To be published in Journal of Network and Systems Management, Plenum Press.
Vol.2 No. 4, 1994

POLICY DRIVEN MANAGEMENT FOR
DISTRIBUTED SYSTEMS

Morris Sloman

Revised 13 September 1993

Imperial College
Department of Computing
180 Queen's Gate, London SW7 2BZ
Email: m.sloman@doc.ic.ac.uk

Abstract

Separatingmanagemenpolicy from the automatednanagerswhich interpret the policy
facilitatesthe dynamic changeof behaviourof a distributed managemensystem. This
permitsit to adaptto evolutionary changesin the systembeing managedand to new
application requirements. Changing thehaviourof automatednanagersanbe achieved
by changingthe policy without have to reimplementthem — this permits the reuseof the
managersn differentenvironments. It is alsousefulto havea clear specificationof the
policy applying to human managers in an enterprise.

This paper describes the work on policy which has come dutaofelatedESPRIT funded
projects,SysManand IDSM. Two classe®f policy are elaborated- authorisatiorpolicies
define what a manager is permitteddtmand obligation policydefinewhat a managemust
do. Policies are specified as objects which define a relationship between subjects
(managers) and targets (managed objects). Domainseaato group the objectsto which

a policy applies. Policy objectsalso haveattributesspecifyingthe actionto be performed
and constraints limiting the applicability of the policye show how a numberof example
policies canbe modelledusing theseobjectsand briefly mentionissuesrelating to policy

hierarchy and conflicts between overlapping policies.

Keywords

Distributed systems management, network management, management policy, security
policy, policy conflicts, access rules, domains.

Policy Driven Management 1

1 Introduction

Distributed systemsmanagemehtinvolves monitoring the activity of a system, making
management decisiorsd performingcontrol actiondo modify the behaviourof the system.
Policiesareoneaspectof information which influencesthe behaviourof objectswithin the
system. Authorisation policies definewhatan manageiis permitted or not permitted to
do. They constrainthe information madeavailableto managersand the operationsthey are
permitted to perform on managetjects(seeFigure1). Obligation policies definewhata
managemust or must not do and hence guide the decision making prodkesnanagehasto
interpret policies in order to achieve the overall objectives of the organisation.

Management

Obligation Interface

Policies

Interpret
Authorisation

Information Policies Software . Normal

- Process . Interfaces
; Control

Manager / Managed Object

Figure 1 Policies Influence Behaviour.

Human managers are adept at interpreting both formal and informal policy specificatiahs and,
necessaryresolvingconflicts when making decisions.However the size and complexity of

large distributed systems hagesultedin a trend towards automating many aspects of
management into distributed componentshéfpolicies are codedinto thesecomponentshey
become inflexible and their behaviour camly be alteredby recoding.Thereis thusa needto
specify, represent and manipulate policy information independentfrom management
components to enable dynamic change of policies and reuse ottimgenentsvith different
policies.

There may be many different policies relatingite managementf a large distributedsystem,

with multiple humanmanagersspecifying policy at the sametime. The complexity of the
problem makes it impossible to prevent conflicts and inconsistencies, so the policy service mus
support analysis, wherever possible, to detect thesatdeastwarn humanusersof potential
conflicts and inconsistencies.

This paperpresentghe common policyconceptseingused by twoEsprit fundedProjects—
SysMan and IDSM whiclare implementingdistributedmanagemenapplicationsbasedon the
use of domain and policy services.

1 We considera communicationsnetwork to be a distributed subsystemproviding a communications
service,within an overall distributedsystemwhich may include variousother servicessuchas storage,
directory, time etc. Both services aagplicationsrunning abovethem haveto managed. The concepts
describedn this papercanbe appliedto managementf networks, telecommunicatiorsystemsor any
other distributed systems.

Policy Driven Management 2

2 Management Framework

In this section we explaithe conceptof domainswhich areimportantfor groupingobjectsto
which policiesapply and show how managemenapplications domainand policy servicesfit
within an overall management architecture.

2.1 Domains

Managemenbf a distributedinformation systemcannotbe centralisedin a single humanor
automated entity but must be distributed to reflect the distribution of the systenmismiaged.
Managemenmust thus be structuredto partition and demarcateresponsibility amongsthe
multiple managers. This structuring could reflect physiedlvork connectivity,structuringof
the distributed application or possibly reflect the hierarchical managementtructure (for
examplecorporateheadquartergegional,site, departmentaland sectionmanagementjound
in manyorganisationsTherewill be a variety of managerdulfilling different functionsand
operating in different contexts, but having responsibilities for the sdnjeet. For examplethe
maintenance engineer and the usea wiorkstationhavedifferent managementesponsibilities
for the same workstation. The managenstnicturemustbe ableto modelthese overlapping
responsibilities. Domains provide the framework for partitioning managemresmbnsibilityby
groupingobjectsin orderto specifya managemenpolicy or for whateverreasona manager
wishes.

A management domain is a collection of managedobjectswhich have beenexplicitly

grouped together fahe purposesf management.More concretely,a domainis a managed
object which maintains a list of references tanismbermanagedbjects. Ifa domainholds a
reference to an object, the object is said to e @t member of that domairandthe domain
is said to be itparent.

Since a domain is itself a managed object, it may be a member of ashmtii@inandis saidto
be asubdomain of its parent. Subdomains are the means of flexibly partitioniaggagroup
of objects and applying different policiesddferent subgroupsor assigningresponsibilityfor
applying policy to different managenglembersof a subdomairareindirect membersof the
parent domain. Managed objects can be direct or indirect meofoendtiple domains.When
an objectis a direct memberof multiple domains,the parentdomainsare said to overlap.
Overlapping domains thus have one or more member objects in common. Dareainslar
to the notion of a directory commonly found in hierarchftal systems. More informationon
domain conceptsanbe foundin [1,2,3] anda detailedspecificationof the domainservicein
[4].

2.2 Management Architecture

Figure 2 shows the overall distributed management system architecture. Ratimaptbarent
a single monolithic managemendipplication(MA) to perform all aspectsof managementywe
have anextensibleset of managemenapplicationswhich have a consistentuser interface.
Thesemake use ofa commonset of underlying managemenservicesfor monitoring and
manipulatingdomainsand policies. The managemenbbjects may interact using various
communication services to meet the requirements of particular applications.

Each MA may have its own managed objects grouped into domuadleay haveone or more
human managersdependingon the scale of the application and the need for partitioning
responsibility. A manager “sees” all the objects (within domains) for which he is respansible
can access.This is analogousto accessingfiles and devicesin a Unix systemvia the
hierarchicalUnix directory. A MA will havea userinterface(Ul) specificto that application
but the Ul, dealingwith browsingthe domain hierarchy,and specifying policy will havea
common “look and feel” across applications.

Policy Driven Management 3

Although Figure 2 shows a layeredhierarchy,this should not be taken too literally. For
examplethereis both a managementapplication part and a service part for configuration,
security and monitoring. The managemenapplicationsare themselvesdistributed and may

directly accesddistributed processingor communicationserviceswithout using intermediate

layers. The common management services and the distributed prosesgiogsmay also be
implementedby distributed components. The communicationsystem and the distributed
processingservicesshould themselvesbe managedby the managementapplicationsthey
support. All management applications interpret and apply policies and are subject to security tc
control access. Furtherinformation on the ManagemenArchitecturecanbe found in [5] and

how it is being implemented in the IDSM project in [6].

