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Abstract

The development of computational models for simulating tumor growth and response to treatment has gained significant
momentum during the last few decades. At the dawn of the era of personalized medicine, providing insight into complex
mechanisms involved in cancer and contributing to patient-specific therapy optimization constitute particularly inspiring
pursuits. The in silico oncology community is facing the great challenge of effectively translating simulation models into
clinical practice, which presupposes a thorough sensitivity analysis, adaptation and validation process based on real clinical
data. In this paper, the behavior of a clinically-oriented, multiscale model of solid tumor response to chemotherapy is
investigated, using the paradigm of nephroblastoma response to preoperative chemotherapy in the context of the SIOP/
GPOH clinical trial. A sorting of the model’s parameters according to the magnitude of their effect on the output has
unveiled the relative importance of the corresponding biological mechanisms; major impact on the result of therapy is
credited to the oxygenation and nutrient availability status of the tumor and the balance between the symmetric and
asymmetric modes of stem cell division. The effect of a number of parameter combinations on the extent of chemotherapy-
induced tumor shrinkage and on the tumor’s growth rate are discussed. A real clinical case of nephroblastoma has served as
a proof of principle study case, demonstrating the basics of an ongoing clinical adaptation and validation process. By using
clinical data in conjunction with plausible values of model parameters, an excellent fit of the model to the available medical
data of the selected nephroblastoma case has been achieved, in terms of both volume reduction and histological
constitution of the tumor. In this context, the exploitation of multiscale clinical data drastically narrows the window of
possible solutions to the clinical adaptation problem.
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Introduction

The last few decades have witnessed an increased interest of the

scientific community into the development of computational

models for simulating tumor growth and response to treatment

[1–3]. At the beginning of the era of personalized medicine,

sophisticated multiscale models yield valuable quantitative insights

into complex mechanisms involved in cancer and may ultimately

contribute to patient-specific therapy optimization.

The major modeling approaches can be distinguished into

predominantly continuous and predominantly discrete models.

Predominantly continuous models rely primarily on differential

equations to describe processes such as diffusion of molecules,

changes in tumor cell density and invasion of tumor cells into the

surrounding tissue [4–9]. Predominantly discrete modeling

considers several discrete states in which cells may be found and

possible transitions between them, governed by ‘‘decision

calculators’’, such as cytokinetic diagrams and agent-based

techniques [10–18]. Discrete models are usually represented by

cellular automata of several forms and variable complexity (grids

of cells or groups of cells, in which a finite number of states and a

set of evolution and interaction rules are defined). Due to the

hypercomplexity of cancer-related topics, each modeling approach

is intrinsically able to satisfactorily address only some of the aspects

of this multifaceted problem. Ultimate goal of clinically-oriented

cancer simulation models is their eventual translation into clinical

practice, which entails a) thorough sensitivity analyses, in order to

both comprehend and validate their behavior, and at the same

time gain further insight into the simulated mechanisms, in a more

quantitative way, and b) an adaptation and validation process

based on real clinical data.

This paper investigates the behavior of an actual clinical trial-

driven model simulating the response of nephroblastoma tumors

to preoperative chemotherapy. Nephroblastoma (also termed

Wilms’ tumor) is the most common renal malignancy in children

[19,20]. Indicative results of an in-depth sensitivity analysis of the
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model regarding the effect of critical mechanisms involved in the

dynamics of the biological system are presented, along with a proof

of principle, successful adaptation study to an actual clinical

Wilms’ tumor case, drawn from the SIOP 2001/GPOH trial

[21,22]. The model is in the process of clinical adaptation and

validation within the framework of the EC-funded project

‘‘ACGT: Advancing Clinicogenomic Trials on Cancer (FP6-

2005-IST-026996)’’.

Methods

Ethics statement
This research is approved by the Ethical Committee of the

Aerztekammer des Saarlandes (104/10 from 20 July 2010).

Written informed consent was given by the parents of the child

whose clinical data were used in this work.

General features of the simulation model
The model is a predominantly discrete, clinically-oriented

multiscale cancer model of solid tumor response to chemotherapy

[23,24], stemming from previous work of the In Silico Oncology

Group (ISOG), National Technical University of Athens (NTUA).

A ‘‘top-down’’ simulation approach is formulated [25,26]; the

method starts from the macroscopic imaging data (a high

biocomplexity level) and proceeds towards lower biocomplexity

levels. When there is a need for an upwards movement in the

biocomplexity scales, a summary of the available information

pertaining to the previous lower level is used. The clinical

orientation of the model has been a fundamental guiding principle

throughout its development. Available medical data can be

exploited, in order to strengthen patient-individualized modeling.

