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Abstract

This paper presents a novel robust adaptive fuzzy tracking controller (RAFTC) for a
wide class of perturbed strict-feedback nonlinear systems with both unknown system
and virtual control gain nonlinearities. For unknown system nonlinearities, two types
for them are included: one naturally satisfies the “triangularity condition” and may
possess a class of unstructured uncertain functions which are not linearly parameterized,
while the other is partially known and consists of parametric uncertainties and known
“bounding functions”. The Takagi-Sugeno type fuzzy logic systems are used to
approximate unknown system nonlinearities and a systematic design procedure is
developed for synthesis of RAFTC by combining the backstepping technique and
generalized small-gain approach. The algorithm proposed is highlighted by three
advantages: (i) the semi-global uniform ultimate bound of RAFTC in the presence of
perturbed uncertainties and unknown virtual control gain nonlinearities can be guar-
anteed, (ii) the adaptive mechanism with minimal learning parameterizations is obtained
and (iii) the possible controller singularity problem in some of the existing adaptive
control schemes with feedback linearization techniques can be removed. Performance
and limitations of proposed method are discussed and illustrated with simulation re-
sults.
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1. Introduction

In the past decade, there has been a rapid growth of research efforts aimed at
the development of systematic design methods for the adaptive control of
nonlinear systems with parametric uncertainty. Many remarkable results have
been obtained owing to the advances in geometric nonlinear control theory,
and in particular, feedback linearization techniques [1,2]. As a breakthrough in
nonlinear control area, a recursive design procedure, adaptive backstepping
approach, was presented to obtain global stability and asymptotic tracking for
a large class of nonlinear systems which can be transformable to parametric
strict-feedback canonical ones, e.g. [3-6]. The overparametrization problem
was soon eliminated by Krstic et al. [7] by elegantly introducing the concept of
tuning function. Recently, nonlinear damping was also introduced in the
controller by Kanellakopoulos [8,9] to improve transient performance.

However, the common feature of the adaptive control algorithms discussed
in [3-9] is to deal with the case of uncertainties of the systems in the linearly
parameterized forms, that is, the system’s nonlinearities are assumed to be
known while parameters are unknown and linear with respect to those known
nonlinear functions. Unfortunately, in industrial control environment, some
systems are characterized by a wide class of uncertainties referred to as
unstructured ones, which cannot be modelled or repeatable. In order to cope
with such kind of uncertainties, as an alternative, approximator-based control
approaches have been studied for those systems in a Brunovsky form using
Lyapunov stability theory, e.g. [10-17]. Recently, the developed approximator-
based adaptive control approaches were extended to strict-feedback nonlinear
systems with unstructured uncertainties using the idea of adaptive backstepping
by means of the neural network or fuzzy system approximators, e.g. [18-20].

In this paper, we present a fuzzy system approximator-based robust adap-
tive control design procedure for a class of strict-feedback nonlinear systems in
the general form

X = gi(X)xip + filx) + At x), 1<i<n—1

X :ﬁ1(x)+gn(x)”+An(tvx) (l)
y=x
where x = [x,x,,. .. ,x,,]T € R" is the system state vector, u € R is the input,
y € R is the output of system. Let X; = [x|,x,, ... ,x,]T. fi(x;)’s are unknown

smooth system functions with f;(0) =0 and g;(x;)’s are unknown smooth
functions which are referred to as the virtual control gain ones. All of functions
fi(x;) and g;(x;), i = 1,2, ...,n may not be linearly parameterized. A;(¢,x)’s are
the disturbance uncertain nonlinearities of the system.