Configuration Security Performance

Management Management Management Monitoring
Appl. Appr- Appl. Appl.
MANAGEMENT User | specific Ul | specific Ul | specific Ul | coe spedific Ul

Interface
APPLICATIONS | Common Domain and Policy Manipulation User Interface |

Distributed
Management
Application
components

A T T T T T T A

| Policy |

COMMON | Domains |
MANAGEMENT
SERVICES | Monitoring |
DISTRIBUTED File/ - - - - -
PROCESSING Database |Securlty || Time ||Transact|ons || Trading ” Directory | |Others |
SERVICES

Object Configuration

Object Request Brokers: location transparent
DISTRIBUTED object invocation
OBJECT Adapters
SERVICES Ansa Corba / DME XMP

snvp | CMmIP

COMMUNICATION | Groupcast, and group membership management |
SERVICES [RPC] oSl [TCPP T Others]

Figure 2 Distributed management system architecture

3 Management Policy

In this sectionwe elaborateon the conceptsof policy introducedin sectionl and show how
domains can be used to specify the scope of a policy.

3.1 Policy Classification

In an object oriented approach, the external behaviour of an object dejinasinteractswith
otherobjectsin its environmentWe refine the conceptof policy to be the information which
influencesthe interactionsbetweena subject and a target and so the policy specifiesa
relationship between the subject and target. Multiple policies may apply tbgayasit may
be the subject or target of many policies.

3.1.1 Authorisation Policy

Authorisation policy defineswhat activities a subjectis permitted to do in terms of the
operations it is authorised to perform on a taadgéct. In generalan authorisatiorpolicy may
be positive (permitting) or negative (prohibiting) i.e. not permittqarohibited. Authorisation
policies are considerdédrget based in that there is a reference monitor associated witkatiget
which enforcesthe policy and decideswhetheran activity is permittedor prohibited. We do
not consider mandatory military type policies in this paper.

Policy Driven Management 4

Activity based authorisation

The simplest policies are expressed purely in terms of subject, target and activity:
* John is permitted to read file F1 (Positive)
* John is prohibited to read, write or execute file F3 (Negative)

A target based reference monitor ¢aen makea decisionbasedon the subjectand operation
although an implicit subject may be specified.

* Any object is permitted to read file F1 (Positive)
* Any object is prohibited to write file F3 (Negative)

State Based authorisation

Statebasedauthorisatiorpoliciesinclude a predicatebasedon objectstate(i.e. a value of an
object attribute) irthe policy specification. Theseare commonin databaseccessontrol and
safety critical systems:

* John is permitted to read personnel records where employment grade <10

* The operator iprohibitedfrom performingclose_valveon reactorwhenreactor.Temp
> 100

* Managers with current location = planning office are permitted to read expansion plans
(i.e. they are prohibited when visiting other locatierthis assumegurrentlocationis
an attribute of a manager).

3.1.2 Obligation Policies

Obligation policy defineswhat activities a subject must (or must not) do. The underlying

assumptioris thatall subjectsarewell behaved,and attemptto carry out obligation policies

with no freedomof choice.This may be trueof automatedsubjectsbut will in generalnot be

true of human subjects. Obligatipoliciesare subject based in thatthe subjectis responsible
for interpreting the policy and performing the activity specified.

Activity Based Obligations

Simple obligation policies canalso be expressedn termsof subject,targetand activity, but
may also specify an event which triggers the activity.

* The company director must protect the assets of company XYZ (Positive)

* - On error count > 100 monitoring agent must send warning messageto operator
(Positive, event triggered)

* The standby manager must not perform any control actions (Negative)
* Employees must not talk about their jobs to the press (Negative)

State Based Obligation

An obligation may also be specified in termsagdredicateon objectstate. Insomecaseshis
can be used to select subject or target objects to which an obligation policy applies.

* Controller must control boiler temperature such that 50 < boiler.temp > 100
(Positive obligation in terms of target state)

* Managers must perform reset on links with error count > 50
(Positive obligation on selected targets based on state)

* Managers with version < 1.5 must not perform diagnostic test A500
(Negative obligation applying to selected subjects)

Policy Driven Management 5

3.1.3 Discussion

Authorisation policies are specified pootecttargetobjectsand are usuallyimplementedusing
securitymechanismén the operatingsystemas subjectscannotbe trustedto enforcethem.
Obligation policies areimplementedby the managemergystem i.e. interpretedby managers
which mustbe trusted. Authorisationpolicies arelessdynamicthanobligationpolicies. For
exampleobligation policies may be triggeredby an eventwhich resultsin an action being
performed but are effectively dormant until the event occurs ag@mhavenot identified any
need for event based authorisation policies.

A negative obligation may appearto be the same as a negative authorisation but the
responsibilityfor preventingthe activity lies with the subjectratherthan with a targetbased
reference monitorThis assumeshe subjectis well behavedandtrusted. The subjectmayin

fact be authorised to perform the activity ahd negativeobligationis activatedto stopit on a
temporarybasis. For example,a standbymanagemmay normally be authorisedto perform
control actionsbut a negativeobligation stopsthe standbymanager. Although it would be
feasible to transform a negative obligation into a negative authorisation, this may be
inconvenientdueto the controlsand overheadsnvolved in introducing authorisationpolicies
into the system. Transformation to an authorisation policy is neces#agysifbjectcannotbe
trusted to perform a negative obligation.

Statebasedpoliciesare moredifficult to implementthanactivity basedpolicies. A reference
monitor would have to query subject or targbjectsto checktheir statein orderto determine
whether to permit an action for authorisatjpuiicies[7]. A statebasedobligation policye.g.

to maintain boiler temperaturebetween50 and 100 cannot be directly interpretedby an
automated manager as it needs "intelligence” to work out how to achieve the required goal. The
obligation could be refined into tHellowing activity basedobligations (which alsoallow for

some time lag in the boiler heater affecting temperature).

* On boiler.temp < 52 controller must switch on boiler heater
* On temperature > 98 controller must switch off boiler heater

Negative state based policies can sometimes be transformed into positive ones by modifying thi
predicate. For example

* The operator is permitted to close valve on reactor when reactorJ &0

is equivalentto the negativepolicy definedin 3.1.1 above. This assumeshereis animplicit
negative authorisationpolicy forbidding any accessunlessa positive authorisationpolicy
permits it. Combining positive and negative policies can result in conflicts [8].

Wies [9] hasa similar policy modeclassificationto the abovebut extendsthis with additional
classificationcriteria such adlifetime, geographicalscope, organisationalstructure,type of
service, type or functionality dargets,managementunctionality to which the policy applies.
These criteria are then used to derive attributes for a policy template.

3.2 Policy Constraints

A constraint can optionally be defined as part of a policy specification to restrict the applicability
of the policy. It is definedas a predicatereferringto global attributessuch astime or action
parameters, as explained below.