The model is under continuous refinement in the framework of

clinical trials.

Basic algorithmic notions
The following five categories (or ‘‘equivalence classes’’) of

cancer cells are considered in the model: stem cells (cells of

unlimited mitotic potential), LIMP cells (LImited Mitotic Potential

or committed progenitor cells, which can perform a limited

number of mitoses before terminal differentiation), terminally

differentiated cells, apoptotic and necrotic cells. The various cell

cycle phases (G1, S, G2, M) and the dormant (G0) phase constitute

subclasses in which stem or LIMP cells may reside. Figure 1

depicts the developed cytokinetic model, which incorporates

several biological phenomena that take place at the cellular level:

N Cycling of proliferating cells through the successive cell cycle

phases.

N Symmetric and asymmetric modes of stem cell division.

N Terminal differentiation of committed progenitor cells after a

number of mitotic divisions.

N Transition of proliferating cells to the dormant phase due to

inadequate supply of oxygen and nutrients.

N Reentering of dormant cells into the active cell cycle due to

local restoration of oxygen and nutrient supplies.

N Cell death through spontaneous apoptosis.

N Cell death through necrosis (due to prolonged oxygen and

nutrients’ shortage).

N Cell death due to chemotherapy-induced apoptosis.

Table 1 presents the corresponding tumor dynamics model

parameters.

In order to simulate chemotherapy-induced cell death, lethally

hit cells are assumed to enter a rudimentary cell cycle leading to

apoptotic death. Cell cycle-specific, cell cycle-non specific, cell

cycle phase-specific and cell cycle phase-non specific drugs can be

simulated, as detailed in [23]. ‘‘Marking’’ of a cell as hit by the

drug is assumed to take place at the instant of drug

administration. However, its actual time of death is dictated by

the specific drug’s pharmacokinetics and pharmacodynamics.

The numbers of cells hit by the drug are computed through the

utilization of the cell kill ratio (CKR) parameter (CKR = 1-cell

survival fraction), defined as the percentage of lethally hit cells

after each drug administration. A diversification of chemother-

apeutic resistance between tumor stem and non-stem cells can be

easily achieved through the use of different values of the

corresponding CKR parameters.

For a relatively short time interval compared to the tumor’s

lifetime (such as the duration of a simulated chemotherapeutic

schedule) the various cell category/phase transition rates are

considered approximately constant and reflect the means of the

actual cell category/phase transition rates over the interval.

Virtual tumor spatiotemporal initialization
A three-dimensional cubic mesh discretizing the region of

interest is considered. The elementary volume of the mesh is called

geometrical cell (GC). Each GC of the tumor accommodates

initially a number of biological cells (NBC), which is defined based

on typical solid tumor cell densities (e.g. 109 cells/cm3) [27], unless

more specific information for a particular tumor is available. The

cells initially residing within each GC of the mesh are distributed

into the five classes and subclasses mentioned above. The

technique used for the tumor’s constitution initialization is critical,

in order to avoid latent artificial tumor growth behaviors, as

previously described in [23,24].

The model supports the division of tumor area into different

metabolic regions (e.g. necrotic and proliferative) based on

pertinent imaging data and the handling of each region separately.

In this case different values of specific model parameters can be

assigned to each region.

Virtual tumor spatiotemporal evolution
At each time step the discretizing mesh is scanned and the

basic cytokinetic, metabolic, pharmacokinetic/pharmacodynamic

and mechanical rules that govern the spatiotemporal evolution of

the tumor are applied. Practically, each complete scan can be

viewed as consisting of two mesh scans, as described in [23].

Briefly speaking, the first scan aims at updating the state of each

GC, by applying the rules of the cytokinetic model of Figure 1.

The second scan serves to simulate tumor expansion or

shrinkage, based on the principle that, throughout a simulation,

the total population of a GC is allowed to fluctuate between a

minimum and a maximum value, defined in relation to the initial

typical GC cell content. At each time step, checks of each GC

total population designate whether the total cell number is

above/below the predefined max/min thresholds and, if

necessary, specially-designed cell content shifting algorithms

‘‘create’’ or ‘‘delete’’ GCs and thereby lead to tumor expansion

or shrinkage, respectively.

