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Abstract

We focus on wavelength allocation schemes for all-optical ring networks deploying wavelength
division multiplexing without wavelength conversion capabilities. We restrict ourselves to worst
case performance analysis of the network, an approach which yields robust performance guarantees.
For an N node network, we first consider a “static” wavelength allocation scenario, in which all
required lightpaths (connections) are known in advance. We prove that if the maximum number
of lightpath requests which use any link in the ring (termed the “load”) is bounded by Lmax, then
up t0 2Lnax — 1 wavelengths may be needed. This result matches the known upper bound which
shows that 2Ln.« — 1 wavelengths are sufficient. Next, we consider a “dynamic” scenario, in which
requests to add or delete a lightpath arrive at different times, and the arrival/departure process
is not known. We prove that the shortest path routing heuristic produces a routing which has at
most twice the load L.« of the optimal solution. As far as the wavelength allocation problem is
concerned, we show that at least 0.5 Lmax log, N wavelengths are required, and develop an algorithm
which requires 2Ln.x log, N wavelengths in the worst case. For the case when the load is high and
blocking is necessary we present two improved algorithms, both of which result in delaying the
first blocking event, and in less blocking overall. Our results show that dynamic scenarios result in
substantial degradation in the utilization of wavelengths comparing to static or even semi-dynamic
scenarios.
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1 Introduction

1.1 Background

As WDM systems start emerging from laboratories and being deployed in commercial contexts, the
main resource allocation problem associated with WDM networks — of efficiently allocating wavelengths
to lightpaths — becomes of crucial importance. The focus of most past research on the allocation of
wavelengths in WDM networks (e.g, [1, 2, 3, 4] and several works in [5]) has been based on a combination
of the following approaches: (1) maximalistic approaches, in which optimization of multiple parameters
of this hard problem is attempted, (2) heuristic approaches, in which the performance of the solution is
demonstrated, but no guarantees are proven, (3) probabilistic approaches, in which the arrival/departure
process of lightpaths is known (or assumed), (4) provably suboptimal approaches, in which wavelength
allocation is far from optimal, and (5) higher network level view, in which the lightpaths are assumed to
be required for the use of a single higher level network (e.g., ATM), and thus the needs of that network
are optimized together with the lightpath problem.

The main drawback of most of the above approaches stems from the severe limitations that current
optical technologies impose on the amount of available wavelengths per fiber. While experimental sys-
tems report large number of up to 100 wavelengths per fiber [6], current state-of-the-art manufacturing
processes restrict the number of wavelengths per fiber of commercial WDM multiplexers to as low as
4 (Pirelli), 8 (Lucent Technologies), and up to 20 (IBM). On the other hand, the lack of commercial
optical wavelength converters currently overrules better reuse of wavelengths. As a result, this very
limited resource must be exploited most carefully to achieve low blocking probabilities of lightpath
requests.

While approach (5) attempts to alleviate this bottleneck by designing the higher level network to
optimize the number of wavelengths, it is not suitable in situations in which the lightpath provider is
not aware of or is not involved in the management of higher level networks.

The current research takes a different approach. Instead of focusing on general topologies but

restricted arrival/departure processes of lightpath requests, we assume no knowledge on these processes



(nor any other considerations that restrict the request pattern) but restrict the topology to rings only.
We believe that this topological restriction still yields results of high practical value since ring networks
are the predominant topology for current MAN /Interoffice networks, and are thus expected to be the
first topology to be used for WDM networks outside laboratories and testbeds. We also focus on
worst case analysis of the problem as it is the only approach which guarantees robust bounds on the
performance of the system. This restricted model enables us to study in greater depth the behavior of
the problem and achieve almost tight bounds for different scenarios.

We separate the routing problem, of determining which part of the ring should be used to connect
the source and destination of a lightpath request, from the wavelength allocation problem, of assigning

a wavelength to each route. This technique is justified for the following reasons:

e The network users may choose to have control on the routing to support fault tolerance (namely,

two routes may require disjoint paths as they are responsible for backing up each other),

e Additional considerations, such as constraints on propagation delays may require some route to

take the short alternative around the ring,

e There exists an optimal algorithm for solving the static routing problem along on a ring [7],
namely, the case in which all the requests are known in advance. For the dynamic case (in which
case the requests arrive at different times and the algorithm has to react without knowledge of
the future) we prove that an almost optimal heuristic is to use shortest path routing. These
algorithms may be employed as a first stage, and used as an input to the wavelength allocation

problem,

e Computationally efficient solutions to the combined routing and wavelength allocation problem

which allocate resources optimally are not plausible [8§].
1.2 Related works and contribution of the paper

