
Adaptive Temporal Entity Resolution

on Dynamic Databases�

Peter Christen1 and Ross W. Gayler2

1 Research School of Computer Science, The Australian National University,
Canberra ACT 0200, Australia
peter.christen@anu.edu.au

2 Veda, Melbourne VIC 3000, Australia
ross.gayler@veda.com.au

Abstract. Entity resolution is the process of matching records that refer
to the same entities from one or several databases in situations where the
records to be matched do not include unique entity identifiers. Match-
ing therefore has to rely upon partially identifying information, such as
names and addresses. Traditionally, entity resolution has been applied in
batch-mode and on static databases. However, increasingly organisations
are challenged by the task of having a stream of query records that need
to be matched to a database of known entities. As these query records
are matched, they are inserted into the database as either representing
a new entity, or as the latest embodiment of an existing entity. We in-
vestigate how temporal and dynamic aspects, such as time differences
between query and database records and changes in database content,
affect matching quality. We propose an approach that adaptively adjusts
similarities between records depending upon the values of the records’
attributes and the time differences between records. We evaluate our ap-
proach on synthetic data and a large real US voter database, with results
showing that our approach can outperform static matching approaches.

Keywords: Data matching, record linkage, dynamic data, real-time
matching.

1 Introduction

Entity resolution is the process of identifying, matching, and merging records
that correspond to the same entities from several databases [1]. The entities
under consideration commonly refer to people, such as patients or customers.
The databases to be matched often do not include unique entity identifiers.
Therefore, the matching has to be based on the available attributes, such as
names, addresses, and dates of birth. Entity resolution is employed in many
domains, the most prominent being health, census statistics, national security,
digital libraries, and deduplication of mailing lists [2–4].

� This research was funded by the Australian Research Council (ARC), Veda Advan-
tage, and Funnelback Pty. Ltd., under Linkage Project LP100200079.

J. Pei et al. (Eds.): PAKDD 2013, Part II, LNAI 7819, pp. 558–569, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adaptive Temporal Entity Resolution on Dynamic Databases 559

RecID EntID Given name Surname Street address City Postcode Time-stamp

r1 e1 Gale Miller 13 Main Road Sydney 2000 2006-01-21
r2 e2 Peter O’Brian 43/1 Miller Street Sydney 2010 2006-02-21
r3 e1 Gail Miller 11 Town Place Melbourne 3003 2007-01-28
r4 e1 Gail Smith 42 Ocean Drive Perth 6010 2007-07-12
r5 e2 Pete O’Brien 43 Miller Street Sydney 2610 2008-01-11
r6 e1 Abigail Smith 42 Ocean Drive Perth 6010 2008-06-30
r7 e2 Peter OBrian 12 Nice Terrace Brisbane 7011 2009-01-01
r8 e1 Gayle Smith 11a Town Place Sydney 2022 2009-04-29

Fig. 1. Example data set of eight records representing two entities

While entity resolution has traditionally been applied in batch mode and on
static databases, an increasingly common scenario in many application domains
is the model of data streams [5], where query records (potentially from several
sources) need to be matched with (and potentially inserted into) a database that
contains records of known entities.

An example application of entity resolution in such a dynamic environment
is the verification of identifying information provided by customers at the time
of a credit card or loan application. In many countries, the financial institutions
where customers apply will send the customers’ identifying information to a
central credit bureau. The responsibility of this bureau is to match the query to a
pre-existing credit file to retrieve that customer’s credit history, and to determine
that the customer is the person they claim to be [6]. The credit bureau receives a
stream of query records that contain identifying information about people, and
the bureau’s task is to match these records (in real-time) to a large database of
known validated entities. In this application, accurate entity resolution is crucial
to avoid inappropriate lending and prevent credit application fraud [6].

Temporal and dynamic aspects in the context of entity resolution have only
been investigated in the past three years [7–11]. Most similar to our work is
the technique proposed by Li et al. [8, 9] on linking temporal records. Their
approach assumes that all records in a database have a time-stamp attached,
as illustrated in Fig. 1. These time-stamps are used to calculate decay proba-
bilities for combinations of individual attributes and time differences. Based on
these probabilities the similarities between records (calculated using approxi-
mate string comparison functions on individual attributes [2]) are adjusted. The
agreement decay was defined by Li et al. [8] as the probability that two different
entities, represented by two records with a time difference of Δt, have the same
value in an attribute. The disagreement decay was defined as the probability
that the value in an attribute for a given entity changes over time Δt. Such a
change occurs if, for example, a person moves to a new address.