A simplified flowchart of the entire simulation procedure is

provided as supporting material (Figure S1). A detailed description

of technical issues involved in the construction of an integrated

simulation platform incorporating image processing, visualization

and grid execution facilities will be the topic of a separate paper.

Initial presentations can be found in [26,28,29].

Clinical Trial Data for Cancer Model Adaptation
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Nephroblastoma preoperative chemotherapy in the
context of the SIOP/GPOH clinical trial

A thorough study of nephroblastoma literature preceded the

simulations, so as to define -in conjunction with accumulated basic

science and clinical experience-plausible reference values and

value ranges of the various model parameters (Table 1).

A protocol of preoperative chemotherapy with a combination of

actinomycin-D and vincristine for unilateral stage I-III nephro-

blastoma tumors, treated according to the SIOP 2001/GPOH

clinical trial (Figure 2), in the framework of the ACGT project, has

been specifically simulated in the present paper.

Vincristine’s antineoplastic effect is basically attributed to its

ability to bind to the protein tubulin, thereby destroying the

functionality of the cell’s microtubules, which form the mitotic

spindle, and ultimately resulting in apoptotic cell death at mitosis

(an M-phase specific drug) [30–32]. Therefore, in the simulation

model vincristine is assumed to bind at cells at all cycling phases

and lead to apoptosis at the end of M phase. Vincristine’s toxicity

is known to decrease with increasing tumor cell density (‘‘inoculum

effect’’) [33].

Actinomycin-D is a cell cycle-nonspecific antitumor antibiotic

that binds to double-stranded DNA through intercalation between

adjacent guanine-cytosine base pairs [34]. It also acts to form toxic

oxygen-free radicals, which create DNA strand breaks, inhibiting

DNA synthesis and function. Based on the above, in the model

actinomycin-D is considered to bind to cells at all phases (including

G0) and lead to apoptosis at the end of the S phase.

The method used for the initial estimation of typical values of

the cell kill ratios of vincristine and actinomysin-D is based on

relevant pharmacokinetics and pharmacodynamics literature [35–

38] (see Text S1).

According to the SIOP 2001/GPOH clinical trial protocol,

vincristine i.v. bolus injection is directly followed by an i.v.

bolus injection of actinomycin-D, with no delay in-between. As

a first approximation, an additive drug effect of vincristine

and actinomycin-D has been assumed for all active cell cycle

phases. For dormant cells only actinomycin-D exerts a

cytotoxic effect.

Results

Cellular level-mechanisms with major impact on
nephroblastoma response to chemotherapy

The results of the sensitivity analyses performed permitted the

sorting of the model’s parameters –and hence of the correspond-

ing biological mechanisms- according to the magnitude of their

Figure 1. Generic cytokinetic model for tumor response to chemotherapy. The generic cytokinetic model used. LIMP: LImited Mitotic
Potential cells. DIFF: terminally differentiated cells. G1: Gap 1 phase. S: DNA synthesis phase. G2: Gap 2 phase. M: Mitosis. G0: dormant phase. Hit: cells
lethally hit by chemotherapy. The arrow indicating chemotherapy-induced death is a sliding arrow, with position dependent on drug
pharmacodynamics. For a definition of the depicted model parameters see Table 1.
doi:10.1371/journal.pone.0017594.g001
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effect on selected outputs. These are cellular-level biological

mechanisms, but are governed by—and thus summarize—

various genetic determinants which may diversify the tumor

phenotype, prognosis and response to therapy for each particular

clinical case. More specifically, all model parameters pertaining

to tumor dynamics have been studied (twelve parameters in total,

see Table 1). The remaining few model parameters (see Table S1)

are miscellaneous parameters unrelated to the tumor’s dynamics.

The simulation outcome considered was the tumor volume

reduction after chemotherapy treatment, since this is a typical

measure of the response to preoperative chemotherapy treatment

in the clinical setting [19,20]. The details of the sensitivity

analysis approach adopted are presented as supporting material

(Text S2).

