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Chapter 1

Introduction

The World Wide Web (WWW) can be thought of as a collection of distributed, autonomous
and heterogeneous data sources. Large amounts of data are daily produced at an ever
increasing rate. In many cases, data once stored is often never accessed again. Although
we can imagine larger and more powerful databases and data warehouses in which to store
data, humans and programs can access only a small portion of it. Wherefore, the existing
technology offers the means to store and access data over the Web based on its simple form,
but it seems to lack the ability to discover and extract knowledge from it, and to transform
raw data into useful information.

A popular way for discovering data in the Web is the method ofinformation retrieval.
The user sends a query expressing his information needs and the query is suitably propa-
gated in the net to meet the appropriate data source(s). Information is then retrieved and
send back to the user. Depending on the way user expresses his information needs and
the way resources in various data sources are described, special mechanisms need to be
used in order the query to meet the appropriate data sources, to extract knowledge from the
data and to match the query against the data. Our intuition says that if data is described
in an “elegant” way, the knowledge extraction and therefore the retrieval of reliable results
becomes more efficient.

The above presented scenario is an indicative example revealing that the presentation
of data in the Web and the cooperation between Web sources requires sharing of knowl-
edge.Semantic Webis defined as “an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in cooperation”
[5]. Thus, Semantic Web is regarded as the tool that will allow dynamic discovery of se-
mantic meaning from raw data stored in Web resources. Achieving this goal requires tools
for extraction, representation and manipulation of knowledge. In this context,ontologies
are regarded as appropriate modelling structures for representing knowledge existing in or
extracted from Web sources [7]. An ontology is a description of the logical structure of a
domain, consisting ofterms, representing domain concepts1, relationshipsbetween these
terms, as well aspropertiesof each concept, which describe various features and attributes
of the concept. Concepts are often arranged in ataxonomic hierarchy, at the top of which
the most general concept in the domain is defined, while moving downwards in the hierar-
chy more specific concepts are defined as subclasses of more general concepts or classes
[38, 13]. In the general case however, no reference ontology is provided by the data source.
In this case, we could automatically create an ontology or a semantic taxonomy using the
available resources of the Web source and appropriate mechanisms to extract the knowl-
edge (i.e., the concepts and the relationships) latent to the resources, like for example in
[42, 53].

Then, assuming that knowledge is represented in ontologies, data sharing requires com-

1Words “terms” and “concepts” will be used interchangeably in the rest of this paper.
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paring concepts in the same or different ontologies (e.g., comparing a concept across dif-
ferent ontologies). This is exactly the focus of this report. The same concept may be
represented in different ways (i.e., may have different definitions in terms of names and
properties) in different ontologies. As a result, direct comparison of concepts as keywords
(i.e., syntactic comparison) is not always an efficient way for computing similarity between
entities with semantic meaning. Obviously such methods cannot take concept properties
or relationships between concepts into account. Alternatively, to relate concepts in dif-
ferent ontologies, it is more effective to focus on whether the concepts are semantically
(rather than syntactically) similar by finding places in the ontologies where they overlap.
This might also be an efficient way for performing tasks such as retrieving results to user
queries, for checking ontologies for consistency or coherency (i.e., the same concept has
the same meaning in different ontologies), for representation and for redundancy.

The purpose of this report is to present an overview of existingsimilarity measuresto
compare concepts by their semantic meaning, called henceforthsemantic similarity mea-
sures. Such similarity measures are defined in an intuitive and algorithmic way and work by
discovering linguistic relationships or affinities2 between ontological terms across different
ontologies.

In what follows, Section 2 presents the characteristics of and the languages used for an
ontology followed by some examples. In Section 3 we present different ways to measure
similarity between concepts followed by conclusions in Section 4.

2Concept used to identify terms with semantic relationships.
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Chapter 2

Writing and Using Ontologies

Ontologies can be regarded as general tools of information representation on a subject.
They can have different roles depending on the application domain and the level of speci-
ficity at which they are being used. In general, ontologies can be distinguished intodomain
ontologies, representing knowledge of a particular domain, andgeneric ontologiesrepre-
senting common sense knowledge about the world [55].