In Fig. 1, for the ‘City’ attribute and Δt ∈ [0, 1) year, there are three pairs of
records by the same entity where the attribute value has changed: (r3,r4) and
(r6,r8) for e1, and (r5,r7) for e2, and one pair where the value did not change:
(r4,r6). The disagreement probability for this attribute and Δt ∈ [0, 1) year is
therefore 75%. As both entities live in ‘Sydney’ in 2006, we can calculate an
agreement probability for this value. However, due to the sparseness of this data
set, we cannot calculate agreement probabilities for other ‘City’ values.

560 P. Christen and R.W. Gayler

Li et al. [8] calculated both agreement and disagreement probabilities such
that they increase monotonically asΔt gets larger. However, as Fig. 2 shows, this
is not necessarily the case. Their approach also assumes that the databases from
which records are matched are static; that the decay probabilities are learned
once in an off-line process using a supervised learning technique (learning dis-
agreement probabilities is of linear complexity in the number of entities, while
learning agreement probabilities is of quadratic complexity); and that these de-
cay probabilities are independent of the frequencies of individual attribute values.
The experiments conducted on a bibliographic data set showed that taking such
temporal information into account can improve matching quality [8].

In contrast, our approach is aimed at facilitating an efficient adaptive calcu-
lation of weights that are used to adjust similarities between records. While our
approach to calculate disagreement probabilities is similar to Li et al. [8], we
calculate agreement probabilities that incorporate the frequency distributions of
the attribute values. This is similar to frequency-based weight adjustments as ap-
plied in traditional probabilistic record linkage [4]. As an example, if two records
have an agreeing surname value ‘Smith’, which is common in many English
speaking countries, then it is more likely that they correspond to two different
entities compared to two records that have the uncommon surname value ‘Di-
jkstra’. As our experimental study on a large real-world database shows, taking
these frequencies into account can lead to improved matching accuracy.

Our contributions are (1) an adaptive matching approach for dynamic data-
bases that contain temporal information; (2) an efficient temporal adjustment
method that takes the frequencies of attribute values into account; and (3) an
evaluation of our approach on both synthetic data (with well controlled charac-
teristics) and a large real voter database from North Carolina in the USA.

2 Related Work

Most research in entity resolution over the past decade has focused on improving
quality and scalability when matching databases. Several recent surveys provide
overviews of the research field [2–4]. Besides the work by Li et al. [8, 9] on
linking temporal records (described above), several other recent approaches have
investigated temporal or dynamic aspects in entity resolution.

Whang et al. [10] developed an approach to matching databases where match-
ing rules can evolve over time, and where a complete re-run of an entity resolution
process is not required when new data become available. The assumption is that
a user provides an initial set of matching rules and over time refines these rules.
While the rules in this approach are evolving, no temporal information in the
records that are matched is taken into account in the matching process.

Ioannou et al. [7] proposed an entity query system based on probabilistic en-
tity databases, where records and their attributes are assigned probabilities of
uncertainty that are incorporated into the matching process. These probabilities
correspond to the confidence one has that an attribute value has been recorded
correctly for an entity. During the matching process a dynamic index data struc-
ture is maintained which contains sub-sets of entities that are connected through

Adaptive Temporal Entity Resolution on Dynamic Databases 561

common attribute values. Related to this work, Christen et al. [12, 13] investi-
gated techniques to facilitate the real-time matching of query records to a large
static database by incorporating the similarities calculated between attribute
values into a novel index data structure. Both of these approaches however do
not consider temporal aspects of the databases that are matched.

Yakout et al. [11] developed a matching approach for transactional records
that correspond to the behaviour of entities (such as shopping baskets of indi-
viduals) over time, rather than the actual entity records. Their approach converts
the transactions of an entity into a behaviour matrix. Entities are then matched
by calculating similarities between condensed representations of their behaviour
matrices. While temporal information is used to generate sequences of transac-
tions for an entity, this information is not used in the matching process.