Substantial analytical research has been carried out in recent years on routing and wavelength allocation

problems for lightwave networks, starting with classic graph-theoretical problems of coloring the nodes



of wnterval graphs and circular arc graphs, which correspond to wavelength allocation in chain and ring
networks respectively, through various models of tree topologies [2, 9, 10], and general mesh topologies
[3, 9]. On the other hand, numerous heuristic techniques have been proposed for the design of lightpaths
in such systems [11, 12, 13, 14, 1, 15, 16].

Even for ring networks the composite problem of finding a route for each lightpath request and
allocating a wavelength to it is very hard (proven to be NP-complete in [8]). It is therefore reasonable
to split the problem into two phases: (1) finding a route for each lightpath request and (2) allocating
a wavelength to it.

As far as the first problem is concerned, an optimal algorithm exists for the static design problem
[7]. The dynamic case for this problem is considered in the present work, in which we show that the
simple shortest-path heuristics is up to twice away from the optimal solution.

As far as the second problem is concerned, given a sequence of lightpath requests and the physical
route for each of them, let the maximum load on any link in the network (denoted Lmax) be the
maximum number of these routes that share a link. This characteristic of a lightpath request system
turns out to be the major factor in the worst case analysis of the system. Clearly, Lyax 1s a lower
bound on the number of required wavelengths since each lightpath that shares a link with maximum
load must be assigned a different wavelength.

Focusing on ring networks, the best known approximation for the static case (as far as worst-case
bounds are concerned) requires up to 2Lmax — 1 wavelengths in the worst case [17]. This upper bound
1s matched by a worst-case scenario presented herein which indeed requires 2L,,x — 1 wavelengths.

In many cases, it is unreasonable to assume that all lightpaths are given in advance, and more
dynamic scenarios must be considered. A first step in this direction is the semi-dynamic scenario,
in which lightpath addition requests arrive into the system with some unknown distribution, however
no lightpaths are deleted. For this case, [18] has presented an algorithm which requires W < 3Lnax
wavelengths. A matching lower bound of W > 3Lax — 2 is presented in [19].

However, for practical purposes it is unreasonable to assume that lightpaths are not deleted from the



network. Thus, it is necessary to study fully-dynamic scenarios. For this case the only known results are
based on probabilistic models, assuming standard Poisson arrival processes [14]. In the current paper
we present a wavelength allocation algorithm that requires at most W < 2L,.x log, N wavelengths for
a ring with N nodes. We also prove a lower bound of 0.5Lyaxlog, N, thereby proving our algorithm
to perform at most 4 times worse than the optimum. To the best of our knowledge, this is the first
analytical result with provable bounds for this model.

An important conclusion from these results is that, at least as far as worst case analysis is concerned,
fully dynamic scenarios result in significant degradation of the utilization of wavelengths, and that the
difference between the efficiency of semi-dynamic scenarios and fully dynamic ones (i.e., the fact that
deletions are allowed) grows logarithmically with the network size.

The paper is organized as follows. In Section 2 we address the static allocation problem, present
the known upper bound algorithm and prove a tight lower bound for it. in Section 3 we address
the dynamic problem, show that other known algorithms (circular first-fit, random allocation) fail to
produce acceptable results, present our algorithm and analyze its worst-case performance. We also
prove a lower bound which is only four times smaller than the upper bound. In Section 4 we suggest
two improved algorithms and prove they are as good in the worst case as the original algorithm but are

better if blocking is necessary, and in Section 5 we summarize the results and suggest further research.

2 Static Allocation

We start by considering the simplest case, in which the full set of lightpaths is given in advance. This
case 1s applicable in many networks, in which the required set of lightpaths is determined as part of the
network design phase of a higher level network.

The optimal algorithm in Figure 1 for this problem was suggested in [17]. A similar result is
reported in [9]. Refer also to Figure 2 for a pictorial demonstration. This algorithm may require up to
W < Lmax+ L?%3¢ wavelengths, where L2%3¢ is defined as the minimum, over all nodes, of the number of

lightpaths that go through the node (that is, are neither added nor dropped): up to Lmax wavelengths



0. INPUT: a set of lightpath requests (a set of arcs on the ring).

1. Find a node v on the ring with a minimum number of routes traversing through it
(Lno.de)‘

min

2. Logically cut the ring at this point: duplicate v and split the route of each request
passes that through v into two requests.