There are several examples of general purpose ontologies available including: (a) Word-
Net1 [4, 33] attempts to model the lexical knowledge of a native speaker of English. It can
be used as both a thesaurus and a dictionary. English nouns, verbs, adjectives, and adverbs
are organized into synonym sets, calledsynsets, each representing a concept. (b) SENSUS2

[24] is a 90,000-node concept thesaurus (ontology) derived as an extension and reorgani-
zation of WordNet. Each node is SENSUS represents one concept, i.e., one specific sense
of a word, and the concepts are linked in a IS-A hierarchy, becoming more general towards
the root of the ontology. (c) The Cyc3 Knowledge Base (KB) [39, 46] consists of terms and
assertions relating those terms, contains a vast quantity of fundamental human knowledge:
facts, rules of thumb, and heuristics for reasoning about the objects and events of everyday
life. At the present time, the Cyc KB contains nearly two hundred thousand terms and
several dozen hand-entered assertions about/involving each term.

Examples of domain specific ontologies include among others ontologies designed
around (a) medical concepts such as UMLS4 [36], SNOMED5, MESH6 [35], (b) genomic
data such as GO7 [6, 15] and (c) spatial data such as SDTS8. The Unified Medical Lan-
guage System (UMLS) contains a very large, multi-purpose and multi-lingual thesaurus
concerning biomedical and health related concepts. In particular, it contains information
about over 1 million biomedical concepts and 2.8 million concept names from more than
100 controlled vocabularies and classifications (some in multiple languages) used in patient
records, administrative health data, bibliographic and full-text databases and expert sys-
tems. Furthermore, all the names and meanings are enhanced with attributes and inter-term
relationships. UMLS includes other metathesaurus source vocabularies, such as Medical
Subject Headings (MeSH) that is the National Library of Medicine’s vocabulary thesaurus.
MeSH consists of sets of terms namingdescriptorsin a hierarchical structure. Gene Ontol-
ogy (GO) is a structured network of defined terms that describe gene proteins and concerns
all organisms. The Spatial Data Transfer Standard (SDTS) contains an ontology used to
describe the underlying conceptual model and the detailed specifications for the content,

1http://www.cogsci.princeton.edu/∼wn/
2http://mozart.isi.edu:8003/sensus2/
3http://www.cyc.com/, http://www.opencyc.org/
4http://www.nlm.nih.gov/research/umls
5http://www.snomed.org
6http://www.nlm.nih.gov/mesh
7http://www.geneontology.org
8http://mcmcweb.er.usgs.gov/sdts/
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structure, and format of spatial data, their features and associated attributes. Concepts in
SDTS are commonly used on topographic quadrangle maps and hydrographic charts.

Intensive research efforts during the last few years have focused on providing tools for
coherent, unambiguous and easy manipulation of information represented as ontologies.
Such tools include languages providing the necessary syntax for the efficient representation
of concepts and of their semantics as well as tools in the form of algorithms and graphic
interfaces for viewing and manipulating the content of ontologies.

2.1 Languages for Writing Ontologies

The Resource Description Framework (RDF9) is a language for representing information
about resources in the Web [2, 21]. It is particularly intended for representing metadata
about Web resources, such as the title, author, and modification date of a document. RDF
can also be used to represent information about things that can be identified on the Web,
even when they cannot be directly retrieved, as for example information about items avail-
able from on-line shopping facilities (e.g., information about specifications, prices, and
availability). RDF is intended for situations in which this information needs to be pro-
cessed by applications, as it provides a common framework for expressing this information
so it can be exchanged between applications without loss of meaning. RDF is based on the
idea of identifying things using Web identifiers (called Uniform Resource Identifiers, or
URIs), and describing resources in terms of simple properties and property values, which
enables RDF to represent simple statements about resources as a graph of nodes and arcs
representing the resources, and their properties and values. RDF also provides an XML-
based syntax (called RDF/XML) for recording and exchanging these graphs. Although,
RDF provides a way to express simple statements about resources, using named properties
and values, it does not define the terms used in those statements. That is the role of RDF
Schema (RDF-S10) that provides the facilities needed to describe such classes and proper-
ties, and to indicate which classes and properties are expected to be used together [28]. The
RDF-S facilities are themselves provided in the form of an RDF vocabulary; that is, as a
specialized set of predefined RDF resources with their own special meanings.

DAML+OIL 11, which was the result of an initial joint effort by US and European re-
searchers, is a semantic markup language for Web resources [18, 17]. It builds on RDF
and RDF-S, and extends these languages with richer modelling primitives. In particu-
lar, DAML+OIL assigns a specific meaning to certain RDF triples. The model-theoretic
semantics12 specify exactly which triples are assigned a specific meaning, and what this
meaning is.

