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A new adaptive nonlinear guidance law is proposed here.

The fourth order state equation for integrated guidance and

control loop is formulated taking into consideration the target

uncertainties and control loop dynamics. The state equation is

further changed into the normal form by nonlinear coordinate

transformation. Using the normal form of state equation, an

adaptive nonlinear guidance law is proposed to compensate for

the uncertainties in both target acceleration and control loop

dynamics. The proposed law adopts the sliding mode control

approach with adaptation for unknown bound of uncertainties.

The present approach can effectively solve the existing guidance

problem against target maneuver and the limited performance

of control loop. We have provided the stability analyses and

performed simulations comparing favorably our approach to the

state of the art.
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I. INTRODUCTION

In the guidance area [1, 2], there has been research
on proportional navigation (PN) [3], true proportional
navigation (TPN) [4], augmented proportional
navigation (APN) [5, 6], optimal guidance law (OGL)
[7–14], ideal proportional navigation (IPN) [15],
generalized true proportional navigation (GTPN)
[16, 17], and realistic true proportional navigation
(RTPN) [18, 19]. In particular, although PN is quite
simple to implement and is also known to be an
optimal algorithm for a nonmaneuvering target, its
performance is degraded with target maneuvering
and it may be ineffective for some orientations
between missile and target. The PN-variant guidance
algorithms such as OGL and APN require information
about target acceleration, missile velocity change, and
missile acceleration. Although the information can
be measured or estimated more accurately with the
development of sensors and estimators, the complexity
and the cost of the guidance system increase and
the uncertainties or errors in these values prevent
the expected performance. In practice, as target
acceleration can change rapidly, the guidance law
using this information may be quite restrictive in that
it is difficult to obtain the information without time
delay.

More recently, nonlinear control theories have been
employed in guidance law using the Lyapunov method
[20], nonlinear geometric method [21–23], nonlinear
H method [24], and sliding mode control method
[25–27]. In particular, the sliding mode guidance law
assumes that the upper bound of target acceleration
is known. Since the bound of uncertainty may be
unknown, we may have to assume a conservative
one and performance in the guidance system might
be degraded accordingly.

Furthermore, all of the above guidance laws are
designed with the assumption that the response of the
control system is ideal or similar to a low pass filter
[11–14]. In an actual situation, due to flight conditions
and unexpected environments, we cannot expect
the ideal performance of the control system. Since
the guidance system is designed without addressing
this situation, the discrepancy between the ideal
control system and the actual one can lead to the
unsatisfactory performance. To improve performance,
[28–30] suggest the simultaneous design of the
guidance and control loop, i.e., the integrated missile
guidance and control system. This method adopts
the optimal control technique together with the gain
scheduling approach. It requires a large amount of
computation and memory for a highly agile target
maneuver.

We propose another design approach for integrated
guidance and control. The integrated guidance and
control loop is formulated by a nonlinear state
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Fig. 1. Approach to guidance and control for the missile using
adaptive technique.

equation, which is valid for all flight conditions. The
integrated dynamic equation includes uncertainties in
both control loop dynamics and target acceleration.
This equation is further changed into normal form
by coordinate transformation. For the normal form
equation, an adaptive nonlinear guidance law is
derived using the sliding mode control theory
together with parameter adaptation to compensate
for the uncertainties. We analyze the stability of the
integrated guidance and control loop, and also
evaluate the performance through simulations for
actual missile model [31] to show the effectiveness
of our approach.
The rest of this paper is organized as follows.

Section II describes the modeling of integrated
guidance and control loop. In Section III, an
adaptive nonlinear guidance law considering target
uncertainties and the control loop dynamics is
presented and also stability of the resulting overall
missile system is analyzed. Section IV shows the
simulation results for the proposed adaptive nonlinear
guidance method. The conclusions are given in
Section V.