Note that for the adaptive fuzzy control design of uncertain strict-feedback
canonical system (1), there are two main difficulties. One comes from the
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uncertain virtual control gain functions g;(%;), i =1,2,...,n. When g;(x;)’s
are unknown nonlinearities, if feedback linearization type controllers o; =
(1/&1())(=f:(-) + v;) are considered [45], where f;(-) and g,(-) are the estimates
of fi(-) and g;(-), respectively, and v; is a new control to be defined, the difficulty
arises when g;(-) — 0, which is referred to the controller singularity problem.
There are some robust adaptive control algorithms for system (1) have been
developed in [21-25], when the virtual control gain functions g;(x;) =1,
i=1,2,...,n—1, for example, in [21], a stable adaptive fuzzy control was
presented for strict-feedback nonlinear systems with virtual control gains equal
to one and without the disturbance uncertain nonlinearities. The problem of
adaptive control of systems with unknown virtual control gain functions has
also received much attention in recent years. In [26], an adaptive control solu-
tion was presented for strict-feedback nonlinear systems with unknown virtual
control gain constants. The other is that many parameters need to be tuned in
the on-line learning laws when there are many state variables in the designed
systems, particularly by use of fuzzy logic systems adopted by [21], when many
rule bases are used in the fuzzy systems to approximate the uncertain nonlinear
functions, so that the learning time tends to become unacceptably large for
systems of higher order and time-consuming process is unavoidable when the
controllers above are implemented.

In this paper, a new systematic design procedure will be developed for the
synthesis of the stable robust adaptive fuzzy tracking controller for perturbed
strict-feedback canonical nonlinear systems in the presence of unstructured
uncertainties and unknown virtual control gain nonlinearities. Takagi—Sugeno
type fuzzy logic systems [27] are used to approximate the unstructured
uncertain functions. Then a stable robust adaptive fuzzy controller is proposed
by use of input-to-state stability (ISS) theory [28] and by combining back-
stepping technique with generalized small-gain approach [29]. The controller
proposed in this paper guarantees semi-global uniform ultimate boundedness
in the presence of unstructured uncertainties. The outstanding features of de-
rived controller are that it has the adaptive mechanism with minimal learning
parameterizations, no matter how many states in the designed systems are
investigated and how many rules in the fuzzy logic systems are used, the order
of the dynamic compensator is only 2n, where n is the dimensions of the state in
the designed systems, such that the burdensome computation of the algorithm
can be lightened and it is convenient to realize the algorithm in engineering,
and meanwhile it can avoid the possible controller singularity problem in
some of the existing adaptive control schemes with feedback linearization
techniques.

This paper is organized as follows. In Section 2, we will review T-S fuzzy
logic systems, some necessary definitions of input-to-state stability (ISS), and
small-gain theorem. Section 3 proposes a motivating problem. In Section 4,
a systematic procedure for the synthesis of robust adaptive fuzzy tracking
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controller is developed. In Section 5, an application is used to demonstrate the
effectiveness of proposed schemes. The final section contains conclusions.

Notation: Throughout this paper, let || - || be any suitable norm. The vector
norm of x € R” is Euclidean, i.e., ||x||* = (x"x) and the matrix norm of 4 € R™*"
is defined by ||A||2 = Amax(A"A), Where Amaxmin)(-) denotes the operation of
taking the maximum (minimum) eigenvalue. The vector norm over the space
defined by stacking the matrix columns into a vector, so that it is compatible
with the vector norm, i.e., ||4x|| <||4]|| - []x]|-

For any piecewise continuous function u:R, — R™, |lu||, denotes
sup{|u(?)|,¢ = 0}, which stands for L., supremum norm, and for any pair of
times 0 < ¢, < 5, the truncation uy, ,,) is a function defined on R, which is equal
to u(t) on [t;, 5] and is zero outside the interval. In particular, u, is the usual
truncated function u,.

2. Preliminaries
2.1. T-S fuzzy systems

In the past few years, various types of fuzzy logic systems (e.g. Mamdani type
and Takagi-Sugeno type) have been proved to be universal approximators in
that they can uniformly approximate any continuous functions defined on
compact domains to any degree of accuracy [30-33]. The fuzzy logic systems use
the fuzzy IF-THEN rules to perform a mapping from an input linguistic vector
xT = (x1,x2,...,x,) € R" to an output linguistic variable y € R. Generally, the

fuzzy logic systems can be constructed by the following K(K > 1) fuzzy rules
Ri: 1If x;is ‘P;l AND x, is ‘I’Zz AND...AND x, is ‘P’h
THEN y; is Q;lhzmhn, i=12,....K

where QZI P denotes an output fuzzy set. If Qill P is a singleton fuzzy set, its
membership function is 1 only at y; = ¢, (an arbitrary unknown constant) and 0
at other position, then that is called Mamdani type fuzzy system. If Qﬁll ooy
is a function of ap+ ajxi +apx; +--- +aux, which a5 i=1,2,... K,
j=0,1,...,n are the unknown constants, then that is called Takagi—Sugeno
type fuzzy system, T-S fuzzy system for short. The product fuzzy inference is
employed to evaluate the ANDs in the fuzzy rules. After being defuzzified by a
typical center average defuzzifier, we can write the output of T-S fuzzy system
in the vector form as follows