3. The resulting problem is that of allocating wavelengths to routes on a chain network.
This problem is termed the coloring problem of an interval graph, and can be solved op-
timally (with W = Ly,.x wavelengths) by a greedy algorithm [20, Sec.16.5] that assigns
wavelengths to routes by scanning the chain from its leftmost point. The wavelengths
are assigned in an arbitrary order: whenever the scan meets a new route, it assigns it
one of the available wavelengths (which now becomes unavailable until the scan meets
the rightmost end of the route).

4. When reconnecting the endpoints of the chain into the original ring, routes which were
split at Step 2, may have different wavelengths assigned to their two parts. For each
such case, assign a completely new wavelength to the route.

Figure 1: Static allocation of wavelengths

may be required for allocating lightpaths on the chain created in Step 2, and up to L“m‘ﬁe for routes
that have been split in Step 2 are assigned new wavelengths in Step 4. Furthermore, it is easy to see
that L“m‘ﬁe < Lmax, since even if all links have a load of Ly, not all the lightpaths that create this
load can traverse through each and every node. Thus, W < 2L, — 1.

Next, we prove that in the worst case, indeed W = 2L, — 1 wavelengths are required.

Theorem 1. Given a ring with N > 2Ly, nodes, there exist lightpath request patterns that require

W = 2Lnax — 1 wavelengths.

Proof. Consider the set of requests depicted in Figure 3. These requests are divided into three groups:
A = {ay1,...;ar_1}, B = {b1,...,br_1} and {c}. All the routes in group A overlap on link A, and all
the routes in group B overlap on link B. In addition, each a; € A overlaps all the b; € B for j < ¢
in the part of the ring below the line [4, B], and all b; € B for j > i above that line. In addition, ¢
overlaps all the other routes. Thus, we have 2(L — 1) + 1 routes that overlap each other and need at

least W = 2L — 1 wavelengths. The maximal load is clearly Lyax = L.
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Figure 2: The phases of Figure 1



Figure 3: A worst case set of lightpath requests

More formally, number the nodes in the ring starting at an arbitrary node 0, and proceeding clockwise

up to node N — 1. Define

N N N N
a1 =0,z =[1, - +1],.,a;=[i -1, - +t—1], .. ar = [L - 1,7 + L - 1],
2 2 2 2
N N N N
by = |[—,1,bo=[—+1,2],....0 = [— +:— 1,4],...b = [— + L — 1, L],
1 [27]72 [2+7]7 ’ [2+7’ 7’] L [2+ ]
N N
=|=-1,—+4+L-1].
=[5 -1, 411
Clearly the above arguments hold for this general case definition as well. O

3 Dynamic Allocation

In this section we discuss a different scenario, in which requests for lightpaths arrive at different times.
We split the problem into two parts: first we show that the simple shortest path heuristics for determin-
ing the route of each lightpath request yields results which have up to twice the load of the optimum
solution. Then, assuming that these routes for lightpath requests are given, we solve the wavelength

allocation problem using up to four times more wavelengths than the best possible solution. We do



max load—__

load >= x

(a) Shortest path routing (b) The routing after moving x of the routes to the
other option around the ring

Figure 4: Shortest path routes are not much worse than optimal

not, however, assume any knowledge on the arrival/departure processes of these lightpaths. Thus, we
achieve a robust guarantee for the performance of the system, without having to depend on assumptions
which are all too often unjustified, especially when designing for future systems with no well-studied

behavior.

3.1 Route determination

Consider a set of requests for lightpaths, for which only source and destination pairs are given for each
request. In this section we prove that no algorithm can minimize the maximum load Ly, more than a
factor of two from the load created by the algorithm which routes each lightpath request on the shortest
route between the source and destination.