II. MODELING OF INTEGRATED GUIDANCE AND
CONTROL LOOP

In this section, an integrated model for guidance
and control loop is formulated. Our approach to
an integrated guidance and control is depicted in
Fig. 1. The control loop consists of a missile system
and a nonlinear controller, and is designed so that
the control loop follow a given reference model.
The adaptive nonlinear guidance law considers
uncertainties in both target acceleration and control
loop dynamics. Thus, the overall system leads to an
integrated guidance and control loop.
The authors have proposed the nonlinear control

scheme for the skid-to-turn (STT) missiles [31].
Here, we utilize the scheme for control loop. The
control loop is briefly described in the following. By
assumptions usually made in the design of missile
control system and also applying the functional
approximation technique, we can have the yaw

dynamics given by

_̄ = r+
QS

Um
(wy1¯+wy2¯

3 +wy3±r +¢y)

_r = Q(va1¯+ va2¯
3 +¢a)

QS(lf lg)

IM

(wy1¯+wy2¯
3 +wy3±r +¢y)

am =
QS

m
(wy1¯+wy2¯

3 +wy3±r +¢y)

(1)

where ¯ is side-slip angle; r is yaw angular
rate; ±r is deflection of yaw control fin; Q is
dynamic pressure; S is aerodynamic reference
area; IM = Iz is moment of inertia about z-axis;
m is missile mass; lf and lg are distances from
the nose of a missile to the center-of-pressure
of control fins and the center-of-gravity; am is
acceleration output; wy1, wy2, wy3, va1, va2 are
slowly time-varying parameters depending on
Mach number and bank angle ÁA, defined by wyj =

N
i=1¹i(Mm)(c

f1
ij + c

f2
ij sin

2(2ÁA)), va1 = ca1 + ca2 ÁA ,

va2 = ca3, ¹i(Mm) = ¹
0
i (Mm)=

N
j=1¹

0
j (Mm), ¹

0
i (Mm) =

exp( (Mm Mi)
2=¾2i ) for i = 1, : : : ,N and j = 1,2,3;

cf1ij , c
f2
ij , ca1, ca2, ca3 are all fitting parameters obtained

by a curve fitting technique from a look-up table of
aerodynamic coefficients for Mm =Mi; and ¢y and ¢a
are approximation errors. In order to make the above
system almost linear, we employ the control input

±r =
1
wy3

m(uy +Ur)

QS
wy1¯ wy2¯

3 (2a)

uy =
Uhvu1

Q(va1 +3va2¯2)
(2b)

_u1 = 2!n»u1 +!
2
n(amc am) (2c)

where amc is acceleration command from the guidance
loop. The control input (2) makes the overall control
loop follow a second-order reference model

äm+2»!nam+!
2
nam = !

2
namc+¢c (3)

where ¢c is an uncertainty arising from the missile
uncertainty ¢y and ¢a. For details about the control
loop, see [31]. Equation (4) can be expressed in state
space form as

_Xc =
0 1

ac1 ac2
Xc+

0

bc
uc+

0

¢c

=: AcXc+Bcuc+Dc (4)

where Xc = (xc1 xc2)
T = (am _am)

T, ac1 = !
2
n , ac2 =

2»!n, bc = !
2
n , uc = amc, and » and !n are design

parameters of the control loop.
In the following, an integrated model of a

guidance loop including the control loop dynamics
(4) is formulated. For convenience, a guidance
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problem in three-dimensional space is considered as
the following two-dimensional guidance problems:
the projected horizontal plane (Xr-Yr plane) and the
projected vertical plane (Xr-Zr plane) where (Xr,Yr,Zr)
denotes the inertial reference coordinate system. The
simultaneous intercepts on both planes imply the
true intercept in the original three-dimensional space.
In each plane, the missile-target interception can be
characterized by two variables: the missile-target range
R and the line-of-sight (LOS) angle ¾, which are
relative measures to their fixed reference frames. In
the PN law, the acceleration commands are generated
in the direction of making the rate of rotation of the
LOS _¾ be equal to zero.
As ¾ is a small value, it can be defined as

¾ =
l

R
(5)

where l is a projected y-component of R.
Differentiating (5), we can get

_¾ =
_lR l _R
R2

(6)