As shown in Figure 3, the two biological mechanisms mostly

implicated in the result of therapy are:

a. The oxygen and nutrients availability status of the tumor (as

expressed mainly by the fraction of cells entering the dormant

phase following mitosis - Psleep), and

b. The balance between the symmetric and asymmetric modes

of stem cell division, reflecting intrinsic properties of stem cells

and/or extrinsic controls from their microenvironment

(represented by the fraction of stem cells that divide

symmetrically - Psym)

Other parameters completing the picture of tumor response to

therapy, but with significantly reduced impact on the selected

outcome compared to the previous two, are:

a. The cytotoxicity of the chemotherapeutic agents (reflected by

their total cell kill ratio – CKRtotal)

b. The cell cycle duration - Tc

c. The apoptosis rate of living stem and committed progenitor

(LIMP) tumor cells - RA.

d. The fraction of the dormant cells having just left the G0

compartment that re-enter the cell cycle -PG0toG1 (which

constitutes a further way through which the oxygenation and

nutrients’ availability status of the tumor plays a role in the

model).

An additional parametric analysis is presented in Figure 4,

involving the previously defined six most critical parameters which

largely complete the picture of the tumor’s response to treatment

in terms of volume reduction (i.e. Psleep, Psym, CKRtotal, Tc, RA,

PG0toG1). The combined effects of a number of parameter dyads

on the reduction percentage of a chemotherapeutically treated

tumor and on the growth rate constant characterizing its free

growth or re-growth after completion of therapy have been

Table 1. Tumor dynamics model parameters studied in the sensitivity analyses.

Symbol
(units) Definition

Reference
Value References T1 T2 T3 T4

Tc (h) Cell cycle duration 23.0 [39] 23.0 40 23.0 55

TG0 (h) G0 (dormant phase) duration, i.e. time interval
before a dormant cell dies through necrosis

96 [40] 96 96 96 40

TN (h) Time needed for necrosis to be completed and its
lysis products to be eliminated from the tumor

20 [10,15,41] 20 20 20 120

TA (h) Time needed for apoptosis to be completed and
its products to be eliminated from the tumor

6 [42,43] 6 6 6 6

RA (h21) Apoptosis rate of living stem and LIMP tumor cells (fraction
of non-differentiated cells dying through apoptosis per hour)

0.001 Derived from TA, based on [42,43] 0.001 0.0008 0.001 0.001

RADiff (h21) Apoptosis rate of differentiated tumor cells per hour 0.003 0.003 0.003 0.003 0.05

RNDiff (h21) Necrosis rate of differentiated tumor cells per hour 0.001 Derived from TN, based on [10,41] 0.001 0.001 0.001 0.05

PG0toG1 The fraction of stem or LIMP cells having just left
the G0 compartment that re-enter the cell cycle

0.01 0.01 0.01 0.01 0.01

NLIMP The maximum number of mitoses that a LIMP cell can
perform before becoming terminally differentiated

3 3 3 3 3

Psym Fraction of stem cells that perform symmetric division. 0.45 0.71 0.45 0.45 0.76

Psleep Fraction of cells that enter G0 phase following mitosis 0.28 0.40 0.28 0.28 0.36

CKRVCR Cell kill ratio for the specific vincristine dose 0.3 Derived based on [35,36] 0.3 0.3 0.36 0.33

CKRACT Cell kill ratio for the specific actinomycin-D dose 0.2 Derived based on [37,38] 0.2 0.2 0.34 0.22

CKRTOTAL* Combined cell kill ratio of the
two drugs (dependent parameter)

0.5 Additive drug effect considered 0.5 0.5 0.7 0.55

Definition of tumor dynamics model parameters, reference values and corresponding literature references, and values assigned for the implementation of four virtual
tumors. T1: Tumour T1, T2: Tumour T2, T3: Tumour T3, T4: Tumour T4. CKRtotal is not an independent parameter of the model.
doi:10.1371/journal.pone.0017594.t001

Figure 2. Chemotherapy treatment protocol. The simulated Wilms
tumor preoperative chemotherapy treatment protocol of the SIOP/
GPOH clinical trial.
doi:10.1371/journal.pone.0017594.g002
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studied. The considered parameter dyads are: i) Psym and Psleep, ii)

TC and RA, and iii) CKRtotal and PG0toG1.

For tumor regrowth after therapy studies, an exponential free

growth pattern has been considered, which in fact approximates a

segment of the Gompertzian curve, as explained in [23]. The areas

that appear in the graphs of Figure 4 show only combinations of

biologically relevant parameter values leading to tumors that

exhibit monotonic behavior for the case of free growth [23,24] and

tumors displaying volume reduction after therapy for the case of

treatment.