The WWW Consortium (W3C) created the Web Ontology Working Group to develop a
semantic markup language for publishing and sharing ontologies and the resulting language
is Web Ontology Language (OWL13). OWL can be used to explicitly represent the mean-
ing of terms in vocabularies and the relationships between those terms. OWL has more
facilities for expressing meaning and semantics than XML, RDF, and RDF-S, and thus
OWL goes beyond these languages in its ability to represent content on the Web. OWL
is a revision of the DAML+OIL Web ontology language, adding more relations between
classes (e.g., disjointness), cardinality (e.g., “exactly one”), equality, more properties, more
characteristics of properties (e.g., symmetry), and enumerated classes.

To conclude, if machines are expected to perform useful reasoning tasks on Web re-
sources, some language must be used in order to go beyond raw data, to express the seman-
tics of the data and to extract knowledge from it. A summary of the existent recommenda-

9http://www.w3.org/RDF
10http://www.w3.org/TR/rdf-schema
11http://www.daml.org/language/
12http://www.daml.org/2000/12/daml+oil.daml
13http://www.w3.org/TR/owl-features
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tions related to the Semantic Web follows.

• XML provides a syntax for structured documents, but imposes no semantic con-
straints on the meaning of these documents.

• RDF is a datamodel describing resources and relations between them and provides a
simple semantics for this datamodel. The datamodels can be represented in an XML
syntax.

• RDF-S is a vocabulary for describing properties and classes of RDF resources.

• DAML+OIL assigns specific meaning to certain RDF triples.

• OWL adds more vocabulary for describing properties and classes.

There are also efforts for describing the semantics of Web services, resulting in the DAML-
S14 [51] and OWL-S15 [20] languages.

2.2 Tools for Manipulating Ontologies

Examples of tools for manipulating ontologies include Protege-200016 [37] and Chimaera17

[29, 30, 31]. Protege-2000 that allows users to construct domain ontologies, contains a
platform that can be extended with graphical widgets for tables, diagrams, animation com-
ponents to access other knowledge-based systems embedded applications, and has a library
that other applications can use to access and display knowledge bases. Chimaera is a soft-
ware system that supports users in creating and maintaining distributed ontologies on the
Web. It supports two major functions that is merging multiple ontologies together and diag-
nosing18 individual or multiple ontologies. It also provides users with tasks such as loading
knowledge bases in different formats, reorganizing taxonomies, resolving name conflicts,
browsing ontologies and editing terms.

14http://www.daml.org/services
15http://www.mindswap.org/2004/owl-s/
16http://protege.stanford.edu
17http://www.ksl.stanford.edu/software/chimaera/
18Tool used as an ontological sketchpad, and creating classes for example.
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Chapter 3

Comparing Concepts

This section presents methods of computing the similarity between entities with some se-
mantic meaning, such as concepts (i.e., classes) represented in ontologies, or elements
(i.e., resources) represented in schemas. These methods, referred to assemantic similar-
ity methods, exploit the fact that the entities which are compared may have (in addition
to their name) properties (e.g., in the form of attributes) associated with them, taking also
into account the level of generality (or specificity) of each entity within the ontology as
well as their relationships with other concepts. Notice that, keyword-based similarity mea-
sures cannot use this information. Semantic similarity measures methods might be used
for performing tasks such as retrieving results to user queries, for representation and for re-
dundancy of retrieved resources, and for checking ontologies for consistency or coherency.

3.1 Ontology Approaches

Ontologies as tools for representing domain knowledge can be used in many different ways.
Accordingly, different approaches for comparing concepts within or across ontologies can
be defined [58].

3.1.1 Single ontology approach

All information sources are related to one global (unique) ontology providing a common
vocabulary for the specification of the entity semantics. A prominent approach is SIMS
[3], which includes a hierarchical terminological knowledge base with nodes representing
objects, actions and states. Each independent information source is described by relating
its objects to the global domain model. Single ontology approach can be applied to cases
where all information sources share nearly the same view for a domain (e.g., applications
using common sense knowledge may use the Wordnet ontology). Comparing a concept
with the ontology is translated into searching for the same or similar concepts within the
ontology. How this task can be performed efficiently? How is the notion of “similarity”
defined? How close two concepts must be so as to be characterized as “similar”?