¾̈ =
l̈R lR̈

R2
(lR̈+ _l _R)R2 2lR _R2

R4

=
l̈

R

2_l _R
R2

lR̈

R2
+
2l _R2

R3

=
l̈

R

lR̈

R2
2 _R
R

_lR l _R
R2

=
1
R
( am+ aT)

R̈

R
¾

2 _R
R
_¾ (7)

where aT is target acceleration.
Defining the state Xg = (xg1 xg2)

T = (¾ _¾)T in (7),
the state equation of the guidance loop is expressed
by

_Xg =
0 1

ag1(t) ag2(t)
Xg +

0

bg(t)
am+

0

bg(t)
aT

=: AgXg +Bgug +Dg (8)

where ag1(t) = R̈(t)=R(t), ag2(t) = 2
_R(t)=R(t), bg(t) =

1=R(t), ug = am, and
_R is the relative velocity between

the target and the missile. Since from (4) ug = xc1 =
CgXc = [1 0]Xc holds, the guidance loop (8) and the
control loop (4) can be combined as

_Xigc =
Ag BgCg

0 Ac
Xigc+

0

Bc
uc+

Dg

Dc

= AigcXigc+Bigcuc+Digc (9a)

Yigc = xg2

= CigcXigc (9b)

where

Xigc =
Xg

Xc
, Aigc =

0 1 0 0

ag1 ag2 bg 0

0 0 0 1

0 0 ac1 ac2

Bigc = (0 0 0 bc)
T, Cigc = (0 1 0 0)

Digc = (0 bgaT 0 ¢c)
T:

The guidance law aims to find the acceleration
command corresponding to the input variable (i.e.,
uc) so that the LOS rate converges to zero. The above
equation for the integrated guidance and control
loop contains uncertainties in both the target and
control loop. Thus, the guidance law is designed to
compensate for these uncertainties. To apply nonlinear
control theory to the integrated guidance and control
loop, the state equation (9) must be transformed into
normal form. The output is chosen by

y = Yigc =: x1: (10)

Differentiating the output, we have

_x1 = ag1xg1 ag2x1 bgxc1 + bgaT

= x2 + ¢̄1 (11)

where

x2 = ag1xg1 ag2x1 bgxc1, ¢̄1 = bgaT:

(12)
Differentiation yields

_x2 = _ag1xg1 ag1 _xg1 _ag2x1 ag2 _x1
_bgxc1 bg _xc1

= _ag1xg1 ag1x1 _ag2x1 ag2x2 ag2¢̄1
_bgxc1 bgxc2

= (ag1 + _ag2)x1 ag2x2 _ag1xg1
_bgxc1 bgxc2 ag2¢̄1

= x3 + ¢̄2 (13)

where

x3 = (ag1 + _ag2)x1 ag2x2 _ag1xg1
_bgxc1 bgxc2

¢̄2 = ag2¢̄1: (14)

Similarly, we have

_x3 = ( _ag1 + äg2)x1 (ag1 + _ag2) _x1 _ag2x2 ag2 _x2

äg1xg1 _ag1 _xg1 b̈gxc1
_bg _xc1

_bgxc2 bg _xc2

= ( _ag1 + äg2)x1 (ag1 + _ag2)x2 (ag1 + _ag2)¢̄1

_ag2x2 ag2x3 ag2¢̄2 äg1xg1 _ag1x1 b̈gxc1

2 _bgxc2 bg( ac1xc1 ac2xc2 + bcuc+¢c)

= (2 _ag1 + äg2)x1 (ag1 + 2_ag2)x2 ag2x3 äg1xg1

+ ( b̈g + bgac1)xc1 + ( 2 _bg + bgac2)xc2

bgbcuc+ ¢̄3 (15)
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where

¢̄3 = (ag1 + _ag2)¢̄1 ag2¢̄2 bg¢c: (16)

Letting the state variable x4 = xg1, xc1 and xc2
can be expressed in terms of x1, x2, x3, and x4 as
follows

xc1 =
1
bg
(x2 + ag1xg1 + ag2x1)

