
ON FREYD’S GENERATING HYPOTHESIS

MARK HOVEY

Abstract. We revisit Freyd’s generating hypothesis in stable homotopy the-
ory. We derive new equivalent forms of the generating hypothesis and some
new consequences of it. A surprising one is that I, the Brown-Comenetz dual
of the sphere and the source of many counterexamples in stable homotopy, is
the cofiber of a self map of a wedge of spheres. We also show that a conse-
quence of the generating hypothesis, that the homotopy of a finite spectrum
that is not a wedge of spheres can never be finitely generated as a module over
π∗S, is in fact true for many finite torsion spectra.

Introduction

Freyd’s generating hypothesis [4] is perhaps the most important question in
stable homotopy theory. A precise statement of it follows.

Conjecture A (Freyd’s generating hypothesis). If X and Y are finite spectra, and
S is the sphere spectrum, then the natural map

[X, Y ] −→ Homπ∗S(π∗X, π∗Y )

is a monomorphism.

If we fix Y (perhaps not finite) and allow X to vary, we get a special case of the
generating hypothesis which I will refer to as Freyd’s generating hypothesis
with target Y . Here [X, Y ] denotes maps from X to Y in the stable homotopy
category, and π∗X = [S, X]∗ denotes the homotopy groups of X. In practice, we
implicitly assume that we are actually in the p-local stable homotopy category for
some fixed integer prime p.

Freyd proves that the generating hypothesis actually implies that the map

[X, Y ] −→ Homπ∗S(π∗X, π∗Y )

is an isomorphism for all finite spectra X, Y . Kahn derived other consequences of
the truth or falsity of the generating hypothesis in a series of papers, including [11,
12, 13].

Devinatz and Hopkins [3] have a program for proving the generating hypothesis
with target S using chromatic technology. This approach generalizes Devinatz’
work in [1], where he proves that if f : X −→ S has π∗f = 0, and p is odd, then
the composite X −→ S −→ L1S is null. The program depends on the truth of either
the telescope conjecture (currently believed to be likely false) or a weak form of the
chromatic splitting conjecture and several other conjectures.

In this paper, we prove the following theorem. Let Xp denote the p-completion
of a spectrum X.

Theorem B. Let Y be a finite spectrum. The following are equivalent :
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(1) Freyd’s generating hypothesis with target Y ;
(2) π∗Yp is an injective π∗S-module;
(3) π∗Yp is an injective π∗Sp-module;
(4) The natural map

[X, Yp] −→ Homπ∗S(π∗X, π∗Yp)

is an isomorphism for all spectra X.

We also prove the following theorem. Recall that the Spanier-Whitehead dual
DX of X is defined by DX = F (X, S), the spectrum of maps from X to S.

Theorem C. Suppose Freyd’s generating hypothesis with target S holds. Let R
be a finite ring spectrum that is Spanier-Whitehead self-dual, in the sense that DR
is a suspension of R. Then π∗(Rp) is injective as a left R∗-module and as a left
module over itself. In particular, the natural map

[X, Rp] −→ HomR∗(R∗X, π∗Rp)

is an isomorphism for all X.

For example, this theorem means that, if the generating hypothesis with target
S holds, then π∗M(pn) is a self-injective ring for p > 2 and n arbitrary or for p = 2
and n > 1.

Freyd [4, Theorem 9.9] proved that the generating hypothesis is equivalent to
π∗Y being an injective π∗S-module for all finite torsion spectra Y . T. Y. Lin [16]
showed that π∗Y is not an injective π∗S-module if Y is not torsion, but did not
realize that completion would solve this problem if the generating hypothesis is
true. Our approach is different from Freyd’s, and yields a more precise result. In
addition, Freyd does not mention part (4) of Theorem B, which focuses attention
on maps from infinite spectra X to Yp. Infinite spectra X that might be worth
studying in this context include the rational Eilenberg-MacLane spectrum HQ and
Σ∞BG+, the classifying space of a finite group, where the Segal conjecture tells us
[X, Sp].

Of course, even if the generating hypothesis is false, π∗Yp has some injective hull
JY as a π∗S-module, so one can attempt to study the map π∗Yp −→ JY . We show
in this paper that π∗Sp −→ JS is a split monomorphism of abelian groups in degree
0, for example.

The methods of this paper may also be helpful in investigating the genreating
hypothesis in other stable homotopy categories. Lockridge [17] has investigated this
question; he shows that the generating hypothesis holds in the unbounded derived
category D(R) of a commutative ring R if and only if R is von Neumann regular,
for example.

