Synthesis of 3-Arylpropylamine Derivatives from Aryl Halides Using Heck Reaction

Gi Hyeon Baek, Sung Ju Cho, Young Sik Jung, Churl-Min Seong, Chang-Woo Lee, and No-Sang Park*
Bioorganic Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yusong, Taejon 305-606, Korea
Received November 27, 1998

As a part of our research directed toward the development of new capsaicinoids as analgesics, ${ }^{1}$ we found that N-(3-phe-nylalkyl)-homovanillic amide $\mathbf{1}$ has excellent in vivo analgesic activity in mice model test and the results of our study were published. ${ }^{2}$ In the reports, we emphasized that the chain length of phenylalkyl part of $\mathbf{1}$ is critical to provide high analgesic activity and three-carbon length ($\mathrm{n}=1$) is optimal. In the continuing our efforts to investigate further structural requirements, we have focused on the synthesis of 3-arylpropylamine derivative $\mathbf{2}$, which is a key intermediate for synthesis of $\mathbf{1}$.

1

2

Our initial attempt to synthesize 2 began with two-carbon homologation of substituted benzylchloride $\mathbf{3}$ using malonate chemistry to give 3 -arylpropionic acid $\mathbf{6}$, which was converted to corresponding amine $\mathbf{8}$ (eq. 1). ${ }^{3}$ Palladium-catalyzed hydrogenation of substituted cinnamic acid 4 also gave 3-arylpropionic acid 6, but the commercially available 4 is limited (eq. 2). ${ }^{3}$ Meerwein reactions of arylamine 5 with acrylonitrile in the presence of copper halide (I) or (II) catalyst gave α-halo- β-arylpropionitrile 7 and then LiAlH_{4} reduction of 7 provided corresponding amine 8 . However, apperance of Sandmeyer reaction type product and removal of the undesired halogen group of 7 were problematic (eq. 3). ${ }^{4}$

The palladium-catalyzed coupling of aryl or vinyl halide with olefin, which was discovered by R. F. Heck in the late sixties, has been a convenient method for forming carboncarbon bonds in organic synthesis. ${ }^{5}$ The direction of addition of aryl halide to olefin appears to be sterically controlled.

However, in the case of α, β-unsaturated carbonyl, addition of aryl halide generally takes place predominantly on the electronically demanding β-carbon. Even in the literature, many reaction examples of aryl halide with variety of olefins are reported, but reactions of aryl halide with acrylamide and their further reactions to 3-arylpropylamine are rare. ${ }^{6}$ Herein, we report a facile synthesis of $\mathbf{2}$ through three consequent steps; (1) Heck reactions of aryl halide and acrylamide, (2) palladium-catalyzed hydrogenation of 3arylacrylamide, and (3) LiAlH_{4} reduction of 3-arylpropionamide.

3-Arylacrylamide 11a, 11b, 11e were obtained in high yields from either aryl iodide $\mathbf{9}$ or bromide $\mathbf{1 0}$ under typical Heck reaction condition using $\mathrm{Pd}(\mathrm{OAc})_{2}$, tri-o-tolylyphosphine, and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{MeCN} .{ }^{5}$ However, reaction of sterically bulky aryl bromide $\mathbf{1 0}$ having methyl substituent at C-2 or C-6 position (11c, 11d) was not completed within 2 days and gave low yields (Table 1). 3-Arylpropylamine $\mathbf{8}$ was obtained from 11 through conventional palladium-catalyzed hydrogenation followed by LiAlH_{4} reduction. Even though LiAlH_{4} reduction of $\mathbf{1 1 a}$ could give 8a directly, the yield was lower (56%) than the combined yields $(90 \%, 86 \%)$ of two separated steps. Table 2 shows the synthesis of 3,3-diarypropylamine $\mathbf{1 3}$. The introduction of second aryl group to 11 was also done by Heck reaction conditions to provide 3,3-diaryl substituted acrylamides $\mathbf{1 2}$. The Heck reactions were slowly occurred at reflux condition in DMF or ODCB as moderate yields. Even though $\mathbf{1 2}$ might exist as regioisomeric mixture ($E v s . Z$), we could not distinguish clearly whether $\mathbf{1 2}$ was isomeric mixture or not by ${ }^{1} \mathrm{H}$ NMR. 12 gave 3,3-diarylpropylamine $\mathbf{1 3}$ as described for $\mathbf{8}$. Finally, 3arylpropylamine $\mathbf{1 6}$ or $\mathbf{2 0}$ which has methyl group on aliphatic chain was provided from 14 or $\mathbf{1 7}$ (Scheme 1).