Figure 4A shows the combined effect of Psym and Psleep on the

growth rate of the tumor. An intuitive observation is that a tumor

is more aggressive (with a higher growth rate constant) for higher

values of Psym and lower values of Psleep, which points out the

counteracting effect of the two mechanisms. The growth rate

‘‘isosurfaces’’ (here defined as distinct ranges of the growth rate

constant values and indicated by distinct colors) form parallel

stripes, implying that the effect of the combination of the two

parameters retains the same character over the entire value space

considered.

Figure 4C shows the combined influence of TC and RA. Virtual

tumors with prolonged cell cycle duration are less aggressive (with

a lower growth rate constant) than tumors with short cell cycle

durations. This difference becomes greater for higher values of the

spontaneous apoptosis rate. The tumor growth rate ‘‘isosurfaces’’

appear almost parallel to the axis of RA for low values of TC: the

influence of spontaneous apoptosis on the growth rate of the tumor

is much less pronounced than the effect of the cell cycle duration

(which is in accordance with the results presented in Figure 3).

In Figure 4E a biologically anticipated finding is that tumors

with higher PG0toG1 values have higher growth rate constants.

Also, as expected, the drugs’ cell kill ratio has no effect on the

tumor free growth rate; therefore, ‘‘isosurfaces’’ parallel to the axis

of the CKR parameter appear in this case.

In Figure 4B an isoline of maximum volume reduction is

discernible. A sharp decrease in the output is observed when

changing the parameter values from those that lead to that

maximum reduction, which is characteristic of the pronounced

sensitivity of the output on the values of these two parameters, in

accordance with the results of Figure 3. Parallel ‘‘isosurfaces’’ are

another characteristic of the output in this case too.

Figure 4D indicates larger volume reductions for tumors with

high values of TC and high values of RA. Finally, as shown in

Figure 4F, an increased CKR of the combination of the

chemotherapeutic agents (i.e. increased cytotoxicity) leads intui-

tively to greater tumor volume reductions. The volume reductions

are slightly higher for higher values of PG0toG1.

Clinical adaptation of the model: a proof of principle
simulated clinical case

A clinical case of nephroblastoma from the SIOP 2001/GPOH

trial has been selected and the corresponding anonymized imaging

and clinical data have been collected. The outer boundary of the

tumor based on two sets of MRI images has been provided for two

time instants, the first one corresponding to the time of diagnosis (4

days before the beginning of the chemotherapy treatment) and the

second one 3 days after the last drug administration. At this first

clinical adaptation step, the spatial distribution of macroscopically

distinct tumor subregions was not available for the particular

clinical case and therefore an equivalent tumor of the same

constitution in terms of cell categories population numbers has

been considered. Based on the imaging data, chemotherapy has

achieved tumor shrinkage equal to 73%. Post-surgery histological

data indicated a highly malignant, blastemal type of tumor, with a

regression/necrosis component after chemotherapy approximately

equal to 60% and a 100% blastemal component for the remaining

viable tumor. The available histological information for the

particular tumor has been used in the model so as to provide a

means of appropriately adjusting the corresponding populations

percentages in the equivalent homogeneous virtual tumor

considered.

Results of sensitivity analyses such as those presented in the

previous section, have provided guidance for the selection of the

model parameter values so as to succeed in implementing a virtual

tumor consistent with the actual clinical data, both in terms of

tumor volume measurements and histological constitution of the

tumor. Four virtual tumor scenarios in agreement with the tumor

Figure 3. Sorting of the model parameters according to their effect on chemotherapy-induced tumor shrinkage. Sorting of the model
parameters according to their effect on chemotherapy-induced tumor shrinkage. For a definition of the depicted model parameters see Table 1. SC:
Sorting Criterion (see Text S2).
doi:10.1371/journal.pone.0017594.g003
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volume imaging data measurements have been specified. The

values assigned to the model parameters for the implementation of

the four virtual tumor scenarios are presented in Table 1. Derived

tumor characteristics (doubling time, growth fraction etc.) and

resultant therapy-induced shrinkages are presented in Tables 2

and 3. Taking into account all the uncertainties in the medical and

literature data that have been used, Table 2 should be interpreted

as indicating approximate values of the various tumor properties.

The volume reduction for these simulated tumors is equal to

72% for T1, T2, and T3, and 73% for T4. These results are in

very good agreement with the imaging data-specified volume

shrinkage of 73%. After having initially assigned reference values

to all model parameters, exploratory perturbations have been

performed in order to achieve agreement with clinical data.