Theorem B has a number of corollaries. Perhaps the most surprising of them is
the following. Let IY denote the Brown-Comenetz dual of Y , so that

[X, IY ] = HomZ(p)(π∗(X ∧ Y ), Q/Z(p))

for all X.

Corollary D. Let Y be a finite spectrum. Freyd’s generating hypothesis with target
Y holds if and only if π∗(IY ) is a flat π∗S-module. In particular, this implies that
the natural map

π∗(IY )⊗π∗S π∗X −→ π∗(IY ∧X)
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is an isomorphism for all X. Furthermore, in this case π∗(IY ) has projective
dimension 1 as a π∗S-module and, if Freyd’s generating hypothesis with target S
holds as well, there is a cofiber sequence

Σ−1IY
δ−→ W −→ W −→ IY

for which W is a coproduct of spheres of varying dimension and δ is a phantom
map.

Note that the map δ cannot be 0, for then IY would be a coproduct of spheres
itself. Since IY = DY ∧ I is BP -acyclic, this is impossible unless IY = 0, which is
false.

On the other hand, there are several reasons to think that δ should be 0, and
so the generating hypothesis should be false. For example, δ is a map from a BP -
acyclic spectrum to a coproduct of spheres, and one might expect that a coproduct
of spheres would be BP -local. Any bounded below coproduct of spheres is BP -local,
as is any suspension spectrum [6], but we do not know about arbitrary coproducts
of spheres. Similarly, one might think that there are no phantom maps to Wp,
which should also lead to a disproof of the generating hypothesis. Again, however,
the fact that the spheres in W occur in infinitely many dimensions makes us unable
to prove this.

But we can also give some weak evidence that the generating hypothesis might
be true. One of the most simple corollaries of the generating hypothesis is that π∗Y
is not a finitely generated π∗S-module for any finite Y except for finite coproducts
of spheres.

Theorem E. Suppose Y is a finite spectrum of type n, for some n > 0, and suppose
the map π∗Y −→ π∗LnY is nonzero. This hypothesis holds, for example, if Y is a
ring spectrum or a µ-spectrum in the sense of [9, Definition 4.8]. Then π∗Y is not
a finitely generated π∗S-module.

This theorem applies in particular to the ring spectrum DX ∧X for any finite
torsion spectrum X, and to the generalized Moore spectra M(pi0 , vi1

1 , . . . , v
in−1
n−1 )

for large enough values of the exponents (see [2]). The telescope conjecture [19]
(which is true if n = 1) would imply that every finite torsion spectrum satisfies
the hypotheses of Theorem E, but even if the telescope conjecture fails, the author
would be astounded if there were any nonzero finite spectra of type n for which the
map π∗Y −→ π∗LnY is zero. It is just that current techniques do not seem to be
sufficient to prove this.

The author thanks Dan Christensen and Don Kahn for some useful education
about the generating hypothesis.

1. Proof of Theorem B

We begin with a basic result about injective π∗S-modules.

Lemma 1.1. Suppose E is a spectrum such that π∗E is an injective π∗S-module.
Then the natural map

[X, E] −→ Homπ∗S(π∗X, π∗E)

is an isomorphism for all spectra X.
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This lemma shows that condition (2) of Theorem B implies condition (4). We
note that Lemma 1.1 holds, with the proof given below, in any monogenic stable
homotopy category in the sense of [8].

Proof. Since π∗E is injective, the functor Homπ∗S(π∗X, π∗E) is exact. The Brown
representability theorem then implies that there is a spectrum J and a natural
isomorphism

[X, J ] ∼= Homπ∗S(π∗X, π∗E)
for all X. Taking X = S tells us that there is an isomorphism r : π∗J ∼= π∗E
of π∗S-modules, but not that the natural isomorphism takes f ∈ [X, J ] to f∗. In
fact, if 1 ∈ [J, J ] corresponds to α : π∗J −→ π∗E, then naturality tells us that
f ∈ [X, J ] corresponds to α ◦ f∗. In particular, there is a map f : E −→ J such
that α ◦ f∗ is the isomorphism r. Hence α is a split epimorphism. On the other
hand, if x ∈ πnJ ∼= [Sn, J ] is a homotopy class of J , then x corresponds to α ◦x∗ ∈
Homπ∗S(π∗Sn, π∗J), which is multiplication by the class α(x). Thus α(x) can’t be
0, and so α is a monomorphism as well. Thus f∗ is an isomorphism as well, and so
E ∼= J . The lemma follows. �

The following proposition is the heart of the argument proving Theorem B.