Table 1. Synthesis of 3-Arylpropylamines $\mathbf{8}$ from Arylhalides and Acrylamide

			$\frac{\mathrm{Pd}-\mathrm{C}, \mathrm{MeC}}{\mathrm{THF}}$	
9 or 10	11	(time, yield)	11 to 8 (yield)	
			step (i)	step (ii)
$3,4-\mathrm{Me}_{2}-\mathrm{PhI}$	11a	1h, 92%	90\%	86\%
$3-\mathrm{Me}, 4-\mathrm{F}-\mathrm{PhBr}$	11b	24h, 92\%	96\%	79\%
2,4,5-Me ${ }_{3}-\mathrm{PhBr}$	11c	2days, 63\%	93\%	82\%
2,3,5,6-Me4-PhBr	11d	2days, 25%	87\%	90\%
1-Bromonaphthalene	11e	6h, 89\%	96\%	61\%

Table 2. Synthesis of 3,3-Diarylpropylamine 13 from 3-Arylacrylamide $\mathbf{1 1}$ and Aryl iodide 9

Scheme 1. (a) $\mathrm{Pd}(\mathrm{OAc})_{2}$, Tri-o-tolylphosphine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}$, reflux. (b) $\mathrm{H}_{2} / 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$. (c) LiAlH_{4}, THF, r.t. (d) $\mathrm{NH}_{2} \mathrm{OH}-$ $\mathrm{HCl}, \mathrm{NaHCO}_{3}$.

In summary, we could obtain 3-arylpropylamine 8, 16, 20 and 3,3-diarylpropylamine $\mathbf{1 3}$ from aryl halide $\mathbf{9}, \mathbf{1 0}$ or $\mathbf{1 1}$ through three consequent steps including Heck reaction.

Experimental Section

All reactions were carried out under N_{2} atmosphere unless otherwise noted. MeCN was distilled from CaH_{2} prior to use. Organic extracts or filtrates were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Column chromatography was performed with Merck-EM Type 60 (230-400 mesh) silica gel (flash). ${ }^{1} \mathrm{H}$ NMR spectra were measured by Varian Gemini 200 MHz spectrometer. Chemical shifts are reported in ppm (δ) relative to TMS as internal standard. Mass spectrometric data determined by use of the electron impact (EIMS) method are reported as $\mathrm{m} /$ z (relative intensity). Melting points were uncorrected.

General method of Heck reaction. A mixture of aryl halide, acrylamide (1.1 equivalent of aryl halide), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (1 to $4 \mathrm{~mol} \%$ of aryl halide), tri-o-tolylphosphine (4 to 10 $\mathrm{mol} \%$ of aryl halide), and $\mathrm{Et}_{3} \mathrm{~N}$ (1.1 to 1.5 equivalent of aryl halide) in MeCN, DMF, or ODCB was heated at reflux temperature. The reaction was monitored by TLC. The mixture was passed through a celite pad. Water was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give a crude solid which was recrystallized from $\mathrm{EtOAc} / \mathrm{n}$-hexane.

3-(3,4-Dimethylphenyl)acrylamide 11a. A mixture of 4-iodo- o-xylene ($30.21 \mathrm{~g}, 0.13 \mathrm{~mol}$), acrylamide $(11.54 \mathrm{~g}, 0.16$ $\mathrm{mol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.29 \mathrm{~g}, 1.3 \mathrm{mmol})$, tri-o-tolylphosphine
$(1.58 \mathrm{~g}, 5.2 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(23 \mathrm{~mL}, 0.16 \mathrm{~mol})$ in MeCN $(54 \mathrm{~mL})$ was heated at $100-105^{\circ} \mathrm{C}$ for 1 h . The mixture was passed through a celite pad. Water was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give a crude solid. The crude was recrystallized from $\mathrm{EtOAc} / \mathrm{n}$-hexane to give 11a ($20.87 \mathrm{~g}, 92 \%$) as a white solid: mp $136-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.85(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}), 6.05$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 6.41 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 7.09 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.25 (s, 1H, ArH), 7.56 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$); EIMS m/z $175\left(\mathrm{M}^{+}\right), 160,129,115$.

3-(4-Fuoro-3-methylphenyl)acrylamide 11b. Reaction of 5-Bromo-2-fluorotoluene ($2.27 \mathrm{~g}, 12 \mathrm{mmol}$), acrylamide $(1.02 \mathrm{~g}, 14.4 \mathrm{mmol}), \operatorname{Pd}(\mathrm{OAc})_{2}(54 \mathrm{mg}, 0.24 \mathrm{mmol})$, tri- o tolylphosphine ($219 \mathrm{mg}, 0.72 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}$, 14.4 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was carried out for 24 h as described for 11a. The crude solid was recrystallized from $\mathrm{EtOAc} / \mathrm{n}$-hexane to give $\mathbf{1 1 b}(2.0 \mathrm{~g}, 92 \%)$ as a white solid: $\mathrm{mp} 130-131{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 6.58 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.47$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 7.18-7.59 (m, 3H, ArH); EIMS m/z (rel. intensity) 179 (M^{+}, 56), 178 (100), 164 (62), 163 (63), 135 (60), 133 (87), 115 (77).

