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1 Introduction1.1 BackgroundAs WDM systems start emerging from laboratories and being deployed in commercial contexts, themain resource allocation problem associated with WDM networks | of e�ciently allocating wavelengthsto lightpaths | becomes of crucial importance. The focus of most past research on the allocation ofwavelengths in WDM networks (e.g, [1, 2, 3, 4] and several works in [5]) has been based on a combinationof the following approaches: (1) maximalistic approaches, in which optimization of multiple parametersof this hard problem is attempted, (2) heuristic approaches, in which the performance of the solution isdemonstrated, but no guarantees are proven, (3) probabilistic approaches, in which the arrival/departureprocess of lightpaths is known (or assumed), (4) provably suboptimal approaches, in which wavelengthallocation is far from optimal, and (5) higher network level view, in which the lightpaths are assumed tobe required for the use of a single higher level network (e.g., ATM), and thus the needs of that networkare optimized together with the lightpath problem.The main drawback of most of the above approaches stems from the severe limitations that currentoptical technologies impose on the amount of available wavelengths per �ber. While experimental sys-tems report large number of up to 100 wavelengths per �ber [6], current state-of-the-art manufacturingprocesses restrict the number of wavelengths per �ber of commercial WDM multiplexers to as low as4 (Pirelli), 8 (Lucent Technologies), and up to 20 (IBM). On the other hand, the lack of commercialoptical wavelength converters currently overrules better reuse of wavelengths. As a result, this verylimited resource must be exploited most carefully to achieve low blocking probabilities of lightpathrequests.While approach (5) attempts to alleviate this bottleneck by designing the higher level network tooptimize the number of wavelengths, it is not suitable in situations in which the lightpath provider isnot aware of or is not involved in the management of higher level networks.The current research takes a di�erent approach. Instead of focusing on general topologies butrestricted arrival/departure processes of lightpath requests, we assume no knowledge on these processes1



(nor any other considerations that restrict the request pattern) but restrict the topology to rings only.We believe that this topological restriction still yields results of high practical value since ring networksare the predominant topology for current MAN/Intero�ce networks, and are thus expected to be the�rst topology to be used for WDM networks outside laboratories and testbeds. We also focus onworst case analysis of the problem as it is the only approach which guarantees robust bounds on theperformance of the system. This restricted model enables us to study in greater depth the behavior ofthe problem and achieve almost tight bounds for di�erent scenarios.We separate the routing problem, of determining which part of the ring should be used to connectthe source and destination of a lightpath request, from the wavelength allocation problem, of assigninga wavelength to each route. This technique is justi�ed for the following reasons:� The network users may choose to have control on the routing to support fault tolerance (namely,two routes may require disjoint paths as they are responsible for backing up each other),� Additional considerations, such as constraints on propagation delays may require some route totake the short alternative around the ring,� There exists an optimal algorithm for solving the static routing problem along on a ring [7],namely, the case in which all the requests are known in advance. For the dynamic case (in whichcase the requests arrive at di�erent times and the algorithm has to react without knowledge ofthe future) we prove that an almost optimal heuristic is to use shortest path routing. Thesealgorithms may be employed as a �rst stage, and used as an input to the wavelength allocationproblem,� Computationally e�cient solutions to the combined routing and wavelength allocation problemwhich allocate resources optimally are not plausible [8].1.2 Related works and contribution of the paperSubstantial analytical research has been carried out in recent years on routing and wavelength allocationproblems for lightwave networks, starting with classic graph-theoretical problems of coloring the nodes2