Proposition 1.2. Suppose Y is a spectrum such that there are no nonzero phantom
maps to Y . Then Freyd’s generating hypothesis with target Y holds if and only if
π∗Y is an injective π∗S-module.

This proposition will also hold in any monogenic stable homotopy category.

Proof. The “if” half of this proposition follows immediately from Lemma 1.1 and
does not require the assumption about phantom maps. For the “only if” half,
assume

[X, Y ] −→ Homπ∗S(π∗X, π∗Y )
is injective for all finite X. Let J denote the injective hull of π∗Y as a π∗S-module.
Then Brown representability and Lemma 1.1 imply that there is a spectrum I with
π∗I = J and such that the natural map

[X, I] −→ Homπ∗S(π∗X, J)

is an isomorphism for all X. In particular, there is a map Y −→ I corresponding to
the inclusion π∗Y −→ J . Consider the commutative diagram below.

[X, Y ] −−−−→ [X, I]y y
Homπ∗S(π∗X, π∗Y ) −−−−→ Homπ∗S(π∗X, J)

The left-hand vertical map is injective for all finite X, and the bottom horizontal
map is always injective. It follows that the top horizontal map is injective for all
finite X, and hence that the fiber F −→ Y of the map Y −→ I is a phantom map.
Since there are no nonzero phantom maps to Y , we see that Y is a retract of I.
Hence π∗Y is a retract of J , and so is an injective π∗S-module. �

To apply Proposition 1.2, we need to know the relationship between the gener-
ating hypothesis with target Y and the generating hypothesis with target Yp. Since
the fiber of the map Y −→ Yp is rational, we need the following proposition.
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Proposition 1.3. Suppose V is a graded rational vector space. Then there is a
unique π∗S-module structure on V extending the abelian group structure, and V is
an injective π∗S-module with this structure.

This proposition will hold if π∗S is replaced by any ring R such that R/p ∼= Z(p),
where p is the ideal of p-torsion elements.

Proof. Let p denote the ideal of p-torsion elements in π∗S. Then, since V is torsion-
free, the only way to make π∗S act on V is through the homomorphism π∗S −→
π∗S/p ∼= Z(p).

Now suppose f : M −→ V is a map of π∗S-modules and i : M −→ N is an inclusion
of π∗S-modules. Let Tor(M) denote the p-torsion in M , which is a π∗S-submodule.
Then f factors through f : M/Tor(M) −→ V , and furthermore i induces an inclusion
i : M/Tor(M) −→ N/ Tor(N). Since V is an injective abelian group, there is then
a map g : N/ Tor(N) −→ V of abelian groups extending f . But g is in fact a map
of π∗S-modules, since N/ Tor(N) and V are torsion-free so p acts trivially. Hence

N −→ N/ Tor(N)
g−→ V

gives us the desired extension of f . �

We then have the following proposition.

Proposition 1.4. Suppose Y is a finite spectrum. Then Freyd’s generating hy-
pothesis with target Y holds if and only if Freyd’s generating hypothesis with target
Yp holds.

Proof. Let C denote the cofiber of the map Y −→ Yp, so that C is rational. Recall
that the fiber Σ−1C −→ Y is a phantom map (see [18, Theorem 9.5], for example).
Then we have the commutative diagram below.

[X, Y ] −−−−→ [X, Yp] −−−−→ [X, C]y y y
Homπ∗S(π∗X, π∗Y ) −−−−→ Homπ∗S(π∗X, π∗Yp) −−−−→ Homπ∗S(π∗X, π∗C)

The top row of this diagram is short exact for finite X, since Σ−1C −→ Y is phan-
tom. The bottom row is left exact for all X. The right-hand vertical map is
an isomorphism. A simple diagram chase now shows that the left-hand vertical
map is a monomorphism for finite X if and only if the middle vertical map is a
monomorphism for finite X. �

Analysis of the proof of Proposition 1.4 in fact gives us the following proposition,
independent of the generating hypothesis.

Proposition 1.5. Suppose X and Y are finite spectra. Then the natural map

Extn
π∗S(π∗X, π∗Y ) −→ Extn

π∗S(π∗X, π∗Yp)

is an isomorphism for all n ≥ 1.

Proof. In the commutative diagram used in the proof of Proposition 1.4, we pointed
out that the bottom row

Homπ∗S(π∗X, π∗Y ) −→ Homπ∗S(π∗X, π∗Yp) −→ Homπ∗S(π∗X, π∗C)
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was left exact. But in fact a diagram chase shows that it is exact, since the right-
hand vertical map is an isomorphism. From this and the fact that π∗C is an injective
π∗S module, the proposition follows. �

The last ingredient we need for Theorem B is the simple proof that conditions
(2) and (3) are equivalent.