3-(2,4,5-Trimethylphenyl)acrylamide 11c. Reaction of 5-Bromo-1,2,4-trimethylbenzene ($3.0 \mathrm{~g}, 15.1 \mathrm{mmol}$), acrylamide $(1.18 \mathrm{~g}, 16.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(68 \mathrm{mg}, 0.3 \mathrm{mmol})$, tri-$o$-tolylphosphine ($275 \mathrm{mg}, 0.9 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(1.83 \mathrm{~g}, 18.1$ mmol) in DMF (15 mL) was heated at $140-150{ }^{\circ} \mathrm{C}$ for 2 days. The reaction mixture was passed through a celite pad and the filtrate was concentrated by vacuum distillation. Water was added and the mixture was extracted with EtOAc . The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude solid was recrystallized from EtOAc/n-hexane to give 11c ($1.8 \mathrm{~g}, 63 \%$) as a white solid: mp 118-120.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.28\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.36(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $5.53\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.32(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $6.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.88(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH})$.

3-(2,3,5,6-Tetramethylphenyl)acrylamide 11d. Reaction of 1-bromo-2,3,5,6-tetramethylbenzene ($3.0 \mathrm{~g}, 14$ mmol), acrylamide ($1.10 \mathrm{~g}, 15.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(63 \mathrm{mg}$, 0.28 mmol), tri-o-tolylphosphine ($0.26 \mathrm{~g}, 0.85 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ $(1.71 \mathrm{~g}, 17 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ was heated at $140-150$ ${ }^{\circ} \mathrm{C}$ for 2 days as described for 11c. The crude solid was recrystallized from EtOAc/n-hexane to give 11d $(0.68 \mathrm{~g}$, 25%) as a white solid: mp $216-217{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $2.19\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 5.60\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 5.93 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.97$ (s, 1H, ArH), 7.82 (d, $J=16.1 \mathrm{~Hz}, \mathrm{ArCH})$.

3-Naphthalen-1-ylacrylamide 11e. Reaction of 1-bromonaphthalene ($2.0 \mathrm{~g}, 9.7 \mathrm{mmol}$), acrylamide $(0.75 \mathrm{~g}, 10.6$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(44 \mathrm{mg}, 0.19 \mathrm{mmol})$, tri-o-tolylphosphine $(176 \mathrm{mg}, 0.58 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.72 \mathrm{~g}, 11.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ was carried out for 6 h as described for

11a. The crude solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ nhexane to give $\mathbf{1 1 e}(1.69 \mathrm{~g}, 89 \%)$ as a white soild: $\mathrm{mp} 177-$ $178.5{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 6.65(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 7.20 (br s, 1H, NH2), 7.51-7.61 (m, 3H, ArH), 7.65 (br $\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 7.76-7.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.95-7.99(\mathrm{~m}, 2 \mathrm{H}$, ArH), 8.18-8.23 (m, 1H, ArH), $8.20(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH); EIMS m/z (rel. intensity) 197 ($\mathrm{M}^{+}, 19$), 155 (67), 154 (100).

General Method of Hydrgenation Reaction of Acrylamide. A mixture of acrylamide and $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%$ of acrylamide) in MeOH was stirred under H_{2}. The reaction mixture was passed through a celite pad and the filtrate was concentrated to give a crude propionamide which was recrystallized from $\mathrm{EtOAc} / \mathrm{n}$-hexane.

General Method of LiAlH_{4} Reduction of Propionamide. To a mixture of LiAlH_{4} in THF was added a solution of propionamide in THF, and the mixture was stirred at r.t. or heated at reflux temperature. $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$ followed by 1 N NaOH solutions were added and the resulting mixture was passed through a celite pad. The filtrate was concentrated under reduced pressure and purified by vacuum distillation.
3-(3,4-Dimethylphenyl)propylamine 8a. A mixture of 11a ($0.11 \mathrm{~g}, 0.63 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(0.02 \mathrm{~g})$ in $\mathrm{MeOH}(5$ mL) was stirred under H_{2} balloon for 2 h . The reaction mixture was passed through a celite pad and the filtrate was concentrated to give a crude 3-(3,4-dimethylphenyl)propionamide $(0.10 \mathrm{~g}, 90 \%)$ as a white solid: $\mathrm{mp} 115-117{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.21\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{ArCH}_{3}\right), 2.49(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $2.88\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.02$ (br s, 1H, NH), 6.89-7.25 (m, 3H, ArH).

