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A Numerical Study of Thermal 
Dispersion in Porous Media 
Thermal dispersion in convective flow in porous media has been numerically investi- 
gated using a two-dimensional periodic model of  porous structure. A macroscopically 
uniform flow is assumed to pass through a collection of  square rods placed regularly 
in an infinite space, where a macroscopically linear temperature gradient is imposed 
perpendicularly to the flow direction. Due to the periodicity of  the model, only one 
structural unit is taken for a calculation domain to resolve an entire domain of  porous 
medium. Continuity, Navier-Stokes and energy equations are solved numerically to 
describe the microscopic velocity and temperature fields at a pore scale. The numeri- 
cal results thus obtained are integrated over a unit structure to evaluate the thermal 
dispersion and the molecular diffusion due to tortuosity. The resulting correlation 
for  a high-Peclet-number range agrees well with available experimental data. 

Introduction 
The complexity associated with the geometric structure of a 

porous medium does not allow us to treat the detailed velocity 
and temperature fields inside each individual porous structure. 
Thus, it has been a common practice to introduce volume-aver- 
aged quantities and concentrate on the overall aspects of mass, 
momentum, and energy conservation principles (e.g., Quintard 
and Whitaker, 1993). Accordingly, a number of heuristic and 
semi-heuristic models have been introduced to describe Darcy 
and non-Darcy flows and dispersion in heat and mass transfer 
through a porous medium. The model constants in these models 
are usually determined on the basis of exhaustive experimental 
data. 

Detailed flow and temperature fields inside a microscopic 
structure may be investigated using a periodic structure (such 
as lattice structures) rather than treating complex porous media 
in reality. Eidsath et al. (1983), Coulaud et al. (1988), Sahraoui 
and Kaviany (1991), and Fowler and Bejan (1994) carried out 
two-dimensional numerical simulations for flows across banks 
of circular cylinders, whereas the authors (Kuwahara et al., 
1994; Nakayama et al., 1995) investigated a collection of square 
rods to cover a wide range of porosity, virtually from zero to 
unity. Three-dimensional analyses were also conducted by Lar- 
son and Higdon (1989) for Stokes flows through lattice of 
spheres, and by the authors (1995) for fully elliptic flows 
through a lattice of cubes to study not only the Darcy contribu- 
tion but also the porous inertial contribution to the macroscopic 
pressure drop. 

Dispersion in porous media was studied by Koch and Brady 
(1985) and Koch et al. (1989) who obtained closed-form ex- 
pressions for the dispersion tensor. However, in their analysis, 
an extremely dilute suspension of particles (i.e., high porosity) 
having the same thermal conductivity as the fluid was assumed 
using Stokes flow approximation along with the point force 
approximation. Thus, no Reynolds number and boundary layer 
effects were implemented, and the transverse dispersion coeffi- 
cient was found to be independent of Peclet number and less 
than the thermal diffusivity of fluid. Full Navier-Stokes and 
energy equations were solved by Eidsath et al. (1983) and 
Edwards et al. ( 1991 ) for flows through a periodic structure of 
circular cylinders with in-line and staggered arrangements. In 
their models, the thermal conductivity of particles is assumed 
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to be zero, such that no coupling of the energy equations for 
the fluid and solid phases was present. Kuwahara et al. (1994) 
proposed an idea to determine the transverse dispersion coeffi- 
cient by fitting the numerical results against the similarity solu- 
tion for forced convection from a line heat source in a porous 
medium, and conducted exhaustive numerical calculations for 
a large computational domain made of lattice of square rods. 
Arquis et al. (1991, 1993) extended the numerical model pro- 
posed by Coulaud et al. (1988) to the coupling of momentum 
and heat transfer to study both axial and transverse dispersion 
coefficients. The elegance of the work by Arquis and his group 
is that they imposed a macroscopic temperature gradient either 
normal or parallel to a macroscopically uniform flow such that 
the microscopic temperature field within only one structural 
unit is needed, as in the velocity field, to determine the corre- 
sponding dispersion coefficient. However, in these numerical 
studies, computations were carried out only for a limited number 
of sets of the parameters such as the porosity, macroscopic flow 
direction, and Peclet number. No general functional relation- 
ships for the dispersion coefficient as a function of these param- 
eters were drawn from these studies due to a rather narrow 
porosity range. 