Pal et al. [14] recently presented an approach to integrate Web data from
different sources where temporal information is unreliable and unpredictable
(such as updates of changes are missing or incomplete). The temporal aspects of
updates of entities are modelled with a hidden semi-Markov process. Results on
a diverse set of data, from Twitter to climate data, showed encouraging results.
The focus of this work is however to compute the correct value of an entity’s
attributes, not to identify and match records that refer to the same entity.

A large body of work has been conducted in the areas of stream data min-
ing [5], where temporal decays are commonly used to give higher weights to
more recent data, and temporal data mining [15], where the aim is to discover
patterns over time in temporal data. To summarise, while either temporal in-
formation or dynamic data have been considered in recent approaches to entity
resolution, our approach is a first to consider both, with the aim to achieve an
entity resolution approach that adapts itself to changing data characteristics.

3 Modelling Temporal Changes of Entities

We assume a stream of query records q, which are to be matched (as detailed in
Sect. 4) to a database R that contains records about known entities. We denote
records in R with ri, 1 ≤ i ≤ N , with N being the number of records in R.
At any point in time N is fixed, but over time new records (such as matched
query records) are added to R while the existing records are left unchanged.
The records in R consist of attributes, ri.aj , 1 ≤ j ≤ M , with M the number of
attributes. Examples of such attributes include name and address details, phone
numbers, or dates of birth. The records also contain a time-stamp ri.t, and an
entity identifier, ri.e. All records that correspond to the same entity are assumed
to have the same unique value in ri.e. In a supervised setting, the ri.e are the
true known entity identifiers, while in an unsupervised setting the values of ri.e
are based on the match classification, as will be described further in Sect. 4.

Assume we want to calculate the similarity between query record q and record
ri in R. These two records have a difference in their time-stamps of Δt = |q.t−
ri.t|. For a single attribute aj , we classify the attribute to be agreeing if both
records have the same attribute value (q.aj = ri.aj), or if the two attribute

562 P. Christen and R.W. Gayler

Fig. 2. The probabilities of an entity not changing its attribute values over time (i.e.
the attribute values are agreeing), P (Aj ,Δt|S), as calculated from over 2.4 million
entities in a North Carolina (NC) voter database. The x-axes show the time-differences
Δt between two records that refer to the same entity for up-to 20 years, with the right-
hand side plot zooming into the time differences up-to three years. As can be seen,
address values are more likely to change over time than name values.

values are highly similar, i.e. simj(q.aj , ri.aj) ≥ ssame, with simj(·, ·) being
the similarity function used to compare values for attribute aj , and ssame a
minimum similarity threshold. If, on the other hand, simj(q.aj , ri.aj) < ssame,
then we classify the attribute to be disagreeing. Similarity values are assumed to
be normalised, with simj(·, ·) = 0 for two attribute values that are completely
different, and simj(·, ·) = 1 for two values that are the same. Similarity functions
vary by attribute and may be domain specific. For string attributes, such as
names, approximate string similarity functions are commonly used [2].

To take temporal aspects into account, we need to consider the following
events. We denote the event that q and ri actually refer to the same entity
with S, and the event that they actually refer to two different entities with
¬S. Furthermore, we denote the event that q and ri have an agreeing value
in attribute aj with Aj , and the event that they have a disagreeing value in
attribute aj with ¬Aj .

We now consider the following two probabilities. As discussed in Sect. 3.1
below, they are used to adjust the similarities simj(·, ·) according to the time
difference Δt between records q and ri.

P (Aj , Δt|S) = P (simj(q.aj , ri.aj) ≥ ssame ∧ |q.t− ri.t| = Δt | q.e = ri.e) (1)

is the probability that a query and a database record that actually refer to the
same entity have an agreeing value in attribute aj over Δt (i.e. the value does
not change). It holds that P (Aj , Δt|S) = 1− P (¬Aj , Δt|S).
P (¬Aj , Δt|¬S) = P (simj(q.aj , ri.aj) < ssame∧|q.t−ri.t| = Δt | q.e �= ri.e) (2)

is the probability that a query and a database record that actually refer to two
different entities have disagreeing (i.e. different) values in attribute aj over Δt.
Clearly, P (¬Aj , Δt|¬S) = 1− P (Aj , Δt|¬S).

