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ETH Zürich, Computational Physics for Engineering Materials, Institute for Building
Materials, Schafmattstrasse 6, HIF, CH-8093 Zürich, Switzerland.
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We present a new lattice kinetic method to simulate fluid dynamics in curvilinear geome-

tries and curved spaces. A suitable discrete Boltzmann equation is solved in contravariant
coordinates, and the equilibrium distribution function is obtained by a Hermite polyno-

mials expansion of the Maxwell-Boltzmann distribution, expressed in terms of the con-

travariant coordinates and the metric tensor. To validate the model, we calculate the
critical Reynolds number for the onset of the Taylor-Couette instability between two

concentric cylinders, obtaining excellent agreement with the theory. In order to extend
this study to more general geometries, we also calculate the critical Reynolds number
for the case of two concentric spheres, finding good agreement with experimental data,

and the case of two concentric tori, where we have found that it is around 10% larger
than the respective values for the two concentric cylinders.
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1. Introduction

Many situations of physical interest imply fluids moving in curved spaces, such as at-

mospheric flow1, flows in curved soap films2, plasma flow in the solar photosphere3,

and plasma fusion4, among others. However, up to now, the study of such systems

has been limited to relatively simple geometries, because once the curved space

becomes more complicated, the use of one common underlying coordinate system

(e.g. cartesian, spherical, or cylindrical) leads to an expensive use of computational

resources and a poor approximation of the spatial curvature and the boundary

conditions.

1



November 6, 2013 10:2 WSPC/INSTRUCTION FILE campy˙DSFD

2

One consequence of the motion of fluids in curved spaces are centrifugal insta-

bilities, like Taylor-Couette, which have been extensively studied for the case of

two concentric rotating cylinders5,6, and also for the case of two concentric rotating

spheres7. However, the exploration of these instabilities in more general geometries

has been limited by the fact that it is not easy to implement an efficient numerical

method allowing for arbitrary curvatures.

In the last decade, the use of lattice Boltzmann (LB) methods to solve the

minimal Boltzmann kinetic equation, rather than discretising and solving directly

the equations of continuum fluid mechanics, has attracted considerable interest as

an alternative to simulate fluid dynamics8,9, including relativistic flows10,11,12, due

to its efficiency and accuracy. However, to date, the overwhelming majority of LB

applications are directed towards classical fluids in Cartesian coordinates, using

cubic cells to discretise the spatial and velocity coordinates, thereby limiting the

use of LB models to fluid dynamics in flat spaces.

Recently, a number of approaches to adapt the lattice Boltzmann method to

general geometries have been developed. Halliday et al.13 and Niu et al.14 adapted

the LB model to cylindrical coordinates, and Klales et. al.15 proposed a model in

two dimensions introducing an adaptive geometry, which consists in changing the

discretisation in time. However, a three-dimensional LB equation capable of han-

dling fluids in arbitrary geometries, has not been achieved yet. The study of fluids in

very complicated geometries, where non-inertial forces play a major role, and where

due to the symmetry of the system the choice of an appropriate coordinate system,

may significantly facilitate the formulation and implementation of the boundary

conditions, poses in general a formidable task.

In this paper, we develop a lattice Boltzmann model to simulate fluid dynamics

in general geometries, and, additionally, we calculate the critical Reynolds number

for the onset of the Taylor-Couette instability in the case of two concentric rotating

tori.

2. Model Description

In order to adapt the LB scheme to general geometries, the metric tensor gij and

the Christoffel symbol Γikj need to be included in the model. The former charac-

terises the way to measure distances in space, while the latter is responsible for

the non-inertial forces. The corresponding hydrodynamic equations are obtained

by replacing the partial derivatives by covariant ones, in both the mass continuity

and the momentum conservation equations. After some algebraic manipulations,

the hydrodynamic equations read as follows:

∂tρ+ (ρui);i = 0 , ∂t(ρu
i) + T ij;j = 0 , (1)

where the notation ;i denotes the covariant derivative with respect to spatial com-

ponent i. The energy tensor T ij is given by, T ij = Pgij + ρuiuj −µ(gljui;l + giluj;l +

gijul;l), where P is the hydrostatic pressure, ui the i-th contravariant component of
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the velocity, gij the contravariant metric tensor, ρ is the density of the fluid, and µ

is the dynamic shear viscosity.