Lemma 1.6. Let Y be a finite spectrum. Then π∗Yp is an injective π∗S-module if
and only if it is an injective π∗Sp-module.

Proof. Since π∗Sp is a flat π∗S-module, the forgetful functor from π∗Sp-modules
to π∗S-modules preserves injectives. Conversely, assume π∗Yp is an injective π∗S-
module. To see that π∗Yp is injective over π∗Sp, we use Baer’s criterion, which
tells us we need only check that, given an ideal a of π∗Sp and a map f : a −→ π∗Yp,
there is an extension π∗Sp −→ π∗Yp of π∗Sp-modules. Let b = a ∩ π∗S. Then b is
an ideal of π∗S, so we have an extension π∗S −→ π∗Yp of π∗S-modules. This gives a
map π∗Sp = π∗S ⊗ Z(p) −→ π∗Yp of π∗Sp-modules. When restricted to b, this map
extends f . But since a = b ⊗ Z(p), it follows that it is an extension of f on a as
well. �

We can now prove Theorem B.

Proof of Theorem B. Suppose Freyd’s generating hypothesis with target Y holds.
Then Proposition 1.4 implies that the generating hypothesis with target Yp holds.
Since there are no nonzero phantom maps to Yp, Proposition 1.2 tells us that π∗Yp

is an injective π∗S-module. Thus condition (1) implies condition (2).
Lemma 1.6 tells us that conditions (2) and (3) are equivalent, and Lemma 1.1

tells us that condition (2) implies condition (4). Condition (4) obviously implies
that Freyd’s generating hypothesis holds with target Yp, and then Proposition 1.4
implies that it holds with target Y as well. �

2. Brown-Comenetz duality

In this section, we investigate the consequences of the generating hypothesis for
Brown-Comenetz duals of finite spectra, proving Corollary D.

Proof of Corollary D. Suppose Y is finite. Then Yp = I2Y , as is well-known. Hence
π∗Yp = HomZ(p)(π∗(IY ), Q/Z(p)). Now apply Lambek’s theorem [15, Theorem 4.9]
to conclude that π∗Yp is injective if and only if π∗(IY ) is flat. Once π∗(IY ) is flat,
then the map

π∗(IY )⊗π∗S π∗X −→ π∗(IY ∧X)
is a natural transformation of homology theories that is an isomorphism when
X = S, so is always an isomorphism.

Now Lemma 2 of [10] implies that, over a countable ring like π∗S, any flat module
has projective dimension ≤ 1. Since π∗S is a local ring, projectives are free [14]
(we actually need the graded case of this result, which has been recently written
up in [5, Appendix A]). Thus, if π∗(IY ) had projective dimension 0, it would be
free. From that it is easy to conclude that IY is a coproduct of spheres. But, since
IY = DY ∧ I is BP -acyclic (see [8, Lemma B.11]), IY would have to be trivial.
Since this is false, the projective dimension of IY is 1.

Thus there is a short exact sequence

0 −→ F1 −→ F0 −→ π∗IY −→ 0



ON FREYD’S GENERATING HYPOTHESIS 7

of π∗S-modules, where F1 and F0 are free. In fact, by tensoring over Z(p) with
Q, we see that F1 and F0 are isomorphic. By choosing generators, we can find a
coproduct of spheres W with π∗W ∼= F1

∼= F0. By looking at the image of the
generators in homotopy, we can find maps

W
f−→ W

g−→ IY

such that the induced maps on homotopy give our original free resolution of π∗IY .
In fact, this sequence is a cofiber sequence. Indeed, the composite gf is null, so
there is an induced map from the cofiber of f to IY , which one can easily see
induces an isomorphism on homotopy.

Now, given Freyd’s generating hypothesis with target S, we claim that the map
Σ−1IY

δ−→ W that is the fiber of f is phantom. Indeed, if F is finite, and h : F −→
Σ−1IY is a map, then δh must factor through some a map h′ : F −→ W ′ for some
finite subcoproduct of spheres h′. If δh is nonzero, then h′ is nonzero, and so,
by Freyd’s generating hypothesis with target S, must induce a nontrivial map on
homotopy. Then δh also induces a nontrivial map on homotopy, as does the trivial
map fδh. This contradiction implies δ is phantom. �

Corollary D has some interesting consequences. Suppose that Freyd’s generating
hypothesis with target S holds, so that we have the cofiber sequence

Σ−1I
δ−→ W

f−→ W −→ I

where W is a coproduct of spheres and δ is a phantom map. Then E∗f is a
monomorphism for all E, and is an isomorphism for the many E for which E∗I = 0,
such as all BP -module spectra and I itself. In fact, E∗f is an isomorphism for
all BP -module spectra and all harmonic spectra E, since I is BP -acyclic and
dissonant.