3.1.2 Hybrid approach

The semantics of each source is described by its own ontology, but all ontologies are built
on one common vocabulary. The shared vocabulary contains basic terms (the primitives)
of a domain, upon which the source ontologies are based to built complex1 terms. As each
concept of a source ontology is described by the use of some primitives, the problem of
comparing a concept with an ontology can be solved based on methods proposed for the

1When the primitives are combined by some operators, as for example the union or intersection operator.
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case of the single ontology approach. The drawback however is that existing ontologies
cannot be used easily, but have to be redeveloped from scratch as all source ontologies
must refer to the shared vocabulary.

In hybrid approaches, the interesting point is how the local ontologies are described,
i.e. how the terms of the source ontologies are described by the primitives of the shared on-
tology. For example, in COIN [12] the local description of the information (calledcontext)
is an attribute value vector. The terms for the context comes out from the common shared
vocabulary. In MECOTA [57] each source information is annotated by a label that indi-
cates the semantics of the information. The label combines the primitives from the shared
vocabulary.

3.1.3 Multiple ontology approach

Different information sources (e.g., knowledge about the application) are described by dif-
ferent ontologies. Knowledge within each ontology may be represented without reference
to the other information sources or their ontologies. This approach has no common on-
tology commitment, thus simplifying the adding or modification of information sources.
However, the lack of a common vocabulary makes the comparison of different source on-
tologies a very complicated task.

The multiple ontology approach, although the most general, is the most difficult to
handle involving high complexity algorithmic approaches. A straightforward approach is
the hard-coded conversion of all data sources into a common ontology which can be stored
in a central warehouse. This approach is costly, while it requires substantial efforts from
human experts and is not easily extensible to changes of information sources. There are also
approaches build around the idea of using wrappers for the automated or semi-automated
generation of mappings from the data sources into the global ontology [54]. An attempt to
provide intuitive semantics for mappings between concepts in different ontologies is made
in [32], where relationships borrowed from linguistics are used to relate terms in various
ontologies. In general, the ontology mapping identifies semantically corresponding terms
of different source ontologies (e.g., which terms are semantically equal or similar) and has
also to consider different views on a domain (e.g., different aggregation of the ontology
concepts), becoming thus a non-trivial task.

The problem of comparing concepts between different ontologies could be affronted
by borrowing approaches already used in the database community, i.e. schema mapping
by discovering semantic correspondences of attributes or instances across heterogeneous
sources. The fundamental approach used in this case is “matching”, which takes two
schemas as input and produces a mapping between elements that semantically correspond
to each other [41], or maps concepts to schema elements [49]. Approaches of schema
matching can be categorized intolabel-basedandinstance-based, according to the different
information on which they rely [45]. Label-based approaches consider only the similarity
between schema definitions or attribute labels of two information sources. Instance-based
methods rely on the content overlap or statistical properties to determine the similarity of
two attributes. Studies concerning the ontology mappings that are based on and extend
the schema-matching techniques have been proposed, as for example the development of
generic match algorithms [34] and the use of mining techniques [14].

An affinity-based unification method for global mapping construction across ontolo-
gies is proposed in [10]. The concept ofaffinity is used to identify terms with semantic
relationships in different ontologies. The different ontology terms are firstly analyzed to
identify those terms with affinity in different ontologies, which are then identified using a
hierarchical clustering procedure [10]. The integration across ontologies is finally achieved
by using these clusters.

The advent of peer-to-peer (P2P) systems introduce a different view to the problem by
taking a social perspective which heavily relies on self-organization. Mappings between
different ontologies are done by special mediator agents which are specialized to trans-
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late between different ontologies and different languages in [43]. In this approach agents
start from simple one-to-one mappings between classes and continue with mappings be-
tween complex expressions. Similarly, data sources introduce their own ontologies and
then agents can incrementally come up with a global ontology by exchanging translations
between the local ones in [1]. Finally, global semantics are seen in [40] as a matter of
continuing negotiation, allowing the creation of global mapping that emerges from peer
interactions.

3.2 Semantic Similarity Measures

We suppose that data in information sources is described by properties and is organized in
a taxonomic (subclass-superclass) hierarchy based upon the ontology of the source. When
a user sends a query to the Web what is the mechanism for discovering and retrieving
answers to the user’s inquiry? How are the concepts in the user’s query compared with
concepts presented in the ontology hierarchies owned by the different information sources?
We will give some alternatives to cope with the polysemous nature of natural words, the
multiple ways in which the same concept can be described, and the complex terms of source
ontologies.

