
Multi-agent System Architecture for Collaborative E-Commerce

Xiaojun Shen, Shervin Shirmohammadi, Chris Desmarais and Nicolas D. Georganas

 Distributed and Collaborative Virtual Environments Research Laboratory (DISCOVER)

School of Information Technology and Engineering (SITE)
University of Ottawa, Canada

email { shen | shervin | chrisd | georganas}@discover.uottawa.ca

Abstract

In this paper, we present the design and
implementation of and interdisciplinary research project
involving an intelligent agent-based framework for
collaborative e-commerce applications. A Multi-Agent
System (MAS) architecture for large collaborative e-
commerce environments is designed and developed,
where a number of geographically dispersed users
(customers/merchants) can participate.

1. Introduction
Existing e-commerce applications provide users with a

relatively simple, browser-based interface to access
available products and services. These applications often
lack in the emulation of the social factor. The customers
are mainly kept separated and everyone is shopping, as if
s/he was in an empty shop. Thus, customers are not
provided with the same shopping experience, as they
would be in an actual store or mall. Shopping is a social
activity people enjoy doing along with friends and
relatives. In particular, it is likely that shopping is an
activity that is socially facilitated, meaning that when
shopping in the company of others, people engage in it
more often and enjoy it more. Marathe [1] states “people
don’t like to shop in an empty store.” To substantiate this
opinion, he cites a survey, which shows that 90% of
shoppers prefer to communicate with others while
shopping. Warms et al [2] argue for shopping
communities because they “increase stickiness (customer
loyalty) [and] viral marketing (word of mouth), reduce
the cost of customer acquisition, and drive higher
transaction levels.” Considering the current growth of e-
commerce on the Web and the desire to make shopping as
easy, natural and enjoyable as possible, it would be
interesting to enhance the way people currently shop on
the Web by adding support for more collaboration
between customers and salespersons or among customers.
Therefore, providing an e-community web shopping
experience makes on-line shopping closer to the actual
experience people have in real shopping environments.
The industry has also acknowledged this concept, and is
now seriously looking at collaborative e-commerce. For
example, WebSphere Commerce Business Edition from

IBM provides features of real-time collaboration among a
group of buyers or sellers such that they could share
documents, discuss a contract and negotiate terms in a
private electronic workspace.

One of the advantages of applying e-communities in e-
commerce applications is the enhanced interactivity
between merchants and buyers, and between customers
and visitors. It enables online merchants to offer features
that are lacking in most of today's e-commerce stores. For
example, the community online shopping mall makes it
easy for storeowners to provide real-time customer
support, sales assistance, cross-selling, promotion and
individualized care that have traditionally been proven to
improve sales [3].

The purpose of this interdisciplinary research is to
design an intelligent agent-based framework for
collaborative e-commerce applications. We aim to
develop Multi-Agent System (MAS) architecture for large
collaborative e-commerce environments where a number
of geographically dispersed users (customers/merchants)
can participate. Collaborative commerce is realized by the
interactions among agents in the e-commerce community.
The rest of this paper is organized as follows. In section
II, a multi-agent system for collaborative commerce
implemented over Microsoft .NET framework is
proposed. Section III depicts the design and
implementation of e-commerce communities over the
proposed MAS system. Finally, the summary of the
presented research is described in the conclusion.

2. Multi-Agent System for Collaborative
Commerce

In order to maximize adaptability and flexibility in an e-
commerce environment, this paper proposes an
architecture for creating e-communities as a collection of
related agents - each agent responsible for a specific task.
By working together, the group of agents is able to solve
more complex system demands. By breaking a large e-
commerce system into sub-tasks, the entire system
becomes more encapsulated and adaptable. The ability to
solve complex requirements emerges from the
interoperation of different agents and potentially the
interoperation of different agent communities.

A. Generic Architecture for Agent-Based Collaborative

Commerce
In our previous work, the AGILE architecture was

proposed [4]. This is an architecture for agent-based
collaborative and interactive environments. This research
expands on the previous work. The proposed system
architecture is shown in Figure 1. It is divided into two
closely coupled logical modules: the information
exchange and the coordination among the system
components and the agents, and the design and
cooperation of the agents themselves. These agents are
used to interact with the user, offer a homogeneous
interface, and support collaborative work between
different users. The Agent Cluster, a surrogate of a user in
the distributed system, consists of a number of agents
(user agent, shopping agent, sales agent, etc.) which
provide the user with a homogeneous interface for
various activities. They also trace the user behaviors to
learn about the user’s preferences, to communicate with
other users, and to perform tasks for the user even after
s/he has logged out. The Directory provides distributed
white and yellow page services to deliver static
information about the locations and addresses of agents
and information databases, which are distributed on the
network. The Software Bus, which is designed based on
Microsoft .NET framework, is responsible for inter-agent
communications.

