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Abstract—Network Tomography (or network monitoring) uses
end-to-end path-level measurements to characterize the net-
work, such as topology estimation and failure detection. This
work provides the first comprehensive study of passive network
tomography in the presence of network failures under the
setting that all nodes perform random linear network coding.
In particular, we show that it is both necessary and sufficient
for all nodes in the network to share common randomness, i.e.,
all local coding coefficients are chosen using a commonly shared
random code-book. Without such common randomness, we prove
that in the presence of adversarial or random failures, it is
either theoretically impossible or computationally intractable to
accurately estimate the topology of general networks, and then
locate the failures. With such common randomness, we present
several sets of algorithms for topology estimation and failure
detection, under various settings of adversarial and random
failures. For some scenarios our algorithms have polynomial
time-complexity, while for others we demonstrate computational
intractability. Our main observation from this work is that the
linear transforms arising from random linear network coding
have some very specific relationships with the network structure,
and these relationships can be leveraged to significantly aid
tomography. Key Words: Network Coding, Network Tomography,
Random Errors, Erasures, Adversaries

I. INTRODUCTION

The goal of network tomography (or network monitoring)
is to use end-to-end measurements across a network to infer
the network topology, estimate link statistics such as loss
rate, and locate network failures [2]. While active network
tomography requires a dedicated probing data stream and/or
internal node operations, passive network tomography incurs
less overhead and complexity as it focuses on revealing
network characteristics by passively inferring the information
provided by normal data transmission [20]. Most existing
work on network tomography are schemes for routing-only
networks [2], [20]. By diagnosing the correlated patterns
among multiple measurements, such as packets’ failure and
time delay, a certain amount of information about the internal
network can be inferred. The success of these schemes over
routing-only networks, however, is limited to simple and
structural networks, e.g., trees of moderate size [2].

In essence, the store-and-forward operations internal nodes
perform on packets is too simple to allow end-to-end mea-
surements to reveal the network’s structure and characteristics
to a satisfactory level. The situation becomes even worse in
the presence of erasures or errors, or if there are adversaries
introducing arbitrary edge erasures and errors.

In the past decade, network coding has attracted much
interest since the pioneering work in [1], [19]. By allow-
ing internal nodes to mix incoming packets and output the
resulting coded packets, they showed the optimal multicast

throughput can be achieved. The optimal multicast throughput
is a natural generalization of the well-known max-flow min-cut
theorem [13], and it can be arbitrarily larger than that achieved
by routing based transmission [10]. Moreover, the authors
in [19] demonstrated that using linear coding can achieve the
optimal throughput, and the authors in [6]-[9] showed that
even random linear network coding (i.e., each node chooses
coding coefficients independently and randomly) is sufficient
to attain the optimal throughput. Such codes have extremely
low design and implementation complexity, in addition to their
desirable distributed nature.

Network coding also helps network tomography. With net-
work coding enabled, internal nodes not only store and forward
packets, but also mix and code them. Several existing works
have shown that such additional coding operations in fact allow
end-to-end measurements to reveal more detailed information
about the network.

For instance, G.S.Sharma et al. [16] show that the topology
of a zero-error network can be determined by an exponentially
complex algorithm if random linear network coding is in
use and certain global knowledge of coding coefficients is
assumed. Similarly, Fragouli et al. [5] and Ho et al. [7] can
detect erasure/errors edges using high complexity algorithms
under the random linear network coding setting, when the
topology and coding coefficients are known a priori to the
receiver. These works reveal that network coding can help
network tomography, at least for some specific problems under
specific settings.

Despite such encouraging progress, many important ques-
tions remain unexplored. For instance, determining topologies
of arbitrary networks under edge failures and adversarial
failures, and efficient location of those erroneous.

In this paper we carry out a unified study that provides a
comprehensive understanding of passive network tomography
in the presence of network failures, under the setting of random
linear network coding. In particular, we answer the following
two sets of fundamental questions:
• Under what conditions is it ever possible to estimate the

topology of general networks in the presence of random
or adversarial failures, and to find the locations of such
failures.

• Under what conditions do there exist corresponding com-
putationally tractable algorithms?

A. Our Contributions

We first show that it is necessary for all nodes in the network
to share common randomness, i.e., all local coding coefficients
are chosen using a commonly shared random code-book R.
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We prove that without such common randomness, it is either
theoretically impossible or computationally intractable to ac-
curately estimate the topology of general networks, and then
locate the failures in the presence of random or adversarial
failures.

Assuming common randomness is shared among all nodes,
our results are further categorized into three classes, and are
summarized in Table I. A brief disussion of our results follows.

For network tomography in the presence of random er-
rors/erasures:

• we provide the first computationally efficient topology
tomogaphy algorithms.

• given that the topology is known, we propose a com-
putationally efficient algorithm that detects all edges
experiencing errors/erasures.

Network tomography in the presence of adversarial errors turns
out to be a computationally hard problem. For example, we
show that the adversary localization problem is computation-
ally intractable (i.e., at least as hard as the nearest codeword
problem for random linear coding) even when the receiver
already knows the topology and common randomness. For this
scenario we

• present existence proof and corresponding (exponential-
time) algorithm for topology tomography.

• given the topology is known, we detect all the edges
with adversarial errors on the coding subgraph from the
source to the receiver via an algorithm whose running-
time is |E|z , where |E| is the number of edges and z
is the number of corrupted edges. This is indeed a high
complexity algorithm, but as noted above, the problem is
comutaitonally intractable.

We have similar results for network tomography In the pres-
ence of adversarial erasures:

• the topology can be estimated via the same scheme as
for adversarial errors.

• given that the topology is know, all edges with erasures
can be computationally efficiently detected.

We derive our results mainly based on the observation
that linear transforms arising from random linear network
coding have a very specific relationship with the structure of
the network, which can be used for network tomography. In
particular, we found it useful to define the impulse response
vector t′(e) for every link e as the transform vector from link
e to the receiver. The t′(e) can be treated as the fingerprint
of link e. Any failure of e expose its fingerprint, allowing us
to detect the failure.

The rest of this paper is organized as follows. We formulate
the problem in Section II, and present preliminaries in Section
III. We then present our main technical results. As shown in
Table I, our results for network tomography in the presence
of adversarial errors, random errors, and random/adversarial
erasures are presented in Section IV, V, and VI, respectively.

TABLE I
SUMMARY OF OUR RESULTS AND COMPLEXITIES

Failure Goal Complexity Section
Topology estimation Existence Result IV-B

Adversarial Errors
Locating failures |E|z IV-C

Topology estimation Computationally efficent V-B
Random Errors

Locating failures Computationally efficent V-C
Topology estimation Computationally efficent VI-A

Random Erasures
Locating failures Computationally efficent VI-A

Topology estimation Existence Result VI-B
Adversarial Erasures

Locating failures Computationally efficent VI-B

II. PROBLEM FORMULATION

A. Notational convention

Scalars are in lower-case (e.g. z). Matrices are in upper-case
(e.g. X). Vectors are in lower-case bold-face (e.g. e). Column
spaces of a matrix are in upper-case bold-face (e.g. E). Sets
are in upper-case calligraphy (e.g. Z).