Since lattice Boltzmann methods are based on kinetic theory, we start our model

construction by writing the Maxwell-Boltzmann distribution and the Boltzmann

equation in general geometries. The former takes the form16:

f eq =

√
gρ

(2πθ)
3/2

exp

[
− 1

2θ
gij(ξ

i − ui)(ξj − uj)
]

, (2)

where g is the determinant of the metric gij , and θ is the normalized temperature.

The macroscopic and microscopic velocities, ui and ξi are both normalised with the

speed of sound cs =
√
kBT0/m, kB being the Boltzmann constant, T0 the typical

temperature, and m the mass of the particles. Note that the metric tensor appears

explicitly in the distribution function, due to the fact that the kinetic energy is a

quadratic function of the velocity, which in a manifold, writes as, uiui = giju
iuj . To

recover the macroscopic fluid dynamic equations, we have to extract the moments

from the equilibrium distribution function. The four first moments of the Maxwellian

distribution function on a manifold are given by,

ρ =

∫
fdξ , ρui =

∫
fξidξ , (3a)

ρθgij + ρuiuj =

∫
fξiξjdξ , (3b)

ρθ(uigjk + ujgik + ukgij) + ρuiujuk =

∫
fξiξjξkdξ. (3c)

These moments are sufficient to reproduce the mass and the momentum conserva-

tion equations. Here, for simplicity we have used dξ to denote dξ1dξ2dξ3 and the

Jacobian of the integration is already included in the Maxwell Boltzmann distribu-

tion, through the term
√
g.

In the absence of external forces, in the standard theory of the Boltzmann equa-

tion, the single particle distribution function f(xi, ξi, t) evolves, according to the

equation, ∂tf + ξi∂if = C(f), where C is the collision term, which, using the BGK

approximation, can be written as, C = −(1/τ)(f − f eq), with the single relaxation

time τ . This equation can be obtained from a more general expression, df/dt = C(f),

where the total time derivative now includes a streaming term in velocity space due

to external forces, dfdt = ∂tf+ dxi

dt ∂if+ dpi

dt ∂pif , with pi the i-th contravariant compo-

nent of the momentum of the particles. Using the definition of velocity, ξi = dxi/dt,

and due to the fact that the particles move along geodesics, which implies the

equation of motion dpi/dt = −Γiklp
kpl, we can write the Boltzmann equation as,

∂tf + ξi∂if − Γijkξ
jξk∂ξif = C(f) , (4)

where we have used the definition of the momentum, pi = mξi. Note that the third

term of the lhs carries all the information on inertial forces. Thus, all the ingredients
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required to model a fluid in general geometries within the Boltzmann equation are

now in place.

In order to formulate a corresponding lattice Boltzmann model, we implement

an expansion of the Maxwell-Boltzmann distribution in Hermite polynomials, so as

to recover the moments of the distribution function up to third order in velocities,

as it is needed to correctly reproduce hydrodynamic behaviour. The expansion of

the Maxwell-Boltzmann distribution was introduced by Grad in his 13 moment

system17. Since this expansion is performed in velocity space, and the metric only

depends on the spatial coordinates, we expect such an expansion to preserve its

validity also in the case of a general manifold. We have followed a similar procedure

as the one described in Refs. 18,19.

For the discretization of the Maxwell Boltzmann distribution (2) and the Boltz-

mann equation (4), we need a cell configuration that supports the expansion up to

third order in Hermite polynomials. Our model construction was tested with the dis-

crete configurations D3Q19 and D3Q27, with no success, due to the fact that such

cell configurations do not provide the necessary symmetry to reproduce Eq. (3c).

However, the D3Q41 configuration proposed by Chikatamarla and Karlin20, corre-

sponds to the minimum configuration in three dimensions that supports third order

isotropy, as well as a H-theorem for future entropic extensions 21,22 of the present

work.