B. An Agent

In our context, an agent is a software component
running in distributed environments and capable of
performing independent actions to process requests from
other agents, or from external applications. The handling
of these requests will often require making new requests
of other agents in the system. An agent in the system has
three required elements (Figure 2): an address, a logic
component, and a published interface. Almost all agents
will also have a name property.

Address

The address property is used to locate the agent in the
distributed environment. The proposed system in this
paper is implemented over Microsoft .Net framework,
and in that environment the address is an http address (ie.
http://demomachine:5050/demoAgent).

Logic Component

The logic component is fairly open. Behind the agent
interface there needs to be an application that will handle
the request. Whether an old legacy system, or entirely
new code, there is something behind the interface that
handles the request and creates reasonably intelligent
responses to requests. There is no hard requirement as to
how this is done; it may be as simple as a database

lookup or calculation, or it may require the use of
complex machine learning algorithms. The logic required
for a specific agent is dictated by the needs of that agent,
and the types of requests it is expected to handle.

S o ftw a re B u s

In fo rm a tio n D a ta base

P u b lic In te rfa ce

D ire c to ry

In fo rm a tion D a ta base

D ire c to ry

A g e n t
C lu s te r

P u b lic In te rfa ce

A g e n t
C lu s te r

U se r 1 U se r 2

Figure 1 Generic Architecture of Agent-Based Collaborative Commerce

Figure 2 Agent Overview

Interface
The interface property is what allows other agents or

external applications to communicate with and access the
agent. The approach is to use standardized generic
interfaces. Typically, this involves writing an interface
structure that will be used by several different types of
agents. Communication among agents is achieved
through an agent communication language: the
Knowledge Query Manipulation Language (KQML) [5].

C. Agent-Based Community

A community, in the proposed architecture, is a group
of related agents (Figure 3). Agents in a community are
realized using the interfaces required by that specific
community, and expect other agents in that community to
understand the known interfaces. The agents in a
community are also expected to share Naming Service
Agents, so that agents (and applications) can find other
agents in the community. By grouping agents inside
communities, other agents and applications are able to
find and make use of the agents in that community. There
are a few other types of agents in a typical community.
Naming Service Agent

The Naming Service Agent is a special purpose agent
that exists to maintain system knowledge of the existence
of agents in a community. The naming service is
responsible for maintaining its own knowledge about the

http://demomachine:5050/demoAgent

agents in a community (typically by simply servicing
add/remove agent requests that are sent from other agents
when they enter or leave the system). It then shares this
knowledge when an authorized agent or application needs
to find an agent.

The reason the Naming Service Agent is an integral part
of a community is that it is the only agent that will always
be known by its address. Agents are typically transient,

able to move, enter or leave a community based on the
specific tasks of the agent. Because the Naming Service
Agent provides access to other agents in a community,
Naming Service Agents actually define what agents exist
in a specific community and the boundaries of what exists
within its community.

Figure 3 Agent-Based Community

In many cases, a simple address lookup will be
insufficient for community needs. When security or
privacy control is required by a community a ticket
generating server will act as a naming service.
Commonly, naming services and ticket generators allow
agents to find and contact resources in a community.
The exact mechanics differ according to community
needs.
Directory Agent

Directory Agents provide known lists of agents that
have registered to perform a specific task. All agents
capable of taking orders might register with a single
agent that keeps a list of “order taking” agents. This is
similar to the job done by the Naming Service Agent,
but all agents in a community should register with the
Naming Service Agent and only agents that want
specific requests should register with a Directory Agent.
Directory agents usually have interface methods for
adding and removing agents.
Simple Agent

Simple Agents are agents that perform a very specific
task of processing requests without maintaining data
about the other agents in the system. They are aware of
the Naming Service agent because they will usually
register when they enter or leave a system. They may
also be aware of Directory Agents for similar reasons. A
Simple Agent is simple because it can process some

requests without relying on other agents. Simple agents
require methods directly related to their purpose
Application Agent

Application Agents are agents that process requests by
coordinating sub-requests sent to other agents. Typically
this means parsing a single request (sent to the
Application Agent) into several sub-requests which are
passed to other agents, the application agent then does
some of its own calculation, and passes the result back
to the original requester. If the community is privacy
controlled, then part of this calculation will be filtering
responses according to the purposes in the Pluto session.
Application agents require interface methods for their
purpose, and they also typically need access to a
directory service in order to find agents to handle sub-
requests. These types of agents are not mutually
exclusive, hybrid agents that are combinations of these
types of agents are expected. An application agent might
maintain its own list of simple agents, and act as a
hybrid Directory/Application agent for example. These
agent types are helpful in classifying agents, and
understanding the interface requirements of an agent.