B. Settings

For ease of discussion, we consider an acyclic and delay-
free network G = (V, E) where V is the set of vertices and E
is the set of edges. In principle our results can be extended to
more general networks.

Each node has a unique identification number known to
itself, such a label could correspond to the node’s GPS
coordinates, or its IP address, or a factory stamp. The capacity
of each edge is normalized to equal one symbol of a finite field
Fq per unit time. Edges with non-unit capacity are modeled
as parallel edges. We denote e(u, v, i) as the ith parallel edge
between nodes u and v.

For ease of discussion, we focus on the unicast scenario
where a single source s communicates with a single receiver
r over the network, where intermediate nodes perform random
linear network coding as defined below. We remark that our
results can be generalized to any communication scenario for
which random linear network coding suffice (for instance,
multicast communications).

Let C be the min-cut from s to r, i.e., the size of a minimal
set of edges, the removal of which disconnects s from r.
Without loss of generality, we assume that both the number of
edges leaving the source s and the number of edges entering
the receiver r equal C (the more general case can be handled
with somewhat more unwieldy notation), and that there is at
least one path from the source s to the receiver r via each
interior edge e (if not, no information flows through e, and
hence e is irrelevant anyway).

C. Network Transmission on Random linear network Coding

In this paper, we consider the following popular distributed
random linear coding scheme called C [8].

Source encoder: The source s arranges the data into a
C×n message matrix X over Fq . It then takes C independent
and uniformly random linear combinations over Fq of the
rows of X to generate respectively the packets transmitted on



each edge outgoing from s (recall that exactly C edges leave
the source s). Each packet contains a pre-determined “short”
header, known in advance to both the source and the receiver.

Network encoders: Each internal node similarly takes linear
combinations of the packets on incoming edges to generate
packets transmitted on outgoing edges. Let x(u, v, i) represent
the packet traversing edge e(u, v, i). An internal node v
generates its outgoing packet x(v, w, j) as

x(v, w, j) =
∑

u:e(u,v,i)∈E

β(u, v, w, i, j)x(u, v, i). (1)

For all nodes u such that there exists at least one edge from
u to v, the set of local coding coefficients {β(u, v, w, i, j)}
is a vector randomly and uniformly chosen in Fq , and it
determines the linear combination of the packet {x(u, v, i)}s
when generating packet x(v, w, j). For notational simplicity in
places where it causes no confusion, we write β(u, v, w, i, j)
as β(e, v, e′) where e = e(u, v, i) and e′ = e′(v, w, j).

Receiver decoder: The decoder constructs the C×n matrix
Y over Fq by treating the received packets as consecutive
length-n row vectors of Y (recall that exactly C edges reach
the receiver r). The network internal linear operations induce
a linear transform between X and Y as

Y = TX (2)

where T is the overall transform matrix. The receiver can
extract T by comparing the received packet headers (recall
internal nodes mix headers in the same way as the messages)
and the pre-determined headers. With probability at least
1− |E||V|/q over the choice of the local coding coefficients,
T can be shown to be invertible [8]. Thus the receiver can
retrieve X from Y by inverting (2).

D. Network failure models

Networks may experience disruption as a part of normal
operation. Error and erasure failures are considered. For each
of error and erasure failures, both adversarial and random
disruptions are considered, resulting in four distinct failure
models:

1) Erasures An erasure on edge e means that the packet
x(e) carried by e is treated as an all-zeroes length-n
vector over Fq by the node receiving x(e).

a) Random erasures Random erasures are experienced
by edges e independently for each e ∈ E .

b) Adversarial erasures The set of packets erased is
adversarially chosen.

2) Errors An error on edge e means that a length-n vector
is added to the the packet x(e) carried by e.

a) Random errors Random errors are experienced by
edges e independently for each e ∈ E . A random
error on e means that at least one randomly chosen
symbol of the packet carried by e is changed to a

uniformly random symbol from Fq . 1

b) Adversarial errors The set of erroneous packets
injected into the network is adversarially chosen,
both in terms of location of injection, and values
of the packets.

E. Tomography Goals

The focus of this work is network passive tomography in the
presence of network failures on networks performing random
linear network coding. There are two tomographic goals:

1) Topology estimation The receiver r wishes to correctly
identify the network topology upstream of it (i.e., the
graph G).

2) Failure location The receiver r wishes to identify the
locations where error or erasure failures occur in the
network.

To achieve the first goal (which is the preliminary of
the second, unless r pre-knows the network design), it is
necessary to assume common randomness among all nodes
in the network.

F. Common randomness

Common randomness here means that all local coding
coefficients are chosen using a common random code-book
R, known a priori to the receiver. Each internal node, say v,
needs to know only the part of the common randomness in R
belnging to v.

The code-book comprises of a list of elements from Fq ,
with each element chosen uniformly at random. This common
random code-book can be securely broadcasted by the source
before communication using a common public key signature
scheme such as RSA [14], or part of network design.

Common randomness is both necessary and sufficient for
network tomography in the presence of failure. On one hand,
with common randomness, the work of [16] shows that the
topology of zero-error networks can be computed exactly
from the transform matrix T . On the other hand, we show in
this paper that, without common randomness, determining the
topology is either theoretically impossible or computationally
intractable.

Depending on the type of failures in the network, we
consider two possible types of common randomness. Recall
that the local coding coefficient β(u, v, w, i, j) transforms
information from nodes u to v to w, via the ith and jth parallel
edge respectively.

1Note the difference of this model from the usual model of dense random
errors on Fq [18], wherein each packet is replaced with another packet
uniformly at random. The model described in this work is more general in
that it can handle such errors as a special case. However, it can also handle
what we call “sparse” errors, wherein only a small fraction of symbols in a
packet get uniformly corrupted. Such a sparse error may be harder to detect.
In our model we consider the worst-case sparsity of 1.



1) Topology estimation with random failures2: For each
node v, the local coding coefficient β(u, v, w, i, j) is the
element R(u, v, w, i, j). Here each distinct setting of the
parameters (u, v, w, i, j) indexes a distinct element inR.

2) Topology estimation with adversarial failures: For each
node v, the local coding coefficient β(u, v, w, i, j) is
R(u, v,A(v),B(v), w, i, j), where A(v) and B(v) are
respectively the nodes immediately upstream3 and down-
stream of v. Here each distinct setting of the parameters
u, v,A(v),B(v), w, i, j indexes a distinct element4 inR.

III. PRELIMINARY

A. Linear transforms in the network

For each edge e there exists a length-C row vector over Fq
called the global encoding vector (GEV) t(e) such that the
packet carried by e equals t(e)X . Each t(e) can be inductively
calculated in terms of the linear operations carried out by each
node of the network as

t(e′) =
∑

j=1,2,...,d1

β(ej , v, e′)t(ej),

where e1, e2, ...ed1 are the incoming edges of v while e′ is an
outgoing edges of v. For a set of edges Z ⊆ E with cardinality
z, the rows of the z × C global encoding matrix T (Z) consists
of the vectors {t(e) : e ∈ Z}. In particular, the rows of
the transfer matrix T from the source s to the receiver r are
respectively the GEVs of the edges incoming to r.