of interval graphs and circular arc graphs, which correspond to wavelength allocation in chain and ringnetworks respectively, through various models of tree topologies [2, 9, 10], and general mesh topologies[3, 9]. On the other hand, numerous heuristic techniques have been proposed for the design of lightpathsin such systems [11, 12, 13, 14, 1, 15, 16].Even for ring networks the composite problem of �nding a route for each lightpath request andallocating a wavelength to it is very hard (proven to be NP-complete in [8]). It is therefore reasonableto split the problem into two phases: (1) �nding a route for each lightpath request and (2) allocatinga wavelength to it.As far as the �rst problem is concerned, an optimal algorithm exists for the static design problem[7]. The dynamic case for this problem is considered in the present work, in which we show that thesimple shortest-path heuristics is up to twice away from the optimal solution.As far as the second problem is concerned, given a sequence of lightpath requests and the physicalroute for each of them, let the maximum load on any link in the network (denoted Lmax) be themaximum number of these routes that share a link. This characteristic of a lightpath request systemturns out to be the major factor in the worst case analysis of the system. Clearly, Lmax is a lowerbound on the number of required wavelengths since each lightpath that shares a link with maximumload must be assigned a di�erent wavelength.Focusing on ring networks, the best known approximation for the static case (as far as worst-casebounds are concerned) requires up to 2Lmax � 1 wavelengths in the worst case [17]. This upper boundis matched by a worst-case scenario presented herein which indeed requires 2Lmax � 1 wavelengths.In many cases, it is unreasonable to assume that all lightpaths are given in advance, and moredynamic scenarios must be considered. A �rst step in this direction is the semi-dynamic scenario,in which lightpath addition requests arrive into the system with some unknown distribution, howeverno lightpaths are deleted. For this case, [18] has presented an algorithm which requires W � 3Lmaxwavelengths. A matching lower bound of W � 3Lmax � 2 is presented in [19].However, for practical purposes it is unreasonable to assume that lightpaths are not deleted from the3



network. Thus, it is necessary to study fully-dynamic scenarios. For this case the only known results arebased on probabilistic models, assuming standard Poisson arrival processes [14]. In the current paperwe present a wavelength allocation algorithm that requires at most W � 2Lmax log2N wavelengths fora ring with N nodes. We also prove a lower bound of 0:5Lmax log2N , thereby proving our algorithmto perform at most 4 times worse than the optimum. To the best of our knowledge, this is the �rstanalytical result with provable bounds for this model.An important conclusion from these results is that, at least as far as worst case analysis is concerned,fully dynamic scenarios result in signi�cant degradation of the utilization of wavelengths, and that thedi�erence between the e�ciency of semi-dynamic scenarios and fully dynamic ones (i.e., the fact thatdeletions are allowed) grows logarithmically with the network size.The paper is organized as follows. In Section 2 we address the static allocation problem, presentthe known upper bound algorithm and prove a tight lower bound for it. in Section 3 we addressthe dynamic problem, show that other known algorithms (circular �rst-�t, random allocation) fail toproduce acceptable results, present our algorithm and analyze its worst-case performance. We alsoprove a lower bound which is only four times smaller than the upper bound. In Section 4 we suggesttwo improved algorithms and prove they are as good in the worst case as the original algorithm but arebetter if blocking is necessary, and in Section 5 we summarize the results and suggest further research.2 Static AllocationWe start by considering the simplest case, in which the full set of lightpaths is given in advance. Thiscase is applicable in many networks, in which the required set of lightpaths is determined as part of thenetwork design phase of a higher level network.The optimal algorithm in Figure 1 for this problem was suggested in [17]. A similar result isreported in [9]. Refer also to Figure 2 for a pictorial demonstration. This algorithm may require up toW � Lmax+Lnodemin wavelengths, where Lnodemin is de�ned as the minimum, over all nodes, of the number oflightpaths that go through the node (that is, are neither added nor dropped): up to Lmax wavelengths4



0. INPUT: a set of lightpath requests (a set of arcs on the ring).1. Find a node v on the ring with a minimum number of routes traversing through it(Lnodemin ).2. Logically cut the ring at this point: duplicate v and split the route of each requestpasses that through v into two requests.3. The resulting problem is that of allocating wavelengths to routes on a chain network.This problem is termed the coloring problem of an interval graph, and can be solved op-timally (with W = Lmax wavelengths) by a greedy algorithm [20, Sec.16.5] that assignswavelengths to routes by scanning the chain from its leftmost point. The wavelengthsare assigned in an arbitrary order: whenever the scan meets a new route, it assigns itone of the available wavelengths (which now becomes unavailable until the scan meetsthe rightmost end of the route).4. When reconnecting the endpoints of the chain into the original ring, routes which weresplit at Step 2, may have di�erent wavelengths assigned to their two parts. For eachsuch case, assign a completely new wavelength to the route.Figure 1: Static allocation of wavelengthsmay be required for allocating lightpaths on the chain created in Step 2, and up to Lnodemin for routesthat have been split in Step 2 are assigned new wavelengths in Step 