To a mixture of $\mathrm{LiAlH}_{4}(10.17 \mathrm{~g}, 0.268 \mathrm{~mol})$ in THF (290 mL) was added a solution of 3-(3,4-dimethylphenyl)propionamide ($19.3 \mathrm{~g}, 0.109 \mathrm{~mol}$) in THF (160 mL), and the mixture was heated at reflux temperature for 5 h . $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$ followed by 1 N NaOH solutions were added and the resulting mixture was passed through a celite pad. The filtrate was concentrated under reduced pressure and purified by vacuum distillation to give $\mathbf{8 a}(15.3 \mathrm{~g}, 86 \%)$: bp $140-150{ }^{\circ} \mathrm{C}(0.5$ $\mathrm{mmHg}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.32\left(\right.$ br s, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 1.74$ (quint, $J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.59\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.91-7.06 (m, 3H, ArH).

3-(4-Fuoro-3-methylphenyl)propylamine 8b. A mixture of 11b ($1.4 \mathrm{~g}, 7.8 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(0.14 \mathrm{~g})$ in MeOH (20 mL) was carried out for 24 h as described for $\mathbf{8 a}$ to give 3-(4-fuoro-3-methylphenyl)propionamide ($1.36 \mathrm{~g}, 96 \%$) as a white solid: mp 93-94 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.23(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.48\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 5.40 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.84-7.01 (m, 3H, ArH); EIMS m / z (rel. intensity) $181\left(\mathrm{M}^{+}, 37\right), 136$ (54), 123 (100).

Reaction of 3-(4-fuoro-3-methylphenyl)propionamide $(1.21 \mathrm{~g}, 6.2 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(47 \mathrm{mg}, 12.4 \mathrm{mmol})$ was carried out as described for 8a, and the crude was purified by vacuum distillation to give $\mathbf{8 b}$ ($820 \mathrm{mg}, 79 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 1.71$ (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.58\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.69$
(t, J=7.3 Hz, 2H, CH2), 6.83-7.00 (m, 3H, ArH); EIMS m/z (rel. intensity) 167 ($\mathrm{M}^{+}, 4$), 166 (18), 150 (23), 135 (19).

3-(2,4,5-Trimethylphenyl)propylamine 8c. A mixture of $11 \mathrm{c}(1.79 \mathrm{~g}, 9.47 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.18 \mathrm{~g})$ in MeOH (20 mL) was carried out for 24 h as described for 8a to give 3-(2,4,5-trimethylphenyl)propionamide ($1.68 \mathrm{~g}, 93 \%$) as a white solid: mp $143-147{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.18(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$), $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.90$ (t, J=7.3 Hz, 2H, CH 2), 5.34 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.90(\mathrm{~s}, 2 \mathrm{H}$, ArH); EIMS m/z (rel. intensity) 191 (${ }^{+}$, 74), 174 (45), 146 (29), 133 (100).

Reaction of 3-(2,4,5-trimethylphenyl)propionamide (1.63 $\mathrm{g}, 8.63 \mathrm{mmol}$) and LiAlH_{4} was carried out as described for 8a, and the crude was purified by column chromatography to give $8 \mathbf{c}(1.24 \mathrm{~g}, 82 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.69$ (quint, $\left.J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.34$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.56\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.75(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 6.90 (s, 2H, ArH); EIMS m/z (rel. intensity) 177 ($\mathrm{M}^{+}, 7$). 160 (47), 145 (100), 133 (28).

3-(2,3,5,6-Tetramethylphenyl)propylamine 8d. A mixture of $11 \mathbf{d}(680 \mathrm{mg}, 3.49 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(70 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{~mL}$) was carried out for 24 h as described for $\mathbf{8 a}$ to give 3-(2,3,5,6-tetramethylphenyl)propionamide (650 mg , 87%) which was used for next step without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.24\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.39(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.08\left(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.38(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, NH_{2}), 6.89 (s, 2H, ArH).

Reaction of 3-(2,3,5,6-tetramethylphenyl)propionamide ($650 \mathrm{mg}, 3.38 \mathrm{mmol}$) and LiAlH_{4} was carried out as described for $\mathbf{8 a}$, and the crude was purified by vacuum distillation using Kugelrohr apparatus to give 8d (580 mg , 90%) as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.65$ (quint, $\left.J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.20\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.22\left(\mathrm{~s}, 2 \mathrm{CH}_{3}\right)$, $2.69\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.83\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.84 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$).