Corresponding to each edge e ∈ E we also define the
length-C impulse response vector (IRV) t′(e). In particular,
let the source s transmit the all-zeroes vector 0 ∈ (Fq)C
on all outgoing edges, let edge e inject an all ones packet
1 ∈ (Fq)n, and let each internal node perform the encoding
operations of code C. Then each column of Y received by
the receiver r is identical, and equals the impulse response
vector t′(e) ∈ (Fq)C . So t′(e) can be thought of as a “unit
impulse response” from e to r. For a set of edges Z ⊆ E
with cardinality z, the columns of the C × z impulse response
matrix T ′(Z) consists of the vectors {t′(e) : e ∈ Z}.

Note that GEVs are in some sense dual to IRVs – the former
represent the linear transforms from the source s to the edge
e, while the latter are the linear transforms from the edge e
to the receiver r. Just like global encoding vectors, all IRVs

2In fact, the code-book R can be replaced by a pseudorandom generator
PRG in the random failure case. The randomness of node v is the output
of PRG(v). It requires each node has an access to PRG, and the source
needs to securely broadcast a key of size O(|V|). Since all algorithms for
random failures have polynomial-time computational complexity in network
parameters, codes designed via the PRG must have the same performance as
those designed randomly. Otherwise it is possible to design a polynomial-
time distinguisher that can break PRG, which is strongly believed to be
impossible [11].

3If u has k parallel edges to v, u will occur k times in A(v). The same
is true for B(v).

4In the latter of the cases above, the size of R depends also on the sets
A(v) and B(v), and hence may be extremely large since each of these sets can
take a number of values that grows exponentially with the network size. As
justification, we note in Theorem 2 that in fact without common randomness,
topology estimation is not possible. Our current techniques require common
randomness of this scale, but it is unclear if this is necessary.

s

r
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Fig. 1. An example of IRVs of a network. The local encoding coefficients
are as shown, and the IRVs are as follows: t′(e4) = [1, 0], t′(e5) = [0, 1],
t′(e3) = t′(e5) = [0, 1], t′(e2) = 2t′(e5) = [0, 2] and t′(e1) =
3t′(e4)+2t′(e3) = [3, 2]. Edges e2 and e3 are not out-independent, so the
IRV t′(e2) equals the t′(e3) (up to a scalar multiple). Conversely, e1 and
e5 are out-independent, so t′(e1) is linearly independent from t′(e5).

can be inductively computed from the incoming edges of the
receiver. For example, assume e is an incoming edge of v
while e′1, e

′
2, ..., e

′
d2

are the outgoing edges of v, then we have

t′(e) =
∑

j=1,2,...,d2

β(e, v, e′j)t
′(e′j).

We normalize GEVs and IRVs so that any two vectors that
are scalar multiples of each other are said to be equivalent.
Thus, unless otherwise specified, the GEV and the IRV of e
are both one-dimensional subspaces in (Fq)C .

Also note that both the GEVs and the IRVs of any edge e
are independent of the length of the packet.

B. Relationships between topology and linear transforms

We demonstrate some correspondences between graph prop-
erties of the network and linear agebraic properties of random
linear network coding.

Any set of z edges e1, e2, ..., ez is said to be out-independent
if there is a path from the tail of each to the receiver r, and
these z are edge-disjoint. They are said to be in-independent
if the source node has z edge-disjoint paths to the heads
of them. The out-rank of an edge set Z equals the max-
flow from the tails of Z to the receiver r. A collection
of edge sets Z1,Z2, ...,Zn is said to be out-independent if
out-rank(∪ni=1Zi) =

∑n
i=1 out-rank(Zi). The in-rank of Z

equals the max-flow from the source to the heads of Z .
A collection of edge sets Z1,Z2, ...,Zn is said to be in-
independent if in-rank(∪ni=1Zi) =

∑n
i=1 in-rank(Zi). The in-

rank (or out-rank) of an internal node equals to the in-rank
(or out-rank) of its incoming (or outgoing) edges. For the set
Z ⊆ E with in-rank (or out-rank) z, the in-extended set (or
out-extended set) ExtIn(Z) (or ExtOut(Z)) is the set that
is of in-rank (or out-rank) z, includes Z and is of maximum
size. Note that ExtIn(Z) (or ExtOut(Z)) is well-defined
and unique[3].

The relationship between the edges and their IRVs and
GEVs are:

Lemma 1: 1) The rank of the impulse response matrix
T ′(Z) of an edge-set Z with out-rank z is at most z.



2) The rank of the global encoding matrix T (Z) of an
edge-set Z with in-rank z is at most z.

3) The probability that the IRVs of an out-independent set
are independent is at least 1− |E|/q.

4) The probability that the GEVs of an in-independent set
are independent is at least 1− |E|/q.

Proof:
1) When the out-rank of Z is z, the max-flow from Z to

r is at most z. If the rank of T ′(Z) is larger than z, say
z + 1, Z can transmit information to r at rate z + 1,
which is a contradiction.

2) The proof is similar to that of 1.
3) For an out-independent set Z with cardinality z, assume

a virtual source node s′ has z virtual edges connected
to the heads of Z , and the outgoing edges of the heads
of Z are deleted except for Z . The max-flow from s′

to r is z and Z is a cut. Then T ′(Z) has rank z if and
only if s′ can transmit information to r at rate z. But
by [8] this happens with probability at least 1− |E|/q.

4) The proof is similar to that of 3.
�

Thus for a large enough field-size q, properties of the edge-
sets map to the similar properties of the IRVs and GEVs. For
instance, out-rank(∪ni=1Zi) =

∑n
i=1 out-rank(Zi) if and only

if rank(∪ni=1T
′(Zi)) =

∑n
i=1 rank(T ′(Zi)).

The example in Figure 1 shows the relationship of out-
independence and IRV-independence.

C. Network error-correcting codes

Consider the scenario where a randomly or maliciously
faulty set of edges Z of size z injects faulty packets into the
network. As in [17], the network transform (2) then becomes

Y = TX + T ′(Z)Z, (3)
= TX + E. (4)

Note that Z is a z×n matrix whose rows are respectively the
faulty packets injected by edges in Z , and the C × n error
matrix E is defined as T ′(Z)Z. The goal for the receiver r in
the presence of such errors is still to reconstruct the source’s
message X .

In particular, in this work we use the algorithms of [17].
One desirable feature of the codes in [17] is that they enable

the receiver to successfully reconstruct not only the source’s
message X but also the column-space of the error-matrix E,
which is needed for network topology tomography.

D. Computational hardness of NCP

Several theorems we prove regarding the computational
intractability of some tomographic problems depend on the
following well-studied computational problem. The Nearest
Codeword Problem for Random Linear Codes (NCPRLC) is
defined as follows:
• NCPRLC: (H, d, z)

Given a uniformly random parity check matrix H ∈
Fl1×l2q with l2 > l1, a constant d, and a vector e ∈ H

Exp1 Exp2

s s

r r

u1

u2

u3

v1

v2

v3

Fig. 2. Two networks that are hard to distinguish between.

, the algorithm is required to output a vector z ∈ F l2q ,
such that e = Hz and z has at most d nonzero elements.
Such a vector z is promised to exist for the given e.