Many measures of semantic similarity with a variety of interesting properties have been
proposed. In what follows, we present measures of similarity followed by a short discus-
sion of their properties. Semantic similarity measures can be generally partitioned in four
categories: those based on how close the two concepts in the taxonomy are, those based
on how much information the two concepts share, those based on the properties of the
concepts, and those based on combinations of the previous options.

Let C be the set of concepts in an IS-A taxonomy. We want to measure the similarity
of two conceptsc1, c2 ∈ C.

3.2.1 Edge-Counting Measures

In the first category we place measures that considerwheretwo conceptsc1 and c2 are
in the taxonomy. The following measures are based on a simplified version ofspreading
activation theory[11, 52]. One of the assumptions of the theory of spreading activation is
that the hierarchy of concepts is organized along the lines of semantic similarity. Thus, the
more similar two concepts are, the more links there are between the concepts and the more
closely related they are [44].

Shortest path [44, 8]: The first measure has to do with how close in the taxonomy the two
concepts are.

simsp = 2MAX − L (3.1)

whereMAX is the maximum path length between two concepts in the taxonomy
andL is the minimum number of links between conceptsc1 andc2. This measure
is a variant on thedistancemethod [44] and is principally designed to work with
hierarchies. It is motivated by two observations: the behavior of conceptual distance
resembles that of a metric, and the conceptual distance between two nodes is often
proportional to the number of edges separating the two nodes in the hierarchy. A
measure like this might be implemented in an information retrieval system that is
based on indexing documents and queries into terms from a semantic hierarchy, or
might be applied to help rank the documents to the query. There are many specific
questions about the cognitive realism of shortest path measure, however it is a simple
and powerful measure in hierarchical semantic nets.

Weighted links [48]: Extending the above measure, the use of weighted links is proposed
to compute the similarity between two concepts. The weight of a link may be affected
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by: (a) the density of the taxonomy at that point, (b) the depth in the hierarchy, and
(c) the strength of connotation2 between parent and child nodes. Then, computing
the distance between two concepts is translated into summing up the weights of the
traversed links instead of counting them.

Hirst and St-Onge [16]: The idea behind this measure is that two conceptsc1 andc2 are
semantically close if they are connected by a path that is not too long and that does
not change direction too often.

simH&S(c1, c2) = C − L− kd (3.2)

whered is the number of changes of direction in the path, andC, k are constants.
Although this measure gives a different perspective of similarity between two con-
cepts, it seems to poorly perform (see [9]) mainly because it lies in its tendency to
wander than in the use of concept relationships.

Wu and Palmer [59]: This similarity measure considers the position of conceptsc1 and
c2 in the taxonomy relatively to the position of the most specific common conceptc.
As there may be multiple parents for each concept, two concepts can share parents by
multiple paths. The most specific common conceptc is the common parent related
with the minimum number of IS-A links with conceptsc1 andc2.

simW&P (c1, c2) =
2H

N1 + N2 + 2H
(3.3)

whereN1 andN2 is the number of IS-A links fromc1 andc2 respectively to the most
specific common conceptc, andH is the number of IS-A links fromc to the root of
the taxonomy. It scores between 1 (for similar concepts) and 0.

Li et al. [25]: The following similarity measure, which was intuitively and empirically
derived, combines the shortest path length between two conceptsc1 andc2, L, and
the depth in the taxonomy of the most specific common conceptc, H, in a non-linear
function.

simLi(c1, c2) = e−αL · eβH − e−βH

eβH + e−βH
(3.4)

whereα ≥ 0 andβ > 0 are parameters scaling the contribution of shortest path
length and depth respectively. Based on [25] the optimal parameters areα = 0.2 and
β = 0.6. This measure is motivated by the fact that information sources are infinite
to some extend while humans compare word similarity with a finite interval between
completely similar and nothing similar. Intuitively the transformation between an
infinite interval to a finite one is non-linear. It is thus obvious that this measure
scores between 1 (for similar concepts) and 0.

