may arise. Planning systems must be
reactive in the sense that their decisions must take into
account current information and state at all times,
proceeding in a data-driven manner, rather than
attempting to impose unrealizable plans in a top-down
fashion.

Some key issues to be considered in the design of a
planning and control architecture are whether the
architecture should be centralized or distributed,
whether the reasoning should be reactive or deliberative,
and whether control should be top-down or bottom-up.

In addition, there is a fundamental choice to be made in
the method by which information from multiple sources
is combined, via sensor fusion or command arbitration.
These issues, which are of course interrelated, should
not be treated as dichotomies, but rather as continuous
spectra to be considered as design trade-offs to be
combined for the desired capabilities of the system. The
question then becomes not “which one?” but rather
“how much of each?” for a particular class of domains.

As with any complex system, tradeoffs must be
made between the coherence, correctness, and relative
straightforwardness of a centralized system one the one
hand and the responsiveness, robustness, and flexibility
of a distributed system on the other. Some form of
layered architecture is highly desirable for the
development and use of a complex, versatile robot
control system.

Centralized mobile robot systems operate by
gathering all available sensory data, creating a complete
model of its static environment, planning an optimal
series of actions within the context of that model, and
then executing that plan [Durrant-Whyte, 1986;
Moravec, 1990; Nilsson, 1984; Shaferet al., 1986]. The
robot would then gather more information and the
process would repeat. This approach has the advantage
of being able to combine evidence to overcome
ambiguities and noise inherent in the sensing process
[Moravec & Elfes, 1985], but has the disadvantage of
creating a computationally expensive sensory
bottleneck; all sensor data must be collected and
integrated before it can be acted upon. A single
monolithic world model is also more difficult to
develop, maintain, and extend. In addition to
introducing potentially harmful delays, a centralized
architecture also leads to brittleness because the system
may fail entirely if any single part of it is not
functioning properly.

Another difficulty with sensor fusion is that
information from disparate sources such as maps, sonar,
and video, are generally not amenable to combination
within a single representational framework that is
suitable for planning such dissimilar tasks as following
roads and avoiding obstacles. For example, ALVINN
[Pomerleau, 1992] uses an artificial neural network to
associate video images of roads with appropriate
steering directions and has been one of the most

successful road following systems to date, yet it has
been less successful than other systems such as Smarty
[Langer et al., 1994] which use range data for the
purpose of obstacle avoidance. Thus, by requiring a
single representation for all sensor and map data, a
centralized architecture does not allow specialized
modules to use other representations and algorithms
best suited to the task at hand.

In contrast, in behavior-based architectures, the
perceptual processing is distributed across multiple
independent modules. Each action-producing module,
or behavior, operating asynchronously and in parallel
with other behaviors, is responsible for a particular
aspect of vehicle control or for achieving some
particular task, based on only that sensory data which is
directly relevant to its particular decision-making needs.
A behavior encapsulates the perception, planning and
task execution capabilities necessary to achieve one
specific aspect of robot control. Thus, in such an
architecture, not only the sensing and planning, but the
actual control of the robot itself is distributed across
multiple independent modules. Therefore, in a
behavior-based system, it is necessary to select among
or combine the actions suggested by the various
behaviors to produce an action that meets the needs of
the overall system. By appropriately combining
behavior commands through arbitration, a robot control
system can respond to its environment without suffering
the problems inherent in sensor fusion such as
bottlenecks; however, command arbitration runs the risk
of losing information valuable to the decision-making
process. A careful balance must be struck between
completeness and optimality on the one hand versus
modularity and efficiency on the other.

Frameworks such as the Subsumption Architecture
[Brooks, 1986] and Gapps [Rosenschein & Kaelbling,
1986] arbitrate among behaviors by explicitly or
implicitly assigning priorities to each behavior; of all
the behaviors issuing commands, the one with the
highest priority is in control and the rest are ignored.
However, one of the requirements for an intelligent
planning and control system is that it be capable of
satisfying multiple, possibly conflicting goals [Simon,
1967]. While priority-based schemes are effective when
choosing among incompatible commands, they do not
provide an adequate means for dealing with multiple
goals that can and should be satisfied simultaneously
[Rosenblatt & Thorpe, 1995).