4. Furthermore, it is easy to seethat Lnodemin < Lmax, since even if all links have a load of Lmax, not all the lightpaths that create thisload can traverse through each and every node. Thus, W � 2Lmax � 1.Next, we prove that in the worst case, indeed W = 2Lmax � 1 wavelengths are required.Theorem1. Given a ring with N > 2Lmax nodes, there exist lightpath request patterns that requireW = 2Lmax � 1 wavelengths.Proof. Consider the set of requests depicted in Figure 3. These requests are divided into three groups:A = fa1; :::; aL�1g, B = fb1; :::; bL�1g and fcg. All the routes in group A overlap on link A, and allthe routes in group B overlap on link B. In addition, each ai 2 A overlaps all the bj 2 B for j < iin the part of the ring below the line [A;B], and all bj 2 B for j � i above that line. In addition, coverlaps all the other routes. Thus, we have 2(L � 1) + 1 routes that overlap each other and need atleast W = 2L � 1 wavelengths. The maximal load is clearly Lmax = L.5
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(b) The routing after moving x of the routes to the (a) Shortest path routingFigure 4: Shortest path routes are not much worse than optimalnot, however, assume any knowledge on the arrival/departure processes of these lightpaths. Thus, weachieve a robust guarantee for the performance of the system, without having to depend on assumptionswhich are all too often unjusti�ed, especially when designing for future systems with no well-studiedbehavior.3.1 Route determinationConsider a set of requests for lightpaths, for which only source and destination pairs are given for eachrequest. In this section we prove that no algorithm can minimize the maximum load Lmax more than afactor of two from the load created by the algorithm which routes each lightpath request on the shortestroute between the source and destination.Given any con�guration of lightpaths (possibly after deletions of lightpaths) produced using shortestpath routing, let Lshrt denote the maximum load (Lmax) for this case. Consider a link a with maximumload Lshrt depicted in Figure 4. Also consider the link b which is diametrically opposite to a on the ring.Since routes of lightpaths that cross a are the shortest possible, none of them crosses b as well (otherwisethey would traverse more than half of the ring). Therefore, in any other solution that does not route xof them through a, these x are routed through b, and thus the load on b is at least x. It follows thatthe maximum load in any such solution cannot be reduced below Lshrt2 of the load Lshrt used by theshortest path algorithm, by changing the routes of some of the requests to the other alternative around8



the ring.3.2 Fragmentation problemIn this section we address one of the main problems for dynamic scenarios, in cases when no reallocationof resources is possible. This problem is generally referred to as fragmentation, and is well studied inthe context of computer memory management and disk management: after a long period of usinga system, the free resource (free memory, unused disk space) becomes broken into small fragments,separated by small used segments, so that even if most of the resource is free, there is no su�cientlylarge contiguous fragment for a new request. This problem is easily solved if the system supportsreallocation of resources. Thus, the small used memory segments that cause the fragmentation may bereallocated contiguously, leaving most of the free memory in one large piece. Unfortunately for our case,it is not desirable to reallocate wavelengths for lightpaths, since this involves disrupting the operationof very high bandwidth pipes.The fragmentation problem is clari�ed by the following examples which show why the simpleCircular-First-Fit and Random allocation algorithms fail to produce reasonable results. Namely, ifthe number of wavelengths, W , is as large as NLmax, the chances for blocking are still very high. Bycontrast, our algorithm guarantees no blocking if W = 2Lmax log2N .3.2.1 Example 1: circular �rst �t allocationIn this example requests arrive in phases. In each phase, N requests arrive, each for a one hop lightpath,and are allocated di�erent wavelengths (in a circular fashion)1. After Lmax�1 phases of requests (eachphase contains single hop requests that together traverses all the links), a new request arrives whichincludes all the ring nodes (or up to half the ring if shortest path routing is used). This new requesthas to be allocated a new wavelength. At this stage the con�guration is the one described in Figure 5.Thus, the following theorem holds.1If Circular-First-Fit is de�ned to try and allocate the previously chosen wavelength �rst (rather than the next avaliablewavelength), then the scenario described here can be simulated using additional deletions.9