Adaptive Temporal Entity Resolution on Dynamic Databases 563

The probability P (Aj , Δt|S) can be learned for individual attributes and dif-
ferent Δt by counting the number of agreeing and disagreeing attribute values
for pairs of records of the same entity that have a time difference of Δt.

Calculating the probability P (¬Aj , Δt|¬S) is more difficult because it requires
the comparison of attribute values across records that have a time difference of
Δt and where the records refer to different entities. Such an approach, which
is of quadratic complexity in the number of entities, was employed by Li et
at. [8, 9]. Our approach, described in Sect. 3.2, is aimed at efficiently calculating
the two probabilities (1) and (2) in an adaptive fashion. First we present how
these probabilities are used to adjust the similarities between records.

3.1 Adjusting Similarities between Records

Assume the attributes of a query record q and a database record ri have been
compared using a set of similarity functions sj = simj(q.aj , ri.aj), 1 ≤ j ≤ M ,
such as approximate string comparison functions [2], with sj the similarity value
calculated for attribute aj , and M the number of compared attributes.

Without taking temporal effects into account, we use sj as an estimate of the
probability that two attribute values are the same, and (1−sj) as the probability
they are different [8] (remember we assume 0 ≤ sj ≤ 1). In a temporal setting,
we aim to assign weights to individual attributes that indicate their importance
according to the likelihood of a change of value in this attribute, as discussed
above. Following Li et al. [8], we use (3) to adjust and normalise similarities.

sim(q, ri) =

∑M
j wj(sj , Δt) · sj
∑M

j wj(sj , Δt)
, (3)

where sj = simj(q.aj , ri.aj) and Δt = |q.t − ri.t|. This equation is a heuristic
that attempts to adjust the similarity in a qualitatively reasonable manner. We
calculate the weights wj(sj , Δt) using the minimum similarity threshold ssame:

– If sj ≥ ssame we set wj(sj , Δt) = sj ·(1−P (Aj , Δt|¬S)) = sj ·P (¬Aj , Δt|¬S).
This means that the more likely it is that two entities have the same value
in attribute aj over time difference Δt, the less weight should be given to
the similarity value sj of this agreement.

– If sj < ssame we set wj(sj , Δt) = sj · (1−P (¬Aj , Δt|S)) = sj ·P (Aj , Δt|S).
This means that the more likely it is that a value in attribute aj changes
over time difference Δt, the less weight should be given to this disagreement.

For example, as can be seen from Fig. 2, almost nobody in the NC voter database
has changed their given name even over long periods of time, compared to
changes in address attributes (such as street, suburb and postcode). There-
fore, agreeing given name values are a strong indicator in this database that
two records refer to the same entity. On the other hand, a low similarity in an
address attribute is a weak indicator that two records refer to different entities.

During the matching process a query record is compared with one or more
database records, and the resulting adjusted similarities sim(q, ri) as calculated
with (3) are ranked. Details of this matching process are presented in Sect. 4.

564 P. Christen and R.W. Gayler

3.2 Learning Agreement and Disagreement Probabilities

In a dynamic setting, the aim is to efficiently learn the probabilities given in (1)
and (2) in an adaptive way. The agreement probability P (Aj , Δt|S) can be
learned from data if it is known which records correspond to the same entity.
To facilitate an efficient calculation of this probability, we discretise the time
differences Δt into equal sized intervals Δtk, of durations such as weeks, months,
or years (depending on the overall expected time span in an application). We
keep two arrays for each attribute aj , Aj [Δtk] and Dj [Δtk]. The first array,
Aj [Δtk], keeps track of the number of times a value in attribute aj is agreeing
for two records of the same entity that have a discretised time difference of Δtk,
while Dj [Δtk] keeps track of the number of times the values in aj are disagreeing
for two records of the same entity. Using these two counters, we calculate:

P (Aj , Δtk|S) = Aj [Δtk]

(Aj [Δtk] +Dj [Δtk])
(4)

for Δt1, . . . , Δtmax, with Δtmax the maximum discretised time difference en-
countered between two records of the same entity in R. The update of the
counters Aj [Δtk] and Dj [Δtk], and calculating (4) for a certain discretised Δtk,
requires a single increase of a counter and one division for each query record
that is matched to a database record, making this a very efficient approach.