In the present study, we follow the numerical approach pro- 
posed by Arquis et al. to determine the transverse dispersion 
coefficient purely from a theoretical basis. A macroscopically 
uniform flow is assumed to pass through a lattice of square rods 
placed regularly in an infinite space, where a macroscopically 
linear temperature gradient is imposed perpendicularly to the 
flow direction. The macroscopic flow angle is varied every 5 
deg to investigate geometric effects on the dispersion coeffi- 
cient. The present numerical model made of a lattice of square 
rods allows us to change the porosity virtually from zero to 
unity, and to establish a possible correlation for the dispersion 
coefficient. We strictly follow the mathematical definition of 
dispersion correlation in an exact form, appearing in the vol- 
ume-averaged energy equation, and isolate it from the tortuosity 
contribution. (Note that Arquis et al. did not treat these apparent 
conductivities individually.) 

Numerical Model and Boundary Conditions 

We shall consider a macroscopically uniform flow with an 
angle 0 meandering through an infinite number of square rods 
placed in a regular fashion, where a macroscopically linear 
temperature gradient is imposed perpendicularly to the flow 
direction, as illustrated in Fig. 1. Thus, the macroscopic velocity 
and temperature fields follow: 
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Fig. 1 Numerical model and its coordinates 

<~> : I<~>l(cos 02 + sin 03) (1) 

AT 0.7) (2) V ( T )  = - ~ -  ( - s i n  02 + cos 

where ( ) denotes volume average, namely, 

afv (~) = V 4 d r  

The control volume V is much smaller than a macroscopic 
characteristic length and can be taken as H 2 for this periodic 
structure. Due to the periodicity of the model, only one struc- 
tural unit as indicated by dashed lines may be taken as a calcula- 
tion domain. The governing equations for the whole domain 
(i.e., fluid and solid phases) are given as follows: 

V .  ~ = 0 (3) 

(V" ~)fi = - 1 V p  + uV2fifi (4) 
P 

p, CvrV.(~r) = k/V2T: fluid phase (5) 

k, V2T = 0: solid phase (6) 

where the subscripts f and s denote fluid and solid phases, 

respectively. The boundary, compatibility, and periodic con- 
straints are given by: 

On the solid walls: 

= 6 (7 )  

r s = r /  (8a) 

k~ OT O T 
'~nls = ~ On / (8b) 

On the periodic boundaries." 

~ lx=-m2 = fi l x=nn (9a)  

r~l,=-u/2 = fily=m2 (9b) 

f~U2nn udy,=-nn = vfan-nn udy x=nn = Hl(a) l  cos0 (10a)  

f nn vdx = f u n  vdx = H[(~)I s i n 0  (10b) 
HI2 y = - H / 2  ¢ - H I 2  y=HI2 

Tlx=-m2 = Tlx=m2 ÷ A T  sin 0 ( l l a )  

Tly=-m2 = Tly=m2 - A T c o s  0 ( l l b )  

We shall define the Reynolds number based on the Darcian 
velocity I<~>1 and length of structural unit H as Re = 
I<O)ln/u. 

Method of Computation 
The governing equations are discretized by integrating them 

over a grid volume. The SIMPLE algorithm for the pressure- 
velocity coupling, as proposed by Patankar and Spalding 
(1972),  is adopted to correct the pressure and velocity fields. 
Calculation starts with solving the two momentum equations, 
and subsequently, the estimated velocity field is corrected by 
solving the pressure correction equation reformulated from the 
discretized continuity and momentum equations, such that the 
velocity field fulfills the continuity principle. Then, the energy 
conservation equation is solved to find the corresponding tem- 
perature field. This iteration sequence is repeated until conver- 
gence is achieved. Convergence is measured in terms of the 
maximum change in each variable during an iteration. The max- 
imum change allowed for the convergence check is set to 10 -5 , 
as the variables are normalized by appropriate references. A 
fully implicit scheme is adopted with the hybrid differencing 
scheme for the advection terms. Further details on this numeri- 
cal procedure can be found from Patankar (1980) and Na- 
kayama (1995).  