Given any configuration of lightpaths (possibly after deletions of lightpaths) produced using shortest
path routing, let Lgn,¢ denote the maximum load (Lmax) for this case. Consider a link e with maximum
load Lgyyt depicted in Figure 4. Also consider the link b which is diametrically opposite to ¢ on the ring.
Since routes of lightpaths that cross a are the shortest possible, none of them crosses b as well (otherwise
they would traverse more than half of the ring). Therefore, in any other solution that does not route z
of them through a, these = are routed through b, and thus the load on b is at least z. It follows that

L

the maximum load in any such solution cannot be reduced below % of the load Lgy,t used by the

shortest path algorithm, by changing the routes of some of the requests to the other alternative around



the ring.
3.2 Fragmentation problem

In this section we address one of the main problems for dynamic scenarios, in cases when no reallocation
of resources is possible. This problem is generally referred to as fragmentation, and is well studied in
the context of computer memory management and disk management: after a long period of using
a system, the free resource (free memory, unused disk space) becomes broken into small fragments,
separated by small used segments, so that even if most of the resource is free, there is no sufficiently
large contiguous fragment for a new request. This problem is easily solved if the system supports
reallocation of resources. Thus, the small used memory segments that cause the fragmentation may be
reallocated contiguously, leaving most of the free memory in one large piece. Unfortunately for our case,
1t is not desirable to reallocate wavelengths for lightpaths, since this involves disrupting the operation
of very high bandwidth pipes.

The fragmentation problem is clarified by the following examples which show why the simple
Circular-First-Fit and Random allocation algorithms fail to produce reasonable results. Namely, if
the number of wavelengths, W, is as large as N Lyax, the chances for blocking are still very high. By

contrast, our algorithm guarantees no blocking if W = 2L,.xlog, N.

3.2.1 Example 1: circular first fit allocation

In this example requests arrive in phases. In each phase, N requests arrive, each for a one hop lightpath,
and are allocated different wavelengths (in a circular fashion)l. After Lyax — 1 phases of requests (each
phase contains single hop requests that together traverses all the links), a new request arrives which
includes all the ring nodes (or up to half the ring if shortest path routing is used). This new request
has to be allocated a new wavelength. At this stage the configuration is the one described in Figure 5.

Thus, the following theorem holds.

LIf Circular-First-Fit is defined to try and allocate the previously chosen wavelength first (rather than the next avaliable
wavelength), then the scenario described here can be simulated using additional deletions.
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Figure 5: A worst case set of lightpath requests for the Circular-First-Fit algorithm

Theorem 2. Given a ring with N nodes, and a set of lightpath requests with load Lpyax, the Circular-
First-Fit algorithm may need at least W = 1 + N(Lmax — 1) wavelengths in the worst case to support

all the requests.

3.2.2 Example 2: Random allocation of wavelengths

A similar worst-case example holds for the case where the wavelength for a lightpath request is chosen
at random among the available free wavelengths: Given a ring with W wavelengths per link and a set
of NLpyax — 1 one hop lightpath requests, such that Lyax — 1 of them use each link, and then a single
N —1 hop lightpath request, X, we shall show that X will probably be blocked if Ly,,x and N are large

enough in comparison with W.

10



The probability of a specific wavelength w on a specific link £ being free after Ly,,x — 1 one hop

lightpaths have been allocated on £ is clearly

Lmax - ]-

is f link ¢) =1—
p(w is free on link £) W

Thus, the probability of w being free on all the N — 1 hops of X is

Lmax - 1>N_1

is free for X) = 1 —
p(w is free for X) < W

In order for X to be blocked, its route must be occupied on all wavelengths, thus

I {\N-1 w
X is blocked) = |1 — (1 - /%~
p(X is blocked) ( < W > )

Assuming Lpax — 1 > a% for some & > 0 (or, in other words, if W < é(Lmax — 1)N), and assuming

N is large enough, we get

p(X is blocked) ~ (1 - e_O‘)W

A few numerical examples that demonstrate the probability of request X to be blocked for a system

of W wavelengths are concentrated in the following table.

W\a 1 1.5 2
2 399% 60.3% 747%

4| 159% 36.4% 55.8%

8 25% 13.2% 312%

16 | 0.065% 1.76% 9.7%

32 | 4.2E5% 0.03% 0.9%

These examples demonstrate that for W < (Lmax — 1) N, the probability of X in above-mentioned
scenario, to be blocked is unacceptably large for 16 wavelength systems (or less), and for W < 0.5Lmax N

the probability is too large even for 32 wavelength systems.