3-Naphthalen-1-ylpropylamine 8e. A mixture of 11e $(1.69 \mathrm{~g}, 8.48 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(160 \mathrm{mg})$ in $\mathrm{MeOH}(20$ mL) was carried out for 24 h as described for $\mathbf{8 a}$ to give 3-naphthalen-1-ylpropionamide ($650 \mathrm{mg}, 87 \%$) which was used for next step without further purification: mp 99-101 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.48\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.29(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $6.83\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.35-7.58(\mathrm{~m}, 4 \mathrm{H}$, ArH), 7.60-7.79 (m, 1H, ArH), 7.90-7.95 (m, 1H, ArH), 8.07-8.12 (m, 1H, ArH); EIMS m/z 199 (${ }^{+}$, 32), 153 (79), 141 (100).
Reaction of 3-naphthalen-1-ylpropionamide ($1.60 \mathrm{~g}, 8.04$ $\mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(603 \mathrm{mg}, 15.9 \mathrm{mmol})$ was carried out as described for $8 \mathbf{8 a}$, and the crude was purified by column chromatography to give $\mathbf{8 e}(910 \mathrm{mg}, 61 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.88$ (quint, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $2.80\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.10(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.30-7.54 (m, 4H, ArH), 7.67-7.71 (m, 1H, ArH), 7.79-7.85 (m, 1H, ArH), 8.02-8.08 (m, 1H, ArH).

3-Phenyl-3-m-tolylacrylamide 12a. Reaction of 3-phenylacrylamide ($2.2 \mathrm{~g}, 14.7 \mathrm{mmol}$) and iodobenzene in ODCB was carried out for 24 h as described for 11a to give 12a (2.6 $\mathrm{g}, 75 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 5.14$ (br s,
$1 \mathrm{H}, \mathrm{NH}$), 5.57 (br s, 1H, NH), 6.38 (s, 1H, ArCH), 7.04-7.48 (m, 9H, ArH); EIMS m/z (rel. intensity) $237\left(\mathrm{M}^{+}, 63\right), 236$ (100), 178 (56), 115 (33).

3-(2,3-Dimethylphenyl)-3-phenylacrylamide 12b. A solution of 3-phenylacrylamide ($1.5 \mathrm{~g}, 10.1 \mathrm{mmol}$), 3-iodo-o-xylene ($2.8 \mathrm{~g}, 12.1 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(45 \mathrm{mg}, 0.2 \mathrm{mmol})$, tri-o-tolylphosphine ($185 \mathrm{mg}, 0.6 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~g}$, $12.2 \mathrm{mmol})$ in ODCB $(20 \mathrm{~mL})$ was heated at reflux temperature for 2 days. The reaction mixture was passed through a pad of celite and the filtrate was concentrated in vacuo. Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and purified by column chromatography to give $\mathbf{1 2 b}(1.4 \mathrm{~g}, 55 \%)$ as a white solid: mp 138-140 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 2.18$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}$), 6.01 (s, $1 \mathrm{H}, \mathrm{CH}$), 7.07-7.37 (m, 10H, NH2, ArH); EIMS m/z (rel. intensity) 251 (M^{+}, 22), 236 (90), 206 (100).

3-(3,4-Dimethylphenyl)-3-(4-fluoro-3-methylphe-

 nyl)acrylamide 12c. Reaction of 3-(4-fluoro-3-methylphenyl)acrylamide $\mathbf{1 1 b}$ ($180 \mathrm{mg}, 1.00 \mathrm{mmol}$), 4-iodo-o-xylene ($280 \mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{mg}, 0.02 \mathrm{mmol})$, tri- $-\mathrm{O}_{-}$ tolylphosphine ($18.3 \mathrm{mg}, 0.06 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(122 \mathrm{mg}$, 1.2 mmol) in DMF (10 mL) was carried out for 3 days as described for 12b to give 12c ($270 \mathrm{mg}, 95 \%$) as a white solid: mp 99-100 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 2.30$ (s, 9H, $3 \mathrm{CH}_{3}$), 6.43 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 6.94-7.22 (m, $8 \mathrm{H}, \mathrm{NH}_{2}, \mathrm{ArH}$); EIMS m/z (rel. intensity) 284 ($\mathrm{M}^{+}, 26$), 283 (100), 282 (100), 286 (50), 267 (39), 239 (34), 133 (48).3-Phenyl-3-thiophen-3-yl-acrylamide 12d. Reaction of 3-thiophen-3-yl-acrylamide ($1.46 \mathrm{~g}, 9.5 \mathrm{mmol}$) and iodobenzene was carried out in DMF for 3 days as described for 11b to give $\mathbf{1 2 d}(1.1 \mathrm{~g}, 51 \%)$ as a white solid: mp 131-133 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 5.30\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.42$ (s, $1 \mathrm{H}, \mathrm{CH}$), 6.88-7.50 (m, 8H, ArH); EIMS m/z (rel. intensity) 229 (${ }^{+}$, 95), 184 (100), 152 (37), 139 (26).