On the other hand, suppose E is one of the many spectra for which [E,S]∗ = 0,
such as I, HFp, K(n) for n > 0, or any dissonant spectrum. Then any map E −→ W
goes to 0 in the corresponding product P of spheres, and hence factors through the
fiber of W −→ P . Since this is a phantom map, [E,W ]∗ consists entirely of phantom
maps, which necessarily go to 0 in [E, I]∗. Hence [E, f ]∗ is in fact surjective in
this case. One might think that this happens because [E,W ]∗ = 0, but in fact
[E,W ]∗ = 0 if and only if E = 0, since if [E,W ]∗ = 0 then [E, I]∗ = 0, and so
E = 0.

Another corollary is the following.

Corollary 2.1. Suppose Freyd’s generating hypothesis with target S holds. Then
there is a product J of suspensions of I such that Sp ∨ J ∼= J .

Proof. Apply the functor F (−, I) to the cofiber sequence

Σ−1I
δ−→ W −→ W −→ I

to get a cofiber sequence

F (I, I) = Sp −→ J = F (W, I) −→ J = F (W, I) −→ F (Σ−1I, I) = ΣSp.

On homotopy, the last map takes a map α : ΣiW −→ I into the composite δ◦α, which
is necessarily 0 since there are no phantom maps to I. On the other hand, because
π∗Sp is an injective π∗S-module, any map into Sp that is trivial on homotopy is in
fact trivial. Hence the cofiber sequence above splits, giving the corollary. �
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3. Other consequences of the generating hypothesis

In this section, we use Theorem B to draw some further consequences of the
generating hypothesis, including Theorem C, with which we begin.

Lemma 3.1. Suppose R is a ring spectrum and M is an R-module spectrum such
that M∗ is injective as a left R∗-module. Then the natural map

M∗X −→ HomR∗(R∗X, M∗)

is an isomorphism for all X.

Proof. The natural map in question takes f : X −→ M to the map µ∗ ◦R∗f , where
µ : R ∧M −→ M is the structure map of M . Because M∗ is injective, the functor
HomR∗(R∗(−),M∗) is a cohomology theory. Since the natural transformation in
question is an isomorphism when X = S, it is an isomorphism for all X. �

Proof of Theorem C. Suppose the generating hypothesis with target S holds, and
suppose that R is a finite ring spectrum that is Spanier-Whitehead self-dual. By
Corollary 2.1, Sp is a retract of a product J of suspensions of I. By smashing with
R, which commutes with products since R is finite, we find that Rp is a retract, as
an R-module, of a product of suspensions of I ∧R = F (DR, I). Since R is Spanier-
Whitehead self dual, Rp is a retract, as an R-module, of a product of suspensions
of IR. But π∗(IR) = HomZ(p)(R∗, Q/Z(p)) is an injective R∗-module [15, Corol-
lary 3.6B]. It follows that π∗Rp, as a retract of a product of injective R∗-modules,
is an injective R∗-module. The same proof used in Lemma 1.6 implies that π∗Rp

is also injective as a left module over itself. Lemma 3.1 completes the proof. �

Let R be a finite Spanier-Whitehead self-dual ring spectrum as in Theorem C,
and suppose the generating hypothesis holds for both S and R. Then, on the one
hand, we have the isomorphism

[X, Rp] ∼= Homπ∗S(π∗X, π∗Rp) ∼= HomR∗(R∗ ⊗π∗S π∗X, π∗Rp),

and on the other hand, we have the isomorphism

[X, Rp] ∼= HomR∗(R∗X, π∗Rp).

These isomorphisms are related by the map

σX : R∗ ⊗π∗S π∗X −→ R∗X,

and one might be tempted to think that σX has to be an isomorphism, and so
R∗ has to be flat over π∗S. However, all we actually know, under the generating
hypothesis for S and R, is that HomR∗(σX , π∗Rp) is an isomorphism. Thus we can
only conclude that

HomR∗(KX , π∗Rp) = HomR∗(CX , π∗Rp) = 0

for all X, where KX and CX are the kernel and cokernel of σX .
Now we give a more precise version of Freyd’s “faithful implies full” result [4,

Proposition 9.7].

Corollary 3.2. Suppose Freyd’s generating hypothesis with target Y holds. Then
the natural map

[X, Y ] −→ Homπ∗S(π∗X, π∗Y )
is an isomorphism for all finite X.