In the following, we shall use the notation ciλ to denote the vector number λ

and the contravariant component i. Thus, the discrete Boltzmann equation for our

model takes the form, fλ(xi + ciλδt, t + δt) − fλ(xi, t) = − δtτ (fλ − f eqλ ) + δtFλ,

where Fλ is the forcing term, which contains the Christoffel symbols, and f eqλ is the

discrete form of the Maxwell-Boltzmann distribution, Eq. (2). The relevant physical

information about the fluid and the geometry of the system is contained in these

two terms that are explicitly written in Ref.23.

Note, that since the contravariant components of the velocity are free from space-

dependent metric factors, they lend themselves to the standard lattice Boltzmann

discretisation of velocity space. All the metric and inertial information is conveyed

into the generalised local equilibria and forcing term, respectively. These features

are key to the LB formulation in general coordinates.

The macroscopic variables are obtained with the relations, ρ =
∑41
λ=0 fλ, ρui =∑41

λ=0 fλc
i
λ.

In order to recover the correct macroscopic fluid equations, via a Chapman-

Enskog expansion, the other moments, Eq. (3), also need to be reproduced. A

straightforward calculation shows that the equilibrium distribution function f eqλ
meets the requirement. The shear viscosity of the fluid also can be calculated as

µ = ρ(τ − 1/2)c2sδt. In this way one can calculate the fluid motion in spaces having

arbitrary local curvatures.



November 6, 2013 10:2 WSPC/INSTRUCTION FILE campy˙DSFD

5

0.7 0.75 0.8 0.85 0.9 0.95 1
η

40

50

60

70

80

R
e
c
(
δ
/a
)1

/2

Theory - Cylinders

Simulation - Cylinders

Simulation - Tori

0.82 0.83 0.84 0.85

72

76

80

84

Simulation - Spheres

VrVθ

Fig. 1. Critical Reynolds number Rec, as a function of the parameter η = a/b for the onset of the

Taylor-Couette instability for two concentric rotating cylinders (red) and tori (blue). Numerical
values for the case of the cylinders agree with theoretical values. The left inset shows the critical

Reynolds number for the case of two concentric spheres, and the two coloured spheres the radial

and axial components of the fluid velocity for the spherical case. Blue and red colours denote low
and high values, respectively.

3. Validation and Results

To provide numerical validation of our model we study the Taylor-Couette insta-

bility, which develops between two concentric rotating cylinders. We calculate the

critical Reynolds number, Rec, which characterises the transition between stable

Couette flow and Taylor vortex flow. To this purpose, we use the metric tensor

for cylindrical coordinates (r, θ, z), grr = 1, gθθ = r2, and gzz = 1, where r is

the radial coordinate, θ is the azimuthal angle, and z the axial coordinate. Thus,

the non-vanishing Christoffel symbols for this metric are given by Γrθθ = −r, and

Γθrθ = Γθθr = 1/r.

In our system, the inner cylinder has radius a and the outer one radius b. We

performed several simulations, by varying the Reynolds number for different aspect

ratios η = a/b. The Reynolds number, assuming that the outer cylinder is fixed,

can be defined as Re = (aδ/ν)dθ/dt where dθ/dt is the angular speed of the inner

cylinder and δ = b − a. The inner radius a is always set to a = 1, and for a given

value of η, the outer radius b and δ are calculated. In order to vary Re, at fixed η,

we change the angular velocity of the inner cylinder. For this simulation, we use a

rectangular lattice of 128× 1× 256 cells and choose τ = 1 (all values are written in

numerical units). We use periodic boundary conditions in the θ and z coordinates

and fixed boundary conditions in the r coordinate. We simulate 105 times steps

in 176 minutes, using one core on an Intel(R) Core(TM) 2 Quad CPU Q9650 at

3.00GHz.
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Fig. 2. Taylor-Couette flow instability for the case of two rotating cylinders. Here, we observe the

vortices (bottom-right) as a consequence of inertial forces, and a snapshot of a state at the onset
of the instability (top-right). The colors denote the magnitude of the fluid velocity. In addition, at

the left we see the radial (top) and axial (bottom) components of the fluid velocity, where yellow

and dark colours denote high and low values, respectively.