The above mentioned measures are based only on taxonomic (IS-A) links between
concepts, assuming that links in the taxonomy represent distances. However, the density
of terms throughout the taxonomy is generally not constant. Typically, more general terms
exist higher in the hierarchy and represent a smaller set of nodes than the larger number
of more specific terms that populate a much denser space lower in the hierarchy. For
example, specify that distance betweenplant andanimal is 2 in WordNet (their common
parent isliving thing), and the distance betweenzebraandhorseis also 2 (their common
parent isequine). Intuitively horseandzebraseem more closely related thanplant and
animal. Using in our example either theWu & Palmermeasure, the measure based on the
Weighted Links(if the link weights are fixed accordingly) or theLi et al. measure, we take

2Theconnotationof a term is the list of membership conditions for the denotation. Thedenotationof a term is
the class of things to which the term correctly applies. For example, the connotation of the general term “square”
is “rectangular and equilateral”, while its denotation is all squares.
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Figure 3.1: A fragment of the WordNet taxonomy

into account the fact that the first two terms occupy a much higher place in the hierarchy
than the latter two terms and the results will be more realistic. Furthermore, in taxonomies
there is wide variability in what is covered by a single taxonomic link. For example,safety
valveIS-A valveseems much narrower thanknitting machineIS-A machine. TheWeighted
Links measure may take into account the strength of links if link weights are computed
accordingly. Finally, experimental results presented in [25] have demonstrated that theLi
et al.measure significantly outperforms previous measures.

In what follows, we present measures involving information content, which seem to
perform better that edge-counting measures.

3.2.2 Information Content Measures

In this category, similarity measures are based on theinformation contentof each concept.
The notion of information content of the concept practically has to do with the frequency
of the term in a given document collection. The frequencies of terms in the taxonomy are
estimated using noun frequencies in some large (1,000,000 word) collection of texts [47].
Furthermore, the key to the similarity of two concepts is the extend to which they share
information in common, indicated by a highly specific concept that subsumes them both.

Associating probabilities with concepts in the taxonomy, let the taxonomy be aug-
mented by the functionp : C → [0, 1], such that for any conceptc ∈ C, p(c) is the
probability of encountering an instance of conceptc. The concept probability is defined
asp(c) = freq(c)/N , whereN is the total number of terms in the taxonomy,freq(c) =∑

n∈words(c) n andwords(c) is the set of terms subsumed byc. This function implies that
if c1 IS-A c2, thenp(c1) ≤ p(c2), which intuitively means that the more general the concept
is, the higher its associated probability. Then, the information content of a conceptc can
be quantified as the log likelihood,− ln p(c), which means that as probability increases, in-
formativeness decreases, so the more abstract a concept, the lower its information content.

Given these probabilities, several measures of semantic similarity, presented later in the
section, have been defined. All these measures use the information content of the shared
parents of two termsc1 andc2 (see Equation 3.5), whereS(c1, c2) is the set of concepts
that subsumec1 andc2. As there may be multiple parents for each concept, two concepts
can share parents by multiple paths. We take the minimump(c) when there is more than
one shared parents, and then we call conceptc themost informative subsumer.

pmis(c1, c2) = minc∈S(c1,c2){p(c)} (3.5)

For example, in Figure 3.1coin, cash, etc. are all members ofS(nickel, dime), but
the term that is structurally the minimal upper bound iscoin, and will also be the most
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informative subsumer. The information content of the most informative subsumer will be
used to quantify the similarity of the two words.

Lord et al. [27]: The first way to compare two terms is by using a measure that simply
uses the probability of the most specific shared parent.

simLord(c1, c2) = 1− pmis (3.6)

The probability-based similarity score takes values between 1 (for the very similar
concepts) and 0. It is used in order to access the extend to which similarity judge-
ments might be sensitive to frequency per se, rather than information content.

Resnik [47]: The next measure uses the information content of the shared parents.

simResnik(c1, c2) = − ln pmis (3.7)

This measure signifies that the more information two terms share in common, the
more similar they are, and the information shared by two terms is indicated by the
information content of the term that subsume them in the taxonomy. Aspmis can
vary between 0 and 1, this measure varies between infinity (for very similar terms) to
0. In practice, ifN is the number of terms in the taxonomy, the maximum value of
pmis is 1/N (see Equation 3.5), and the maximum value of the measure is defined by
− ln(1/N) = ln(N). Thus, this measure provides us with information such as the
size of the corpus; a large numerical value indicates a large corpus. Furthermore, the
score from comparing a term with itself depends on where in the taxonomy the term
is, with less frequently occurring terms having higher scores, and thus the measure
reveals information about the usage within corpus of the part of the ontology queried.