ON FREYD’S GENERATING HYPOTHESIS 9

Proof. We again let C denote the cofiber of Y −→ Yp, so that we get the same
commutative diagram used in the proof of Proposition 1.4.

[X, Y ] −−−−→ [X, Yp] −−−−→ [X, C]y y y
Homπ∗S(π∗X, π∗Y ) −−−−→ Homπ∗S(π∗X, π∗Yp) −−−−→ Homπ∗S(π∗X, π∗C)

The top row of this diagram is exact for all finite X since Σ−1C −→ Y is phantom.
The bottom row is also exact, as pointed out in Proposition 1.5. The right-hand
vertical map is an isomorphism by Proposition 1.3, and the middle vertical map
is an isomorphism by Theorem B. A simple diagram chase shows the left-hand
vertical map is an isomorphism for all finite X. �

Proposition 1.5 immediately gives us the following corollary of Theorem B.

Corollary 3.3. If Freyd’s generating hypothesis with target Y holds, then

Extn
π∗S(π∗X, π∗Y ) = 0

for all finite X.

Using the well-known fact that Zp/Z(p) is a rational vector space, we get the
following consequence of the generating hypothesis.

Corollary 3.4. If Freyd’s generating hypothesis with target Y holds, then

0 −→ π∗Y −→ π∗Yp −→ π∗Yp/π∗Y −→ 0

is an injective resolution of π∗Y in the category of π∗S-modules. In particular, if
Y is a finite spectrum of type 0, then π∗Y has injective dimension 1.

4. Injective π∗S-modules

Theorem B focusses attention on injective π∗S-modules; in this section we prove
a few facts about them. Without assuming Freyd’s generating hypothesis, we still
know that π∗Y has some injective hull JY . We cannot say very much about JY ,
but we can say a little.

Proposition 4.1. The map π∗S −→ π∗Sp is an essential extension of π∗S-modules.

Hence, whatever JS is, at least it contains π∗Sp.

Proof. The only elements in π∗Sp not in π∗S are elements in π0Sp
∼= Zp. Choose a

nonzero x ∈ Zp, and suppose pn divides x but pn+1 does not, so that x is congruent
to an integer of the form kpn ∈ π0S modulo pn+1, where k is a unit. Now choose
an element α ∈ π∗S of order pn+1, which can be done in the image of the J
homomorphism. Then αx = kpnx, which is a nontrivial element of π∗S. Therefore,
(x)∩π∗S is nonzero, completing the proof. is a y ∈ π0S such that x−y is a multiple
of p in Zp. �

In fact, we know a little more about J .

Proposition 4.2. Let J denote the injective hull of π∗Sp as a π∗Sp-module. The
inclusion Zp −→ J0 is a split monomorphism of abelian groups.
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Proof. We will prove that Zp −→ J0 is a pure monomorphism. That is, we will show
that if we have an equation x = pny for x ∈ Zp and y ∈ J0, then in fact we have an
equation x = pnz for some z ∈ Zp. Indeed, we may as well assume x = pk, so that
we have pkα = pnαy for all α ∈ π∗Sp. But then, if n > k, we may take α to be
an element of exact order pn and conclude that pkα = 0. This contradiction shows
that Zp −→ J0 is pure.

Since Zp is a pure injective abelian group, the proposition follows. �

Since π∗Sp −→ J is an essential extension, for every element y ∈ J , there is an
element αy ∈ π∗Sp with αyy ∈ π∗Sp. We can thus look for an element x in π∗Sp of
lowest possible degree such that x = γy for some y ∈ J \π∗Sp. Proposition 4.2 tells
us the degree of x must be positive. Our knowledge of π∗S is sufficient to rule out
some possibilities for the pair (x, γ), but insufficient, as far as the author knows, to
say anything systematic.

We point that there is one more injective π∗S-module known, besides the rational
ones and, conjecturally, π∗Sp.

Proposition 4.3. Let I denote the Brown-Comenetz dual of S. Then π∗I is the
injective hull of Fp as a π∗S-module.

The same argument as in the proof below shows that π∗ILnS is an injective
π∗LnS-module for any n.