Tumor T1 has been derived by appropriately perturbing Psym and

Psleep, and tumor T2 by adjusting TC and RA. The third scenario

(T3) has been specified, by considering an initial tumor with all

parameters kept at their reference values, apart form the total cell

kill ratio, which has been adequately perturbed in order to fit the

tumor volume measurements. As will be subsequently described,

the final virtual scenario (T4) incorporates all necessary parameter

perturbations to achieve full compliance with all medical and

literature data.

Since all four virtual tumors are in good agreement with the

data in terms of tumor volume reduction, they would be

thought of as fairly good solutions of the simulation problem if

no further information was available. Nevertheless, as revealed

by the detailed tumor characteristics of these solutions, the

corresponding tumors’ subpopulation constitution and growth

rate characteristics could be highly variable. To the best of our

knowledge, all attempted adaptations of simulation models to

clinical data reported up to now in the literature involve

Figure 4. Selected combined effects of several model parameter combinations. Combined effects of selected parameter combinations on
tumor free growth rate (first column) and volume reduction after therapy (second column). Different colors correspond to distinct ranges of the
growth rate constant value or the tumor volume reduction percentage. Panels A, B: Combined effect of Psym and Psleep. Panels C,D: Combined
effect of Tc and RA. Panels E,F: Combined effect of CKRtotal and PG0toG1. For a definition of the depicted model parameters see Table 1.
doi:10.1371/journal.pone.0017594.g004

Clinical Trial Data for Cancer Model Adaptation
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agreement in terms of tumor volume or total cell population,

with the exception of modeling efforts that include a distinction

between proliferating and quiescent cells [14] or oxic and

hypoxic subpopulations [15]. In sharp contrast, the presented

model, offers the possibility of a full clinical adaptation of all

available information: both imaging and histological data. Its

structure permits formulation of quantitative hypotheses regard-

ing as yet unavailable data (e.g. initial tumor subpopulations),

but which, very importantly, fulfill the constraints of the clinical

information in hand.

Tumor T4 is a scenario fully satisfying the available

histological constraints of the clinical case considered, with a

post-chemotherapy population of dead cells close to 60% (<57%)

and a quite negligible population of differentiated cells (<1%)

since a blastemal type of tumor is being studied. At the same

time, this scenario is in a rather good agreement with

nephroblastoma literature regarding those tumor characteristics

for which no clinical input was available: volume doubling time of

21 days (a range of 11–40 days is reported in literature [44–48]),

pre-chemotherapy and post-chemotherapy growth fractions

approximately equal to 37% and 30%, respectively, (correspond-

ing percentages reported in literature for nephroblastomas of

blastemal type [49]: 31–80% and 11–40%, respectively).

Notwithstanding a) that parameter values outside ranges specified

in literature could certainly not be excluded, due to both inter-

patient variability and methodological issues related to the

procedures used for their estimation, and b) that the estimated

quantitative features of the tumors are only of an approximate

character, the above observations demonstrate the basic philos-

ophy of a possible procedure towards the selection of prevailing

virtual scenarios, based on the combined use of the available for

each patient case clinical and literature data. As the available

information regarding a particular tumor’s characteristics in-

creases, further narrowing of the window of possible solutions is

to be expected. Very importantly, virtual tumor T4 satisfies

concurrently a considerable number of constraints which

drastically limit the value range of the critical model parameters

implicated in tumor response to therapy (e.g. Psym, Psleep). Our

sensitivity analyses indicate that, under all the concurrent

constraints considered, large deviations from the specified values

of these critical parameters, and hence radically different solution

characteristics, would not be expected, if an ‘‘exhaustive’’ solution

search to the particular adaptation problem was attempted.

Rather, different solutions would result mainly from alternative

Table 2. Initial virtual tumors’ characteristics.

Resultant initial tumor characteristics Typical tumor* T1 T2 T3 T4

Growth Rate Constant, k (h21) 0.001 0.0004 0.0004 0.001 0.0014

Volume Doubling Time, Td = ln2/k (days) 29 72 72 29 21

Initial percentage of proliferating cells (Growth Fraction) (%) 14 15 19 14 37

Initial percentage of dormant cells (%) 18 36 16 18 14

Initial percentage of stem cells (%) 12 32 14 12 35

Initial percentage of LIMP cells (%) 20 19 21 20 16

Initial percentage of differentiated cells (%) 62 40 59 62 2

Initial percentage of dead cells (%) 6 9 6 6 47

Initial tumor characteristics and volume reduction percentages for the four virtual tumor scenarios, defined by the parameter values given in Table 1. The total tumor
cell population is derived by adding the subpopulations of proliferating cells, dormant cells, differentiated cells and dead cells or, alternatively, the subpopulations of
stem cells, LIMP cells, differentiated cells and dead cells.
*The column ‘‘typical tumor’’ presents the characteristics of a tumor implemented by assigning to all model parameters their assumed reference value; it does not
constitute a solution for the simulation case considered.
doi:10.1371/journal.pone.0017594.t002

Table 3. Final virtual tumors’ characteristics and tumor volume reduction percentages.