]Ar(vaX) = é(x)AxX (2)
where £(x) = [61(0), &(0). - & (0] &) =TTy 6, )/ S [T 4 ()]

i=1,2,...,K is called as fuzzy basis function and x:=[1,x]. When the
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membership function 4, (x;) in (x) is denoted by some type of membership
function. In Eq. (2), we have

dayp a4

ax dx - Ay
A, =

ago Adg1  ccc Agp

For any continuous function f(x), there exists some type fuzzy logic system to
approximate it to an arbitrary accuracy. Then there exists the lemma proved by
Wang [32] and Cao et al. [33].

Lemma 1. Suppose that the input universal of discourse U is a compact set in R".
Then, for any given real continuous function f(x) on U and Ve > 0, there exists a
T-S type fuzzy system in the form of (2) such that

sup 1/ () = f(x Aol <e (3)

Remark 1. For any n-dimensional continuous function f(x), if N;+ 1 input
fuzzy sets for each variable x; are used, there will be K =, (N; + 1) IF-
THEN fuzzy rules in the fuzzy system. If Mamdani type system is used to
approximate the function f'(x), we observe that there are a total of []\_, (N; + 1)
parameters to describe it. And while T-S type fuzzy system is used there are a
total of (n+ 1) - []'_,(N; + 1) parameters to describe it.

2.2. ISS and small-gain theorem

The concepts of ISS and ISS-Lyapunov function proposed by [28,34,35]
have recently been used in various control problems such as nonlinear stabil-
ization, robust control and observer designs (see, e.g. [36—41]). In order to ease
the discussion of the design of RAFTC scheme, two definitions with respect to
input-to-state stability are reviewed in the following. First, we recall the class
K, K., and KL functions which are standard in the stability literature, see Khalil
[42].

A class K-function y is a continuous, strictly increasing function from R,
into R, and y(0) = 0. It is of class K, if additionally y(s) — oo as s — co. A
function f: R, x R, — R, is of class KL if i(-,¢) is of class K for every ¢t > 0
and fS(s,t) — 0 as t — oo.

Definition 1. For the system x = f(x,u), it is said to be input-to-state practi-
cally stable (ISpS) if there exist a function y of class K, called the nonlinear L,
gain, and a function f§ of class KL such that, for any initial condition x(0), each
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measurable essentially bounded control u(¢) defined for all # > 0 and a non-
negative constant d, the associated solutions x(¢) are defined on [0,00) and
satisfy:

(@) < B, 2) + y([fwllc) + o )

When d =0 in (4), the ISpS property reduces to the input-to-state stability
(ISS) property introduced in [34].

Definition 2. A C! function ¥ is said to be an ISpS-Lyapunov function for the
system x = f(x, u) if there exist functions o, oy, o3, a4 of class K and a constant
d > 0 such that

o (51 < V() < oll), e € R 5
) f (e, < — el + ) + (©

When (6) holds with d = 0, V' is referred to as an ISS-Lyapunov function.
Then it holds that one may pick a nonlinear L, gain y in (4) of the form [36]

p(s) :ocl_looczooc;looc‘;(s), Vs >0 (7)

The following proposition establishes equivalence between ISpS and the exis-
tence of ISpS-Lyapunov function by Sontag and Wang [35], Praly and Wang
[40].

Proposition 1. The system x = f(x,u) is ISpS if and only if there exists an ISpS-
Lyapunov function.

A trivial refinement of the proof of the generalized small-gain theorem given
by [29,41] yields the following variant.

Theorem 1. Consider a system in composite feedback form

=S o)

ZZ(U . { 2 — H(x) (8)
L Jy=82)

P { 0= K(».2) )

of two ISpS systems. In particular, there exist two constants d, > 0, d, > 0, and
let B, and B of class KL, and v, and y,, of class K be such that, for each w in the
L., supremum norm, each z in the L., supremum norm, each x € R" and each
¥y € R™, all the solutions X (x; w,t) and Y (y;Z,t) are defined on [0, 00) and satisfy,
for almost all t = 0:

1 (X (o; 0, )| < B (llxl], 1) + - ([l ) + e (10)
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1KY 3 2, 0)II < Byl ) + 70 (7o) + da (11)
Under these conditions, if

7:(V0(8)) <5 (resp. 7,(1.(s)) <s) Vs>0, (12)

then the solution of the composite systems (8) and (9) is ISpS.