Hierarchical architectures [Albuset al., 1987] are
another type of distributed system in which the modules
are organized into multiple control levels that operate at
varying granularities, levels of abstraction, and time
scales. They are composed of multiple control levels,
each of which have the same type of structure as a
centralized system; however, each level operates in
parallel at a different rate, so that the lowest levels are
free to respond to immediate stimuli without having to
wait for higher level reasoning processes. While this

framework effectively bypasses the sequential
bottlenecks of purely centralized systems, this recursive
decomposition imposes a rigid structure which has been
found in practice to be overly constraining; no structure
has been found to be appropriate for all levels.

Hybrid architectures have also been proposed as a
means to combine the complementary strengths and
weaknesses of deliberative and reactive architectures
[Payton, 1986). Hybrid architectures consist of layers,
each composed of different reasoning elements
operating within various paradigms. At the top level is a
deliberative planner which assimilates all available
information and creates long-term global plans to be
used by the lower levels. The lowest level consists of a
behavior-based reactive planner which responds in
real-time to sensory stimuli, but when possible also
takes into account the higher level considerations or
constraints passed down to it from above. In most
hybrid architectures, an intermediate level also appears
between the high level symbolic reasoning of the
deliberative planner and the low level numerical
computations of the reactive planner operating at the
actuator control level [Gat, 1992).

In hierarchical and hybrid architectures, the design
and operation of the robot control system are expected
to proceed in a top-down manner; each level controls
the level beneath it and assumes that its commands will
execute as anticipated. Since expectations are not
always met, there is a need to monitor the progress of
desired actions and to report failures as they occur
[Simmonset al., 1990]. In an unstructured, unknown, or
dynamic environment, this approach introduces
complexities and inefficiencies which could be avoided
if higher level modules participated in the
decision-making process without assuming that their
commands will be strictly followed [Paytonet al.,
1990]. In addition, only one module in a given level is
activated by the level above and allowed to participate
in the decision-making process, and a decision made at a
higher level severely constrains the range of possible
solutions which may be found by lower levels, often
without sufficient information to warrant such a
restriction. In contrast, DAMN combines reaction and
deliberation within a single level; there are no layers of
control.

2 THE DISTRIBUTED ARCHITECTURE
FOR MOBILE NAVIGATION

Rather than imposing a top-down structure to achieve
this desired symbiosis of deliberative and reactive
elements, the Distributed Architecture for Mobile
Navigation (DAMN) takes an approach where multiple
behaviors concurrently share control of the robot. It
consists of a group of distributed behaviors such as road
following or obstacle avoidance which send votes to a
centralized command arbiter, as shown in Figure 1.

Figure 1: DAMN framework consists of centralized
arbitration of votes from distributed behaviors

Each behavior is assigned a weight reflecting its
relative priority in controlling the vehicle. A mode
manager may also be used to vary these weights during
the course of a mission based on knowledge of which
behaviors would be most relevant and reliable in a given
situation. The arbiter is then responsible for combining
the behaviors’ votes and generating actions which
reflects their objectives and priorities; the appropriate
commands are then sent to the vehicle controller. The
behaviors are developed independently and function
separately; each behavior functions without any explicit
knowledge of or communication with any module other
than the central arbiter, thus promoting and facilitating
evolutionary system development. The distributed,
asynchronous nature of the architecture provides
real-time responsiveness to its immediate physical
environment and allows multiple goals and constraints
to be fulfilled simultaneously, while the centralized
command arbitration provides a framework capable of
producing coherent, rational, goal-directed behavior.

Unlike other behavior-based systems that use
priorities to effect a traded control system, DAMN takes
a shared control approach where several modules
concurrently have some responsibility for control of the
robot. So that multiple considerations may concurrently
affect decision-making, DAMN uses a scheme where
each behavior votes for or against each of a set of
possible vehicle actions. An arbiter then performs
command fusion to select the most appropriate action.
Although all votes must pass through the command
arbiter before an action is taken, the function provided
by the arbiter is fairly simple and does not represent the
centralized bottleneck of more traditional systems.
While the Motor Schema framework [Arkin, 1989] also
offers a means of fusing commands from multiple
behaviors, it suffers from the well known problem of
localminima in potential fields. Another, perhaps more
serious problem, is that arbitration via vector addition
can result in a command which is not satisfactory to any

MAINTAIN
HEADING

AVOID
OBSTACLES

AVOID
TIP-OVER

DAMN
ARBITER

SEEK
GOAL

FOLLOW
ROAD

commands

MODE
MANAGER

weights

votes votes

BEHAVIORS

of the contributing behaviors. DAMN arbiters do not
average commands, but rather select the command
which has the most votes from the behaviors.