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The probability of a speci�c wavelength w on a speci�c link ` being free after Lmax � 1 one hoplightpaths have been allocated on ` is clearlyp(w is free on link `) = 1� Lmax � 1W :Thus, the probability of w being free on all the N � 1 hops of X isp(w is free for X) = �1� Lmax � 1W �N�1 :In order for X to be blocked, its route must be occupied on all wavelengths, thusp(X is blocked) =  1� �1� Lmax � 1W �N�1!W :Assuming Lmax � 1 > �WN for some � > 0 (or, in other words, if W < 1� (Lmax � 1)N ), and assumingN is large enough, we get p(X is blocked) � �1� e���W :A few numerical examples that demonstrate the probability of request X to be blocked for a systemof W wavelengths are concentrated in the following table.W n � 1 1.5 22 39.9 % 60.3 % 74.7 %4 15.9 % 36.4 % 55.8 %8 2.5 % 13.2 % 31.2 %16 0.065 % 1.76 % 9.7 %32 4.2E-5 % 0.03 % 0.9 %These examples demonstrate that for W < (Lmax � 1)N , the probability of X in above-mentionedscenario, to be blocked is unacceptably large for 16 wavelength systems (or less), and forW < 0:5LmaxNthe probability is too large even for 32 wavelength systems.3.3 Our algorithmThe DWLA-1 algorithm (Dynamic WaveLength Allocation, see Figure 7) allocates wavelengths in adynamic setting with a performance guarantee of W � 2Lmax log2N for a ring with N nodes (as long11
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0. INPUT: receive add/delete lightpath requests, one at a timeDATA STRUCTURE: De�ne a set of wavelength pools fPool(i)glog2N�1i=0 , each poolcontaining 2Lalg wavelengths (Lalg being the anticipated maximum load).1. If the request is to delete a lightpath, delete it and mark the relevant wavelength segmentas free. Otherwise:2. Let x be the current request to add a lightpath and let `(x) be its length (the numberof links traversed by the route). Choose i such that N � 2�i�1 � `(x) < N � 2�i.3. Find a free segment of a wavelength in pool Pool(i) which can accommodate x, andallocate x on this wavelength.4. Handle next request.Figure 7: Dynamic allocation of lightpath requests (DWLA-1)Given an lightpath x with length N � 2�i�1 � `(x) < N � 2�i, it traverses no more than one Ax inA. However, if it traverses no such link, it has to traverse one link of B, say Bx. Thus, if x does nottraverse any link in A, it shares Bx with up to Lalg� 1 other lightpaths that do not traverse an A link,and Lalg wavelengths su�ce for such lightpaths. On the other hand, if x does traverse Ax, then nomore than additional Lalg � 1 lightpaths traverse Ax, proving that such lightpaths need no more thanLalg wavelengths. utTheorem3. As long as Lmax � W2 log2N the DWLA-1 algorithm does not block any requests.3.4 Lower boundWe now prove that in the worst case W � 0:5Lmax log2N . We start with Lmax = 2.Consider the following scenario, depicted in Figure 9. At each phase i, a request arrives for alightpath that overlaps all the currently existing i � 1 lightpaths. Thus any algorithm has to allocateit a new wavelength. Playing an adversary who issues the requests, we manage to manipulate anyallocation algorithm (by means of additional add/delete requests) to utilize i wavelengths while theload Lmax remains 2 at all times. This process can only be repeated log2N times, since in each phasei, the adversary is forced to issue lightpath requests traversing 2i links. More formally, given some13
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Figure 8: Chosen links on the ringallocation algorithm Z, we now describe a worst case scenario specialized for it, in the following phases.Phases 1 and 2. Two requests arrive to establish lightpaths p1 and p2 in the segment [0; 1]. Clearlythey are allocated di�erent wavelengths by Z.Phase 3. A third request p3 arrives for a lightpath in the segment [1; 2]. If Z allocates to it a wavelengthwhich is di�erent from those allocated to p1 and p2, then the phase ends | so far three wavelengthshave been allocated. On the other hand, if Z allocates to p3 the same wavelength that was allocatedto either p1 or p2 (say p1), then a request arrives for deleting p1, and yet another lightpath additionrequest p4 arrives for a lightpath in [0; 2]. Clearly Z allocates a third wavelength for p4.Phase 4. Phases 1{3 are repeated in the segment [2; 4] as well. After which it is easy to see that itis possible to choose three non-overlapping lightpaths in segment [0; 4] which have been allocateddi�erent wavelengths. For the rest of the lightpaths, delete requests arrive. Now, a new lightpathadd request arrives for an lightpath in [0; 4]. Z has to allocate a new wavelength to it, resultingin a total of four di�erent wavelengths. Note that Lmax is still at most two.14
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Theorem4. There exists some addition/deletion scenario that requires any wavelength allocation al-gorithm to use W > 0:5Lmax log2N wavelengths.4 Improving the algorithmAs shown above, the DWLA-1 algorithm guarantees no blocking of requests if the load Lmax doesnot exceed some value Lalg. However, it does not necessarily perform well if Lmax > Lalg. In suchcases, some pool Pool(i) may be overown and unable to accommodate additional requests of lengthN � 2�i�1 � `(x) < N � 2�i, while other pools remain empty. While our lower bound shows that in theworst case there is no way to guarantee no blocking if the load is high, it is still desirable to minimize thisblocking. The algorithms presented in this section dynamically adjust the pools so as to achieve betterblocking if the load exceeds Lalg. Both of these algorithms