D. Inner-Community Co-operation

By itself, the basic architecture has several benefits,
but this architecture is also designed to take advantage
of the possibility that agents could exist in multiple
communities at the same time. In order for an agent to

belong to a community, it has to register with that
community’s Naming Service Agent and it has to adapt
an interface that the community understands.

Registering with a new naming service is fairly
simple. In order to register, the agent must have a
unique name for that community and an address.
Assuming these two criteria can be met, the Naming
Service can add it to its list of agents in that community.
In Secure or Privacy controlled communities, this will
be complicated by the need to exchange private keys
and permissions.

The interface requirement is usually more difficult to
satisfy. There is no reason to assume that all
communities will have similar requirements, so there
may be some non-trivial work. Typically, there are two
solutions. The first is using generic interfaces. The
possibility of sharing interfaces across multiple
communities is, after all, the reason why generic
interfaces exist. If two communities expect the same
generic interfaces from their agents, then adding an
existing agent to a new community is simply a matter of
notifying the Naming Service Agent in the new
community. The other option is that new interfaces be
added to existing agents. The agent interface is kept
separate from the agent logic, so new interfaces should
have minimal impact on the actual agent logic. There
may be some new logic required, but agents are
designed for a particular purpose and moving into a new
community shouldn’t change the agent’s purpose.
Because the purpose is unlikely to change, the majority
of the logic should remain intact. Adding an agent to a
new community should require, at worst, creating a new
interface, that the new environment understands, and
reusing existing logic.

3. E-commerce Communities

Once registered with the system, users log on to the e-
commerce e-community using a web browser. The
system hosts a user profile agent for each user that
stores user interest information in a hierarchy. This
profile is transparent to the user and is created
automatically, but the user does also have complete
control of what it contains and can set each interest to
be private, restricted, or public. In the case of private
interests, no other community member (buyer,
salesperson) knows that the user has such interest. On
the other hand, users can share public or restricted
interests with other e-community members. Customers
with common interests may open communication
channels to share the shopping experience. Adaptive
personal agent is an ideal solution for finding a user’s
personalized information. Because these agents can
initiate tasks without explicit user prompting, they can
undertake tasks in the background, such as searching for
information. Since agents learn from experience, their

knowledge of an individual increases over time, leading
to improved accuracy of community data, including
information about goods, customers, and contacts. In
addition, by sharing their domain’s public knowledge
with other agents, they contribute further to the overall
community knowledge. Another type of agent, the
Contact-finding agent, can locate members with
distinct interests or competencies so that users can find
experts in a given sub-domain or other members with
interests similar to their own. Lastly, Collaborative-
filtering agents specialize in promoting interaction
among community members, allowing sharing of
information among those who share the same interests.

4. Conclusion

Electronic commerce is becoming a major component
of business transactions. With the creation and use of a
collaborative commerce environment, the users can
experience more and more functionalities that they
encounter in a real-world shopping. The work presented
here has significant impact on the practical applications
of intelligent-agent-based e-communities of buyers and
vendors in the industry.

Acknowledgements
The authors acknowledge the financial support of IBM
Canada and the Ontario Research Network for
Electronic Commerce.

References
[1] J. Marathe, "Creating Community Online", Durlacher
Research Ltd, 1999,
[2] A. Warms, J. Cothrel, T. Underberg, "Return on
Community: Proving the Value of Online Communities in
Business", Participate.com, April 12, 2000.
[3] X. Shen, T. Radakrishnan and N.D. Georganas, “vCOM:
Electronic Commerce in a Collaborative Virtual World”, J. of
Electronic Commerce Research and Applications, Vo.1, No.3-
4, Aut.-Winter2002, pp. 281-300.
[4] Y. Zhang, L. Guo and N.D. Georganas, “AGILE: An
Architecture for Agent-Based Collaborative and
InteractiveVirtual Learning Environments”, Proc. IEEE
Globecom 2000 Conference, San Francisco, 2000.
[5] T. Finin Et al, “KQML as an Agent Communication
Language”. Proc. of the Third International Conference on
Information and Knowledge Management (CIKM), ACM
Press, November 1994.

	C. Agent-Based Community