Temporal Constraints specifytime limits before,after or betweenwhich a policy appliese.g.
between09.00and 17.00 or before31 Decemberl994. They may be usedto specifya
validity time or expiry time for a policy.

Parameter value congtraints define permittedvaluesfor managemenbperations.For example
the security policy that passwords must be greater@ramaractersn lengthand contain
at least one non-alphabetic character can be considered a consteanhtamgepassword
operation parameter.

Policy Driven Management 6

Preconditions could define the resourcesvhich mustbe availablefor a managemenpolicy to
be accomplished. For example,a dynamic load balancingpolicy could specify that
processes may be migrated to a machine in domain D1 witk168&6 upto limit of 4
processes per machine. Budget allocation is often considered a policy decision.

Other constraintsvhich limit the applicability of a policy canbe definedas part of a selection
expressionfor a statebasedpolicy basedon object attributesto selectthe set of subjector
target objects within a domain to which the policy will be applied (see section 3.4 below).

3.3 Policy as Relationship Objects

Policies encapsulate a representation of informatitectingcomponentehaviourso we treat

them as objectswhich provide operationsfor queryingor changingpolicies [10]. A policy

service then provides the operations for creating, deleting, storing and retrievingogicts.

Policy scope is specifiedsingdomains,so the policy servicemustalso provide the ability to

identify what policies apply to a domain and then use the domain service to idénatibjpjects

within the domain. There are advantages in treating policies as managed objects and structurin
them into domains, so that an authorisation policy can be defined to control which managers are
permittedto modify a setof policies or to define "meta policies" about policies (see section

4.4.).

Another reasotfior an objectorientedapproacho policy specificationis thatit is usefulto be
ableto definea policy classwhich definesmostof the attributesof a particularpolicy. When
specifyingpolicies for a particular application,multiple instancesof that policy canthen be
createdwith remainingpolicy attributesbeingdefinedfor the particularinstance.The policy
class is like a template with values for specific attributes being prowtied a policy instance
is created.

Policiesare not active objectsin that they do not instigate managemenoperations Managers
are the active objects which are responsible for interpreting an obligation gatiperforming
the activities specified.A referencemonitor usesinformation such asan accesscontrol list

derived from authorisation policies to decide whether to permit an operation [11].

Accounting Domain
Managed

Manager Object
Domain Domain

Polic
y Managed Object

—E Domain

. Policy
M D .
anager Domain Reflexive Management
|
1 = Manager = Managed Object

Security Domain

Figure 3 Typical Management Relationships

Figure 3 alssshowsthat a policy may specify a reflexive relationship,wherebymanagersare
members of the managed domain and so coulibbesubjectsandtargetsof the management
policy. This reflects the fact that managers may manage themgebs@siecircumstanceg.g.
authorised to approve their own expenses. Thererigestactionon the type of objectwithin
a single domain so the policy may need to specify the type of object to which it ajppdissit
is applicable to all objects in the domain.

The OSI Manager,agent, managedobject relationshipg[12] can be modelledby 2 sets of
policies — policies which specify the relationship betwéerManagerandthe agentandthose

Policy Driven Management 7

which specify the relationshipbetweenthe agentand the managedobjects for which it is
responsible. The latter are probably implicit as OSI management does not really cayesnder
to be intelligent and make management decisions.

3.4 Policy Scope Specification

In very large systems, the number of objects imsgethatit is impracticalto specify policies
for individual objectsinsteadit shouldbe specifiedfor sets of objects.The setof objectsto

which a policyappliescould be specifiedin termsof objectattributese.g. a particulartype of

object or thoseobjectsin a particular state. A searchover all reachableobjects, within a
distributedsystem,to determinethesesets isimpractical. The number of reachableobjects
within alarge scalalistributedsystem.,is potentially millions andis not known a priori. The
selection of objectss thuslimited to be within the scope of a domain.This limits the search
spacefor object selectionto a predefinedsetto make sure the selectionterminateswithin a
defined time. For example the policy

* Kevin must install new kernel on workstations with workstation type=Sparc IPX

is impractical as there are potentially millions of such workstations connedtegimternet,so
the scope should be limited as in the following policy.

* Kevin must install new kernel on workstationsin domain dse.doc.ic.ac.ukwith
workstation type=Sparc IPX

Another advantage of specifying policy scope in teondomainsis that objectscanbe added
and removed from domains to which policies apply without having to change the policies.

3.4.1 Propagation to Subdomains

Policiesapply to sets ofobjectswithin domains,but domainsmay contain subdomains.To
avoid having to respecifypolicy for eachsubdomain,policy applying to a parentdomain,
shouldpropagate to member subdomaird the parent.For examplea policy applyingto an
organisation should also apply to departments withindrganisation A subdomains saidto
inherit, the policy applying to parentdomains(but this is not the sameas object oriented
inheritance). With policy propagation, a policy specified fdoanainis appliedrecursivelyto
all directandindirect membersof that domain.For example,in Figure4 the policy specified
between D1 and D2 will propagate to managers in D2 and the managed objects in D4 and D5.

D1

Policy
Specification

Figure 4 Policy Propagation

Managers

Managed Objects

It shouldbe possibleto overridethe defaultpolicy propagatioreitherat the policy or domain
level. A policy may specify that it appliesonly to direct membersof the target or subject
domains.A domainattribute mayspecify that any policy applying to the domain does not
propagate to indirect members, irrespective of what is specified in the policy.

In order to efficiently determine the policies applying to a domain and hermceobjectwithin
it, the domain must hold references to those policies.

Policy Driven Management 8

3.4.2 Set Selection

A policy should be able to select the set of subject or tatgettswithin a domainto which it

appliesusing a predicatebasedon the valuesof object attributes.The simplestcaseoccurs
when a policy appliet all objectsin adomain. The setof objectsto which a policy applies
has to be evaluated at the time the policy is interpreted bedamsenmembershipgcanchange
dynamically. Object selection sasedon Scope Expressions which definea (possiblyempty)
set of objects and are based on combinations of the following:

i) The object itself.

i) Direct and indirect membersof the domaini.e. policy is applied recursively to all
subdomains which are members or indirect members of the domain.

i) Limited propagationi.e. policy is appliedrecursivelyto a limited numberof levels of
subdomains which are members the domain.

iv) A predicatebasedon objectattributesis usedto selectobjects.For examplethe policy
appliesto objectsof a particulartype or in a particular state. A location constraint may
limit the applicability of an authorisationpolicy in terms of the location from which
operations on the objects chainvokede.g. afile canonly be readfrom terminalsin a
particular office. Evaluating a set of objects, using a predicate based on an object attribute
value togetherwith policy propagation,could be very expensiveto implementin a
distributed system.

v) A set expression in terms of members of the domain can be evaluated to give a set.

vi) Any objects - this allows an implicit scogeor exampleany managemay be authorised
to perform an operation on an object. “Any” is oplgrmittedas the subjectscopefor an
authorisation policy or the target scope for an obligation policy.