The minimum codeword problem is known to be computa-
tionally hard even to approximate [4]. In fact, the problem for
random parity check matrix H is also believed to be hard [4]
,[21]– no efficient algorithm is known.

IV. ADVERSARIAL ERRORS

A. Necessity of common randomness

We first show the necessity of using common randomness
for topology inference.

Theorem 2: There exist two networks such that if internal
nodes choose local coding coefficients independently and
randomly without using the common random code-book R,
the receiver cannot infer the topology in the absence of errors.
Proof: We are going to show the transform matrixes of Exp1
and Exp2 in Figure 2 are indistinguishable.

For Exp1, Ts(1) ∈ F2×2
q is the transform matrix from s to

u1, i.e., u1 receives Ts(1)X . Tu1 ∈ F3×2
q , Tu2 ∈ F2×3

q , and
Tu3 ∈ F2×2

q are the transform matrix from u1, u2, u3 to the
adjacent downstream nodes respectively. Thus, the transform
matrix T (1) from s to r in Exp1 is T (1) = Tu3Tu2Tu1Ts(1).

For the similar reason, the transform matrix T (2) from s to
r in Exp2 is T (2) = Tv3Tv2Tv1Ts(2).

Since each element in Tu3 , Tu2 , Tu1 , Ts(1), Tv3 , Tv2 , Tv1 ,
Ts(2) is an independently and uniformly random variables,
T (1) is not statistically distinguishable from T (2). �

B. Topology inference

In this section, we use an error-correcting code ap-
proach [17] to infer the topology of a network containing
an adversary. At a high level, the idea is that in sufficiently
strongly connected networks, each pair of networks generates
transform matrices that look “very different”. Hence no matter
what the adversary does, he is unable to make the transform
matrix for one network resemble that of any other. The proof
techniques are similar in flavour to those from algebraic coding
theory.

As is common in the network error-correcting literature, we
assume that the adversary is bounded, and therefore corrupts
no more than z edges in the network. The rank-distance
between any two matrices A,B ∈ FC×Cq is defined as



rm(A,B) = rank(A−B). We note that rank-distance indeed
satisfies the properties of a distance function; in particular it
satisfies the triangle inequality [17].
Assumptions and justifications:

1) Strong connectivity. A set of networks satisfies “strong
connectivity” if the following is true: each node has both
in-rank and out-rank at least 2z + 1. We motivate this
strong connectivity requirement by showing in Theo-
rem 5 lower bounds on the connectivity required for
any tomography scheme to work in the presence of an
adversary.

2) Knowledge of local topology. We assume that each node
knows the ID numbers of the nodes exactly one hop
away from it, either upstream or downstream of it.

Let the transfer matrices of networks G and G′ be T (G)
and T (G′) respectively. We then have the following lemma
that shows that the transfer matrices are “very different”.

Lemma 3: With probability at least 1 − |V|4/q,
rm(T (G), T (G′)) ≥ 2z + 1.
Proof: From r to s, using broad-first searching, we assume u
and u′ are the first pair of nodes which are different (either
the node ID or its adjacent nodes), and belonging to G and
G′, respectively.

We first show the there exists a (2z + 1) × (2z + 1) a
submatrix in T (G) − T (G′), such that its determinant can be
a nonzero value depending on the choices of local coding
coefficients.

For the subnetwork below u and u′ (recall that it’s the same
subnetwork in G and G′.), the coding coefficients are chosen
such that only the 2z + 1 edges disjoint pathes from u (also
u′ ) to r transmit the packets using routing. In particular, one
edge in a path transmits the exactly packet from the incoming
edge of the same path.

Assume for any i = 1, 2, ..., 2z + 1, the incoming edge ei
of u is on the i’th disjoint path from s to u. The coding
coefficients of u are chosen such that, u sends packet of
ei to the i’th edge-disjoint path to r. In the meantime, the
coefficients of u′ are all zero, i.e., u′ send nothing.

For the subnetwork from s to u in G, the coding coefficients
are chosen such that only the 2z+1 edges disjoint pathes from
s to u1 transmit the packets using routing. In particular, one
edge on a path transmits the exactly packet from the incoming
edge on the same path.

Then T (G) will contain a (2z + 1) × (2z + 1) identity
submatrix, which of T (G′) is a zero matrix. Thus T (G)−T (G′)
has a (2z + 1)× (2z + 1) sub-matrix with determinant 1.

The determinant of the submatrix is a polynomial with
variables being local coding coefficients, it’s degree is at
most |E| × (2z + 1) ≤ |E|2 ≤ |V|4. Using Schwarth-Zippel
lemma [15], with probability at least 1− |V|

4

q , the determinant
of the submatrix is nonzero, i.e., rm(T (G)−T (G′)) ≥ 2z+1.
�

Since there are at most 2|V|
2/2 acyclic graphs and 2|V|

2
pairs

of them, the lemma is true for any pair of networks with a

probability at least5 1− |V|42|V|
2
/q.

As in (3), after transmission, the erroneous transfer matrix
Te received by r is actually

Te = T + T ′(Z)Z(H), (5)

where Z(H) represents the errors injected by the adversary
in the packet headers, i.e., the first C columns of Z. This
combined with Lemma 3 enables us to obtain a decoding rule
that estimates the network topology with high probability.

Theorem 4: With probability at least 1 − |V|42|V|
2
/q, the

network G is the unique network satisfying

arg min
G has |V| nodes.

rm(Te, T (G)). (6)

Further, this network G can be identified by the receiver r
by using the common randomness available to it. Lastly, all
IRVs in the network can be computed using this common
randomness.
Proof: We assume lemma 3 is true for any pair of graphs,
which happens with a probability at least 1 − |V|42|V|

2
/q as

stated above.
By (5), the rank distance rm(Te, T (G)) equals

rank(T ′(Z)Z(H)) ≤ rank(T ′(Z)), which in turn is
at most z. For any transfer matrix T (G′) corresponding to
a different network G, by the triangle inequality of the rank
distance, rm(T (G′), Te) ≥ rm(T (G′), T (G))− rm(T (G), Te).
But as shown in Lemma 3, rm(T (G′), T (G)) ≥ 2z + 1 with
high probability. Hence rm(T (G′), Te) ≥ z+ 1 with the same
probability.

The receiver can find the matrix satisfying (6) by enu-
merating each possible network configuration G, using the
common randomness available to it to estimate the correspond-
ing network transform matrices T (G), and then computing
rm(T (G), Te).

Finally, to compute the IRVs of the network, the receiver
uses the common randomness available to it to construct the
local coding coefficients at each node, and then sequentially
construct all IRVs in the network. �

In the end, we show that the strong connectivity require-
ments we require for Theorem 4 are “almost” tight6.

Theorem 5: For any network G that has fewer than z + 1
edges from the source s to each node, or fewer than 2z + 1
edges from each node to the receiver r, there exists an
adversarial action that makes any tomographic scheme fail to
detect the network structure.
Proof: If node v has a min-cut 2z to the the receiver r, and the
adversary controls a set Z of size z of them and runs a fake
version of the tomographic protocol announcing that v is not

5We do not consider the the network with parallel edges for clarity of
exposition. When parallel edges is taken into count, the length of field size
should be O(|V|2 log(|E|)) to make the failure probability of tomography
negligible.