Lin [26]: This measure uses both the amount of information needed to state thecommon-
ality of two terms and the information needed to fullydescribethese terms.

simLin(c1, c2) =
2 ln pmis(c1, c2)

ln p(c1) + ln p(c2)
(3.8)

As pmis ≥ p(c1) andpmis ≥ p(c2), the values of this measure vary between 1 (for
similar concepts) and 0. In this case, a term compared with itself will always score
1, hiding the information revealed by theResnik measure. However, theResnik
measure depends solely on the information content of the shared parents, and there
are only as many discrete scores as there are ontology terms. By using the infor-
mation content of both the compared terms and the shared parent the number of
discrete scores is quadratic in the number of terms appearing in the ontology [27],
thus augmenting the probability to have different scores for different pairs of terms.
Consequently, using this measure to compare the terms of an ontology can have a
better ranking of similarity than theResnikmeasure.

Jiang et al. [19]: Contrary to the above similarity measures, this measure is ofsemantic
distance.

distJiang(c1, c2) = −2 ln pmis(c1, c2)− (ln p(c1) + ln p(c2)) (3.9)

Thus, the similarity between two conceptsc1 andc2, simJiang(c1, c2), is computed
as 1 − distJiang(c1, c2). This measure can give arbitrarily large values, like the
Resnikmeasure, although in practice has a maximum value of2 ln(N), whereN is
the size of the corpus. Furthermore, it combines information content from the shared
parent and the compared concepts, as theLin measure. Thus, this measure seems to
combine the properties of the above presented measures, i.e. provides us with both
information about the size of the ontology and ranking of different term pairs.
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3.2.3 Feature-Based Measure

Up to now, the features of the terms in the ontology are not taken into account. However,
the features of a term contain valuable information concerning knowledge about the term.
The following measure considers also the features of terms in order to compute similarity
between different concept, while it ignores the position of the terms in the taxonomy and
the information content of the term.

Tversky [56]: This measure is based on thedescription setsof the terms. We suppose
that each term is described by a set of words indicating its properties or features.
Then, themore commoncharacteristics two terms have and theless non-common
characteristics they have, the more similar the terms are.

simTversky(c1, c2) =
|C1 ∩ C2|

|C1 ∩ C2|+ κ|C1 \ C2|+ (κ− 1)|C2 \ C1| (3.10)

whereC1, C2 correspond to description sets of termsc1 and c2 respectively and
κ ∈ [0, 1] defines the relative importance of the non-common characteristics. This
measure scores between 1 (for similar concepts) and 0, it increases with commonality
and decreases with the difference between the two concepts. In reverse to all the
above presented measures, it has nothing to do with the taxonomy and the subsumers
of the terms, and seems to better exploit the properties of the ontology used.

In the above presented measure, the determination ofκ is based on the observation that
similarity is not necessarily a symmetric relation: the common, as opposed to the different,
features between a subclass and its superclass have a larger contribution to the similarity
evaluation than the common features in the inverse direction. Given this assumption, it
provides a systematic approach to determine the asymmetry of a similarity evaluation.

3.2.4 Combinational Measures

The next approaches used to compare two conceptsc1 andc2 combine some of the above
presented approaches, considering the path connecting the two terms in the taxonomy, the
IS-A links of the terms with their parents in the graph and the features of the terms.

Rodriguez et al. [50]: This similarity measure suggests a different identification of dis-
tinguishing features than the typical single classification of features into attributes
by classifying them intofunctions, parts andattributes. Functions represent what
is done to or with instances of a class, parts are structural elements of a class, and
attributes correspond to additional characteristics. For example, considering the term
college, a function isto educate, its parts may beroof andfloor, and other attributes
can bearchitectural properties. Then, we consider all the distinguishing features of a
term and the global similarity function is a weighted sum of the similarity values for
parts, functions, and attributes, whereωp, ωf andωa are the corresponding weights.

simRodriguez(c1, c2) = ωp · Sp(c1, c2) + ωf · Sf (c1, c2) + ωa · Sa(c1, c2) (3.11)

whereωp, ωf andωa ≥ 0 andωp + ωf + ωa = 1. For each type of distinguishing
features,Sp, Sf andSa a similarity functionsimTversky(c1, c2) is used based on the
Tversky feature-matching model.