Proof. We have π∗I = HomZ(p)(π∗S, Q/Z(p)). Since Q/Z(p) is an injective abelian
group, π∗I is injective by a standard result about injective modules [15, Corol-
lary 3.6B]. The obvious inclusion Fp −→ π0I −→ π∗I is obviously a map of π∗S-
modules. The action of π∗S on π∗I is given by

µ : πkS ⊗HomZ(p)(πnS, Q/Z(p)) −→ Hom(πn−kS, Q/Z(p))

where µ(x ⊗ f)(y) = f(xy). In particular, if f is a nontrivial element of π−nI =
Hom(πnS, Q/Z(p)), then there is an x ∈ πnS such that f(x) is a nonzero element
of Fp ⊆ Q/Z(p). It follows that µ(x⊗ f) is a nonzero element of Fp, and therefore
that Fp −→ π∗I is an essential extension of π∗S-modules. �

Note that it is tempting to conclude from Proposition 4.3 that Fp has injective
dimension 1 as a π∗S-module. This is wrong, however. The cokernel of Fp −→ π∗I
is isomorphic as a graded abelian group to π∗I, but not as a π∗S-module.

5. Infinitely generated homotopy

It was G. Whitehead who realized that the generating hypothesis implies that
the homotopy of a finite complex Y is not finitely generated over π∗S unless Y is
a finite coproduct of spheres [4, Proposition 9.5]. The proof of this fact is so easy
we recall it here. Suppose Y has finitely generated homotopy, so that we have a
cofiber sequence

F
f−→ W

g−→ Y
h−→ ΣF

where W is a finite wedge of spheres and π∗(g) is onto. Then π∗h = 0, so, by the
generating hypothesis, h = 0. Hence Y is a retract of W , so π∗Y is projective, and
hence free. Thus Y is itself a wedge of spheres.

Don Kahn [11] has shown that, for any finite spectrum Y , it is possible to
attach two cells (one if Y is not torsion) to Y to get a new complex Z with π∗Z
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not finitely generated. Thus there are many finite spectra whose homotopy is not
finitely generated.

We can use the existence of vn self-maps to prove Theorem E, which, we recall,
says that if X is a finite type n spectrum with n > 1 such that the map π∗X −→
π∗LnX is nonzero, then π∗X is not finitely generated.

Proof of Theorem E. By the nilpotence theorem [7], X has a non-nilpotent self-
map v of positive degree. This map can be taken to have Adams-Novikov filtration
0; see, for example, [9, Theorem 4.6]. Let AN(α) denote the Adams-Novikov fil-
tration of an element α ∈ π∗X. We need to choose an element β ∈ π∗X such that
limk⇒∞AN(vkβ) is minimal. Unfortunately, to do this we need to know that there
exists a β such that limk⇒∞AN(vkβ) is finite. To see this, note that if this limit
is not finite, then the analogous limit for the E(n)-Adams filtration is also infinite,
since E(n) is a BP -module spectrum. But the E(n)-based Adams-Novikov spectral
sequence for LnX converges strongly and has a horizontal vanishing line at the E∞
term by [9, Proposition 6.5]. Hence the image of vkβ in π∗LnX must be zero; since
v acts as a unit on LnX, we conclude that β maps to 0 in π∗LnX. Therefore, if we
choose a β that does not map to 0 in π∗LnX, we will have limk⇒∞AN(vkβ) finite.

So now we have chosen a β such that limk⇒∞AN(vkβ) is minimal. Choose a
generating set {xi} for π∗X as a π∗S-module, and write

β = x1 ◦ α1 + · · ·+ xr ◦ αr

for some αj ∈ π∗S. Then for large k, we have

vk ◦ β = vk ◦ xi ◦ αi + · · ·+ vk ◦ xr ◦ αr,

and vkβ will have the least Adams-Novikov filtration among all the vkxi. This
implies that there must be an i with αi nonzero such that the Adams-Novikov
filtration of vkxi is the same as that of vkβ. Hence αi has Adams-Novikov filtration
0, so is in π0S. We conclude that the degree of xi is the same as the degree of β.
By reeating the argument on vjβ, we see that there must be a generator of π∗X in
the degree of vjβ for all k ≥ 0. Thus π∗X is not finitely generated.

Now, the statement of Theorem E included the claim that the theorem holds
when X is a µ-spectrum. This follows because if X is a µ-spectrum, then there is
a unit η : S −→ X and a multiplication µ : X ∧X −→ X such that µ ◦ (η ∧ 1) is the
identity. In particular, if η went to 0 in π∗LnX, then LnX itself would be zero,
which is false since X is type n. �

6. The generating hypothesis and thick subcategories

One difficulty that the generating hypothesis has always posed is that knowing
the generating hypothesis with target Y does not seem to say very much about the
generating hypothesis with other targets. Freyd’s work does imply, however, that
if the generating hypothesis with target Y is true for all finite torsion spectra Y ,
then it is true for all finite Y (this can be obtained from the proof of Theorem 9.9
of [4]). In this section we extend Freyd’s result to finite spectra of type at least n.