3.3 Our algorithm

The DWLA-1 algorithm (Dynamic WaveLength Allocation, see Figure 7) allocates wavelengths in a

dynamic setting with a performance guarantee of W < 2Ly .xlog, N for a ring with N nodes (as long

11
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Figure 6: Operation of the dynamic case algorithm

as Lmax < Laig for some predetermined value Lalg). The key idea behind it is to avoid fragmentation
by allocating each wavelength for routes of approximately the same length. Refer to Figure 6 for a
pictorial demonstration of the algorithm in which requests fall down from the top of the figure and get
sorted into the pools based on their length.

The main claim to be proven for this simple algorithm is that we do not run out of wavelengths in

Step 3, as long as the load does not exceed the load for which the algorithm was designed, Laig.

Lemmal. Consider lightpaths of length N - 2771 < 4(z) < N -27%. If the mazimum load of such

lightpaths does not exceed Lag then 2La1; wavelengths suffice for them.

Proof. Assume that the ring contains N = 2% nodes (the presentation of the proof is simplified by this
assumption, and it is easy to see how other cases are dealt with). Consider two sets of links on the
ring: one, A = {Aj}]z»;l, with gaps of size N - 27" = 28~¢ between each consecutive pair. The other,
B = {B; }]2»;1, having the same distance between each consecutive pair, and located in the middle of

the gaps created by links in A (see Figure 8).
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0. INPUT: receive add/delete lightpath requests, one at a time

DATA STRUCTURE: Define a set of wavelength pools {POOL(i)}io:go2 N_l, each pool
containing 2L, wavelengths (Lalg being the anticipated maximum load).

1. If the request is to delete a lightpath, delete it and mark the relevant wavelength segment
as free. Otherwise:

2. Let z be the current request to add a lightpath and let £(z) be its length (the number
of links traversed by the route). Choose i such that N -271"1 < f(z) < N -27%,

3. Find a free segment of a wavelength in pool PooL(¢) which can accommodate z, and
allocate z on this wavelength.

4. Handle next request.

Figure 7: Dynamic allocation of lightpath requests (DWLA-1)

Given an lightpath = with length N -27%~1 < f(z) < N - 27, it traverses no more than one A, in
A. However, if it traverses no such link, it has to traverse one link of B, say B,. Thus, if z does not
traverse any link in A, it shares B; with up to Laig — 1 other lightpaths that do not traverse an A link,
and L,z wavelengths suffice for such lightpaths. On the other hand, if z does traverse A, then no
more than additional Lajg — 1 lightpaths traverse A;, proving that such lightpaths need no more than

La1g wavelengths. O

Theorem 3. As long as Lyax < % the DWLA-1 algorithm does not block any requests.

3.4 Lower bound

We now prove that in the worst case W > 0.5Ly.xlogy N. We start with Lyax = 2.

Consider the following scenario, depicted in Figure 9. At each phase ¢, a request arrives for a
lightpath that overlaps all the currently existing ¢ — 1 lightpaths. Thus any algorithm has to allocate
it a new wavelength. Playing an adversary who issues the requests, we manage to manipulate any
allocation algorithm (by means of additional add/delete requests) to utilize ¢ wavelengths while the
load Lyax remains 2 at all times. This process can only be repeated log, N times, since in each phase

i, the adversary is forced to issue lightpath requests traversing 2° links. More formally, given some

13
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allocation algorithm Z, we now describe a worst case scenario specialized for it, in the following phases.

Phases 1 and 2. Two requests arrive to establish lightpaths p; and ps in the segment [0, 1]. Clearly

they are allocated different wavelengths by Z.

Phase 3. A third request pj arrives for a lightpath in the segment [1, 2]. If Z allocates to it a wavelength
which is different from those allocated to p; and p;, then the phase ends — so far three wavelengths
have been allocated. On the other hand, if Z allocates to ps the same wavelength that was allocated
to either p; or py (say p1), then a request arrives for deleting p;, and yet another lightpath addition

request ps arrives for a lightpath in [0, 2]. Clearly Z allocates a third wavelength for ps.

Phase 4. Phases 1-3 are repeated in the segment [2,4] as well. After which it is easy to see that it
is possible to choose three non-overlapping lightpaths in segment [0, 4] which have been allocated
different wavelengths. For the rest of the lightpaths, delete requests arrive. Now, a new lightpath
add request arrives for an lightpath in [0,4]. Z has to allocate a new wavelength to it, resulting

in a total of four different wavelengths. Note that L.y is still at most two.