3. A motivating problem

The primary goal of this paper is to track a given reference signal y,(¢) while
keeping the states and control bounded. That is, the output tracking error
z; = y(¢) — y4(¢) should be small. The given bounded reference signal y,(¢) is
generated from the following smooth model

{xd[fd[(xd)7 lglgm (13)
Vi =Xq1, nz=m
where x; = [xg1, X, - - - ,xdm}T € R™ are the states, y, € R is the system output,
fu4i(+)’s are known nonlinear functions. Assume that the states of the reference
model remain bounded, i.e., x; € Q,, V¢ > 0. We can define the tracking error
vector e(t) = x(t) — Xa(n).

Remark 2. Under the assumptions that the virtual control gain functions
g(x)=1,i=1,2,...,n—1 and the unknown functions f;(x;)’s are linearly
parameterized as Q,Tlpi(x,.) with 6; being the unknown constant parameters
vector, several adaptive robust control algorithms for strict-feedback nonlinear
systems (1) have been developed in [22-24]. If the unknown functions f;(X;)’s
cannot be linearly parameterized, the fuzzy logic system approximators were
used to approximate functions f;(X;)’s and g,(x) and an adaptive robust control
algorithm was presented in [21]. In [26], an adaptive robust control algorithm
was presented for strict-feedback nonlinear systems with unknown virtual
control gain constants. However, for more general class of nonlinear uncertain
systems like (1), few results are available in the literature. In this paper, we will
address this problem.

For the system (1), the following assumptions are introduced.

Assumption 1. The uncertain virtual control gain functions g;(x;)’s are confined
within a certain range such that

0 < bmin < ‘ gi(fi> | < bmax (14)

where b, and b, are the lower and upper bound parameters respectively.
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The above assumption implies that smooth functions g;(x;), i =1,2,...,n
are strictly either positive or negative. From now onwards, without loss of
generality, we shall assume g;(X;) = byin >0, i = 1,2,...,n. Assumption 1 is
reasonable because g;(x;)’s being away from zero is the controllable conditions
of system (1). It should be emphasized that the upper and lower bound
parameters, by, and by, are required for analytical purposes, theirs true value
is not necessarily known.

Assumption 2. For 1 <i<n, there exists an unknown positive constant p} such
that V(¢,x) € Ry X R"

| Ai(t,x) | <pjhi(x:)

where ¢,(-) is a known nonnegative smooth function.

Generally speaking, the control objective is to find a robust adaptive fuzzy
tracking controller for the system (1) in the following form

1=w(1¢(e),e), reR (15)
u=u(y,é(e),e) (16)

where £(e) is a known fuzzy base function vector. In such a way that all the
solutions of the closed-loop system (1), (15) and (16) are globally uniformly
ultimately bounded. Furthermore, the tracking error vector e can be rendered
small.

Remark 3. From Egs. (15) and (16), we can observe that it is a dynamic
feedback controller and p is the order of the dynamic part y of the controller.
An important quality of the controller is of course the property that the order p
of y should be as small as possible, and in particular doses not depend on the
dimensions of the state. Therefore, the dynamic part of the controller is the
adaptive law for estimating the unknown parameters on-line and the order p of
% 1s equal to the number of parameters to be estimated. In the conventional
adaptive fuzzy controller, the order p of y is equal to the number of parameters
to be used for describing the fuzzy logic system, which is employed to
approximate the unknown uncertain functions in the designed systems.