=
ag2
bg
x1

1
bg
x2

ag1
bg
x4 (17)

xc2 =
1
bg

x3 + (ag1 + _ag2)x1 + ag2x2 + _ag1xg1 +
_bgxc1

=
ag1 + _ag2
bg

+
ag2
_bg

b2g
x1 +

ag2
bg
+
_bg
b2g

x2

+
1
bg

x3 +
_ag1
bg
+
ag1
_bg

b2g
x4: (18)

Using the above expression of xc1 and xc2, we
have

_x3 = a1x1 + a2x2 + a3x3 + a4x4 bgbcuc+ ¢̄3

(19)
where

a1 = (2 _ag1 + äg2) +
(b̈g bgac1)ag2

bg

+(2 _bg bgac2)
ag1 + _ag2
bg

ag2
_bg

b2g
(20)

a2 = (ag1 +2 _ag2) +
b̈g bgac1

bg

+(2 _bg bgac2)
ag2
bg

_bg
b2g

(21)

a3 = ag2 +
2 _bg bgac2

bg
(22)

a4 = äg1 +
(b̈g bgac1)ag1

bg

+(2 _bg bgac2)
_ag1
bg

ag1
_bg

b2g
: (23)

Thus, denoting x0 = [x1 x2 x3 x4]
T, we have

_x0 =

0 1 0 0

0 0 1 0

a1 a2 a3 a4

1 0 0 0

x0 +

0

0

bgbc

0

uc+

¢̄1

¢̄2

¢̄3

0

y = x1:

The above dynamics has relative degree 3 and is
of weak minimum phase since x4 = ¾ is physically
stable. Accordingly, a feedback linearization technique
can be applied to the above dynamics and, for easy
application, x= [x1 _x1 ẍ1 x4]

T is introduced to
modify (24) as

_x=

0 1 0 0

0 0 1 0

a1 a2 a3 a4

1 0 0 0

x+

0

0

bgbc

0

uc+

¢1

¢2

¢3

0

=: aigcx+ bigcuc+¢igc (24a)

y = x1 (24b)

where ¢1 = ¢̄1, ¢2 = ¢̄2 +
_̄
¢1, and ¢3 = ¢̄3 +

_̄
¢2 +

¨̄
¢1.

III. ADAPTIVE NONLINEAR GUIDANCE LAW

In this section, the design procedure of adaptive
nonlinear guidance law is presented for the integrated
guidance and control system given by (24). The
adaptive nonlinear guidance law is designed under the
following assumption.

Assumption 1 ¢i Mi, and Mi is unknown for
i = 1,2,3.

The guidance law is given by

uc =
1
bgbc

a1x1 + (a2 + bs) _x1 + (a3 + as)ẍ1 + a4x4 + ks

+(bsM̂1 + asM̂2 + M̂3)sgn(s) (25)

and the adaptation law

_̂
M1 = °1 s bs,

_̂
M2 = °2 s as,

_̂
M3 = °3 s

(26)

where as,bs,k,°1,°2,°3 > 0 are design parameters,
M̂i is estimate of Mi, i= 1,2,3, and s = ẍ1 + as _x1 +
bsx1 where s-convergence to zero guarantees
_¾-convergence to zero.

THEOREM 1 (Adaptive nonlinear guidance law) The
missile guidance system described by (24) with the
guidance law (25) and the adaptation law (26) under
Assumption 1 is stable in the sense that

1) M̃1,M̃2,M̃3,M̂1,M̂2,M̂3 L

2) s,
_̂
M1,

_̂
M2,

_̂
M3 L2 L

3) _s L

4) s, y(= _¾),
_̂
M1,

_̂
M2, and

_̂
M3 converges to zero

asymptotically.