Like theTverskymeasure, this measure also uses the number of common and differ-
ent features between two terms to compute their similarity. However, this measure
differs from theTverskymeasure in the following ways: (a) it considers a non-typical
classification of features in functions, parts and attributes and (b) it definesκ in terms
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Property Knappe Rodriguez Tversky Jiang Lin Resnik Lord Li Wu & Hirst & shortest
Palmer St-Onge path

increase with commonality yes yes yes yes yes yes yes yes yes no no
decrease with difference no yes yes yes yes no no yes yes yes yes

information content no no no yes yes yes yes no no no no
position in hierarchy yes no no yes yes yes yes yes yes yes yes

path length no yes no no no no no yes yes yes yes
max value = 1 yes yes yes no yes no yes yes yes no yes

symmetric no no no yes yes yes yes yes yes no yes
different perspectives yes yes yes yes yes no no yes yes yes no

Table 3.1: Comparison between similarity measures

of the distance among terms in the hierarchy; functionκ has to do with the distance
between termsc1, c2 and the most informative subsumercmis:

κ(c1, c2) =

{
d(c1,cmis)
d(c1,c2)

, d(c1, cmis) ≤ d(c2, cmis);

1− d(c1,cmis)
d(c1,c2)

, d(c1, cmis) > d(c2, cmis).
(3.12)

whered(c1, c2) = d(c1, cmis) + d(c2, cmis).

Knappe [22]: This measure is primarily based on the aspect that there may bemultiple
pathsconnecting two concepts. Taking all possible paths involves a substantial in-
crease in complexity. Thus, the general idea puts emphasis on the “shared” concepts
and a similarity measure representing the part of the ontology covering the compared
concepts is defined. Furthermore, there is the notion of complex concepts that allows
a concept to be constituted by more that one term.

Initially, the term decompositionτ(c) of a conceptc into a setC is defined, and then
the upwards expansion$(C) of C is performed. The term decomposition ofc is
defined as the set of all concepts included inc (if c is a complex concept, otherwise
this set includes onlyc) and all attributes of these concepts. If for example, the initial
conceptc is “dog” the term decomposition could be the setC = {dog, colour}. The
upwards expansion,$(C), involves the IS-A links of all elements inC.

Let u(c) be the set of nodes upwards reachable fromc, that isu(c) = $(τ(c)). The
reachable nodes shared by bothc1 andc2 areu(c1) ∩ u(c2). Then, we consider the
upward and downward directions in the graph asgeneralizationandspecialization
respectively. Three major desirable properties are considered in defining the simi-
larity function: (a) the cost of generalization should be significantly higher than the
cost of specialization, indicating that the similarity function cannot be symmetrical,
(b) the cost for traversing edges should be lower when nodes are more specific and
(c) further specialization implies reduced similarity.

simKnappe(c1, c2) = ρ
|u(c1) ∩ u(c2)|

|u(c1)| + (1− ρ)
|u(c1) ∩ u(c2)|

|u(c2)| (3.13)

whereρ ∈ [0, 1] determines the degree of influence of generalizations.

This measure scores between 1 (for matching concepts) and 0. The purpose of this
similarity measure is to introduce soft rather than crisp evaluation, since we usu-
ally want to look for similar rather than exactly matching values. Furthermore, the
idea of concept expansion leads the similarity matching towards a set comparison,
incorporating in the similarity measure the knowledge represented by the ontology.

The key properties of the similarity measures presented in the previous sections are
summarized in Table 3.1. We consider whether the similarity measures are affected by the
common characteristics of the compared concepts and whether the differences between the
concepts cause the measures to decrease. Furthermore, we think the relation of the simi-
larity measures with the taxonomy and the taxonomic relations, i.e. whether the position
of the concepts in the taxonomy and the number of IS-A links are considered. It is also
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presented whether the similarity measures are taking into account the information content
of the concepts, whether they are bounded or return infinite values, whether they are sym-
metric (i.e.,sim(c1, c2) = sim(c2, c1)), and whether they give different perspectives.
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Chapter 4

Conclusions

In this report, we discussed the sift towards the Semantic Web which justifies the need to
share knowledge between different information sources and thus the need to organize data
into ontologies. We then introduced the definition and the basic elements of an ontology,
along with some examples of ontologies and tools for their manipulation, followed by a
brief discussion of the way ontologies can be used. Furthermore, we presented aspects and
measures for comparing concepts.

We initially presented measures that consider only the taxonomic positions of the con-
cepts compared, and then we moved towards more sophisticated measures, which exploit
the information content of the concepts and the properties given to the concepts by the use
of the ontologies. These measures either use the subclass-superclass relation, the properties
describing the concepts, or both of them.

We think that the measures proposed in [50] and in [23, 22] seem to be the most effi-
cient, as they combine the attributes of the concepts with their taxonomic relations. Spe-
cially, the Knappemeasure is based on knowledge introduced in data by the use of on-
tologies and better adopt the idea of looking similar concepts, as it expands crisp values
into sets including more concepts. However, the efficiency of this measure remains to be
explored experimentally.
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