In Fig. 1, we report the critical Reynolds number as a function of η, as predicted

by the simulation and compared with the theoretical values from Ref. 24, finding

excellent agreement. On the left in Fig. 2, we observe the radial and axial compo-

nents of the velocity. Note that, as expected from the theory, the axial wave length

of the convection rolls is twice the distance between the cylinders, δ. To model the

Taylor-Couette vortices at higher Reynolds numbers, we use a lattice of 128×1×512

cells, and we set dθ/dt = 1, δ = 0.128, a = 1, and b = 1.128, obtaining a Reynolds

number of Re ∼ 700. Fig. 2 illustrates the vortices associated with this configura-

tion. Note that at this Reynolds number, the vortices start to become asymmetric

and, upon waiting sufficiently long, the system becomes unstable.

For the case of two rotating spheres, we consider the inner sphere with radius

a and the outer one with radius b. We use the coordinate system of the sphere

(r, φ, θ), being r the radial, φ the azimuthal, and θ the polar coordinates. The

non-vanishing components of the metric tensor are grr = 1, gφφ = r2 sin2(θ), and

gθθ = r2. The Christoffel symbols can be calculated from the metric tensor by using

differential geometry relations. Note that our simulation region does not include

the poles because there, the determinant of the metric tensor becomes zero and

therefore it is not possible to calculate its inverse. To solve this, we simulate the

region θ ∈ (π/6, 5π/6). We set τ = 0.8 and use a lattice of size 32×1×384. In order

to vary the Reynolds number we change the azimuthal velocity dφ/dt. The boundary

conditions have been chosen periodic for φ, and fixed for r and θ. In the inset (left)

of Fig. 1, we show the critical Reynolds number for different configurations which

is in good agreement with the experimental values given in Ref. 7. In this figure,

we can also observe the radial and polar components of the velocity, and see that

there are two small vortices located at the equator and two big ones at high and

low latitudes.
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Fig. 3. Comparison of the torque coefficient as a function of the Reynolds number, for the case

of two concentric rotating spheres, with theoretical and experimental data.

We have also measured the torque coefficient defined by,

Tr = 2πa3
∫ π

0

σrφ sin2(θ)dθ , (5)

where σrφ is the shear stress tensor, which in the context of lattice kinetic theory

can be calculated by,

σαβ =

(
1− 1

2τ

) 41∑
λ

(fλ − f eqλ )cαλc
β
λ . (6)

The torque coefficient is then computed via the following relation 25

Cm =
Tr

1
2ρa

5
(
dφ
dt

)2 . (7)

In Fig. 3, we show the comparison between our results, the theory for Re → 0

and the experiments26,25. We find reasonable agreement with the experiments. The

small discrepancy can be due to the approximation taken in Eq. (6) and the small

lattice resolution used for the radial coordinate.

In order to study the Taylor-Couette instability for the case of two concentric

rotating tori, which to our knowledge has never been explored before, we use a lattice

of size 64× 128× 64 cells in the orthogonal coordinate system of the torus, (r, u, v),

being r the radial, u the axial, and v the tangential coordinates. The Christoffel

symbols and the components of the metric tensor can be readily calculated from

differential geometry relations. The major radius of the tori has been taken as

4.0 and the relaxation time τ = 1, in numerical units. The other parameters are
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Fig. 4. Vortices generated by inertial effects for two concentric rotating tori. The radial (right)

and axial (left) components of the velocity, are shown. Transparent blue and red colours code for

negative and positive values, respectively. The snapshot was taken at t = 80000 for Re = 205.

the same as in the previous simulations, and to vary the Reynolds number we

change the tangential velocity dv/dt. In this case, a and b are the minor radii of

the inner and outer tori, respectively. We use periodic boundary conditions for the

coordinates u and v, and fixed boundaries for r. Fig. 4 illustrates the vortices of the

instability generated by the inertial forces, and we observe that, in analogy with

the cylindrical case, there are vortices and oscillations in the axial component of

the velocity (analogous to the z component of the cylinder, see Fig. 2). In addition,

the critical Reynolds numbers for different configurations can be observed in Fig. 1,

showing values around 10% larger than for the case of cylinders.