14
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Figure 9: A worst case dynamic scenario of lightpath requests

Phase i. After repeating Phases 1 to i — 1 in segments [0, 2°~!] and [2¢71, 2¢], and deleting superfluous
lightpaths to achieve a configuration of ¢ — 1 non-overlapping lightpaths of different wavelengths, a
new request arrives to add an lightpath in the segment [0,2°~1]. Z allocates a new i** wavelength

to 1it, since it overlaps ¢ — 1 other wavelengths.

Phase log, N. The last lightpath request arrives in the segment [0, N — 1]. Z allocates wavelength
log, N to it.

This process required W > log, N wavelengths, with a maximum load of L.y = 2. Thus, W >
0.5Llog, N. To generalize the worst case to any (even) value of Lmax, we duplicate the number of
arriving lightpath requests at each phase by Lyax/2. Since each of these Lpax/2 requests requires
a different wavelength the whole allocation process is inflated by a factor of Luyax/2 wavelengths per

phase, yielding the desired lower bound.

15



Theorem 4. There ezists some addition/deletion scenario that requires any wavelength allocation al-

gorithm to use W > 0.5Lyaxlogy N wavelengths.

4 Improving the algorithm

As shown above, the DWLA-1 algorithm guarantees no blocking of requests if the load Lp,ax does
not exceed some value Laig. However, it does not necessarily perform well if Lijax > Lalg. In such
cases, some pool PooL(7) may be overflown and unable to accommodate additional requests of length
N -27"1 < 4(z) < N -27%, while other pools remain empty. While our lower bound shows that in the
worst case there is no way to guarantee no blocking if the load is high, it is still desirable to minimize this
blocking. The algorithms presented in this section dynamically adjust the pools so as to achieve better
blocking if the load exceeds Laig. Both of these algorithms are proven to work as good as DWLA-1
provided that the load is low enough (Lmax < %) Hence they guarantee no blocking in this case.
Both of them are also proven to block later than DWLA-1 if the load is higher, and indications are
given as to why their blocking probability is lower. Simulation results to support the latter conjectures
will be presented in the final version of the paper.

The modified algorithm of Figure 10 starts with empty pools (i.e., PooL(?) = 0), and a new pool,
FREE, which contains all free wavelengths (i.e., all wavelengths initially). Upon arrival of a request z
of length N - 27%"1 < f(z) < N - 27%, the algorithm tries to fit it into a wavelength of Poow(i). If
no wavelength in the pool can accommodate z, a new wavelength is taken from FREE and added to
PooL(?). Thus, each pool grows dynamically according to the needs of requests of the relevant length.

Of course, when a wavelength is freed, it is returned to FREE.

Theorem 5. The DWLA-2 algorithm never starts blocking requests earlier than DWLA-1 (and much

later in most cases).

Proof. Let z be the first blocked request in DWLA-2 and let PooL(%) be the wavelength pool for z. If
Poouw(i) in DWLA-2 is larger than L.z (the size of PooL(¢) in DWLA-1) then an earlier blocking event

should have occurred in PooL(z) using DWLA-1. If PooL(%) is smaller than Lajg and FREE is empty,

16



0. INPUT: receive add/delete lightpath requests, one at a time
log, N—1

DATA STRUCTURE: Define a set of wavelength pools {PooL(?)}, ¢ , each pool
initially empty. Define an additional pool, FREE, containing all wavelengths.

1. If the request is to delete an lightpath, delete it and mark the relevant wavelength
segment as free. If the wavelength is completely free, remove it from its current PooL(%)
and return it to FREE. Goto Step 6.

2. Let z be the current request to add a lightpath and let £(z) be its length (the number
of links traversed by the route). Choose i such that N -271"1 < f(z) < N -27%,

3. Find a free segment of a wavelength in pool PooL(%) which can accommodate z.

4. If no such wavelength exists in PooL(?), add a new wavelength from FREE to PooL(z)
(and remove it from FREE).

5. Allocate z on the free segment of the abovementioned wavelength.

6. Handle next request.

Figure 10: First improved dynamic allocation of lightpath requests (DWLA-2)

than some other pool, PooL(j) is larger than Lajg. This is due to some earlier request that expanded

PooL(j) beyond Laig. Thus, this earlier request would have been blocked by DWLA-1. O
Corollary 1. If Ly < % then DWLA-2 guarantees no blocking.