It is possible that no pair of records of the same entity with a certain discre-
tised time difference of Δtk does occur in a data set, and therefore (4) cannot be
calculated for this Δtk. To overcome this data sparseness issue, we also calculate
the average value for P (Aj , Δt|S) over all Δtk for each attribute aj , and use this
average value in case P (Aj , Δtk|S) is not available for a certain Δtk.

To calculate P (¬Aj , Δt|¬S), we use the probability that two records that
refer to two different entities have the same value v in attribute aj , which equals
to P (Aj , Δt|¬S) = 1 − P (¬Aj , Δt|¬S). This probability depends upon how
frequently a certain value v occurs in an attribute. The probability Pj(v) that
an entity has the value v in attribute aj can be estimated from the count of how

many records in R have this value: Pj(v) =
|ri∈R,ri.aj=v|

|R| . For example, only a

few records in R might have the rare surname ‘Dijkstra’, and so the probability
that two records from different entities both have this value is very low.

We keep an array Vj for each attribute aj with a counter for each distinct
value v of how many records in R have this value in aj . We then calculate
P (¬Aj , Δt|¬S) = 1 − Pj(v) for all attributes values v. If a value in a query
record q in attribute q.aj has not previously occurred in R (and thus Pj(q.aj) =
0), we set P (¬Aj , Δt|¬S) = 1.0 for this value. Updating the counters Vj and
probabilities Pj(v) requires one integer increment and one division per attribute.
For a single query record, the calculations of both agreement and disagreement
probabilities are thus of complexity O(1), making this approach very efficient.

The database record to which a query record is matched determines the calcu-
lation of P (Aj , Δtk|S). In a supervised setting, the true match status of (a subset
of) record pairs is known, allowing the calculation of this probability based on
these training pairs. For a query record q, if there is a previous record ri of the

Adaptive Temporal Entity Resolution on Dynamic Databases 565

Algorithm 1. Adaptive Temporal Matching Process
Input:
- Initial database with known entity records: R = Rinit

- Arrays with counters for agreements, disagreements, and values: Aj , Dj , and Vj

- Attribute similarity functions: simj(·, ·); and thresholds: ssame and smatch

- Stream of query records: q
Output:
- Identifiers of matched entities: q.e

1: Set countent to number of entities in R
2: while q do:
3: Get candidate records C from R: C = get cand records(q,R)
4: for c ∈ C do:
5: Δt = |q.t − c.t|; sj = simj(q.aj , c.aj), 1 ≤ j ≤ M
6: Calculate sim(q, c) using Equation (3)
7: cbest = max(ci : sim(q, ci) > sim(q, ck), ci ∈ C, ck ∈ C, ci �= ck)
8: if sim(q, cbest) ≥ smatch then q.e = cbest.e
9: else q.e = countent; countent = countent + 1
10: Insert q into R: insert(q,R)
11: Update Aj , Dj , and Vj , and P (Aj , Δtk|S) and Pj(v), 1 ≤ j ≤ M .
12: Pass q.e to application

same entity in R, we calculate Δt = |q.t − ri.t| and which attributes agree or
disagree for these two records using simj(q.aj , ri.aj) and ssame, and we update
the appropriate counters in Aj and Dj and the corresponding probabilities.

If no training data are available, then for a query record the best matching
database record, i.e. the record with the highest adjusted similarity according
to (3), is assumed to be the true match. We can then calculate the time differ-
ences and update the relevant counters and probabilities in the same way as in
a supervised setting. Due to limited space, we only consider the supervised case.

4 Adaptive Temporal Matching

Algorithm 1 provides an overview of the main steps of our matching process.
The required input is a database Rinit of known entities. In a supervised setting,
where (some of) the true entities are known, the entity identifiers ri.e in Rinit

allow us to generate for an entity a chain of records sorted according to the time-
stamps ri.t. Using these entity chains, the counters Aj and Dj are populated,
and the initial values for the P (Aj , Δtk|S), 1 ≤ j ≤ M are calculated. In an
unsupervised setting, no such initial database is available, and thus R = ∅.