PROOF We choose a Lyapunov function

V =
1
2
s2 +

1
2°1

M̃2
1 +

1
2°2

M̃2
2 +

1
2°3

M̃2
3
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and take a time derivative to have

_V = s_s+
1
°1
M̃1

_̃
M1 +

1
°2
M̃2

_̃
M2 +

1
°3
M̃3

_̃
M3

= s ...x 1 + asẍ1 + bs _x1 + (as¢2 + bs¢1)

+
1
°1
M̃1

_̃
M1 +

1
°2
M̃2

_̃
M2 +

1
°3
M̃3

_̃
M3

= s a1x1 + a2 _x1 + a3ẍ1 + a4x4 bgbcuc

+ asẍ1 + bs _x1 + (as¢2 + bs¢1 +¢3)

+
1
°1
M̃1

_̃
M1 +

1
°2
M̃2

_̃
M2 +

1
°3
M̃3

_̃
M3

= s ks+ (as¢2 + bs¢1 +¢3)

(bsM̂1 + asM̂2 + M̂3)sgn(s)

+
1
°1
M̃1

_̃
M1 +

1
°2
M̃2

_̃
M2 +

1
°3
M̃3

_̃
M3

ks2 + s (asM̃2 + bsM̃1 + M̃3)
1
°1
M̃1

_̂
M1

1
°2
M̃2

_̂
M2

1
°3
M̃3

_̂
M3

ks2:

Thus, V(t) is bounded for all time, and,
accordingly, s,M̃1,M̃2,M̃3 L . This yields
M̂1,M̂2,M̂3 L . Furthermore, as we have

0 s
2(t)dt 1=k V(0) V( ) < , s L2. From

the parameter adaptation law, this means that
_̂
M1,

_̂
M2,

_̂
M3 L2 L . Also, we have _s L . This

means that s is uniformly continuous. Combining
this with the L2-property of s, we can use Barbalat’s
lemma to conclude that s and, accordingly, y(= _¾)
converge to zero asymptotically. Also, from the

parameter adaptation law,
_̂
M1,

_̂
M2, and

_̂
M3 converge

to zero asymptotically.

As the signum term in the guidance law given by
(25) and (26) can cause an abrupt change of guidance
command, we use the time-varying deadzone using
the hyperbolic tangent function [33]. The deadzoned
switching surface is defined as

sw = s Ád sat(s=Ád) (27)

where sat( ) is a saturation function defined by
sat(a) = sgn(a) for a > 1 and sat(a) = a for
a 1, Ád is the width of deadzone with Ád =
(1=2(a+ bt)) loge(md +1=md 1), and md = 1 and
md ,a,b > 0 are design parameters determining the
slope of the deadzone around the origin. The guidance

law is given by

uc =
1
bgbc

a1x1 + (a2 + bs) _x1 + (a3 + as)ẍ1 + a4x4

+ ksw +sat(s=Ád) md(bsM̂1 + asM̂2 + M̂3)

tanh[(a+ bt)s] + _Ád (28)

and the adaptation law by

_̂
M1 = °1 sw bs,

_̂
M2 = °2 sw as,

_̂
M3 = °3 sw :

(29)

Stability and performance for the adaptive nonlinear
guidance law with time-varying deadzone is shown in
the following theorem.

THEOREM 2 (Adaptive nonlinear guidance law with
time-varying deadzone) The missile guidance system
described by (24) with the guidance law (28) and the
adaptation law (29) under Assumption 1 is stable in the
sense that

1) M̃1,M̃2,M̃3,M̂1,M̂2,M̂3 L

2) sw ,
_̂
M1,

_̂
M2,

_̂
M3 L2 L

3) _sw L

4) s, _¾,
_̂
M1,

_̂
M2, and

_̂
M3 converges to zero

asymptotically.