6There is a mismatch between the sufficient connectivity requirement of
Theorem 4 (that there be 2z + 1 edges between s and each node), and the
necessary connectivity requirement of Theorem 5 (that there be z + 1 edges
between s and each node). The true connectivity requirement for tomographic
schemes is still open.



connected to the edges in Z , the probability that r incorrectly
infers the presence or absence of v is 1/2.

On the other hand, if v has only z incoming edges, the
adversary can cut these off (i.e. simulate erasures on these
edges). Since the node can only transmit the message from its
incoming edges, this implies that all messages outgoing from
u are also, essentially, erased. Hence the presence of u cannot
be detected by r. �

In fact, the proof of Lemma 3 only requires G and G′
differs at a node with high in-rank and out-rank. If we pre-
know the possible topology set, we can loose the connectivity
requirement. The following corollary shows the idea:

Corollary 6: For a set of possible networks
{G1,G2, ...,Gd}, if any two of them differs at a node
which has in-rank and out-rank at least 2z + 1, the receiver
can find the correct topology by the receiving transform
matrix with a probability at least 1− d2|V|4/q.

C. Locating adversarial errors
In this section we demonstrate how to detect the locations

in the network where the adversary injects errors.
Assumptions and justifications:

1) The topology and IRVs of the network are known to
the receiver. This might be because of the scheme in
Theorem 4, or perhaps because the network design is
known a priori.

2) Every set of 2z edges in G are out-independent. While
this assumption seems strong, we demonstrate in The-
orem 8 that such a condition is necessary for r to
identify the location of z corrupted edges. Note that
this assumption, with high probability, gives a similar
statement about the rank of the corresponding IRVs.
Using the union bound [12] on the result of Lemma 1.3
gives us the stronger result that any 2Z IRVs are
independent with probability at least 1− |E|

(|E|
2z

)
/q.

3) Network error-correcting codes are used to transmit
information from s to r. Network error-correcting codes
have provably optimal communication capability in the
presence of adversaries. r can then reconstruct both the
source’s message X and E = Y − TX .

Let E has rank η. Let {e1, e2, ..., eη} be a set of inde-
pendent columns of E. The receiver r performs the following
computation, denoted MIN-INT:
• MIN-INT: Takes as input E. For each column vector

ei in the basis as defined above, MIN-INT finds a set
of edges Zi with minimal cardinality such that ei is in
the column space of the corresponding impulse response
matrix T ′(Zi). MIN-INT outputs each set Zi.

We show that with high probability MIN-INT finds the
location of edges with adversarial errors.

Theorem 7: With probability at least 1 − |E|
(|E|
2z

)
/q the

solution of MIN-INT results in {Zi} such that the set of
edges Z on which the adversary injects non-zero errors equals
∪ηi=1Zi.
Proof: First of all, since each ei is in T′(Z), we have |Zi| ≤ z
for each i = 1, 2, ..., η.

We claim that for each i ∈ {1, 2, . . . , η}, Zi must be a
subset of Z . If not, say e ∈ Z ′ is not in Z . By the definition
of MIN-INT, t′(e), the IRV of e, is in the span of the columns
of T ′(Z) and the IRVs of other edges in Zi. Thus a non-
trivial combination of the at most 2z− 1 IRVs result in t′(e).
However, by Assumption 2 above, any 2z IRVs are linearly
independent.

We prove next that for any edge e ∈ Z on which the
adversary injects a non-zero error, MIN-INT outputs at least
one Zi such that e ∈ Zi. Without loss of generality, assume
e is the first edge in Z . Then E = T ′(Z)Z and the first
row of Z is nonzero. Since any z IRVs are independent,
T ′(Z) is of full column rank. Then for any independent η
vectors in E there must be at least one, say e′, such that
the IRV t′(e) of e has nonzero contribution to it. That is,
e′ = T ′(Z)(c1, c2, ..., cz)T with c1 6= 0. Hence running
MIN-INT on e′ will find Zi ⊆ Z and the corresponding
edges, including e ∈ Z . Otherwise, t′(e) is in the space of
T′(Z − e,Zi), which is a contradiction. �

We now show matching converses for Theorem 7. In par-
ticular, we demonstrate in Theorem 8 that Assumption 2, i.e.,
that any 2z edges be out-independent, is necessary.

Theorem 8: Any z corrupted edges are detectable if and
only if any 2z IRVs are out-independent.
Proof: The “if” direction is a corollary of Theorem 7. For the
“only if” direction, suppose there exist 2z edges such that they
are not out-independent. Then the corresponding IRVs cannot
be linearly independent by Lemma 1.1. Then there must exist a
partition of these 2z edges into two edge sets Z1 and Z2 each
of size z such that T′(Z1)∩T′(Z2) 6= {0}, i.e., the spanning
spaces of the corresponding IRVs in the two sets intersect
non-trivially. Then the adversary can choose to corrupt Z1 in
a manner such that the columns of T ′(Z1)Z are in T′(Z2).
This means r cannot distinguish whether the errors are from
Z1 or Z2. �

Theorem 8 deals with the case that any z edges can be
corrupted. If only some sets of edges are candidates for
adversarial action (for instance the set of outgoing edges from
some “vulnerable” nodes) we obtain the following corollary.

Corollary 9: Let S(Z) = {Z1,Z2, ...,Zt} be disjoint sets
of edges such that exactly one of them is controlled by an
adversary. Then r can detect which edge-set is controlled by
the adversary if and only if any two sets Zi and Zj in S(Z)
are out-independent.

Note: The out-independence between edge sets Zi and Zj
in S(Z) does not require the edges within each of Zi and Zj
to be out-independent. It merely requires that out-rank(Zi) +
out-rank(Zj) = out-rank(Zi ∪ Zj).

Note that running MIN-INT might require checking all sets
of
(E
z

)
subsets of edges in the network – this is exponential in

z. We now demonstrate that for networks performing random
linear coding, the task of locating the set of edges corrupted
by an adversary is in fact computationally intractable even
when the receiver knows the topology and local encoding
coefficients in advance.

Theorem 10: If, knowing the network G and all encoding
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operations of C, the receiver r can correctly estimate all
adversarial locations in time polynomial in network param-
eters, NCPRLC can be solved in time polynomial in problem
parameters.
Proof: Given a NCPRLC instance (H, z, e), as shown in
Figure 3, we construct a network with capacity l1 and l2 edges
to node u.

Since H is a matrix chosen uniformly at random over Fq ,
it corresponds to a random network coding C, where each
column of H corresponds to an IRV of an incoming edge of
u.

Assume the adversary corrupts no more than z incoming
edges of u. Adversary can choose the errors Z such that each
column of E = T ′(Z)Z equals e. But E is all the information
about the adversary’s behavior known by r when the internal
nodes only do random linear network coding. Any algorithm
that outputs the corrupted set Z ′ must satisfy e ∈ T′(Z ′)
and |Z ′| ≤ z. Once Z ′ is found, r can efficiently compute Z
such that E = T ′(Z ′)Z, which implies that r can solve the
NCPRLC instance (H, z, e). �

V. RANDOM ERRORS

A. Necessity of common randomness

We first show that even if each edge suffers random errors
independently, topology estimation is at least as computation-
ally intractable as NCPRLC without common randomness.