Remark 4. Wang et al. [21] presented an adaptive fuzzy controller for the
system (1) with g;(x;) =1, i=1,2,...,n — 1. The authors used the Mamdani
type fuzzy systems to approximate the functions f;(x;), i = 1,2,...,n and g,(x).
According to Remark 1, we know that there are ) 7| 7_(N; + 1) parameters
for fi(x;), i=1,2,...,n and [[_,(N; + 1) parameters for g,(x) needed to be
estimated in the adaptive fuzzy control scheme. In order to make our point
clearer, we give a simple example here, i.e., let us discuss a system which has the
order n = 3 and use N; + 1 = 5 to be continuous input fuzzy sets, as a result
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there will be 5+5x5+5%x5x5+5%x5%x5=280 parameters needed to be esti-
mated in the adaptive fuzzy controller proposed by Wang et al. [21]. From this
small example, we can see that there will be many parameters needed to be
estimated in the on-line adaptive law when there are many state variables in the
designed systems and many rule bases in the fuzzy system are used to
approximate the uncertain nonlinear functions. It will result in that the
learning time tends to become unacceptably large and time-consuming process
is unavoidable when the controller is implemented.

Remark 5. In [21], it was assumed that the approximation errors and external
disturbances were square integrable. However, the square-integrable property
of the approximation error and external disturbance is difficult to show for
given plant and this calculation may require knowledge of plant dynamics.

Remark 6. In this paper, we will present a robust adaptive fuzzy tracking
control algorithm with the structure as Eqs. (15) and (16) for a class of per-
turbed strict-feedback uncertain nonlinear system (1) by use of input-to-state
stability theory and by combining backstepping technique with generalized
small-gain approach. The outstanding feature of the algorithms proposed in
this paper is that the order p of y is 2n, no matter how many states in the
designed systems are investigated and how many rules in the fuzzy system are
used, i.e., for the small example given above, there will be only 6 parameters
needed to be estimated in the derived algorithms.

4. Design of robust adaptive fuzzy tracking control

The backstepping design procedure contains n steps. At each step, an
intermediate control function o; shall be developed using an appropriate
Lyapunov function V. We give the proceeding of the backstepping design as
follows:

Step 1. Define the error variables z; = x; — y; and z, = x, — oy — J,;, then

Zy = gilx)xr + filxn) + Ar(t,x) — Ja
= gi1(x1)(z2 + o) + f10x1) + As(t,x) + (g1(x1) — D)ya (17)

Since f;(x;) is an unknown continuous function, according to Lemma 1, T-S
fuzzy system f; (x1,4;) with input vector x; € U,, for some compact set U,, C R
is proposed here to approximate the uncertain term fj(x;) where 4; is a matrix
containing unknown constants. Then fi(x;) can be expressed as

Si(x) = & (xn)Aixy + 61 = & () Az + & () Aya + &
=co & (x))wy + & (x)A1yas + & (18)
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where w; = A}'z; and ¢, is a parameter denoting approximating accuracy. Let
Cop1 = ||A1||, such that A’ln = CgllAl and ||A'1n|| < 1.
Substituting (18) into (17), we get

21 =gi(a)(z2 + o) +cor i () + v (19)

where vi = & (x1)41ya +e1(x1) + Ai(#,x) + (g1(x1) — )iz and cp is an un-
known constant. In light of Assumption 2, we can obtain a bound for v; as
follows

[Ivil] < 1€ (x1) A1y + &1 + Ar(t,x) + (g1 (x1) — 1)y4]]
< AalllE Gl + lleall 4+ 27y (x1) + (Bmax + 1|34l
< binl1Y, (x1) (20)
where 0y = bi max(|[4yall, ll1]], 2}, (bmax + 1)|[Vall) and ¥, (x1) = 1+ [|& ]|+

¢y (x1)-

Consider the stabilization of the subsystem (19) and the Lyapunov function
candidate is

- 1 1 < 1 ~

Vi(z1,21,0)) = Ezf +§bmmr;1‘zf +§bminfj210f (21)
2

~ min€o1 — ;‘1) and

0, = 5101 —0)). ilfand 0, are the estimates of b_! c7, and 0, respectively. The

time derivative of V] is

where I .'imd I', are /Ehe positive definite constants. 21 = (b‘l

I./1(217/11791) =z1[g1(x1)(z2 + ou) + con & (x1)wy +vi] — F;1]/7Ll).t1 — Fﬁlélél

(22)
Let y, > 0, we can get
conéi(x)wizr = cpi & (x1) w1z — Yo o) + Plo] o,
_ .2 o1 ? oLz T, 2T
=N wl—zT)zflzl +4T/2€]£121+V1w1w1
1 1
< Cﬁl T2 , .2 T
= 47%515121 + oo
<b j'l T_2 b j'1 fT 2 2 T 23
< minr/%él 121+ min4—y%fl.121+)}1wlwl (23)