PROOF We choose a Lyapunov function

V =
1
2
s2w+

1
2°1

M̃2
1 +

1
2°2

M̃2
2 +

1
2°3

M̃2
3 :

For s Ád, we have
_V = 0 using sw = 0. For s > Ád,

we use _sw = _s
_Ád to have

_V = sw _sw +
1
°1
M̃1

_̃
M1 +

1
°2
M̃2

_̃
M2 +

1
°3
M̃3

_̃
M3

= sw
...
x 1 + asẍ1 + bs _x1 + (as¢2 + bs¢1)

_Ád

+
1
°1
M̃1

_̃
M1 +

1
°2
M̃2

_̃
M2 +

1
°3
M̃3

_̃
M3:

Using the third row of (24a), this becomes

_V = sw a1x1 + a2 _x1 + a3ẍ1 + a4x4 bgbcuc

+ asẍ1 + bs _x1 + (as¢2 + bs¢1 +¢3)
_Ád

1
°1
M̃1

_̂
M1

1
°2
M̃2

_̂
M2

1
°3
M̃3

_̂
M3:

Using the guidance law (28) and the adaptation law
(29) and using sat(s=Ád) = sgn(sw) for s > Ád, we
have

_V ks2w + sw (bsM1 + asM2 +M3)
1
°1
M̃1

_̂
M1

1
°2
M̃2

_̂
M2

1
°3
M̃3

_̂
M3

sw md(bsM̂1 + asM̂2 + M̂3) tanh[(a+ bt)s]
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ks2w + sw (bsM̃1 + asM̃2 + M̃3)
1
°1
M̃1

_̂
M1

1
°2
M̃2

_̂
M2

1
°3
M̃3

_̂
M3 + sw (bsM̂1 + asM̂2 + M̂3)

sw md(bsM̂1 + asM̂2 + M̂3) tanh[(a+ bt) s ]

= ks2w + sw (bsM̂1 + asM̂2 + M̂3)

1 md tanh[(a+ bt) s ] :

For s > Ád , it follows that

_V ks2w + sw (bsM̂1 + asM̂2 + M̂3)

1 md tanh[(a+ bt)Ád]

= ks2w + sw (bsM̂1 + asM̂2 + M̂3)

1 md tanh
1
2
loge

md +1
md 1

:

Now we use the relation

tanh(x) =
ex e x

ex+ e x
=
e2x 1
e2x+1

to have

_V ks2w + sw (bsM̂1 + asM̂2 + M̂3)

1 md
(md +1) (md 1)
(md +1)+ (md 1)

= ks2w:

Thus, V(t) is bounded for all time and, accordingly,
sw,M̃1,M̃2,M̃3 L . This directly yields M̂1,M̂2,M̂3
L . Furthermore, we can easily check that sw L2

and with the parameter adaptation law
_̂
M1,

_̂
M2,

_̂
M3

L2 L . Also, we have _sw L . This means that sw
is uniformly continuous. Combining this with the
L2-property of sw, we can use Barbalat’s lemma to

conclude that sw, together with
_̂
M1,

_̂
M2,

_̂
M3, converge

to zero asymptotically. This, in turn, guarantees that
s Ád holds after some time. As limt Ád = 0
holds, we also have limt s = 0.

REMARK 1 As Ád goes to zero with time, the
adaptive guidance law with deadzone, that is (28) and
(29), becomes the same as the one without deadzone,
that is (25) and (26), in Theorem 1. Thus, using a
saturation function and time-varying deadzone in
the adaptive guidance law, we can guarantee the
performance of _¾-convergence to zero and the stability
of the overall system without incurring the high
frequency inputs.

IV. SIMULATION RESULTS

This section presents simulation results for the
proposed adaptive nonlinear guidance (ANG) law for

yaw and pitch dynamics. The ANG law (28), (29) is
slightly modified in the simulation mainly from the
implementation considerations using R(3) R(4) 0
as in [27]. Note that a hyperbolic tangent function is
used in a guidance law instead of a signum function.
The former function is differentiable and adopts a
time varying deadzone, whereas the latter adopts a
fixed deadzone. As the missile reaches the end-game
phase, the performance, such as the minimization of
miss distance and flight time, is more important than
the stability of the missile system. Thus, the proposed
system focuses on the performance, considering the
more realistic situation.