N o m e n c l a t u r e  

A = surface'area vector 
Aim = total interface between the fluid 

and solid 
b = Forchheimer constant 

Cp = specific heat at constant pressure 
Cs = specific heat of solid 
D = size of square rod 
H = size of structural unit 

2, 3 = unit vectors in the x and y direc- 
tions 

k = thermal conductivity 
K = permeability 
p = microscopic pressure 

Pe = Peclet number based on H and the 
macroscopically uniform velocity 

Re = Reynolds number based on H 
and the macroscopically uni- 
form velocity 

T = microscopic temPerature 
( T ' ~ '  } = dispersion vector 

A T  = macroscopic temperature dif- 
ference across a structural unit 

u, v = microscopic velocity compo- 
nents in the x and y directions 

V = control volume 
x, y = Cartesian coordinates 

X, Y = coordinates set along the mac- 
roscopic flow direction and its 
normal 

e = porosity 

0 = macroscopic flow angle 
u = kinematic viscosity 
p = density 

Subscripts and Superscripts 
dis = dispersion 

e = effective 
f = fluid 
s = solid 

tor = tortuosity 

Special Symbols 
( ) = volume average 

( )f.s = intrinsic average 
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All computations have been carried out for a one structural 
unit H × H using nonuniform grid arrangements with 45 × 45. 
Sample calculations were  also carried out using a finer grid 
system, 80 x 80, to ensure that the results are independent of 
the grid system. The Reynolds number was varied from 10 -2 
to 10 3 (assuming a typical range of H = 1 mm ~ 1 cm); the 
ratio of the solid phase thermal conductivity to the fluid phase 
k, lky, from 2 to 100; and the porosity e, from 0.1 to 0.96, 
whereas the Prandtl number was fixed at 0.71. All computations 
were performed using the computer system CONVEX 220 at 
Shizuoka University Computer Center. 

Volume-Averaged Energy Equation and Expressions 
for Tortuosity and Thermal Dispersion 

Following Cheng (1978) and Nakayama (1995), we inte- 
grate the microscopic energy equation, Eq. (5),  for the incom- 
pressible fluid over an elementary control, and obtain 

p : C p : [ ~ +  (fi). V ( T ) : ]  

1 
= V'[kfVe(T)f+~fAi ,  kfTdA-pfCpf(T'~') ] 

iIA + ~ kfVT'd,4 (12) 
int 

Similarly, the microscopic energy equation for the solid, Eq. 
(6), may be integrated to give 

p,c,.O(1- e)(T)* = V'[k,V(I  - e)(T>'- l-- f k, TdA] 
Ot ' V Aim 

1 fA kfVT'dA (13) 
V im 

where &nt is the total interface between the fluid and solid, 
while dA is its vector element pointing outward from the fluid 
side to solid side. (T) f and (T)* are the intrinsic average of the 
fluid temperature and that of the solid phase, respectively. The 
continuity of heat flux at the interface is implemented in Eq. 
(13). We shall assume that thermal equilibrium exists between 
the fluid and solid matrix, namely, (T) :  = (T)" = (T). For the 
present ease of steady periodic flow, the thermal equilibrium 
condition proves to be exact. Adding up Eqs. (12) and (13), 
we have 

o(r) [ep:Cp± + (1 - e)p~C,l ~ + p:Cp:(fi).v(r) 
t- 

= V . { [ & :  + (1 - e)k, lV(T) 

i f  A } + V (kf-  k,)rclA - pfC~(T'fi') (14) 
int 

For the case of steady flow, we rewrite Eq. (14) as 

pfCp:(n)'V(T) = V '  { (kef+  ktor + ~dis) 'V(T>} (15) 

where 

ke =-- ek:+ (1 - e)k, (16) 

1£ -~ (k:- k,)Tdft =- ~m~'V(T) (17) 
int 

-jOfCpf < Teat ) ~- ~dis" V(T> ( 1 8 )  