DWLA-2 typically delays the first blocking event much more than DWLA-1 since the bounds between
pools are not fixed. Thus, when the length of the requests, £(z), is unevenly distributed, blocking occurs
only when FREE is empty, and not when the specific pool is saturated. For example, if all requests are

single hop requests (£(z) = 1), and all of them occur between the same pair of adjacent nodes on the

ring, then DWLA-1 will block after logZVN requests, since PooL(log, N) will be full. However, DWLA-2
will block only after W requests.

DWLA-2 still causes one main problem, which does not allow it to exploit the wavelength resource
efficiently enough if the load is high. This problem is analogous to the “trunking effect” encountered

in conventional telecommunication systems: The reservation of resources to perform more focused

tasks increases the overall blocking. The effect occurs here when lightpaths with a long life-span keep

17



Failing attempts to allocate a wavelength

Start(log N -1)
Start(2)
5
o))
3
———————————————————————————————————————— Start(1)
§ ™~ Successful attempt
W/ 2(log N -1)
1 Start(0)
T Time

Lightpath request arrives

Figure 11: Second improved dynamic algorithm (DWLA-3)

wavelengths from returning to the FREE pool, since as long as there is a lightpath that uses a wavelength,
this wavelength remains in the specific PooL(?) pool and other segments of it can not be reused for
lightpaths of very different length.

To alleviate this problem, a third algorithm, DWLA-3, is introduced. This algorithm is a general-
ization of the Incr/Decr algorithm of [12]. The algorithm starts allocating wavelengths for a request of
length £(z), at wavelength START(7). If START(?) cannot accommodate the request, DWLA-3 searches
an available wavelength in the next/previous wavelengths (START(4) + 1), and increases the distance
from START(7) until a free wavelength is found (see Figure 11). For a more formal description refer to
Figure 12.

Similarly to the DWLA-2 case, we can prove the following.
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0. INPUT: receive add/delete lightpath requests, one at a time
1 )

1 =0,
DEFINE: START(¢) = w ' i=logy, N — 1,
1+ QJ(I%VV_VL]_) otherwise.

1. If the request is to delete an lightpath, delete it and mark the relevant wavelength
segment as free.

2. Let z be the current request to add a lightpath and let £(z) be its length (the number
of links traversed by the route). Choose i such that N -271"1 < f(z) < N -27%,

3. Let A—0.

4. If one of the wavelengths START(7) + A can accommodate z, allocates it and finish (goto
Step 6).

5. If not, A«—A + 1 and goto Step 4.

6. Handle next request.

Figure 12: Second improved dynamic allocation of lightpath requests (DWLA-3)

Theorem 6. The DWLA-3 algorithm never starts blocking requests earlier than DWLA-1 (and much

later in most cases).

Corollary 2. If Ly < logLN then DWLA-3 guarantees no blocking.

This algorithm is expected to have even better blocking probability since no wavelength is perma-
nently allocated to lightpaths of a given length range. On the other hand, in most cases the majority of

lightpaths of length N -271~1 < 4(z) < N -27* will be allocated close to wavelength START(3), thereby

decreasing the fragmentation.

5 Summary and further research

In this paper we have studied the problem of allocating wavelengths to lightpaths in a WDM ring system
in which wavelength conversion is not possible. We have first shown that the case in which all lightpath
requests are known in advance enables to design an algorithm for allocating wavelengths which uses less

wavelengths than twice the maximum load. While the algorithm is known in the literature, we have
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shown in the current paper that in the worst case no better algorithm exists. For the dynamic case, we
have suggested an algorithm which uses up to 2Lpya.xlog, N wavelengths. Another way to look at this

result is a guarantee of no blocking as long as the load does not exceed ML We have also shown

ogs NV
that in the worst case this algorithm performance is up to four times the minimum possible number of
wavelengths that any algorithm needs.

We have suggested two improved algorithms, DWLA-2 and DWLA-3, which have the same guaran-
tees if the load is low enough, but have delayed and better blocking probability if the load is higher.
While we have indicated why these algorithms should perform better than DWLA-1, it is still necessary
to demonstrate this empirically, and such result will appear in the final version.

An interesting remaining issue is to find an algorithm with better worst case performance. However,

for deployment in real implementations, the average performance of the algorithm must be studied as

well and should prove competitive with other allocation algorithms.

Acknowledgment. We would like to thank Rajiv Ramaswami for the fruitful discussions, in partic-

ular for Section 3.1.
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