As in (3), the receiver gets Y = TX + E, where E =
T ′(Z)Z. Then E and T are all the information that can be
retrieved by r. Assume the set IIRV contains all the IRVs of
the edges in the network. When the edge suffers random errors
independently, E ⊆ T′(Z) can not provide more information
than IIRV . So it suffices to prove:

Theorem 11: If, knowing T and IIRV , the receiver r can
correctly estimate the topology in polynomial time in network
parameters, NCPRLC can be solved in time polynomial in
problem parameters.
Proof: The proof is similar to that of Theorem 10, and we
use the same NCPRLC instance (H, z, e) and network gadget
shown in Figure 3. Assume an edge e is connected to z
incoming edges of u and has IRV e. If the receiver r can
recover the topology, r can tell how e is connected to the z
incoming edges of u. Thus r can find a linear combination of
z columns of H resulting in e and thus solve (H, z, e). �

B. Topology inference

We provide a polynomial-time scheme to recover the topol-
ogy of the network that suffers random network errors. The
receiver r proceeds in two steps. Firstly, r recovers the IRVs
during several rounds of network communications suffering
random errors. In the second step r uses the IRV information
obtained to computationally efficiently recover the topology.
An interesting feature of the algorithms proposed here is that
random network failures actually make it easier to efficiently
detect the topology. For instance, if no edges in the network
ever fail, then the transfer matrix at the receiver is always
identical.
Assumptions, justifications, and notation:

1) Multiple communication rounds. The protocol runs for t
independent communication rounds, where t is a design
parameter chosen to trade off between the probability
of success and the computational complexity of the
topology estimation protocol. The probability of failure
of each edge is independent across rounds. Let Z(i)
denote the edge-set that suffers from failures in the
ith communication round. The multiplicity of commu-
nication rounds enables the variability of IRVs that the
receiver leverages to perform topology estimation.

2) “Weak connectivity requirement”. We assume each edge
is distinguishable from every other edge, i.e., any pair
of edges have out-rank at least 2. (For instance, if
each node has out-rank at least 2, then this condition
is automatically satisifed.) Using Lemma 1.3 and the
union bound over all pairs of edges, any pair of such
edges can be shown to have independent nonzero IRVs
with a probability of at least 1 − |E|3/q. Lemma 17
shows that if there are two edges e and e′ that are not
out-independent, then their IRVs are indistinguishable
during network communication with random errors.

3) Each node knows its local topology. As in Section IV-B,
Assumption 2.

4) Each edge e independently has random errors with
probability at least p. The lower bound p ensures that
a moderate value of t is enough such that each edge
suffers enough errors to expose its IRV.

5) The probability 1−pc of independent edge-sets failing is
not negligible. Let Z(i) and Z(j) be the edge-sets that
experience failures in communication rounds i and j re-
spectively. The probability that Z(i) is out-independent
to Z(j) (i.e., out-rank(Z(i),Z(j)) = out-rank(Z(i)) +
out-rank(Z(j)) ) is denoted 1 − pc. (Note that pc is
independent of i and j due to the assumption of inde-
pendence of the failures of edges across each communi-
cation round.) We require that 1− pc be bounded away
from 0. For example, consider ‘noodle’ networks (i.e.,
high-depth h and narrow-width w). For such networks
one can show that if the typical size z of Z is comparable
to w then 1 − pc is close to zero. At a high-level, the
problem lies in the fact that such networks have high
description complexity (dominated by h), but can only



support a low information rate (dominated by w).
6) Network error-correcting codes [17] are used. As noted

in Section III-C, r can decode source messages X as
well as the column space of error matrix E. For i ∈
{1, . . . , t}, E(i) is the column-space of the error matrix
for the ith communication round.

Step I: Find candidate IRVs
The algorithm FIND-IRV that finds a set of candidate IRVs

is as follows:
• FIND-IRV: The intersection of the column-spaces E(i)∩

E(j) is computed for each pair i, j ∈ {1, . . . , t}. If
rank(E(i)∩E(j)) = 1 for any (i, j) pair, E(i)∩E(j) is
added to the list of IRV candidates.

Recall from the definition (4) of E = T ′(Z)Z, the column-
space E is a subset of the column-space T′(Z), and Z
represent the injected errors. Lemma 12 shows when we have
Z has full row rank z, and then T′(Z) = E is true. Let
(1− z/q)(1− z2/n) be denoted by 1− ps.

Lemma 12: For random injected errors Z, Z has full row
rank with probability at least 1− ps.
Proof: Each failing edge has at least one randomly chosen
location in the packet where a random error is inserted.
The “Birthday Paradox” [12] implies that with probability at
least 1 − z2/n, for each failing edge-set Z , the following
happens: there are z distinct locations l1, . . . , lz ∈ {1, . . . , n}
such that li has an error in the packet on the i’th edge
in Z . On the locations where the injected errors are non-
zero, for i = 1, . . . , z, Zi,li are uniformly non-zero random
variables over Fq . Then the determinant of the sub-matrix
of the {l1, . . . , lz}th columns of Z is a nonzero polynomial
of degree z of uniformly random variables over Fq . By the
Schwartz-Zippel Lemma [15] this determinant is non-zero
with probability at least (1− z/q). Thus Z has z independent
columns with probability at least (1−z/q)(1−z2/n) = 1−ps.
�

Thus ps asymptotically approaches 0 with increasing block-
length-n and field-size-q.

Theorem 13 characterizes the probability that all IRVs are in
the list of candidate IRVs output by FIND-IRV. Let pa denote
pc + 2ps + |E|/q.

Theorem 13: The list output by FIND-IRV includes the
IRVs for each edge in the network with probability at least
1− |E|ptp/2a .
Proof: We first compute the probability of the event D(e, i, j)
that for any edge e and any i, j ∈ {1, . . . , t} such that e ∈
Zi∩Zj , the IRV t′(e) equals the one-dimensional vector-space
spanned by Ei ∩Ej.

By Assumption 5, with probability at least 1−pc, Zi− e is
out-independent of Zj − e. Conditioned on this, Lemma 1.3
implies that with probability at least 1−pc−|E|/q, T′(Zi\e)
is linearly independent of T′(Zj\e). Hence T′(Zi) ∩T′(Zj)
equals the span of t′(e). But by Lemma 12, either of E(i) 6=
T′(Z(i)) and E(j) 6= T′(Z(j)) with probability at most ps.
Conditioning on all the events implies that the probability of
event D(e, i, j) is at least 1− pc − 2ps − |E|/q.

e1

e2 e3

e4
1

2

3

Fig. 4. Let Z(1) = {e1, e4} and Z(2) = {e2, e3} and
rank(t′(e2), t′(e3), t′(e4)) = 3, then we have T′(e2, e3) ∩
T′(e1, e4) = [t′(e2) + 2t′(e3)], which is not an IRV for any edge.