Higher-level planners are instantiated as behaviors
and send votes to the arbiter just as any other behavior
would. Thus, plans are not used in a top-down fashion
but rather as a source of advice, so that the flexibility of
the reactive level is preserved [Paytonet al., 1990]. The
distinction made in DAMN is not in the level of
abstraction of a given module, but rather whether its
domain is represented and acted upon in a discrete or
continuous manner; all continuous servo-like activity is
instantiated as a voting behavior without regard for the
time or space scale in which it operates; sequential
activity and discrete mode changes are controlled by a
meta-level mode manager which ensures that behaviors
with mutually exclusive goals do not operate
simultaneously.

Since both deliberative and reflexive modules are
needed, DAMN is designed so that behaviors can issue
votes at any rate; for example, one behavior may operate
reflexively at 10 Hz, another may maintain some local
information and operate at 1 Hz, while yet another
module may plan optimal paths in a global map and
issue votes at a rate of 0.1 Hz. The use of distributed
shared control allows multiple levels of planning to be
used in decision-making without the need for an
hierarchical structure. However, higher-level reasoning
modules may still exert meta-level control within
DAMN by modifying the voting weights assigned to
behaviors and thus controlling the degree to which each
behavior may influence the system’s decision-making
process and thus the robot’s actions.

3 DAMN ARBITERS

In order to preserve the respective advantages of
centralized and distributed architectures and provide for
effective shared control, sufficient information must be
communicated from the behaviors to allow the arbiter to
make intelligent decisions, but the arbiter must not be so
complex as to become a bottleneck for the system.
Various points along this trade-off spectrum have been
explored within DAMN, using different types of arbiters
and vote structures.

3.1 Turn Arbiter
In one DAMN arbitration scheme, each behavior votes
for or against various alternatives in the actuator
command space; for example, the turn arbiter receives
votes for a fixed set of curvatures which represent the
possible steering commands for vehicles with
Ackerman steering, as shown in Figure 2. Each behavior
generates a vote between -1 and +1 for every possible
steering command, with negative votes being against
and positive votes for a particular command option. The
votes generated by each behavior are only
recommendations to the arbiter.

Figure 2: Curvature-based turn command space

The arbiter collects the new votes from each
behavior that has sent them, and performs a normalized
weighted sum to find the turn command with the
maximum vote value. In order to avoid problems with
discretization such as biasing and “bang-bang control”
(i.e., alternating between discrete values in order to
achieve an intermediate value), the arbiter performs
sub-pixel interpolation.The arbitration process is
illustrated in Figure 3, where: (a & b) the votes from
behaviors are received, (c) a weighted sum of those
votes is computed, nd (d), the summed votes are
smoothed and interpolated to produce the resulting
command sent to the vehicle controller. This is similar
to defuzzification in Fuzzy Logic control systems [Lee,
1990; Kamadaet al., 1990); indeed an architecture has
been implemented which recasts this type of DAMN
arbitration into a Fuzzy Logic framework [Yen &
Pfluger, 1992).