are proven to work as good as DWLA-1provided that the load is low enough (Lmax < W2 log2 N ). Hence they guarantee no blocking in this case.Both of them are also proven to block later than DWLA-1 if the load is higher, and indications aregiven as to why their blocking probability is lower. Simulation results to support the latter conjectureswill be presented in the �nal version of the paper.The modi�ed algorithm of Figure 10 starts with empty pools (i.e., Pool(i) = ;), and a new pool,Free, which contains all free wavelengths (i.e., all wavelengths initially). Upon arrival of a request xof length N � 2�i�1 � `(x) < N � 2�i, the algorithm tries to �t it into a wavelength of Pool(i). Ifno wavelength in the pool can accommodate x, a new wavelength is taken from Free and added toPool(i). Thus, each pool grows dynamically according to the needs of requests of the relevant length.Of course, when a wavelength is freed, it is returned to Free.Theorem5. The DWLA-2 algorithm never starts blocking requests earlier than DWLA-1 (and muchlater in most cases).Proof. Let x be the �rst blocked request in DWLA-2 and let Pool(i) be the wavelength pool for x. IfPool(i) in DWLA-2 is larger than Lalg (the size of Pool(i) in DWLA-1) then an earlier blocking eventshould have occurred in Pool(i) using DWLA-1. If Pool(i) is smaller than Lalg and Free is empty,16



0. INPUT: receive add/delete lightpath requests, one at a timeDATA STRUCTURE: De�ne a set of wavelength pools fPool(i)glog2N�1i=0 , each poolinitially empty. De�ne an additional pool, Free, containing all wavelengths.1. If the request is to delete an lightpath, delete it and mark the relevant wavelengthsegment as free. If the wavelength is completely free, remove it from its current Pool(i)and return it to Free. Goto Step 6.2. Let x be the current request to add a lightpath and let `(x) be its length (the numberof links traversed by the route). Choose i such that N � 2�i�1 � `(x) < N � 2�i.3. Find a free segment of a wavelength in pool Pool(i) which can accommodate x.4. If no such wavelength exists in Pool(i), add a new wavelength from Free to Pool(i)(and remove it from Free).5. Allocate x on the free segment of the abovementioned wavelength.6. Handle next request.Figure 10: First improved dynamic allocation of lightpath requests (DWLA-2)than some other pool, Pool(j) is larger than Lalg. This is due to some earlier request that expandedPool(j) beyond Lalg. Thus, this earlier request would have been blocked by DWLA-1. utCorollary1. If Lmax � Wlog2 N then DWLA-2 guarantees no blocking.DWLA-2 typically delays the �rst blocking event much more than DWLA-1 since the bounds betweenpools are not �xed. Thus, when the length of the requests, `(x), is unevenly distributed, blocking occursonly when Free is empty, and not when the speci�c pool is saturated. For example, if all requests aresingle hop requests (`(x) = 1), and all of them occur between the same pair of adjacent nodes on thering, then DWLA-1 will block after Wlog2 N requests, since Pool(log2N ) will be full. However, DWLA-2will block only after W requests.DWLA-2 still causes one main problem, which does not allow it to exploit the wavelength resourcee�ciently enough if the load is high. This problem is analogous to the \trunking e�ect" encounteredin conventional telecommunication systems: The reservation of resources to perform more focusedtasks increases the overall blocking. The e�ect occurs here when lightpaths with a long life-span keep17
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0. INPUT: receive add/delete lightpath requests, one at a timeDEFINE: Start(i) = 8<: 1 i = 0,W i = log2N � 1,1 + (2i+1)W2(log2 N�1) otherwise.1. If the request is to delete an lightpath, delete it and mark the relevant wavelengthsegment as free.2. Let x be the current request to add a lightpath and let `(x) be its length (the numberof links traversed by the route). Choose i such that N � 2�i�1 � `(x) < N � 2�i.3. Let � 0.4. If one of the wavelengths Start(i)�� can accommodate x, allocates it and �nish (gotoStep 6).5. If not, � �+ 1 and goto Step 4.6. Handle next request.Figure 12: Second improved dynamic allocation of lightpath requests (DWLA-3)Theorem6. The DWLA-3 algorithm never starts blocking requests earlier than DWLA-1 (and muchlater in most cases).Corollary2. If Lmax � Wlog2 N then DWLA-3 guarantees no blocking.This algorithm is expected to have even better blocking probability since no wavelength is perma-nently allocated to lightpaths of a given length range. On the other hand, in most cases the majority oflightpaths of length N � 2�i�1 � `(x) < N � 2�i will be allocated close to wavelength Start(i), therebydecreasing the fragmentation.5 Summary and further researchIn this paper we have studied the problem of allocating wavelengths to lightpaths in a WDM ring systemin which wavelength conversion is not possible. We have �rst shown that the case in which all lightpathrequests are known in advance enables to design an algorithm for allocating wavelengths which uses lesswavelengths than twice the maximum load. While the algorithm is known in the literature, we have19
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