The performance of the proposed law is
evaluated for a missile-target interception in a more
realistic situation. The simulation has been done for
surface-to-air engagement scenarios, which depend
on the conditions of the missile and the target. The
performance of the proposed method is compared
with that of the proportional navigation guidance
(PNG) law, augmented PNG (APNG) law, and sliding
mode guidance (SMG) law. Each of the PNG, APNG,
SMG guidance laws are of the form

uPNG =NVc _¾ =
N

t2go
(yR + _yRtgo) (30)

uAPNG =
N

t2go
(yR + _yRtgo+0:5aT°t

2
go) (31)

uSMG = (N +1)Vc _¾+ "s
_¾

_¾ + ±s
(32)

where N is a navigation constant chosen as 3, Vc
is closing velocity, tgo is time-to-go, aT° is target
acceleration at the °-axis (either the x-y or the x-z
plane), and "s and ±s are 1 and 0.05, respectively.
The miss distance and flight time are chosen as
performance indices. The actual missile control
system in [31] is employed in a closed-loop guidance
and control simulation environment described in
[32], making the evaluation more practical. Design
parameters of the control loop (3) are » = 0:7 and
!n = 15. Design parameters of guidance loop (28),
(29), and Ád are as = 250, bs = 1, k = 20, md = 2,
°1 = 0:1, °2 = 0:1, °3 = 0:1, a= 0:1, and b = 0:2.

Here, we select several scenarios shown in Table
I. We conduct simulations for various other scenarios
as well and find that the proposed system is effective
in most cases. In these scenarios, the target initially
travels at constant velocity with 200 m/s, then makes
step-changes in acceleration. Each vector component
in Table I represents the value along the y and z
axes, respectively. The launch angle, elevation angle,
azimuth angle, and control start time of the missile are
50 deg, 0 deg, 0 deg, and 0.5 s, respectively.

Fig. 2 shows the acceleration tracking performance
and three-dimensional trajectories of PNG and ANG
for scenario I in Table I. Table II compares the miss
distances and flight time of PNG, APNG, SMG,
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Fig. 2. Performance of scenario I. (a) Acceleration of PNG. (b) Three-dimensional trajectory of PNG. (c) Acceleration of ANG.
(d) Three-dimensional trajectory of ANG. In (a) and (c), solid is actual acceleration and dotted is acceleration command. In (b) and (d),

M is missile, T is target.

TABLE I
Scenarios for Missile-Target Interception

(a) Target Conditions

First Second
First Evasive Second Evasive
Evasive Acceleration Evasive Acceleration

Scenario Time (s) (m/s2) Time (s) (m/s2)

I 0 [0 8] 2 [ 8 0]
II 0 [4 4] 2 [8 8]
III 0 [0 10] 2.5 [15 0]
IV 0 [0 0] 0 [0 0]
V 0 [0 0] 0 [0 0]
VI 0 [0 7] 1 [7 7]
VII 1 [10 10] 4 [ 10 10]
VIII 0 [10 20] 7 [0 0]

(b) Target-Missile Geometry

Initial Initial
Off-Boresight Aspect Relative Relative

Scenario Angle (deg) Angle (deg) Distance (m) Altitude (m)

I 0 90 3000 2500
II 30 90 2000 1300
III 45 180 1500 1000
IV 0 0 300 1500
V 0 180 2000 1000
VI 0 180 1500 1300
VII 0 45 2000 1000
VIII 0 30 2000 1000

TABLE II
Performance of PNG, APNG, SMG, and ANG without

Uncertainties

(a) Miss Distance (m)

Scenario PNG APNG SMG ANG

I 4.3244 12.5096 0.6199 0.3164
II 7.7048 3.2928 1.0344 4.0061
III 1.8637 2.0831 0.8709 0.3257
IV 1.0499 1.0499 0.4395 0.1978
V 6.5488 6.5488 5.4528 0.0896
VI 1.1949 1.0524 0.8112 0.2071
VII 2.0209 15.1730 0.5119 1.3549
VIII 83.818 181.3973 63.5237 44.612

(b) Flight Time (s)