Figure 3: Command fusion

STRAIGHT
AHEAD

HARD
RIGHT

SOFT
RIGHT

SOFT
LEFT

HARD
LEFT

a) Behavior 1, weight = 0.8, desired curvature = 0.04

c) Weighted Sum, max vote curvature = 0.035

d) Smoothed and Interpolated, peak curvature=0.033

b) Behavior 2, weight = 0.2, desired curvature = 0.0

0 +0.125-0.125

0 +0.125-0.125

0 +0.125-0.125

0 +0.125-0.125

This arbitration scheme provides a means by which
commands can be combined, unlike action selection
schemes that choose a single behavior’s command to be
used in controlling the robot. However, the information
supplied to the arbiter is somewhat minimal so that it is
unable to take into consideration the dynamics of the
plant being controlled, i.e., the vehicle’s speed and turn
radius; it is assumed that the vehicle is moving slowly
enough that dynamics do not play an important role. In
addition, it is assumed that behaviors will be able to
update their votes at a sufficiently fast rate compared to
vehicle speed and that those votes will be acted upon
quickly enough by the system such that the arbiter
receives a new set of votes from each behavior and acts
on it before vehicle motion has rendered that behavior’s
votes obsolete or erroneous. Furthermore, it is assumed
that votes are received often enough from all behaviors
that synchronization of their votes is not a concern.
These assumptions were reasonable for the slow vehicle
speeds used in experimentation, and indeed the turn
arbiter worked quite well; however, as the speed of
image acquisition and processing techniques improves,
these assumptions lose their validity.

3.2 Path Arbiter
In another DAMN arbitration scheme, behaviors do not
vote for commands but instead express theutility of
possible world states which may be represented within a
map, and it is the responsibility of the arbiter to
determine which states are actually attainable and how
to go about achieving them. This type of arbiter is no
longer performing command fusion, nor is it performing
sensor fusion; it is combining utilities to perform
evidence fusion. With this scheme, plant dynamics may
be fully accounted for, and vote obsolescence only
becomes an issue if the vehicle is moving faster than
information can be collected and processed by the
behavior, which is an unavoidable limitation of any
control system. This new approach strikes a balance
between the extremes of action selection and sensor
fusion and has been found to yield many benefits.

For example, a map-based path arbiter has been
implemented as a very different means of voting for and
producing steering control. Behaviors communicating
with the path arbiter vote on the desirability of various
possible vehicle locations, and the arbiter maintains a
local map of these votes, as indicated in Figure 4. Based
on the vehicle’s current state, the path arbiter evaluates
the possible trajectories which may be followed, and
selects that one for which the total utility is the greatest.
This external location-based scheme is capable of
maintaining a consistent interpretation of the votes
received and correctly coordinating votes received at
different times and from different locations, and
updating them as the vehicle state changes, i.e., as it
moves. Behaviors can function without knowledge of
the system dynamics, thus increasing their reusability
for other systems.

Figure 4: Map-based path arbiter

The voting scheme for this class of arbiter is cast
within the framework of utility theory so that
uncertainty within the system is explicitly represented
and reasoned about within the decision-making
processes. Each behavior votes for the subjective utility
of the vehicle being in the various particular locations of
concern to that behavior, e.g. obstacle locations or road
locations. The behavior may also express any
uncertainty associated with the perception process. The
arbiter can then use utility theory to reason explicitly
about the uncertainty in position and control of the
vehicle and theMaximum Expected Utility (MEU)
criterion can be applied to select the optimal action
based on current information.

4 CONCLUSION

Because reactivity is essential for any real-time system,
we must eschew the sensing and planning bottlenecks of
centralized systems, but if we are to avoid sensor fusion,
the system must combine command inputs to determine
an appropriate course of action. However, priority-based
arbitration only allows one module to affect control at
any given time. Command fusion provides a mechanism
for the concurrent satisfaction of multiple goals, and
allows modules to be completely independent, thus
allowing incremental, evolutionary system
development.

The Distributed Architecture for Mobile
Navigation is a planning and control architecture in
which a collection of independently operating behaviors
collectively determine a robot’s actions. A command
arbiter combines the behavior outputs and selects that
action which best satisfies the prioritized goals of the
system. The distributed, asynchronous nature of the
architecture allows multiple goals and constraints to be
fulfilled simultaneously, thus providing goal-oriented
behavior without sacrificing real-time responsiveness.
Unlike other behavior-based architectures, DAMN is
designed so that behaviors provide both deliberative and
reflexive capabilities; the use of distributed shared
control allows multiple levels of planning to be used in
decision-making without the need for an hierarchical
structure.

DAMN has been used to combine various systems
of differing capabilities on several mobile robots, and
has also been used for active sensor control. Various
subsystems developed at CMU and elsewhere have been
integrated within this architecture, creating systems that
perform road following, cross-country navigation,
map-based route following, and teleoperation while
avoiding obstacles and meeting mission objectives
[Langeret al., 1994].

REFERENCES

[Albus et al., 1987] Albus, J., McCain, H. & Lumia, R.
NASA/NBS Standard Reference Model for Telerobot
Control System Architecture (NASREM), Tech. Note
1235, Gaithersburg, MD, 1987.