The use of“any” asthe subjectof an obligation policydoesnot make sense as ngpecific
subject has the responsibility to carry out the actions. We have not identified a‘asy’Tas
the target for authorisation policy.

3.4.3 Scope Expressions

Scope Expressions always return a set of objects and are defined as follows:-

SE ::= “ANY” | SC_EXPR
SC_EXPR:: = object |
{ object } |
*obj ect |

* NUMBER obj ect |
SC_EXPR+ SC_EXPR|
SC_EXPR- SC_EXPR|
SC_EXPR” SC_EXPR|
sel ect(pred, SC EXPR) |
(SC_EXPR)

Operators

+ set union

- set difference

N set intersection

* this returnsa setthat containsall directandindirect membersof the domainif it is
applied on a domain object ; otherwise it returns a set that contains the object itself.

Policy Driven Management 9

* NUMBER a set that contairal directandindirect membersof the domainasfar down as
theNUMBER'th level if it is appliedon a domainobjectreturns. Thatis, *1D1 gives
the setof directmembersof domainD1. If appliedto an objectit returnsa set that
contains the object itself.

{} returnsa setthat containsthe objecton which it is appliedi.e. it convertsa single
object to asetcontainingthat object.It is only neededor set theoryconsistency, as
the operators (+, -,) are only applied to sets of objects. There is no ambigfuisy
omitted.

object shorthand version or sayifgbject}

select(pred, sc_expr) returns asub-set othe setreturnedby sc_expr with the membersof
the selected set determined by the predicate piddicatewill typically be a function
which is applied to all members of the set returneschgxpr.

The interpretation of the expressions is from left to right.

Operators can be divided into two categories. The first category includes the set operators (+,
A) which are applied to set$ objects.The secondone includesthe objectoperatord*, { })

that are applied to objects and return ao$eaibjects.The setthatthe objectoperatorgeturnis
evaluatedby traversingthe domain hierarchy starting with the domainsreferencedin the
expression.

For example, referring to Figure 4:

. *1D4- B+*1D5 = union of direct members of D4 (except O3) and D5 =
{4, G, O, O7, (B}

. * DAN* Db = intersectiorof direct andindirect membersof D4 and of direct and indirect
members of D5 £ 06, b}.

. *D3 = all direct and indirect membersof D3 = {01, @2, B, A4, b, O, O,
8, D4, D5}

. sel ect (type! =Donmai n, *1D4- B+*1D5) = non-domainmembersof the set of
the union of direct members of D4 (except O3) and ®4, (b, C6, O7, (8} .

4 Example Policy Objects

A policy object specification defines the following attributes:

i) Modality: positive or negativeauthorisationpositive or negativeobligation (i.e. A+,
A-, O+, O-)

ii) A subject which defines one or more manager domain scopes

ii) A target which defines one or more managed domain scopes affected by the activity
iv) An activity which define a set of actions or permitted operations

v) Constraints which apply to the activity

Example policies with these characteristics are given below.
4.1 Access Rules
An accesgule is a simple exampleof a managemenauthorisationpolicy which specifiesa

relationshipbetweenmanagergin a subjectscopedomain) and managedobjects(in a target
scope domain) itermsof the managemenbperationgpermittedon objectsof a specifictype.

Policy Driven Management 10

The access rule may algefine constraintson theseoperationgsee3.2 above)and makeuse

of scopeexpressiongo selectsubsetf the objectswithin the subjector targetdomains. In

Figure 5, operations OpA and OpB are permitted on objects of type T1 and operations OpX anc
OpZ on objects of type T2. These operations can only be performed between hours of 09.00 t
17.00. Examples of the use of access rules for service specification can be found in [2].

Access Rule
~(®)
— = T1-OpA, OpB Permitted

Manager Domain T2:Op"X., opz Operations Managed Domain
(Subject Scope) (Target Scope)

09.00-17.00 Constraints

Figure 5 Access Rules
4.2 Domain Membership Policy

A managercanspecify the initial membershipof a domainby specifying an object selection
predicatefor searchinga databaser anotherdomain,but this is not provided as part of the

basic domain service. Membership policies are then neeaeohstrainghe objectswhich can

be subsequentlgreatedn the domainor included from anotherdomain. Other membership
policies relate to the number of objects permitted in a domain. Example membership policies are
given below.

. Only objectswhich implementa particularinterfacetype canbe membersof the domain
i.e. any subject is permitted to include or create objects of type T in target domain Dt.

A+ any {include X, create X} Dt when X type=T

. A domainof managersan haveonly a single managerto prevent conflicts between
multiple managers.
A+ any {include, create} Dt when Dt.nenbernum= 0

. Theremustalwaysbe at leasttwo objectsin a domainfor backuppurposes.This also
requires an obligation policy for a manager in domainddgieceivinga failure event,to
delete the failed object and create a new one.

A- any {renove, delete} D when Dt.nmenbernum > 2;
O+t on fail (X) Ds {delete X; create X} Dt

. An object should always be a member of at leastdomainif it is to be managedising
the domain basedmanagemenapplicationsmentionedin section2, so a policy could

specifythatremovingit from a targetdomainDt is only permittedif hasmorethan one
parent.

A+ any {renove X} Dt when X parentnum> 1

4.3 Delegation

In someapplicationsa managemay delegatean activity to a proxy manager(or agent)to
perform on his behalf. There is a need to control to whom the managers can delegduat and
operationsthey can delegate. This type of policy requirestwo subjectdomains— for the
delegatorand delegatee. The policy shown in Figure 6 permits Managersin Domain D1 to
delegate the right to perform operations OpA and Op@argetobjectsof Type T1 in Domain
D2, to a proxy manager in Domain D3. The policy expires after 31 December 1994.

Policy Driven Management 11

Operations D2
T1: OpA, OpC

Delegatee D3

Constraint
Expiry 31 Dec 1994

Proxy Manager

Figure 6 Delegation of rights.

The implementation dthis type of policy requiresextendedaccessontrol lists which contain
information on delegatees as well as subjects.

4.4 Security Administrator

A security administrator (SA) ia commercialenvironmentwould typically createaccessules
(ARs) for other subjects (excluding himself) to accessspecific target resources. The
authorisation policy applying to the SA sholliidit the subjectsfor whom he cancreateARSs,
the target objects to which the rules can apply and the operations specified by th&A&is.
a meta-policyabout managingpolicy objects(accessules) and also specifiesa relationship
between multiple domains. It is the most complicateth@Examples. Figure 7 showsthere
are a numberof scopeswhich limit the ARs which can be created.AR permitted subjects
specifies to whom access can be givenAR@ermitted targets definethe setof targetobjects
to which accesscan be given, and an AR permitted operations define the set of operations
which can bencludedin accessules. The principle of separatiorof responsibilitymeansthe
SA should not be permitted to give access to himself, so the subject shobédarmaemberof

the AR permitted subjects. If we consider ARs as objects which are created in domains,ishere

a target domain in which the SA is permitted to create ARs.
Interpretingpolicy objectssuch asthoserelating to a security administratoris considerably

more complicatedthansimple accessules. It would be the function of the policy serviceto
interpret and enforce this policy as it relates to creating policy objects.