3-Phenyl-3-m-tolylpropylamine 13a. A mixture of 12a ($2.6 \mathrm{~g}, 11 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH was carried out for 17 h as described for 8a to give 3-phenyl-3-m-tolylpropionamide ($2.4 \mathrm{~g}, 91 \%$) as a white solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.91\left(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.48(\mathrm{t}, 1 \mathrm{H}$, $J=7.7 \mathrm{~Hz}, \mathrm{CH}$), 5.29 (br s, 2H, NH2), 6.96-7.31 (m, 9H, ArH); EIMS m/z (rel. intensity) 239 (M^{+}, 54), 194 (49), 181 (100), 167 (65), 166 (70), 165 (73).

Reaction of 3-phenyl-3-m-tolylpropionamide $(2.4 \mathrm{~g}, 10$ mmol) and LiAlH_{4} was carried out as described for $\mathbf{8 a}$ to give 13a ($2.24 \mathrm{~g}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, NH_{2}), 2.10-2.21 (m, 2H, CH2), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.63(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), $3.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.94-7.25$ (m, 9H, ArH); EIMS m/z (rel. intensity) 225 ($\mathrm{M}^{+}, 9$), 208 (51), 193 (100), 166 (72), 165 (75).

3-(2,3-Dimethylphenyl)-3-phenylpropylamine 13b. A mixture of $\mathbf{1 2 b}(800 \mathrm{mg}, 3.2 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH was carried out for 22 h as described for 8a to give 3-(2,3-dimethylphenyl)-3-phenylpropionamide ($800 \mathrm{mg}, 98 \%$) as crude which was used for next step without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.90(\mathrm{~d}, \mathrm{~J}=7.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.35(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$,
NH_{2}), 7.03-7.29 (m, 8H, ArH); EIMS m/z (rel. intensity) 253 ($\mathrm{M}^{+}, 56$), 195 (99), 180 (100), 179 (94), 165 (68).

Reaction of 3-(2,3-dimethylphenyl)-3-phenylpropionamide ($830 \mathrm{mg}, 3.3 \mathrm{mmol}$) and LiAlH_{4} was carried out as described for 8a to give 13b ($800 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.84$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 2.10-2.28 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.70(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.02-7.33(\mathrm{~m}, 8 \mathrm{H}$, ArH); EIMS m/z (rel. intensity) 240 (M^{+}, 18), 208 (59), 207 (100), 179 (72), 165 (87).

3-(3,4-Dimethylphenyl)-3-(4-fluoro-3-methylphe-

nyl)propylamine 13c. A mixture of 12c $(250 \mathrm{mg}, 0.9$ mmol) and $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH was carried out for 20 h as described for 8a to give 3-(3,4-dimethylphenyl)-3-(4-fluoro-3-methylphenyl)propionamide ($240 \mathrm{mg}, 96 \%$) as a white solid: mp 100-101 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.21(\mathrm{~s}, 9 \mathrm{H}$, $\left.3 \mathrm{CH}_{3}\right), 2.89\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 5.25 (br s, 2H, NH2), 6.85-7.08 (m, $6 \mathrm{H}, \mathrm{ArH}$); EIMS m / z (rel. intensity) $285\left(\mathrm{M}^{+}, 42\right), 240$ (36), 228 (39), 227 (100), 225 (21), 212 (32), 221 (22).

Reaction of 3-(3,4-dimethylphenyl)-3-(4-fluoro-3-methylphenyl)propionamide ($240 \mathrm{mg}, 0.84 \mathrm{mmol}$) and LiAlH_{4} was carried out as described for 8a to give 13c (190 mg , $83 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.46$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $2.15(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.05-2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.87-7.04$ (m, 6H, ArH); EIMS m/z (rel. intensity) $277\left(\mathrm{M}^{+}, 6\right), 254$ (24), 240 (20), 239 (100), 197 (39), 176 (21).

3-Phenyl-3-thiophen-3-yl-propionamine 13d. A mixture of $\mathbf{1 2 d}(400 \mathrm{mg}, 1.92 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was carried out for 24 h as described for $\mathbf{8 a}$ to give 3-phenyl-3-thiophen-3-yl-propionamide (330 mg , $75 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.83$ (dd, $J=14.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 2.96 (dd, $J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.59$ (t, $J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH})$, 6.88-6.91 (m, 1H, ArH), 6.98-7.00 (m, 1H, ArH), 7.19-7.29 (m, 6H, ArH).