Proposition 6.1. Suppose X is a type n finite spectrum for some n, with vn self-
map v. Let X/vk denote the cofiber of vk, and consider the cofiber sequence

Z
δ−→ X −→

∏
k≥1

X/vk.
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Then δ is a phantom map.

Proof. Suppose first that n = 0, so that v = p. If F is a finite spectrum, the group
[F,X] is finitely generated abelian, and therefore any f : F −→ X is not divisible
by pk for large enough k. Hence the image of f in [F,X/pk] is nonzero for large
enough k. Thus

[F,X] −→ [F,
∏

X/pk]

is a monomorphism, and so δ is phantom.
Now suppose n ≥ 1, so that the map v has some positive degree d (see [7]). Let

F be a finite spectrum, and suppose f : F −→ X is a nontrivial map. We claim
that the composite F −→ X −→ X/vk is nontrivial for some k. Indeed, if not, then f
factors through ΣdkX for all k. For k large enough, every cell of F will be in lower
degree than all the cells of ΣdkX, and so [F,ΣdkX] = 0 and f = 0. Thus

[F,X] −→ [F,
∏

X/vk]

is a monomorphism, and so δ is phantom. �

Corollary 6.2. Suppose X is a type n finite spectrum for some n, with vn self-map
v. Then Xp is a retract of

∏
k≥1 X/vk.

Proof. Recall that completion is really Bousfield localization LM(p). The space∏
X/vk is already LM(p)-local, since each X/vk is so. Hence we have a cofiber

sequence

LM(p)Z
LM(p)δ−−−−→ LM(p)X −→

∏
k≥1

X/vk.

The map LM(p)δ is determined by its restriction to Z, which is phantom by Propo-
sition 6.1. Since there are no phantom maps to Xp, we conclude that LM(p)δ = 0,
giving us the desired splitting. �

Corollary 6.3. Fix n ≥ 0. The generating hypothesis with target Y is true for all
finite spectra Y if and only if it is true for all finite Y of type at least n.

Corollary 6.3 is the closest we can come to showing that the collection of all Y
for which the generating hypothesis with target Y is true is a thick subcategory.

Proof. It is enough to show that, if the generating hypothesis with target Y is true
for all finite Y of type at least k, then the generating hypothesis with target Y is
true for all finite Y of type at least k − 1. Suppose X has type k − 1. Choose a
vk−1 self-map v of X. By Corollary 6.2, Xp is a summand in

∏
X/vk. Each X/vk

has type k, and so π∗ ∗X/vk is an injective π∗S-module, by Theorem B. It follows
that π∗Xp is an injective π∗S-module, and so the generating hypothesis with target
Xp is true. But then Proposition 1.4 implies that the generating hypothesis with
target X is true. �

Another interesting corollary of Proposition 6.1 is the following. Let Cn denote
the thick subcategory of finite spectra whose type is at least n.

Corollary 6.4. The subcategory Cn generates and cogenerates the category of finite
spectra.

This means that, given a nonzero map f : X −→ Y of finite spectra, there are
maps g : Z −→ X and h : Y −→ W with Z,W ∈ Cn and f ◦ g and h ◦ f both nonzero.
This corollary was proved by Freyd [4, Proposition 6.8] in the case n = 1.
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Proof. Let f : X −→ Y be a nonzero map. Suppose Y is of type k. Then it follows
from Proposition 6.1 that there is a Z of type k + 1, namely Y/vr for large r, and
a map h : Y −→ Z such that hf is nonzero. We can then proceed by induction to
see that Cn cogenerates the category of finite spectra.

Given this, consider the Spanier-Whitehead dual Df of f . There is a spectrum
V of type at least n and a map k : DX −→ V such that k◦Df is nonzero. Dualizing,
we see that see that f ◦Dk is nonzero, and DV also has type at least n. �

References

[1] Ethan S. Devinatz, K-theory and the generating hypothesis, Amer. J. Math. 112 (1990),
no. 5, 787–804. MR MR1073009 (91i:55011)

[2] , Small ring spectra, J. Pure Appl. Algebra 81 (1992), no. 1, 11–16. MR MR1173820
(93g:55012)

[3] , The generating hypothesis revisited, Stable and unstable homotopy (Toronto, ON,
1996), Amer. Math. Soc., Providence, RI, 1998, pp. 73–92.

[4] Peter Freyd, Splitting homotopy idempotents, Proceedings of the Conference on Categorical
Algebra (La Jolla, 1965) (S. Eilenberg, D. K. Harrison, S. Mac Lane, and H. Röhrl, eds.),
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