Policy Driven Management 12

Access Rule Domain

Operation: Create Access Rules (AR)

__1 AR permitted subjects
SA Domain P : Managed

(Subject Scope) AR permitted targets Domain
(Target Scope)

AR permitted operations: Opa..Opj

Constraint: Policy subject not in
AR permitted subjects

Member of SA Domain
can create this
access rule

) B

DeptA_Users DeptA_Files

Figure 7 Authorisation Policy for a Security Administrator (SA)
4.5 Responsibility

The conceptof responsibilitycanbe modelledas an obligationpolicy. For exampleconsider
that manager X has responsibility to update software in a domain of workstatitersagerY

is his superiorand hasultimate responsibilityto determinethe work is carried out correctly.
This is modelled using two different obligation policies, one to perform the updating atw one
indicate the responsibility relationship as shown in Figure 8.

Policy Driven Management 13

Reporting

Action

Manager Responsibility Manager Responsibility .~
Report Update
result] software
a) Reporting Responsibility: X is responsible to Y
Monitoring Action
Manager Responsibility Manager Responsibility
-
Check Update
aCthlty, state software

Manager
Y

b) Subject Monitoring: Y is responsible for X

Monitoring
Responsibility

Check
activity, state

Action
Responsibility

Manager

Update
software

c) Target Monitoring: Y is responsible for target objects.

Figure 8 Modelling Responsibility as Obligation Policies.

5 Policy Implementation |ssues

A Policy Dissemination Function transforms policies into a form suitable for
interpretationor enforcementind sendsobligation policiesto managersn the subjectdomain

and authorisatiorpoliciesto referencemonitorsassociatedvith objectsin the targetdomain.

An exampletransformationis an authorisatiorpolicy objectinto an accesscontrol list (ACL)

entry or capability. ACLs are stored with the target domain and have to be propagated to neste
subdomaing13]. The authorisationpolicies have beerappliedto specifying serviceaccess

rights for cellular networks [2].

The generalised policy concepts were derived from our initial work on access controlgmlicy,
the authorisatiorpolicy aspectsare further advancedhanthe obligation policyconcepts. We

are experimentingwith a notationwhich can be used forboth authorisationand obligation
policies aghey havesimilar attributesbut the respectiveémplementatiormechanismsre very
different. Obligation policies are of the form

O+ | O- [on <event>] <subject> {actions} <target>[when <constraint>]

wherethe actionis triggeredby an event occurringandthe actioncould be specifiedby a C
language procedure. The constraint is a predicate which is evaluated when the event occurs ar
canbe usedto inhibit the actionbeing performed. The eventand constraintexpressionare
optional. In particular thifasbeenappliedto a monitoring servicewherethesepolicy rules

canbe usedto combineandfilter eventsor generatehigherlevel eventreports[14]. We are
developing graphical tools for specifying both authorisation and management policy.

The IDSM partners areusing their proprietaryNetwork Managemenplatformsto implement

policies and domainsas OSI managedobjectsin special Managementinformation Bases
(MIBs) [6, 15] supportedby service managedobjects. These implementationsuse the

Policy Driven Management 14

Network ManagemenOption within OSF's DME to acces€OSI andSNMP managedbjects
via the XMP interface[16]. A managemenagentusesthe authorisationpolicies to make
accesscontrol decisionsfor managemenbperations. Reporting obligation policies for
generatingeventmessageare being translatedinto eventforwarding discriminator managed
objects. TheSysManprojectis usingANSAware[17], which is a distributedobjectoriented
programmingenvironmentso domains,policies and the distributedserverswhich store them
canbe directly implementedas Ansaobjects. Oneof the commercialpartnersis porting this
implementation to a CORBA platform [18].

6 Manager Roles
6.1 Conceptual Issues

The conceptof a role is well understoodn enterprisemodelling and there is an extensive
literature relating to roléheory[19]. Role Theory postulateghat individuals occupypositions
in an organisation.Associatedwith each position is a set of activities including required
interactions that constitute the role of that position.

A manager role is definedas the set of authorisationand obligation policies for which a
particular manager position ke subject. A role thusidentifiesthe authority, responsibility,
functions and interactions, associated with a position withiorganisation Examplemanager
positions could include managing director, security administrator, operations manager, operatol
responsiblgor North Region.A personmay be assignedto one or more roles and multiple
individuals can share a single role.

A manager position definesa particularpositionwithin an organisation,such asfinancial
manager, managing director, to which different peomdg be assignedover a period of time.
The role refersto a managerposition rather than a particular person, becausepeople are
frequently assignedto new roles, and it would be very time consumingto changepolicies
which referencethat person.Within the managemenenvironmentthe functionsand authority
of a humanor automatednanageris defined in terms of the obligation and authorisation
policies which apply to the managermosition. This definesthe overall functionality of the
position. A role may also relateto an automatedmanager,althoughit is lesslikely to be
frequently reassigned to new roles.

Policies which have propagated down to a positiondbutot explicitly referencethe position
are not includedin the set of role policies. Propagategolicies are part of the organisation
policies as they may also apply to different roles or objects, antbaspecificto the manager
position which is the subject of the role.

It would be very useful to be able to parameterisa role with specific positionsand target
domains. It would thus be possible to define the role policy set as drolaswhich particular
instancexan be created For examplea role could be definedfor a region managerand this
could be used to create North, South, East and West reginagerroles. Eachof the 4 roles
instances relates to different manager positions each with their own specifidtargens,but
specifies the same policy activities and constraints for each manager position.

6.2 Implementation Issues

It is assumed that the humans occupying roles will perform management functions related to the
distributed system and so have to be represemtbth the systemby an adapterobjectwhich
interacts with a suitable presentation device (workstatigarorinal). We now show how the
domains described in section 2.1 can be used to represent Users and Positions.

The policiesapplyingto a personare definedin termsof a User Representation Domain

(URD) which is a persistent representation of the person or human manager. Wperstre
logs into the systeman adapterobjectis createdwithin the URD to interactwith the person's

Policy Driven Management 15

workstation. The policies specifigdr the domainapply to the adapterobjectrepresentinghe
person (c.f. DME adapters [16]).

Policies relating to a role should be independent of the person occupying that role smsthould

referencea URD. Instead,a Position Domain is createdand policies pertainingo the role
arespecifiedwith the position domainas a subject(seefigure 9). Allocating a personto a
position is accomplishedoy including his URD within the position domain. Role policies
propagateo the URD andhenceapply to the manageadapterobject. The managemay be a
member of multiple position domains if performing multiple management roles. MulipIzs
may be includedin a positiondomainindicating a sharedposition but obviously this would
require the managers to coordinate their activities via a suitable protocol.

Manager Position Domain —
Y e ABLD
LIJDséenr];r?presentatlon Policy
Set

Manager {)

adapter | H

—] object

M [)
A y,

Figure 9 Position Domains and Roles

The set of policies associatedvith a role could be storedin a single domain for easeof
referencepy the managerput this is not shownin figure 9. Howeverpropagatedolices
would not be definedspecificallyfor the positiondomainso may be storedelsewhere. The
issues related to storing policies in domains requires further study.