The other input parameters required are a set of similarity functions simj(·, ·),
one per attribute aj used, and the two thresholds ssame and smatch. The former
is used to decide if two attribute values are agreeing or not (as described in
Sect. 3), while the latter is use to decide if a query record is classified as a match
with a database record or not (lines 8 and 9 in Algo. 1).

The algorithm loops as long as query records q are to be matched. We as-
sume the case where query records are inserted into the database once they are
matched (line 10). Removing this line will mean that R and the counters in Aj ,
Dj and Vj are not updated, and therefore our approach becomes non-adaptive
(while still taking temporal aspects into account).

In line 3, a set of candidate records C is retrieved from R using an index tech-
nique for entity resolution. For example, Cmight be all records fromR that have

566 P. Christen and R.W. Gayler

the same postcode value as q. In our implementation, we employ a similarity-
aware index technique that has shown to be efficient for real-time matching [13].
For each candidate record c ∈ C, its time difference and similarities with q are
calculated in line 5 and adjusted in line 6, as described in Sect. 3.1.

The candidate record with the highest adjusted similarity, cbest, is identified in
line 7 by finding the candidate record that has the maximum similarity with the
query record q. If this similarity is above the minimum match similarity smatch,
then q is assigned the entity identifier of this best match (line 8). Otherwise q
is classified as a new entity and given a new unique entity identifier number in
line 9. In line 10, the query record q is inserted into the databaseR, and in line 11
the counters in Aj [Δt], Dj [Δt], and Vj , as well as the relevant probabilities, are
updated for all attributes aj . Finally, the entity identifier of q is passed on to the
application that requires this information, allowing the application to extract all
records from R that refer to this entity.

5 Experiments and Discussion

We evaluate our adaptive temporal entity resolution approach on both synthetic
and real data. Synthetic data allows us to control the characteristics of the
data, such as the number of records per entity, and the number of modifications
introduced [16]. We generated six data sets, each containing 100,000 records, with
an average of 4, 8, or 16 records per entity, and either having a single modification
per record (named ‘Clean’ data) or eight modifications per record (named ‘Dirty’
data). Modifications introduced were both completely changed attribute values,
as well as single character edits (like inserts, deletes and substitutions).

As real data we used the North Carolina (NC) voter registration database [17],
which we downloaded every two months since October 2011 to build a compound
temporal data set. This data set contains the names, addresses, and ages of
more than 2.4 million voters, as well as their unique voter registration numbers.
Each record has a time-stamp attached which corresponds to the date a voter
originally registered, or when any of their details were changed. This data set
therefore contains realistic temporal information about a large number of people.
There are 111,354 individuals with two records, 2408 with three, and 39 with four
records in this data set. An exploration of this data set has shown that many of
the changes in the given name attribute are corrections of nicknames and small
typographical mistakes, while changes in surnames and address attributes are
mostly genuine changes that occur when people get married or move address.

We sorted all data sets according to their time-stamps, and split each into a
training and test set such that around 90% of the second and following records of
an entity (of those that had more than one record) were included in the training
set. We compare our proposed adaptive temporal matching technique with a
static matching approach that does not take temporal information into account,
and with a simple temporal matching approach where an additional temporal

similarity value is calculated for a record pair as simt(q.t, ri.t) =
|q.t−ri.t|
ΔTmax

, with
ΔTmax being the difference between the time stamps of the earliest and latest

Adaptive Temporal Entity Resolution on Dynamic Databases 567

Table 1. Matching results for synthetic data sets shown as percentage of true matches
correctly identified. The parameter pair given refers to ssame / smatch.