3.1. Convergence Study

To check the convergence of the model, we simulate the Poiseuille profile for the

velocity on a two-dimensional ring. For this purpose, we use the metric tensor in

polar coordinates, grr = 1, gθθ = r2, and gzz = 1, where r is the radial coordi-

nate, θ is the azimuthal angle, and z the axial coordinate. Thus, the non-vanishing

Christoffel symbols for this metric are given by, Γrθθ = −r, and Γθrθ = Γθθr = 1/r.

Our system consists of a two-dimensional ring with inner radius a and outer one

b. On this ring, we impose a constant force fa in the θ-direction. For the simulation

we choose τ = 0.6. The forcing term fa is set to 0.05. All numbers are expressed

in numerical units. The inner radius of the ring is taken as a = 1.0 and the outer

radius as b = 1.064. We have taken periodic boundary conditions in the direction θ

and z, and free boundary conditions at r = 1.0 and r = 1.064.

To obtain a quantitative measure of the convergence we use the Richardson

extrapolation method27,28. In this method, given any quantity A(δx) that depends

on the mesh spacing δx, we can make an estimation of order n of the exact solution
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Fig. 5. Relative convergence error as a function of the number of grid points. Here, the relative

error is calculated by takening the mean value of the relative errors at every location grid point.

A by using

A = lim
δx→0

A(δx) ≈
2nA

(
δx
2

)
−A(δx)

2n − 1
+O(δxn+1) , (8)

with errors O(δxn+1) of order n+1. Thus the relative error between the value A(δx)

and the “exact” solution A can be calculated by

Er(δx) =

∣∣∣∣A(δx)−A
A

∣∣∣∣ . (9)

In our case, the quantity A is the fluid density ρ, when the fluid reaches the steady

state, and we set up n = 2. Indeed, the relative error with respect to the “exact

solution” decreases rapidly with increasing grid resolution (see Fig. 5) and we can see

that the present scheme exhibits a near second-order convergence. This is basically

in line with the convergence properties of classical LB schemes.

Although this convergence test consists on a one-dimensional simulation, it has

been implemented using a single column of three-dimensional cubic cells. Therefore,

this system is equivalent to have two three-dimensional and concentric cylinders

where axial and azimuthal symmetries have been imposed. As a consequence, the

conclusions on this section also apply to three-dimensional cases.

4. Conclusions

Summarising, we have developed a new lattice Boltzmann model to simulate fluid

dynamics in general non-cartesian geometries. The model has been validated on

the Taylor-Couette instability for the case of two concentric rotating cylinders. In



November 6, 2013 10:2 WSPC/INSTRUCTION FILE campy˙DSFD

10

our case, inner cylinder is rotating with a certain speed and the outer one is fixed,

obtaining vortices and the critical Reynolds number for the onset of the instability

for several configurations, in excellent agreement with the theory. In addition, we

have also studied the case of the Taylor-Couette instability for the case of two

concentric spheres, and found good agreement with experimental data.

To extend our study to yet unexplored more general geometries, we studied

the case of the Taylor-Couette instability in two concentric rotating tori, finding

that the critical Reynolds number for the onset of the instability is larger than the

one for the cylinder. In principle, one could generalise this, also to more complex

geometries, e.g. parabolic, Möbius band, trefoil knots, to name but a few.

By solving the Navier-Stokes equations in contravariant coordinates, which can

be represented on a cubic lattice precisely in the format requested by the lattice

Boltzmann formulation, the present model opens up the possibility to study fluid

dynamics in smooth manifolds by retaining the outstanding simplicity and computa-

tional efficiency of the standard lattice Boltzmann method in cartesian coordinates.
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