Reaction of 3-phenyl-3-thiophen-3-yl-propionamide (320 $\mathrm{mg}, 1.38 \mathrm{mmol}$) and LiAlH_{4} was carried out as described for 8a to give $\mathbf{1 3 d}(160 \mathrm{mg}, 54 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 2.15-2.25 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.64-2.71 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$ and NH_{2}), $4.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.87-6.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.97-$ 6.99 (m, 1H, ArH), 7.16-7.30 (m, 6H, ArH); EIMS m/z 217 ($\mathrm{M}^{+}, 7$), 200 (80), 185 (27), 173 (61), 71 (100).

3-(3,4-Dimethylphenyl)-2-methyl-2-propenamide 15. Reaction of 4-iodo-o-xylene 9 ($10.0 \mathrm{~g}, 43.1 \mathrm{mmol}$), methacrylamide $14(9.0 \mathrm{~g}, 107 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.4 \mathrm{~g}, 1.8$ mmol), tri- o-tolylphosphine ($1.0 \mathrm{~g}, 3.3 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(15$ $\mathrm{mL}, 107 \mathrm{mmol})$ in MeCN $(15 \mathrm{~mL})$ was carried out for 15 h as described for 11a. The crude was recrystallized (EtOAc/ n-hexane) to give $\mathbf{1 5}$ ($6.3 \mathrm{~g}, 77 \%$) as a white solid: $\mathrm{mp} 84-86$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.26(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$), $5.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.94\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.11-7.35(\mathrm{~m}$, 3H, ArH); EIMS m/z (rel. intensity) 189 ($\mathrm{M}^{+}, 56$), 188 (50), 174 (87), 144 (66), 128 (100), 115 (55), 91 (35), 77 (37).

3-(3,4-Dimethylphenyl)-2-methyl-2-propanamine 16. Reaction of 3-(3,4-dimethylphenyl)-2-methyl-2-propenamide 15 ($5.4 \mathrm{~g}, 28.6 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \%)$ in MeOH (160
mL) was carried out for 3 h as described for 8a to give 3-(3,4-dimethylphenyl)-2-methyl-2-propanamide ($5.4 \mathrm{~g}, 99 \%$) as a crude which was used for next step without further purification: mp 95-96 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.18(\mathrm{~d}, J=6.0$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.22\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.46-2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.88-2.94 (m, 1H, CH), 5.27 (br s, 1H, NH), 5.50 (br s, 1H, NH), 7.02-7.26 (m, 3H, ArH); EIMS m/z (rel. intensity) 191 $\left(\mathrm{M}^{+}, 73\right), 190$ (39), 176 (26), 159 (27), 146 (52), 119 (100).
Reaction of 3-(3,4-dimethylphenyl)-2-methyl-2-propanamide ($5.4 \mathrm{~g}, 28 \mathrm{mmol}$) and $\mathrm{LiAlH}_{4}(2.0 \mathrm{~g}, 52.6 \mathrm{mmol})$ in THF was carried out as described for 8a to give 16 (4.5 g , 90%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 1.34 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 1.67-1.78 (m, 1H, CH), 2.22 (s, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.24-2.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.44-2.69(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 6.85-7.24$ (m, 3H, ArH).

4-(3,4-Dimethylphenyl)-3-buten-2-one 18. Reaction of 4-iodo-o-xylene ($6.0 \mathrm{~g}, 25.9 \mathrm{mmol}$), methyl vinyl ketone $(2.8 \mathrm{~g}, 40.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.4 \mathrm{~g}, 1.8 \mathrm{mmol})$, tri- $o-$ tolylphosphine ($0.5 \mathrm{~g}, 1.8 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~mL}, 107$ mmol) in MeCN (15 mL) was carried out for 6 h as described for 11a. The crude was purified by column chromatography (EtOAc:n-hexane $=1: 4$) to give $\mathbf{1 8}(4.3 \mathrm{~g}, 96 \%)$ as a white solid: $\mathrm{mp} 50-51{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.30(\mathrm{~s}$, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 6.68(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 7.15-7.33 (m, 3H, ArH), 7.48 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$); EIMS m/z (rel. intensity) 174 ($\mathrm{M}^{+}, 14$), 159 (100), 131 (28), 115 (37), 91 (42), 77 (19).
4-(3,4-Dimethylphenyl)-3-butanone oxime 19. Reaction of 4-(3,4-dimethylphenyl)-3-buten-2-one $\mathbf{1 8}$ ($4.0 \mathrm{~g}, 23.0$ $\mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \%)$ in EtOAc $(60 \mathrm{~mL})$ was carried out for 3 h as described for 8a to give 4-(3,4-dimethylphenyl)-3butanone ($3.9 \mathrm{~g}, 96 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.15(\mathrm{~s}, 3 \mathrm{H}$, COCH_{3}), 2.24 (s, $3 \mathrm{H}, \mathrm{CH} 3$), 2.25 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.71-2.89 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 6.91-7.08 (m, 3H, ArH); EIMS m/z (rel. intensity) $176\left(\mathrm{M}^{+}, 40\right), 133$ (84), 119 (100), 105 (20), 84 (24), 77 (20).