[Arkin, 1989] Arkin, R., (1989)Motor Schema-Based
Mobile Robot Navigation, in International Journal of
Robotics Research, Vol. 8(4), August 1989, pp.
92-112.

[Brooks, 1986] Brooks, R. (1986),A Robust Layered
Control System for a Mobile Robot, IEEE Journal of
Robotics and Automation vol. RA-2, no. 1, pp. 14-23,
April 1986.

[Durrant-Whyte, 1986] Durrant-Whyte, H., Integration,
Coordination, and Control of Multi-Sensor Robot
Systems, Ph.D. dissertation, University of
Pennsylvania, Philadelphia, PA, 1986.

[Gat, 1992] Gat. E., Integrating Planning and Reacting in
a Heterogeneous Asynchronous Architecture
for Controlling Real-World Robots, in proceedings of
Eleventh AAAI, 1992.

[Kamadaet al., 1990] Kamada, H., Naoi, S., Goto, T.
(1990),A Compact Navigation System Using Image
Processing and Fuzzy Control, IEEE Southeastcon,
New Orleans, April 1-4, 1990

[Langer et al., 1994] Langer, D., Rosenblatt, J. &.
Hebert, M. A Behavior-Based System For Off-Road
Navigation. In IEEE Journal of Robotics and
Automation, vol. 10, no. 6, pp. 776-782, December
1994.

[Lee, 1990] Lee, C.Fuzzy Logic in Control Systems:
Fuzzy Logic Controller -- Parts I & II, IEEE
Transactions on Systems, Man and Cybernetics, Vol.
20, No. 2, 1990.

[Moravec, 1990] Moravec, H.,The Stanford Cart and the
CMU Rover, in Cox, I. and Wilfong, G.,Autonomous
Robot Vehicles, Springer-Verlag, 1990.

[Moravec & Elfes, 1985] Moravec, H., and Elfes, A.,
High Resolution Map From Wide-Angle Sonar, in
proceedings of theIEEE International Conference on
Robotics and Automation, pp.116-121, 1985.

[Nilsson, 1984] N. Nilsson,Shakey the Robot, SRI Tech.
Note 323, Menlo Park, Calif., 1984.

[Payton, 1986] Payton, D. (1986),An Architecture for
Reflexive Autonomous Vehicle Control, ICRA, San
Francisco, CA, April 7-10, 1986, pp. 1838-1845.

[Payton et al., 1990] Payton, D., Rosenblatt, J. &
Keirsey, D. (1990),Plan Guided Reaction. IEEE
Transactions on Systems Man and Cybernetics, 20(6),
pp. 1370-1382.

[Pomerleau, 1992] D. Pomerleau,Neural Network
Perception for Mobile Robot Guidance, Ph.D.
dissertation, Carnegie-Mellon Technical Report
CMU-CS-92-115, 1992

[Rosenblatt and Thorpe, 1995] Rosenblatt, J. & Thorpe,
C. Combining Multiple Goals in a Behavior-Based
Architecture. InProceedings of 1995 International
Conference on Intelligent Robots and Systems,
Pittsburgh, PA, August 7-9, 1995.

[Rosenschein & Kaelbling, 1986] Rosenschein, S. &
Kaelbling, L.The Synthesis of Digital Machines with
Provable Epistemic Properties, Theoretical Aspects
of Reasoning about Knowledge, pp. 83-98, 1986

[Shaferet al., 1986] Shafer, S., Stentz, A., Thorpe, C.,
An Architecture for Sensor Fusion in a Mobile Robot,
Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 2002-2011, San
Francisco, CA, April, 1986.

[Simon, 1967] Simon, H. Motivational and Emotional
Controls of Cognition. Reprinted in Models of
Thought, Yale University Press, 1979, pp. 29-38,
1967.

[Simmonset al., 1990] Simmons, R., Lin, L.J., Fedor, C.
Autonomous Task Control for Mobile Robots, in Proc.
IEEE Symposium on Intelligent Control,
Philadelphia, PA, September 1990.

[Yen & Pfluger, 1992] Yen, J., Pfluger, N.A Fuzzy Logic
Based Robot Navigation System, AAAI Fall
Symposium, Cambridge, MA, 1992.