The first two terms - ( k f f  + kto~)" V(T) on the right-hand side 

of Eq. (15)_account for the molecular diffusion, whereas the 
third term -kd~" V(T) accounts for contributions from thermal 
(mechanical) dispersion, ke defined in Eq. (16) is the stagnant 
thermal conductivity. The apparent conductivity tensors ktor and 
~dis are introduced to model the tortuosity molecular diffusion 
term and the thermal dispersion term, respectively, by a gradi- 
ent-type diffusion hypothesis. For the case of low-Peclet-num- 
ber flow with the assumption of equal fluid and solid conductivi- 
ties (Koch et al., 1989), both the tortuosity and dispersion terms 
may be dropped, and we have 

pfCpf(~g)" V(T) = V" (keY(T)) (19) 

In contrast, for the case of high-Peclet-number flow, the thermal 
dispersion predominates over the molecular diffusion such that 

pfCpf(~). V(T) = V" (~dis' V(T)) (20) 

For the case of high-Peclet-number flow, differences in the 
stagnant conductivity no longer affect macroscopic heat transfer 
in porous media. In this study, we shall determine both the 
tortuosity and thermal dispersion conductivities purely from a 
theoretical basis by substituting the microscopic numerical re- 
suits into Eqs. (17) and (18). 

When one coordinate is set along the macroscopic flow direc- 
tion, only diagonal components of the tortuosity and dispersion 
conductivity tensors remain nonzero. Since the macroscopically 
linear temperature gradient is imposed along the Y direction 
normal to the X direction of m_acrosco_pic flow in the present 
model, the Y Y components of ktor and k~ can readily be deter- 
mined from 

(kdis)rr 

(~-~-~ fA~,, TdA)'(-sin O~ + cos Oj) 
(ktor)rr = (21) (AT~H) 

pfcp, 
n 2 fH/2 fill2 

(AT~H) ,'-HI2 -H:2 ( T -  (T))(5  - (5)f)dxdy 

× ( - s i n  02 + cos 03) (22) 

respectively. 

Results and Discussion 

Microscopic Velocity Field and Macroscopic Pressure 
Gradient. Two distinct velocity vector plots obtained at 0 = 
0 and 45 deg for three different Reynolds numbers, namely, Re 
= 10 -I , 10, and 103, are compared in Fig. 2. When the Reyn- 
olds number is comparatively small, say Re -< 10, the velocity 
profiles for both 0 = 0 and 45 deg exhibit parabolic profiles as 
in a fully developed channel flow such that the viscous force 
contribution to the pressure drop predominates over the inertial 
contribution. As the Reynolds number increases, a distinct dif- 
ference appears between the velocity field of 0 = 0 deg and 
that of 0 = 45 deg. Flow separation takes place for 0 = 45 deg, 
such that the inertial contribution to the pressure drop becomes 
significant, whereas the flow field for 0 = 0 deg remains of the 
channel flow type such that the inertial contribution is negligibly 
small. Accordingly, we may expect that the resulting macro- 
scopic pressure drop for a fixed mass flow rate would be fairly 
insensitive to the macroscopic flow direction for low-Reynolds- 
number flows, while it becomes sensitive to the flow direction 
as the Reynolds number grows high. 

The macroscopic pressure gradient (i.e., the gradient of the 
intrinsic average pressure measured along the macroscopic flow 
direction) of our primary interest may readily be evaluated using 
the microscopic numerical results as 
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(b) Re=10.  
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(c) Re=1000.  

Fig, 2 Velocity vector plots 

0 = 0 ° 

(a) 

0 = 45 ° 

Re=0.1 

(b) Re=10.  

(c)  R e = 1 0 0 0 .  

Fig. 4 Isotherms 

d(p)  I cos 0 r (H-m/2 
dX - n ( n  T D )  .,_m_D)/Z (Plx=-(,-m/2 

sin 0 
-- Plx=(,-m12)dY + 

H ( H  - D)  

f 
( H - - D ) I 2  

× (Ply=-(n-m/2 - ply=(n-m/2)dx (23) 
¢ - ( H - D ) I 2  

The pressure gradient results, thus obtained with e = 0.64, 
changing the Reynolds number and macroscopic flow angle are 
assembled in Fig. 3, in terms of the dimensionless pressure 

%..,.,. 