Final tumor characteristics Typical tumor* T1 T2 T3 T4

1 day after completion of therapy 3 days after completion of therapy

Tumor volume reduction percentage (%) 56 72 72 72 73

Final percentage of proliferating cells (Growth Fraction) (%) 7 10 11 6 30

Final percentage of dormant cells (%) 13 27 11 11 12

Final percentage of stem cells (%) 7 23 8 7 29

Final percentage of LIMP cells (%) 13 14 14 10 13

Final percentage of differentiated cells (%) 74 55 73 78 1

Final percentage of dead cells (%) 6 8 5 5 57

Initial tumor characteristics and volume reduction percentages for the four virtual tumor scenarios, defined by the parameter values given in Table 1. The total tumor
cell population is derived by adding the subpopulations of proliferating cells, dormant cells, differentiated cells and dead cells or, alternatively, the subpopulations of
stem cells, LIMP cells, differentiated cells and dead cells.
*The column ‘‘typical tumor’’ presents the characteristics of a tumor implemented by assigning to all model parameters their assumed reference value; it does not
constitute a solution for the simulation case considered.
doi:10.1371/journal.pone.0017594.t003

Clinical Trial Data for Cancer Model Adaptation

PLoS ONE | www.plosone.org 7 March 2011 | Volume 6 | Issue 3 | e17594



values in parameters that remain largely unspecified based on the

available data. Such an example is the NLIMP parameter, which

currently remains unspecified based on the available data; an

indication regarding the relative percentages of stem and

committed progenitor cells would restrict the range of permitted

perturbations in its value.

Bearing all this in mind, in Figure 5A the time course of the four

virtual tumors is presented. As discussed, the final tumor volume is

about the same for all tumors. Nevertheless, differences in the

evolution over time are discernible among the studied cases

(Figure 5B,C,D,E), since different tumor dynamics parameter

values lead to different initial cell subpopulations and have

implications for their evolution over time and the effect of therapy.

Numerous interesting theoretical observations could be made

based on Figure 5 (see also Figure S2); the following, though, stand

out:

N Since Psym and Psleep are the two parameters with the major

impact on the tumor’s evolution, the use of similar values for

these parameters in different virtual tumors results in quite

similar patterns of evolution over time for all cell subpopula-

tions. This is particularly evident in the case of T2 and T3

tumors (which have exactly the same values of Psym and Psleep).

N T1 and, particularly, T4 are characterized by the highest

stem cell content, as they have the highest symmetric

division fraction values. It is interesting that the currently

derived high stem cell content of T4 correlates with the high

malignancy and poor prognosis of nephroblastomas of

blastemal type, particularly so in the context of recent

reports in literature suggesting that individual tumors that

are, at the histopathological level, relatively undifferentiated

may contain higher proportions of stem cells than their more

differentiated counterparts [50]. Furthermore, recent evi-

dence suggests that within some tumors cancer stem cells

may be as numerous as the non-stem cells with which they

co-exist [50].

N T1’s high Psleep value and high TG0 value lead to a significantly

higher initial percentage of dormant cells compared to the rest

of the virtual tumors.

N T2 and T3 due their lower Psym, have higher fractions of

differentiated cells compared to T1.

N The large duration of necrosis in the case of T4 is directly

related to the large dead cell component of this tumor.

Discussion

The central focus of this work has been a thorough sensitivity

analysis of the simulation model, revealing the relative importance

of its parameters. A sorting of the parameters, and hence of the

corresponding cellular-level biological mechanisms, with major

impact on the simulation outcome has been performed. Indicative

parametric investigations that shed light on complex parameter

interrelations, which often cannot be grasped intuitively, have

been presented. The two biological mechanisms mostly implicated

in the result of therapy are the oxygenation and nutrients

availability status of the tumor and the balance between the

symmetric and asymmetric modes of stem cell division. These

results constitute part of an extensive series of such parametric

studies, aiming at deepening and advancing quantification of our

understanding of tumor response to chemotherapeutic treatment

in the nephroblastoma and, more specifically, the SIOP/GPOH

clinical trial context.