The implication of parameterised roles is that it ninespossibleto definea policy classobject
which canhave someattributespredefinedout otherscan be definedas parametersvhich are
provided when a policy instance is created.

7 Policy Hierarchy

Policy can be expresseds a hierarchywhere a high level policy goal can be refined into
multiple levels of lower level policy and eventually into a set of policy rules [20].

. Policy goals define activities in termsof actions and operationswhich have to be
transformedor refined before they can be executedby managersor target managed
objects.Policy goalswill haveto be interpretedoy humanmanagersr, in somecases,
by an expert system capable of application dependent goal refinement.

. Policy Rules defineactivitiesin termsof actionsor operationswhich can be directly
executed by manager or managed objects c.f. acgkess Thesecould be interpretedby
automated tools.

. Policy Mechanism Information may be generatedrom policy rules for efficient
implementatiorof policy mechanisme.g. transformingaccessulesinto accesscontrol
lists or capabilities for actually controlling access at run time [11,13, 15].

Both goals and rules can be expressed as obligation or authorisation policieseprésented
by a policyobjectwith the attributesof subject,target,constraintsandactivities. A high level

Policy Driven Management 16

obligation or authorisatiorpolicy may be refinedinto a numberof lower level obligation and
authorisation policies. For example a high level goal:

* Ot Manager M nust protect Dept. D files from loss due to
fire or nedia failure

could be refined, via many intermediatemore detailed policies, into the following set of
implementableonesin which an archiver(in DomainBackupSW)performsa backupto tape
followed by one to a remote store. Authorisation policies are needed to permit baftkvare

to readand mark files and to perform file transferto the remotestore address passed as a
parameter.

* OF At 22.00 every Thursday archiver {tape_backup} Domain
Dfiles

* O+ At 03.00 every Friday archiver
{renote_backup (safestorel.ic.ac.uk)} Domain Dfiles

* A+ Domai n BackupS/Wread, wite} Domain Dfiles

* A+ Domai n BackupS/W{file_ transfer, file_access} Domain
saf estores

The distinction between goals, rules and mechanisms fsimd&amental\Whatis considereca
goal at one time may eventually becomea rule or a mechanismwith improvementsin

technology and implementations techniques. Tesisethe sameconceptof a policy object
for all levels of abstraction in the policy hierarchyt somepolicies may only be interpretable
by humans.

The motivation for understandingnierarchicalrelationshipsbetweenpolicies is to determine

what is required for the satisfaction policies.If a high-levelpolicy is definedor changedit

should be possible to decide what lower-level policies must be created or changatimBte

aim is tobe ableto specify high-level policiesand automaticallygeneratehe lower-levelones

but this is similar to automatically generating code from abstract requirements specifications anc
this is very difficult to achieve.

Anothermotivationis for analysisto seewhetherthe setof lower-levelpolicies actually fulfil
the higher-levelpolicy, by providing completecover over all the targetobjectsand actually
meetingthe policy goals.Again this canbe very difficult to achieve. The issuesrelating to
refinementand analysisof Policy Hierarchiesare discussedn [21]. Other discussionson
policy hierarchies can be found in [9, 22].

8 Policy Analysis

In general multiple policies apply to an object. For example an obligadiizy will specifyan
activity that a managemust do and there should be a correspondingauthorisationpolicy
permitting the manager to perform the activity. Howevsetf policies may causeproblems,
because of omissions or incorr@alicy specificationsA conflict betweenpolicies may result

in a manager being unable to perfatmactivities. The managersnay not attemptto perform

the activities they are permitted to do or they may be sufficiently intelligent to avoid conflicts, as
is often the casewith humanmanagers. Managers neetbols to analysethe set of policies
storedin the policy serviceto detectany of the following conditionswhich may otherwise

result in problems within the management system.

i) Coverage
This involves checking whether derived lower lepelicies coverall the objectsspecifiedin a
higher level policy. The simplestcaseoccurswhen a target set is partitioned by creating

multiple policies, corresponding to the same activity as the original but applying to a subdomain
of the original targetdomain. It is comparativelyeasyto check that every memberof the

Policy Driven Management 17

original policy's target set is a member of at least one target detieédhigherlevel policies.
Determiningthat at least one authorisationpolicy appliesto every object so that it can be
managed should also Ipeactical. Coverageanalysisis a subset ofthe more generalproblem
of completeness analysis which is notoriously difficult to achieve.

ii) Missing Obligation/Authorisation

As obligation ancauthorisatiorpolicies are consideredndependentin theorythereshouldbe
both an obligation and authorisation policy fananageto performan activity. The existence
of an obligationwithout a correspondingauthorisatiorfor the activity preventsthe obligation
being performed. Howeveiit may be valid for authorisationpolicies to exist without the
correspondingobligation. For examplea back up managemay have authorisationpolicies
permitting various actions, but the correspondingobligation policies are createdonly if the
primary manager fails.

iti) Conflicts

A conflict may occur betweenany two policiesif one policy preventsthe activities of another
policy from being performedor if the policies interferein someway that may resultin the
managed objects being put into unwanted states. As the actiatyabty canspecify a setof

actions, there may also be conflicts between these actions within a single @licsnodel of

managemenpoliciesrepresentdoth subjectsandtargetobjectsas sets of object conflict

may occur between two or more policies if there is an overlap betivesnbjectand/ortarget
objectsets.The overlaprelationshipbetweensets ofobjectsexists when their intersectionis

non-empty.

Obvious conflicts occur if thereis both a positive and negative authorisationor obligation

policy with the same subjects, targets and actions. It is not praoticeibid overlapsasthey

are very useful for many situations.A setof manageranay perform different management
activitieson disjoint targetdomains,resultingin subjectoverlap.Targetoverlapsoccur when
managersvho do not havefull responsibilityfor a particulartargetdomain,are given limited

rights to perform some activities (e.g. query state or perform diagnostics) as they maka use of
service provided by the objects in the target domain. In many caséasgtttiet a conflict may

occur does not meanwiiill occur. Policy conflicts are discussed in more detail in [8].

The problemsof detectingconflicts is extremely difficult. Most existing work relates to
authorisation policy [23]. Analysis of the policy objectswithout any knowledge of the
application or activities may detect positive-negativeconflicts of modalities and conflicts
betweenobligation and authorisationpolicies, and so it may be possibleto automatethis.
Most other conflicts requireapplicationdependenknowledgeaboutthe activities specifiedin
the policies to detectwhetherthereis potential conflict. This is likely to require human
intervention. We are experimenting with toolttectpositive/negativeonflicts and missing
authorisation policy.

9 Related Work

The ESPRIT funded DOMAINS project also worked onDomain basedpolicy management
[20, 24, 25]. Their policies and managers were included in the ddseeigmanaged. There
was a single mangerin a domainwhich had unlimited accesgo all managedobjectsin that
domain, sahey did notreally considerauthorisatiorpolicy. Although somemembersof the
DOMAINS project are working in the IDSM project, the DOMAINS’ approachwas not
considered sufficiently flexible to cope with inter-organisation systems where managtrs and
objects they may managee inherentlyin different domains. The DOMAINS projecthadthe
concept of high level goals being translated into policies which werdrtnesiatednto sets of
plans. In our approach, goaee abstractpoliciesinterpretedby humansandrulesare more
concreteones, possibly interpretedby automatedmanagers. We considerthat all types of

Policy Driven Management 18

policies should be representechs objects with subject, target, actions and constraintsas
attributes and that there may be more than 3 levels of abstraction.