Parameters None Temp Attr Adapt Non Adapt
Avrg rec per ent 4 8 16 4 8 16 4 8 16 4 8 16

Clean, 0.8 / 0.7 92.3 90.5 87.2 91.9 90.6 87.4 92.3 90.8 87.3 92.3 91.1 87.3
Clean, 0.9 / 0.8 63.8 57.9 50.7 63.2 57.9 50.7 64.2 59.1 50.9 63.9 59.6 50.9
Dirty, 0.8 / 0.7 47.1 35.1 25.5 46.5 38.6 29.9 53.5 40.5 29.2 53.6 40.5 29.2
Dirty, 0.9 / 0.8 16.7 10.3 5.9 14.7 10.5 6.6 21.9 13.5 7.4 21.9 13.5 7.4

record in R. Note that we cannot compare our approach to the temporal linkage
method proposed by Li et al. [8, 9], because their method is only applicable on
static databases, as was described in Sect. 1. We label the non-temporal matching
approach with ‘None’; the above described temporal attribute approach with
‘Temp Attr’; our proposed adaptive approach described in Sect. 4 as ‘Adapt’;
and with ‘Non Adapt’ a variation of this adaptive approach that calculates the
probabilities P (Aj , Δtk|S) and Pj(v) only once at the end of the training phase,
but that does not adjust these probabilities for each of the following query records
(i.e. line 11 in Algo. 1 is not executed for query records in the test set).

In Table 1 and Fig. 3 we report matching accuracy as the percentage of true
matches correctly identified, i.e. if a candidate record cbest in line 7 in Algo. 1
was a record of the same entity as the entity of query record q, cbest.e = q.e.
For the NC voter data set we additionally report the percentage of true matches
that occurred in the ten top-ranked candidate records. In a real-time query
environment, returning the ten top-ranked results is a realistic assumption.

We implemented our approach using Python 2.7.3, and ran experiments on a
server with 128 GBytes of memory and two 6-core CPUs running at 2.4 GHz.
We used the Jaro-Winkler string comparison function [2] as simj(·, ·) to com-
pare name and address attribute values. We ran four sets of experiments with
parameter settings: ssame = {0.8, 0.9} and smatch = {0.7, 0.8}. To facilitate re-
peatability, the programs and synthetic data sets are available from the authors.

The results shown in Table 1 for the synthetic data sets indicate that all four
matching approaches are sensitive to the choice of parameter settings, and if the
data are clean or dirty. With data that contain a larger number of variations,
identifying true matches becomes much more difficult, as would be expected.
Matching also becomes harder with more records per entity, because more at-
tributes will have their values changed over time. The proposed approach to
adjust the similarities between records is able to improve matching quality most
when data are dirty. Such data are likely to occur in dynamic entity resolution
applications, where it is not feasible to apply expensive data cleaning operations
on query records prior to matching them to a database of entity records.

The experiments conducted on the NC voter database show quite different
results (Fig. 3), with the proposed similarity adjustment approach outperforming
the two baseline approaches. Taking top ten matches into account, our approach,
which adjusts the similarities between records, is able to identify nearly twice
as many true matches compared to the two baseline approaches. However, the

568 P. Christen and R.W. Gayler

None Temp Attr Adapt Non AdaptP
e
rc
e
n
ta
g
e
o
f
tr
u
e
m
a
tc
h
e
s
c
o
rr
e
c
tl
y
id
e
n
ti
fi
e
d N oter matching uality ith

T

T top

T

T top

None Temp Attr Adapt Non AdaptP
e
rc
e
n
ta
g
e
o
f
tr
u
e
m
a
tc
h
e
s
c
o
rr
e
c
tl
y
id
e
n
ti
fi
e
d N oter matching uality ith

T

T top

T

T top

Fig. 3.Matching results for the NC voter database shown as percentage of true matches
(TM) correctly identified. Different from the results in Table 1, these results are robust
with regard to parameter settings, and they are also significantly better for the proposed
adaptive approach compared to the baseline approaches ‘None’ and ‘Temp Attr’.

None Temp Attr Adapt Non Adapt

T
im

e
in

m
il
li
-s
e
c
o
n
d
s

Timing results for NC Voter data set

Match time

Adjust time

Update time

Fig. 4. Average time for matching a single query record to the North Carolina voter
database. The adjustment of similarities using (3) adds only around 10% extra time.

adaptive approach does not perform as well as the non-adaptive approach. This
is likely because the number of true matches compared to all query records is
very small, which distorts the calculation of the probabilities in (4).