A clinical case of nephroblastoma from the SIOP 2001/

GPOH trial has been selected and by using plausible values of

the model parameters derived from clinical experience and

relevant literature, an excellent fit of the model to the available

clinical data has been achieved in terms of both volume

reduction and histological constitution of the tumor. Further-

more, derived critical tumor characteristics for which no direct

clinical information was available are in good agreement with

relevant nephroblastoma literature. Whereas various attempts of

model adaptations to volumetric data have already been reported

in the literature, agreement with clinical data in tumor

volumetric terms alone may mask tumors with radically different

characteristics. The potential to readily exploit additional data

available in the context of clinical trials, thereby narrowing the

window of possible solutions, is a particularly distinctive feature

of the ISOG model.

The fitting of the selected nephroblastoma case to the clinical

data serves as a proof of principle example, demonstrating the

basic philosophy of a possible procedure towards the selection of

prevailing virtual scenarios, based on the combined use of the

available multiscale clinical and literature data. As the available

information regarding a particular tumor’s characteristics increas-

es, further narrowing of the window of possible solutions is to be

expected. Availability of multiscale medical data imposes con-

straints on model parameter values. Conversely, after adequate

‘‘tuning’’ the simulation results could give valuable hints

concerning tumor characteristics for which actual estimations

might be missing in each case considered.

Major scientific challenge for the ISOG modeling efforts is

the eventual translation of its detailed multiscale cancer models

to clinical practice. The use of anonymized data before and after

treatment constitutes the basis for the clinical adaptation and

validation process. As more and more sets of medical data are

exploited the reliability of the model results is expected to

increase and patient-individualized modeling to be strengthened.

In future versions of the model, the individual patient’s serum

response to specific tumor antigens will be considered as well: in

the context of the ACGT project, possible correlations of the

autoantigen pattern with tumor histology (i.e. blastemal,

epithelial, and stromal cell fractions) are under investigation

[26]. Future versions of the model will also handle cases of

inhomogeneous tumors with macroscopically/metabolically dis-

tinct regions. The integrated simulation system, (incorporating

image processing, visualization, grid execution and other

technical facilities) has been termed ‘‘Oncosimulator’’ [25].

Two ‘‘oncosimulators’’ are currently being developed by ISOG,

clinically adapted and validated using real clinical trial multi-

scale data within the framework of the EC funded projects

ACGT [25] and ‘‘Contra Cancrum’’ (FP7-ICT-2007-2-223979)

[51].

It is envisaged that, at a later stage, after the completion of the

necessary adaptation and validation procedure, such simulation

platforms could support the design of new experiments or clinical

trials, by identifying important scientific questions and open

issues, brought forward through an in-depth understanding of the

system; they could even offer the potential for studying various

biological mechanisms and interactions without performing time-

consuming and costly laboratory experiments or clinical trials.

Designing some of these clinical trials or experiments is extremely

difficult, if at all feasible, as they would have to refer to the basic

science level.

In silico oncology holds much promise in the field of cancer

research. It certainly has not yet reached its full potential,

multiple challenges of diverse nature exist and many unresolved
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issues remain to be addressed. Nevertheless, the presented

successful initial adaptation step lends support that the ISOG

modelling efforts are indeed on a viable track towards clinical

adaptation.

Supporting Information

Figure S1 Simplified flowchart of the simulation proce-
dure. Simplified flowchart of the simulation procedure. GC:

Geometrical Cell. Y:Yes, N:No.

(TIF)

Figure S2 Time evolution of various tumor subpopula-
tions. Alternative presentation of various tumor subpopulations

for the four virtual tumor scenarios implemented (T1: Tumor1,

T2: Tumor2, T3: Tumor3, T4: Tumor4, defined by the

parameter values indicated in Table 1). Time evolution of A)

proliferating, B) dead, C) terminally differentiated, D) stem, and E)

LIMP (committed progenitor) cells.

(TIF)

Table S1 Miscellaneous model parameters (unrelated to tumor

dynamics) and typical values where applicable.

(DOC)

Text S1 Calculation of reference values for the cell kill ratios of

vincristine and actinomycin-D.

(DOC)

Text S2 Details regarding sensitivity analyses.

(DOC)
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