~ =  0.64 
104 . . . . . . . . .  , . . . . . . . .  , 

• 10 3 

]A21 , , , , , , i , I  , ....... ' 
ui0-2 10 "1 1 

Fig. 3 

. . . . . . . .  I , , , , , - , I  . . . . . . . .  

0 = 4 5 :  ~ . '"'~ 
O = 4 0 °  1111~ 
e=- 3 5o ii Jllll 
&-3Oo - l¢lIA 
o=250 ~II/A 
o=200 #7///1 
o=15o I¢///1~ 

. . . . . . . . . . . . . . .  0 : .o~.1  

10 10 2 10 3 
Re 

Dimensionless pressure gradient 

gradient against the Reynolds number. All data show that the 
dimensionless pressure gradient stays constant for Re <- 10, 
irrespective of the flow angle, as we expected from the velocity 
vector plots in Fig. 2. The pressure gradient increases drastically 
as Re goes beyond 10 in which the porous inertial contribution 
becomes appreciable as compared with the viscous (Darcian) 
contribution. 

The Forchheimer-extended Darcy law may be written as 

m H2 d(p)  f H Re = - -  + bH Re (24) 
a s  p l ( ~ ) l  2 g 

Thus, the permeability K may readily be determined by reading 
the intercept of the ordinate variable in Fig. 3. The constancy 
of the dimensionless pressure gradient, irrespective of 0, sub- 
stantiates the validity of the periodic numerical models to deter- 
mine K from the first principles. The second term on the right- 
hand side of Eq. (24) represents the porous inertial contribution, 
which increases with Re. The coefficient b for the inertial contri- 
bution may be determined by fitting the numerical results ob- 
tained at high Reynolds numbers into Eq. (24). Such an attempt 
and its extension to a three-dimensional model have been re- 
cently reported by Nakayama et al. (1995). 

Microscopic Temperature Field and Thermal Conductiv- 
ity Due to Tortuosity. The microscopic temperature fields 
obtained at 0 = 0 and 45 deg with e = 0.64 are shown for Re = 
10 -I , 10, and 103 in Fig. 4 in terms of isotherms. The isotherms 
obtained at low Reynolds numbers exhibit a typical pattern for 
the case of pure thermal conduction. For the case of high- 
Reynolds-number flows, the temperature pattern becomes very 
complex, as a result of thermal dispersion, as seen from Fig. 
4(c) ,  where comparatively uniform temperature regions exist 
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within recirculation i'egions. In Fig. 5, the tortuosity conductiv- 
ity (ktor)vY determined by feeding the microscopic numerical 
results into Eq. (21) is plotted against the Peclet number Pe for 
the case of e = 0.64. It is interesting to note that all data obtained 
for different macroscopic flow angles fall onto a horizontal 
asymptote as Pe decreases. An approximate analytical formula 
for this asymptotic value may be found by approximating the 
temperature distribution in a structural unit at low Peclet number 
(see Fig. 4 (a ) )  by a piecewise linear temperature distribution 
within a one-dimensional composite slab, as 

~f = - 1 (25) 
(1 - e)  1/2 + k*(1  - (1 - ~ ) 1 / 2 )  

kl 
The tortuosity conductivity results obtained for a low-Peclet- 
number range as the porosity is changed from 0.1 to 0.96, and 
thermal conductivity ratio from 2 to 100, are plotted with the 
curves generated by the foregoing approximate formula in Fig. 
6 with the abscissa (1 - e). An excellent agreement can be 
seen between the numerical results and the approximate formula 
for the entire range of porosity. 

Figure 5 clearly shows that the tortuosity conductivity de- 
creases as Pe increases. However, the contribution from thermal 
dispersion predominates over the tortuosity contribution as Pe 

102 . . . . . . . . .  

..Q.. 101 k s / k ~  1 0 / ~ / /  

100 

~10 "1 ~ q k s f k p 2 "  k, /kf - -5 .  