Rooset. al.[26] takea similar approachto our conceptsof policies and domains,but their
policy objects have two parts. A passive relationship object is very similar to our policy objects
and defines a relationship between a manager and target dom@secondpartis an active
policy object which is a form of proxy manager which tries to achieve the gjadiedin the
passivepolicy on behalfof the manager. This active policy object would poll the managed
objects in the domain and perform management operations on them. We wouldmsateh
hierarchicalmanagemenstructurewith one setof policies defining the managerto proxy
relationship anénothersetof policiesdefining the role of the manageproxy with respecto
the targetdomains. Wies also has active policy objectsfor enforcementand monitoring of
policy [27]. All thesepolicy specificationswhich define a manageror proxy's behaviour,
look like management algorithms i.e. the polisynow encodednto proxy managers.We do
not think thatthe policy serviceshouldbe used aghe meansof distributing the management
function. Meyer [28] has a notation for specifying manager behas®uolicies, but it look
like a managerprogramminglanguage. Policies need to be sufficiently abstractto be
interpreted by managers or reference monitors so that they can be changed dynamically.

The International StandardsOrganisation(ISO) WG4 are trying to define standardsfor
domains and policies [29, 30], but the work is still very unstable. Our work haptmeted

as input to this committee, bititis our view that asthereis no consensu®n what constitutes
management policy, it is inappropriate to be trying to standardise concepts for which research it
in its infancy.

Therearea numberof groupsworking onaspectf securitypolicy [31,32] but they do not
caterfor large scaldistributedsystems. The Miro tools [23] provide a graphicalmeansof
specifying an accessmatrix for file systemsecurity. This notationis very similar to the
diagramsshownin this paper. They alsopermit positive and negativeauthorisationpolicies
and they have a tool which checks for ambiguities or conflicts. T&areonstrainianguage
which limits the setof diagramsto be those whicharerealisableor acceptable. This can be
used to define “meta” policy aboutwhat authorisatiorpolicies are acceptabldor a particular
site. The Miro tools appearto be the mostdevelopedout our experiencdrom experimenting
with them is that they are very slow and could not be used for a large number of pdlrags.
havenot beenused forobligation policies but they are quite generaland probably could be
adapted for this use. They do not have any support for distribution.

Jonscher’s worlon modellingaccesdehaviourof databaseisersalsohassomesimilarity to
our approach [33].His accessights compareto our authorisatiorpoliciesand his normative
rights have some similarity to our obligation policy although he models both duties and
(liberties) freedomsto do actions. We are not convinced of the need for liberties in
management policyWe intendto take a similar approach, for ouobligationpolicies, to the
triggered actions he uses for duties and liberties.

Lomita is a rule basedanguagefor programmingthe managemenlayer in the Meta system
[34]. Lomita rules are of the foron condition do action, whichis alsosimilar to Jonschers
triggered actions, but there is no explicit subject or target — they are defined implicitly.

The Methodsspecificationlanguage(MSL) [22, 35] was developedfor specifying policies
such asthose relating to schedulingfor large mainframes,but has not been applied to
distributedsystems. It takesan artificial intelligence approachof choosingfrom a set of
potentially conflicting goals by assigning priorities to the goals. The implementation osekes
of an object oriented database to hold the information for policy based decision making.

There are various forms of Deontic Logic which have operatorsthat denote obligation and
permissionwhich at first sight seemvery similar to our obligation and authorisationpolicy
[36]. In mostof theseobligationimplies permissionor sometimespermissionfor an action
means not being obliged to refrain from an action. In our approach obligation and authorisation

Policy Driven Management 19

policies can be specifiedindependentlyalthoughobligation without authorisationcan lead to
conflicts.

A more detailed survey of policy specification can be found in [37].

10 Conclusions

Policy driven management provides thesis fordealingwith automatednanagemensf large
scaledistributedsystemsand networks. The specificationand manipulationof policy will
become one of the key research area in the next few years.

This paper has shown that tbenceptof a passivepolicy objectcanbe usedto modela wide
range of authorisation and obligation policies. This policy object dedimetionshipbetween
one or more subject and one or more tadgehains;specifiesthe actionsthe subjectperforms
on the target and specifies a constraint to limit the applicability of the pdltey sameconcept
canbe appliedto high-level (unimplementableyjoalsinterpretedoy humansand to low level
implementable rules to be interpreted by automated objects.

A policy specification language should not be a programming languagei@mentingproxy
managers but should produce a set of rules which can be interpreted by manauwigatan
policies and referencemonitors for authorisationpolicies. This is essentialto permit easy
changeof policy, without reimplementatiorof managementomponentsto changesystem
behaviour.

Domains are used to specify the scope for applying the policyantitpatethat domainswill

be used to group objects to which particular policies apply, although a policy can select a subse
of membersof a domainto which it will apply using domain set expressions opredicates

based on object attributes. This simple domain concept can also be used to represent a user o
position within an organisation.

Theseconceptscanbe implementedn any objectbasedenvironmentandimplementationson
OSI basedNetwork managementANSAware and CORBA platforrmsare being producedin
the SYSMAN and IDSM projects. The industrial partners have a commitment to inthgiste
into their relevant commercial products soon after the project ends.

This documenhasclarified the conceptselatingto using policy to influence managemenof
distributedsystems. Many issuesremainto be solved. Automatically, deriving low level
policies from high level ones is asdifficult as deriving programs from requirements
specifications. Policy analysis,conflict detection and resolution are also important area
requiring considerable research.

Acknowledgements

| acknowledgethe major contribution of JonathanMoffett (now at York University) to the
development of the ideas expressed in this papdy. colleaguesn the SYSMAN and IDSM

projects(from Imperial College, AEG, ICL, StockholmUniversity, EPFL, Bull, Siemens,
FhG-IITB, PTT Netherlands TelesystemeandNTUA) criticisedand suggested revision®

someof the initial ideasbasedon previouswork. | gratefully acknowledgefinancial support
from DTI ESF Project(IED/ 4/410/36/002)Esprit SYSMAN (7026) and IDSM (6311)
projects.

Refer ences

[1] MS. Sloman and J.D. Moffett, Domain Managementimtributed Systems |ntegrated
Network Management |, B. Meandzijaand J. Westcott eds., North Holland, 1989, pp.
505-516.

Policy Driven Management 20

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

M.S. Sloman,B.J. Varley, J.D. Moffett, K.P. Twidle, Domain Managementand
Accounting in an International Cellular Netwothkiegrated Network Management I11 (C-
12), H.-G Hegering, & Y. Yemini eds., North-Holland, 1993, pp. 193-206.