Scenario PNG APNG SMG ANG

I 5.8085 6.0720 5.8420 5.6490
II 4.9505 5.1545 5.0325 4.8155
III 3.9255 3.7610 3.9425 3.7280
IV 3.7500 3.7500 3.7570 3.6580
V 2.0940 2.0940 2.0950 2.0775
VI 3.3790 3.4255 3.3795 3.3720
VII 5.3660 7.0010 5.4345 5.3110
VIII 4.8450 7.0080 4.9000 4.6845
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TABLE III
Performance of PNG, APNG, SMG, and ANG with Uncertainties

(a) Miss Distance (m)

Scenario PNG APNG SMG ANG

I 18.894 101.0000 15.3689 10.3333
II 104.08 178.7423 89.0944 13.4023
III 12.825 23.6034 9.7647 2.4559
IV 4.4769 4.4769 2.5142 0.2041
V 9.9751 9.9751 8.9779 0.1065
VI 1.5034 1.7627 2.1903 0.2171
VII 16.470 446.0893 19.9431 13.828
VIII 179.00 76.4673 171.7629 65.384

(b) Flight Time (s)

Scenario PNG APNG SMG ANG

I 5.9420 6.3925 5.9720 5.6895
II 5.0645 5.5805 5.3670 4.9125
III 4.1475 3.8645 4.1715 3.7485
IV 3.7805 3.7805 3.8020 3.6640
V 2.0885 2.0885 2.0885 2.0790
VI 3.3900 3.4795 3.3925 3.3825
VII 5.5765 7.0010 5.7080 5.4580
VIII 4.8855 5.3905 4.9385 4.6445

and ANG under each scenario. The results in Fig. 2
show that the acceleration commands and also the
actual acceleration become different between PNG
and ANG. This difference results in the smaller
miss distance and flight time with ANG than with
PNG as shown in Table II. It should be noted that
PNG, APNG, and SMG do not consider the actual
control loop response and thus show much degraded
performance compared with ANG for severe target
maneuver.
The advantage of the proposed method becomes

more apparent against uncertainties in the missile
dynamics. We assume as in [34] that uncertainties
exist in Cy(Mm,¯,±r,ÁA) and Cz(Mm,®,±q,ÁA) as

Cy(Mm,¯,±r,ÁA) = Cyn(Mm,¯,±r,ÁA) +#
T
fyÁfy

Cz(Mm,®,±q,ÁA) = Czn(Mm,®,±q,ÁA) +#
T
fzÁfz

where Cyn(Mm,¯,±r,ÁA) and Czn(Mm,®,±q,ÁA) are
nominal values given by aerodynamic coefficient
table, Áfy and Áfz are variables corresponding to
Áf , Á

T
f = [Á

T
f1, : : : ,Á

T
fN], Á

T
fi = [Áfi1 Áfi2 Áfi3 Áfi4] =

¹i(Mm)[¯ ¯ sin
2(2ÁA) ¯

3 ¯3 sin2(2ÁA)], and #fy and
#fz are uncertain parameters given by

#Tfy1 = [0:5 10], #Tfy2 = [4:5 15], #Tfy3 = [2:6 35]

#Tfy4 = [2:0 27], #Tfy5 = [3:6 37], #Tfy6 = [3:2 25]

#Tfz1 = [3:5 20], #Tfz2 = [2:4 24], #Tfz3 = [3:5 10]

#Tfz4 = [3:4 32], #Tfz5 = [4:4 17], #Tfz6 = [1:3 22]:

In this case, the results of the proposed guidance
law and also those of PNG, APNG, and SMG are
compared in Table III and it can be confirmed that

the proposed one can effectively compensate for the
uncertainties in control loop dynamics. The results
show that the proposed scheme can be effectively
combined with the previously developed missile
control system, forming the integrated guidance and
control system.

V. CONCLUSIONS

We proposed an adaptive nonlinear guidance
law to improve the overall performance of guidance
and control missile system. The proposed approach,
when compared with the existing results, is novel in
that the guidance law considers the uncertainties of
control dynamics as well as target acceleration. In
addition, stability analysis has been provided for the
overall system including the guidance and control
loop. The simulation results as well as the stability
and performance analysis show that our scheme can
be effectively used to improve the overall guidance
and control system.
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