As Fig. 4 illustrates, our approach is very efficient, even on the large real
database with over 2.4 million records. The time needed to adjust the similarity
values between records, as done in (3), only adds around 10% to the total time
required to match a query record, while the time needed to update the coun-
ters Aj , Dj , and Vj , and P (Aj , Δtk|S), is negligible. This makes our approach
applicable to adaptive entity resolution on dynamic databases.

6 Conclusions and Future Work

We have presented an approach to facilitate efficient adaptive entity resolu-
tion on dynamic databases by adaptively calculating temporal agreement and

Adaptive Temporal Entity Resolution on Dynamic Databases 569

disagreement probabilities that are used to adjust the similarities between records.
As shown through experiments on both synthetic and real data, our temporal
matching approach can lead to significantly improved matching quality.

Our plans for future work include to conduct experiments for unsupervised
settings as discussed in Sect. 3.2 and run experiments on other data sets, to
conduct an in-depth analysis of our proposed algorithm, and to extend our ap-
proach to account for attribute and value dependencies. For example, when a
person moves, most of their address related attribute values change, and the
probability that a person moves also depends upon their age (young people are
known to change their address more often than older people). We also plan to
integrate our approach with traditional probabilistic record linkage [4], and we
will investigate how to incorporate constraints, such as only a few people can
live at a certain address at any one time.

References

1. Winkler, W.E.: Methods for evaluating and creating data quality. Elsevier Infor-
mation Systems 29(7), 531–550 (2004)

2. Christen, P.: Data Matching. In: Data-Centric Systems and Appl., Springer (2012)
3. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: A survey.

IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)
4. Herzog, T., Scheuren, F., Winkler, W.: Data quality and record linkage techniques.

Springer (2007)
5. Aggarwal, C.: Data Streams: Models and Algorithms. Database Management and

Information Retrieval, vol. 31. Springer (2007)
6. Anderson, K., Durbin, E., Salinger, M.: Identity theft. Journal of Economic Per-

spectives 22(2), 171–192 (2008)
7. Ioannou, E., Nejdl, W., Niederée, C., Velegrakis, Y.: On-the-fly entity-aware query

processing in the presence of linkage. VLDB Endowment 3(1) (2010)
8. Li, P., Dong, X., Maurino, A., Srivastava, D.: Linking temporal records. Proceed-

ings of the VLDB Endowment 4(11) (2011)
9. Li, P., Tziviskou, C., Wang, H., Dong, X., Liu, X., Maurino, A., Srivastava, D.:

Chronos: Facilitating history discovery by linking temporal records. VLDB Endow-
ment 5(12) (2012)

10. Whang, S., Garcia-Molina, H.: Entity resolution with evolving rules. VLDB En-
dowment 3(1-2), 1326–1337 (2010)

11. Yakout, M., Elmagarmid, A., Elmeleegy, H., Ouzzani, M., Qi, A.: Behavior based
record linkage. VLDB Endowment 3(1-2), 439–448 (2010)

12. Christen, P., Gayler, R.: Towards scalable real-time entity resolution using a
similarity-aware inverted index approach. In:AusDM2008,Glenelg,Australia (2008)

13. Christen, P., Gayler, R., Hawking, D.: Similarity-aware indexing for real-time entity
resolution. In: ACM CIKM 2009, Hong Kong, pp. 1565–1568 (2009)

14. Pal, A., Rastogi, V., Machanavajjhala, A., Bohannon, P.: Information integration
over time in unreliable and uncertain environments. In: WWW, Lyon (2012)

15. Laxman, S., Sastry, P.: A survey of temporal data mining. Sadhana 31(2) (2006)
16. Christen, P., Pudjijono, A.: Accurate synthetic generation of realistic personal

information. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.)
PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 507–514. Springer, Heidelberg (2009)

17. North Carolina State Board of Elections: NC voter registration database,
ftp://www.app.sboe.state.nc.us/ (last accessed September 11, 2012)

ftp://www.app.sboe.state.nc.us/

	Adaptive Temporal Entity Resolution on Dynamic Databases
	Introduction
	Related Work
	Modelling Temporal Changes of Entities
	Adjusting Similarities between Records
	Learning Agreement and Disagreement Probabilities

	Adaptive Temporal Matching
	Experiments and Discussion
	Conclusions and Future Work
	References