J.D. Moffett and M.S. Sloman, User and MechanismViews of Distributed System
Management)|EE/IOP/BCS Didributed Systems Engineering, Vol. 1, No. 1, Aug.
1993, pp. 37-47.

K. Becker,U. Raabe M. Slomanand K. Twidle (eds.), Domain and Policy Service
Specification.IDSM Deliverable D6, SysMan Deliverable MA2V2, Oct. 1993. Available
by FTP from dse.doc.ic.ac.uk.

M. Sloman,J. Magee, K. Twidle, and J. Kramer, An Architecture for Managing
Distributed Systems, Proc. 4th IEEE Workshop on Future Trends of Distributed
Computing Systems, Lisbon, Sep. 1993, pp 40-46.

B. Alpers and H. Plansky, Domain and Policy Based ManagementConceptsand
ImplementationArchitecture, [IEEE/IFIP Workshop on Distributed Systems Operations
and Management, Toulouse, Oct. 1994.

J.D. Moffett and M.S. Sloman, Content-DependemccessControl, ACM S GOPS
Operating Systems Review, Vol. 25, No. 2, April 1991, pp. 63-70.

J.D. Moffett and M.S. Sloman, Policy Conflict Analysis in Distributed Systems
Management, Ablex PublishingJournalof Organizational Computing, Vol. 4, No. 1,
1994, pp 1-22.

R. Wies, Policy Definition and Classification: Aspects, Criteria and Examples,
IEEE/IFIP Workshop on Didtributed Systems Operations and Management, Toulouse,
Oct. 1994.

J.D. Moffett andM.S. Sloman,The Representationf Policiesas SystemObject, Proc.
Conf. on Organisational Computer Systems (COCS 91), Atlanta USA, Nov. 1991,
SIGOIS Bulletin, Vol. 12 nos. 2&3, pp. 171-184.

J.D. Moffett, M.S. Sloman, and K.P. Twid]eSpecifyingDiscretionaryAccessControl
Policy for Distributed Systemg§omputer Communications, Vol. 13, No. 9, Nov1990,
pp. 571-580.

Information Technology— Open SystemsInterconnection— SystemsManagement
Overview, ISO/IEC 10040, Nov., 1992.

K.P. Twidle, Domain Services f®istributed SystemsaManagementPhD Thesis,May
1993, Department of Computing, Imperial College.

M. Mansouri-Samaniand M. Sloman GEM: A Languagefor GeneralisedEvent
Managementmperial College Department of Computing, Research Report DoC 93/49,
Nov. 1993, Available by FTP from dse.doc.ic.ac.uk.

H. Schwingel-Hornerand G. Bonn, IDSM Authorisation Policy Specification and
Enforcementin a Hierarchical ManagementEnvironment, IEEE/IFIP Workshop on
Distributed Systems Operations and Management, Toulouse, Oct. 1994.

The OSF Distributed Management Environment architec@penSoftwareFoundation,
11 Cambridge Center, Cambridge, MA 02142, USA, May 1992.

ANSAware 4.1: Application Programmingin ANSAware, Document RM.102.02,
Architecture Projects Management, PoseidonHouse, Castle Park, Cambridge CM3
ORD, UK, Feb. 1993.

Object Management Group, The Common ObjetjuesBroker Architecture(CORBA)
and Specification V1.1, OMG, Dec 1991.

E. Thomasand B. Biddle, Role Theory: Conceptsand ResearchKrieger Publishing,
1979.

Policy Driven Management 21

[20] Esprit Project 5165 - DOMAINS Basic Concepts,version 2.0 (Nov 1991), Philips
Gmbh, PO Box 1980, W 5100 Aachen, Germany.

[21] J.D. Moffett andM.S. Sloman,Policy Hierarchiesfor DistributedSystem,Proc. IEEE
JSAC, Vol.11, No. 9, Dec. 1993, pp. 1404-1414.

[22] M.J. Masullo and S.B. Calo, Policy Management:A&nhitectureand Approach,Proc.
| EEE Workshop on Systems Management, UCLA, California, April 1993.

[23] A. Heydon, M. Maimone, J. Tygar, J. Wing, and A. Zaremski, Mir6: Visual
Specificationof Security,|IEEE Trans. on Software Eng., Vol. 16, No. 10, pp.1185-
1197, Oct. 1990.

[24] Esprit Project 5165 DPOMAINS Deliverable2c version1.0, DOMAINS - Management
Architecture Philips Gmbh, PO Box 1980, W 5100 Aachen, Germany, May 1992

[25] K. Becker and D. Holderpecifyingthe Dynamic Behaviourof Managemengystems,
Journal of Network and Systems Management, Vol. 1, pp. 281-298, Sep. 1993, Plenum
Press

[26] J. Roos, P. Putter, and C. Bekker, Modelling ManagementPolicy Using Enriched
ManagedObjects, Integrated Network Management 111 (C-12), H.-G Hegering,& Y.
Yemini eds., North-Holland, 1993, pp. 207-215.

[27] R. Wies, Policiesin Network and SystemsManagement— Formal Definition and
Architecture,Journal of Network and Systems Management, Vol. 2, No.1 pp.63-83,
March 1994, Plenum Press.

[28] B. Meyer, C. Popien, Defining Policies for Performance Managementin Open
Distributed Systems, IEEE/IFIP Workshop on Distributed Systems Operations and
Management, Toulouse, Oct. 1994.

[29] Information Technology — Open Systemsinterconnection— SystemsManagement
Overview — Amendment2: ManagementDomains Architecture, PDAM 10042, Nov.
1993.

[30] Information Technology — Open Systems InterconnectiBygstemaVanagement Part
19: ManagemenbDomainand Managemen®olicy Managementunction, ISO/IEC CD
10164-19, Jan. 1994.

[31] D. Brewer and M. Nash, The Chineéd&ll SecurityPolicy, Proc. IEEE Symposium on
Security and Privacy, IEEE Computer Society, 1989.

[32] D. Clark, and D.R. Wilson. A Comparisonof Commercial and Military Computer
Security PoliciesProc. IEEE Symposium on Security and Privacy, 1987.

[33] D. Jonscher, Extending Access Control with Duties Realiseilcbye Mechanism |FIP
WG 11.3 Sxth Working Conference on Database Security, Vancouver, Aug. 1992.

[34] K. Marzullo, R. Cooper, M. Wood, K. Birman, Tools for Distributed Application
Management,EEE Computer, Vol. 24, No. 8, Aug. 1991, pp. 42-51

[35] M.J. Masullo and E. Mozes, A Methods Specification Languagefor object oriented
DatabasesResearch Report 16360, 1990, IBM TJ WatsonResearclCenter,Yorktown
Heights, New York.

[36] K. Ong,R. Lee, A Logic Model for Maintaining Consistencyof Bureaucratid?olicies,
Proc. 26th Annual Hawaii Conf. on System Sciences, Vol. lll, 1993 pp. 503-512.

[37] D. Marriott. ManagementPolicy Specification, Imperial College Department of
Computing, Research Report DoC. 94/1, Nov. 93, Available by FTP from
dse.doc.ic.ac.uk.

Policy Driven Management 22