A mixture of 4-(3,4-dimethylphenyl)-3-butanone (3.9 g, 22.1 mmol), hydroxylamine hydrochloride ($3.1 \mathrm{~g}, 44.6$ $\mathrm{mmol})$, and $\mathrm{NaHCO}_{3}(3.7 \mathrm{~g}, 44.2 \mathrm{mmol})$ in a mixture solvent of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL} / 45 \mathrm{~mL})$ was stirred for 17 h . The mixture was filtered and the filtrate was concentrated under
reduced pressure to give $19(3.9 \mathrm{~g}, 92 \%)$ as a solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.23(\mathrm{~s}$, $3 \mathrm{H}, 2 \mathrm{CH}_{3}$), $2.48\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{NOH})\right.$), 2.76 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{NOH})$), 6.92-7.06 (m, 3 H , ArH); EIMS m/z (rel. intensity) 191 (${ }^{+}$, 14), 174 (12), 159 (14), 133 (41), 119 (100), 115 (12), 91 (28).

3-(3,4-Dimethylphenyl)-1-methylpropylamine 20. To a solution of 4-(3,4-dimethylphenyl)-3-butanone oxime 19 $(3.9 \mathrm{~g}, 20.4 \mathrm{mmol})$ in THF $(80 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(1.5$ $\mathrm{g}, 40.0 \mathrm{mmol}$) and stirred at r.t. for 12 h . Normal workup as described for 8a gave 20 ($3.2 \mathrm{~g}, 90 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.15\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68(\mathrm{q}, J=7.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}\right), 2.22\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.56-2.63$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$), 2.89-3.02 (m, $1 \mathrm{H}, \mathrm{CH}$), 6.92-7.05 (m, 3H, ArH); EIMS m/z (rel. intensity) $177\left(\mathrm{M}^{+}\right.$, 5), 160 (48), 145 (54), 119 (51), 105 (16), 91 (26), 85 (37), 77 (21).

Acknowledgment. This work was financially supported by the Korea Ministry of Science and Technology.

References

1. Walpole, C. S. J.; Wrigglesworth, R.; Bevan, S.; Campbell, E. A.; Dray, A.; James, I. F.; Perkins, M. N.; Reid, D. J.; Winter, J. J. Med. Chem. 1993, 36, 2362, 2373, 2381.
2. (a) Park, N.-S.; Choi, J.-K.; Hong, M.-S.; Kim, H.-S.; Lee, J. C.; Choi, S. W.; Lee, B.-Y. Korean J. Med. Chem. 1993, 3, 142. (b) Baek, G. H.; Jung, Y. S.; Cho, S. J.; Seong, C. M.; Park, N. S. Arch. Pharm. Res. 1997, 20, 659.
3. (a) Park, N.-S.; Ha, D.-C.; Choi, J.-K.; Kim, H.-S.; Lim, H.-J.; Lee, B.-Y. Korean J. Med. Chem. 1991, 1, 36. (b) Lim, H.-J.; Jung, Y. S.; Ha, D.-C.; Seong, C.-M.; Lee, J.C.; Choi, J.; Choi, S. W.; Han, M.-S.; Lee, K.-S.; Park, N.S. Arch. Pharm. Res. 1996, 19, 246.
4. (a) Doyle, M. P.; Siegfried, B.; Dellaria, J. F. J. Org. Chem. 1977, 42, 2426. (b) Doyle, M. P.; Siegfried, B.; Elliott, R. C.; Dellaria, J. F. J. Org. Chem. 1977, 42, 2431.
5. (a) Heck, R. F. Org. React. 1982, 27, 345. (b) Heck, R. F. Acc. Chem. Res. 1979, 12, 146.
6. Patel. B. A.; Ziegler, C. B.; Cortese, N. A.; Plevyak, J. E.; Zebovitz, T. C.; Terpko, M.; Heck, R. F. J. Org. Chem. 1977, 42, 3903.