1 0 ~ . 0  " 012  " 0 . 4  " 0 1 6  " 018  " .0  

( 1 . e )  
Fig. 6 Apparent thermal conductivity due to tortuosity as a function of 
porosity 

10 6 

10 4 

10 2 

10 ° 

10-: 

10 -4 

10 -6 

10 -3 10 -1 101 10 3 

Pe 
Fig. 7 Apparent thermal conductivity due to dispersion 
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' 0 '  O 0 = 45 ° ( k s / k F ~  

L (kdi,lrr/ kf = 0.016Pe 

2 o , .  O.Ol2 e"  
10 5 

increases, such that the tortuosity conductivity may no longer 
be important and may well be neglected in such a high-Peclet- 
number range. 

Thermal  C o n d u c t i v i t y  D u e  to Thermal  Dispersion. The 
microscopic temperature results obtained for 15 deg -< 0 _< 45 
deg with Pr = 0.71, 5.85, and ks/kf = 2, 100, are processed 
using Eq. (22), and the resulting thermal conductivity (kdis)rr 
due to thermal dispersion is plotted for the case of c = 0.64 in 
Fig. 7. The figure suggests that the lower and higher Peclet 
number data follow two distinct limiting lines, respectively. The 
lower Peclet number data vary in proportion to Pe LT, whereas 
the high-Peclet-number data vary in proportion to Pe. The Peclet 
number dependency at low Pc, namely, Pe LT, which is the same 
as what Eidsath et al. (1983) observed numerically for the 
axial thermal dispersion conductivity, but different from Pe 2 
suggested by Taylor (1953) and Aris (1956) in the classical 
study of solute in a fluid flowing in a tube. A further analytical 
and numerical investigation is needed to clarify this difference 
in the Peclet number dependency at low Pe. Exhaustive compu- 
tations were conducted to extract functional relationships for 
the thermal dispersion conductivities at low and high Peclet 
number ranges, 0.01 < Pe < 10 and 10 < Pe < 5000, respec- 
tively. The thermal dispersion conductivities obtained for differ- 
ent e are plotted in Fig. 8 with the abscissa variable ( 1 - e) to 
investigate the porosity dependency. The resulting expressions 
for the low and high Peclet number ranges are given by 

(kdis)rY Pe~57 
- -  = 0.022 e)l/4 for (Pep < 10) (26a) 

kf (1 

(kdi~)r____~ _ 0.052(1 - e) 1/2 Pep for (Pep > 10) (26b) kl 

. 0 . 0 6 1  . . . . . . . .  , 

,,~ ^ _^I (Pe>10)\j~.~ J 

0 0.5 

(l-e) 
Fig. 8 Apparent thermal conductivity due to dispersion as a function of 
porosity 
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where the relationship Peo = Pe( 1 - E)1/2 is used. ,,,~e~.,...~ 
The predicted total thermal conductivity (k~ + (ktor)rr 

+ (kdis)ry) is compared against the experimental data of Fried 
and Combarnous (1971), Han et al. (1985), and Yagi et al. 
(1960) for packed beds in Fig. 9, where a fairly good agreement 
can be seen between the present correlation and the experimen- ,..ke ~ 
tal data, in light of the simplicity of the present periodic model. 4 -  
In the same figure, Koch and Brady's ( 1985 ) Stokes flow analy- ' ~  
sis on dilute suspension of particles is shown for reference. 
Their analysis, however, should be compared with the experi- ,~ 
mental data with caution, since their analysis applies only for , ~  
the case of high porosity~ and their leading order analysis of -4 -  
Stokes flow of high-Prandtl-number fluid takes no account of , ~  
the Reynolds number effects, which are definitely included in 
Fried and Combarnous' experimental data. 

Conc luding  R e m a r k s  

A successful attempt was made to investigate the apparent 
conductivities due to the tortuosity and thermal dispersion nu- 
merically, considering a macroscopically uniform flow through 
a periodic model of square rods. The transverse components of 
the conductivities were determined imposing a macroscopically 
linear temperature gradient normal to the macroscopic flow di- 
rection. The corresponding streamwise components of the con- 
ductivities may be determined similarly, by imposing a tempera- 
ture gradient parallel to the flow direction. Such an attempt is 
under way. 
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