When t is large enough, by the Chernoff bound [12] e will
fail at least tp/2 times with probability at least 1 − pO(t).
Conditioned on these many failures, there are tp/4 probabilis-
tically independent D(e, i, j), and FIND-IRV accepts t′(e)
with probability at least 1− (ptp/4a + pO(t)). Taking the union
bound over all edges gives the required result. �

Note 1: Since 2ps + |E|/q is asymptotically negligible for
large block-length n and field size q, pa approximately equals
pc. Also Lemma 1 and Lemma 12 imply that for large n and
q, any two failing edge-sets Z(i) and Z(j) across multiple
communication rounds are out-independent if and only if
the corresponding error-matrices E(i) and E(j) are linearly
independent. Thus r can estimate 1 − pa and hence 1 − pc
by estimating the probability that pairs of E(i) and E(j)
are linearly independent. This enables r to decide how many
communication rounds t are needed so that FIND-IRV has the
desired probability of success.

Note 2: If 1 − pa is bounded away from zero and t =
O(max{(log(|E|)/p, |E|}), the probability that each edge’s
IRV is accepted is large, say 1 − o(1). Without loss of
generality, we henceforth assume t = O(|E|).

Note 3: The set of vectors output by FIND-IRV can also
include some “fake” IRVs, as demonstrated in the example
in Figure 4. This is not a cause for concern, since finding
candidates of IRVs is merely an intermediate step in the
process of finding the topology.
Stage II: Topology recovery via candidate IRVs

We now detail the algorithm FIND-TOPO that determines
the network topology, using the candidate IRVs generated in
Step I by FIND-IRV.

Let IIRV be the set of candidate IRVs. It is merely a
set of one-dimensional subspaces, and as such, individual
elements may have no correspondence with the actual IRV
of any edge in the network. At any point in FIND-TOPO,
let the set Ḡ denote the network topology recovered thus far.
Let V̄ and Ē be the corresponding sets of nodes and edges
respectively in Ḡ, and ĪIRV be the set of IRVs of the edges in
Ē , which are computed from Ḡ and the random code-book R.
We note that the IRVs in ĪIRV are vectors rather than one-
dimensional subspaces, i.e., the unit impulse response vector
from the corresponding edge to the receiver (see Section III-A
for reference).



• FIND-TOPO: Step A: The set V̄ is initialized as the
receiver r, all its immediate upstream neighbours, and
the source s. The set Ē is initialized as the set of edges
incoming to r. Hence Ḡ = (V̄, Ē). The initial set of ĪIRV
are the IRVs of the incoming edges of r, initialized to a
set of distinct unit vectors.

• Step B: For each node v 6= s in V̄ , call function
FindEdge(v, Ḡ) (Step C). Repeat until no new edge is
found after going to Step C for each node in V̄; if so go
to Step Z.

• Step C: (Function FindNewEdge(v)) Let e1, . . . , ed be
the outgoing edges of v in Ḡ. If {t̄′(e1), . . . , t̄′(ed)} from
ĪIRV has

– rank 1, return to Step B.
– rank greater than 1, call function CheckIRV (v)

(Step D).
• Step D: (Function CheckIRV (v)) For each candidate
e = (u, v, i) not already in Ē use R to compute the IRV
of e as t̄′(e) =

∑d
j=1 β(e, v, ej )̄t′(ej). Check whether

t̄′(e) is in one of IIRV . If so,
1) Output “New edge found for v”.
2) If u 6∈ V̄ , add u to V̄ .
3) Add e = e(u, v, i) to Ē .
4) Update ĪIRV from Ḡ and R7.

Return to Step D and evaluate for a new e = (u, v, i).
• Step Z: End FIND-TOPO.
We now prove correctness of FIND-TOPO. We begin by

proving in Lemma 14 that with high probability FIND-TOPO
inserts an edge e in its candidate set of edges Ē if and only if
e is actually in the network G.

Lemma 14: If edge e = (u, v, i) exists in G, t′(e) is in one
of IIRV , e1, . . . , ed are exactly all the outgoing edges of v in
G and t̄′(ei) = t′(ei) for i = 1, 2, ..., d, FIND-TOPO accepts
e as a new edge in Ē with probability 1. If edge e does not
exist in G, FIND-TOPO accepts e as a new edge in Ē with
probability O(|E|2)/q.
Proof:

1) If e = (u, v, i) exists in G, t′(e) is in one of
IIRV , e1, . . . , ed are all the outgoing edges of v
and have correct IRVs in ĪIRV , we have t′(e) =∑d
j=1 β(e, v, ej)t′(ej) and will be accepted.

2) If e does not exist in G, the coding coefficients
β(e, v, ej), j ∈ {1, . . . , d}, are not used. Hence
from the perspective of any candidate v in IIRV ,∑d
j=1 β(e, v, ej)t′(ej) is an independently and uni-

formly chosen vector in the span of the vectors
{t′(ej) : j ∈ {1, . . . ,d}}. Since CheckIRV (v) is trig-
gered, hence the rank of {t′(ej) : j ∈ {1, . . . ,d}} ≥ 2,
so that t′(e) ∈ v (note that the candidate in IIRV is one-
dimensional subspace) with probability at most 1−1/q.
Since FIND-IRV in Stage I needs at most t = O(|E|)
communication rounds to construct the candidates of

7 The reason that ĪIRV needs to be updated is that: when e is found as a
new edge in Ḡ, the IRVs of the edges upstream of e will change.

IRVs8, there are at most O(|E|2) candidate IRVs. Using
the union bound over all such candidates, t′(e(u,v, i))
is in one of IIRV with probability O(|E|2)/q. �

Lemma 14 is now an important module in proving the major
result in the subsection.

Theorem 15: If FIND-IRV recovers the IRVs of each edge
in IIRV , with probability 1 − O(|E|4|V|)/q, FIND-TOPO
recovers the topology by performing O(|E|4|V|) operations
over Fq .
Proof: Consider FIND-TOPO. Note that if no errors occur,
Step B can be find at most |E|, each time of finding a new
edge of Step B needs at most |V| invocations of Step C (once
for each node), and each invocation of Step C results in at
most 1 invocations of Step D, each invocation of Step D
from Step C results in at most |E| (once for each possible
candidate edge) self-invocations . Thus Step D can be invoked
at most |E|2|V| times, and Lemma 14 demonstrates that each
invocation results in an error with probability O(|E|2)/q. Note
further that this is the only possible error event. Hence by the
union bound [12] the probability that FIND-TOPO results in
an erroneous reconstruction of G is 1 − O(|E|4|V|)/q. Also,
each computation of Step D takes at most O(|E|2) finite field
comparisons to determine membership of t̄′(e) in the set of
candidate IRVs IIRV . Hence, given that the bound on the
number of invocations of Step D and that this can be verified
to be the most computationally expensive step, the running-
time of FIND-TOPO is O(|E|4|V|) operations over Fq .

Finally, we note that G is acyclic and the assumption that
all the IRVs of G are in IIRV . Hence conditioning on no
incorrect edges being accepted, for each invocation of Step
B, unless Ḡ = G, there exists an edge e such that all
edges e′ downstream of e in G are in Ē , which implies all
the corresponding t̄′(e′)s are correctly computed. Thus by
Lemma 14 edge e is accepted into Ē by FIND-TOPO with
probability 1. Hence, each edge actually in G also eventually
ends up in Ḡ, and FIND-TOPO terminates. �

C. Locating random errors

We now consider the problem of finding the set of
edges Z that experience random errors. Since T′(Z) =
T′(ExtOut(Z)), the receiver can not distinguish whether
the errors are from Z or ExtOut(Z). So rather than finding
Z , we provide a computationally tractable algorithm to locate
ExtOut(Z), a proxy for Z .
Assumptions Only Assumptions 1 and 3 (prior knowledge of
topology and IRVs, and use of network error-correcting codes)
from the corresponding Section IV-B on location of adversarial
errors are needed.

The algorithm LOCATE that finds the location of
ExtOut(Z) is as follows:
• LOCATE: The input of LOCATE is the error matrix E,

and the IRVs of each edge. The receiver checks for each
IRV v whether it lies in E. If so, the edge corresponding
to v is added to ExtOut. At the end, ExtOut is output.

8As pointed out in Note 2 after Theorem 13



Theorem 16: If z is no more than C − 1, LOCATE locates
the correct extended set ExtOut(Z) with probability at least
1−3|E|2/q−z2/n. The computational complexity is O(|E|C2)
operations over Fq .
Proof: Lemma 1.3 and 12 implies that rank(E) equals
rank(T ′(Z)) = out-rank(Z), i.e., the number of maximum
out-independent edges in Z , with probability at least at
least 1 − 2|E|/q − z2/n. Also, Lemma 1.1 implies that
T′(ExtOut(Z)) = T′(Z) = E. Using the union bound over
all |E| edges on Lemma 1.3, with probability at least 1−|E|2/q,
for any edge e 6∈ ExtOut(Z), t′(e) is not in E.

For each IRV t′(e), it cost at most C2 operations over Fq to
check whether it’s in E, then the total complexity of LOCATE
is O(|E|C2) operations over Fq . �

We next estimate of probability of errors of each edge. To
do this, we need to identify which edges are error identifiable9.
That is: an edge e ∈ E experiences an error, this event
is distinguishable from any edge e′ 6= e experiencing an
error. Lemma 17 provides necessary and sufficient condition
to determine error identifiability.

Lemma 17: If C > 1, e is error identifiable if and only if
for any different edge e′, e and e′ are out-independent.
Proof: If each edge e′ 6= e satisfies e and e′ are out-
independent, using Lemma 1.3 and the union bound [12] over
each possible e′ ∈ E , with probability at least 1−|E|2/q, IRV
t′(e′) is independent with IRV t′(e). And then using LOCATE
and Theorem 16, we can find e exactly the only edge in the
network that is experiencing an error.

In the other direction, if e and e′ are not out-independent,
t′(e) = ct′(e′) where c is scalar. Thus t′(e)Z is not distin-
guishable from ct′(e′)Z. �

VI. ERASURES

A. Random Erasures

Our techniques can be also used for network erasures
(both random and adversarial), resulting in polynomial-time
algorithms for tomography.

As in Lemma 12, the event that the injected error matrix
Z ∈ Fz×nq has full row rank z is important for this section.
Note that an erasure on edge e is equivalent to an error on that
edge e, where the error equals the negative of the message
flowing on that edge.

Lemma 18: If Z has in-rank z, with probability at least
1 − |E|/q, the injected error matrix Z has full row rank z.
Otherwise, with probability 1, Z has rank strictly less than z.
Proof: Since the network is directed and acyclic, for ease of
analysis we impose an partial order on the edges of Z =
{e1, e2, ..., ez}. In particular, for any j > i, ej can not be
upstream of ej .

Lemma 1.4 implies that if Z has in-rank z, with probability
at least 1− |E|/q, T (Z) has full row rank z.

We now analyze the structure of E. The error corresponding
to the erasure on e1 equal −t(e1)X . The packet traversing e2

9This notion is similar to that of loss identifiability of [5].

may be effected by the first erasure. Hence the error corre-
sponding to the erasure on e2 equal −(t(e2)−a1,2t(e1))X =
−t̄(e2)X , where a1,2 = c1,2 is the effect from e1 to e2. In
general, the error corresponding to the erasure on ei equals

t̄(ei)X = −(t(ei)−
∑

j=1,2,...,i−1

cj,it̄(ej))X

= −(t(ei)−
∑

j=1,2,...,i−1

aj,it(ej))X,

where cj,i is the unit effect from ej to ei.
Thus Z = −AT (Z)X , where A ∈ Fz×zq and the (i, j)’th

element of A equal −a(j, i) with j < i, 0 if j > i, 1 if i = j.
Then A is invertible. If T (Z) has full row rank z and X has
an invertible C×C sub-matrix (for instance, the head), Z has
full row rank z.

Lemma 1.2 implies that if Z has in-rank less than z, T (Z)
has rank less than z. But since Z = −AT (Z)X , Z has rank
less than z. �

When the edges have random erasures, if rank(Z) = z with
a non-negligible probability, we can use the same algorithms
FIND-IRV and FIND-TOPO as in Section V-B to recover the
network’s IRVs and then the topology.

In fact, if rank(Z) = z, algorithm LOCATE from Sec-
tion V-C used to find the locations of errors in the network
can also be used to find the location of erasures in the network.

B. Adversarial Erasures

Topology inference in the case of adversarial erasures is
at least as hard as topology inference in fault-free networks
(Section IV-A), and can therefore be handled via the scheme
in Section IV-B.

If rank(Z) = z, the algorithm LOCATE in Section V-C
also works for adversarial erasures.

To efficiently locate the z adversarial erasures Z , Lemma 18
provides a necessary and condition for rank(Z) = z, that any
set of z edges is in-independent. Assuming such event happens
and the adversary chooses z edges to experience erasures, the
following theorem characterizes the performance of LOCATE:

Theorem 19: With probability at least 1 −
(|E|
z

)
|E|/q, no

matter what edge set Z chosen by the adversary to experience
erasures, the receiver detects ExtOut(Z) with O(|E|C2)
operations over Fq .
Proof Using lemma 18 and the union bound [12] over all
possible choices, with probability 1 −

(|E|
z

)
|E|/q, for any Z

we have Z = −AT (Z)X with full row rank, which implies
E = T′(Z). Finally, r locates ExtOut(Z) using LOCATE.
Theorem 16 guarantees that LOCATE has the desired perfor-
mance. �

If some sets of z edges are not in-independent, we cannot
guarantee that rank(Z) = z. In this case, as in [5], an
exhaustive-search (and hence high-complexity) scheme can be
used to find the locations of the errors.



VII. CONCLUSION AND FUTURE WORKS

This work examines passive network tomography on net-
works performing random linear network coding, in the
presence of network failures. We consider both random and
adversarial errors and erasures. We give characterizations of
when it is possible to find the topology, and thence the
locations of the netork failures, in the presence of such failures.
Many of the algorithms we provide have polynomial-time
computational complexity in the network size; for those that
are not efficient, we prove intractability by showing reductions
to computationally hard problems.

Possible future work can proceed in many directions. For
one, it would be interesting to characterize how much the con-
nectivity requirements we require can be relaxed if one only
wishes to reconstuct the topology approximately. For another,
we would like to understand what topological properties can
be estimated without assuming common randomness. Lastly,
we believe that the computational complexity of even some of
our polynomial-time schemes can be improved for interesting
classes of networks, such as hierarchical networks.
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