Using (20), we can get

V121 < bmin 01 (x1) |21 || < bminéllPl(M)HZl I+ bminél%(M)HZl I (24)
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Therefore, we can get the intermediate stabilizing function «; as follows

o = —kizy _:%/lzél(xl){]r(xl)zl - 9111/1(x1)tanh <01¢15(f61)21>
1

where k; > 0 and J, > 0 are the design constants. Then we get

) . 0
gl(x1)05121 =& (xl) ( B klzf - Lﬁ-}%@(ﬂ)é?(m)ﬁ - Gllﬁl(xl)zl tanh (%))

< b ( ~ i} = s &) ) ~ D )z ta (W))
1

1
(25)
Using (23)—(25), ¥; can be written as

Vilzi, A1, él) < — bminki2] + g1(x1)2122 + Broindh ¥, )zl

; 0
— buin01¥ (x1)z1 tanh <M) + ”/%U)]Tah
1

~ I . ~ A
bl (G362 ) 4 bl 30 (Pl = 1) 26

As in [18], in order to prevent parameters drift, we present the following
adaptive laws incorporating a leakage term based on a variation of ¢-modifi-
cation. Let the parameter adaptive laws for 4; and 6, now chosen as

/.11 =TIy [#51(3&)5?@1)2% - 011(11 - i?)]

0y = Ty (o) 1] — o0a(By — 69)] @7

where i?, 6(1), a11 and oy, are design parameters.
And we deal with the relative term in Eq. (26). By using the lemma proved
by [18], we can get

0 (el — Dy (1) tam (”ﬁ) <o, 9)

1
Let ¢; = min{2bmink1, 011Pmin 11, 012bmin 12} Then ¥ is converted into

Vilzi, A1, 91) < —alla, 4, 91) + g1(x1)z122 + Yo o1 + (29)

where ny = bmin(él +% | C%l - )(1) ‘2 —|—% | 91 — 0(1) |2)
Step 2.

2 = @(%2)x3 + f2(%2) + Ao(t,x) — 61 — Ju (30)
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Then the time derivative of o, is
Ou; . ooy - 0oy » 0oy

By = oy o g kO
1= - X1 ol 1 801 9 dJ/d
oy 6 . 6061 6061.
=—(gl(x)xy + filx1) + Ay (t,x +_)L+ 0+—
a (g ( ) 2 ﬁ( 1) 1( )) 6/11 1 691 Gydyd
= fia( )?)—F%A(tx)—k%' (31)
= J12{z1,%2 o, 1\, aydyd

Substituting (31) into (30), we get

=@ (X)) — g1z1 + 2(%2) + @121 + Aa(2,x) — fia(z1,%2)
6061

60(1
axl ( ) ) ade’d Va

Oo . .
= @(%2)x3 — @121 + f5(21,22,ya) + Aa(2, ) ~ LA(t,x) — %34 — Va
X oy

(32)
We also use a T-S fuzzy system to approximate the unknown function
f3(z1,22,4) and obtain
Filz1,x0,34) = E(z1, %2, V) Aalz1, %2, 7] + &2 = Edl[z1,x0)" + Ediya + &
= cp&hm +d>

where @, = 472, and cp = ||4}|| = A2 (447 4)), such that A} = cpay and

451 < 1. dy = EAF (o + ya) + E43ya + &
Defining a error variable z; as z; = x3 — o, — Jy, Eq. (32) can be written as

Z = &%) (z3 + 02) — @121 + cpérwr + s (33)
where Vy) = dz + A2 — %:Al g;;ya’ + (gz(xz) — 1)

Choosing Lyapunov function candidate
1 1 w1 ~
VZ = Vl + Ezg + §bminrlei§ + Ebminrgzl 9;

A similar procedure with (23) and (24) is used and the time derivative of 75
becomes

< —ali +giziz + Rioj o)+ wy + 2(g2(z3 + 02) — g1z1]

A . - (T .
+ bmin 4722 526;25 + bmin02l//2||22|| + bminrgll 12 (rjé 5252FZ§ - }“2>
2

+ bunl 503 (T 2] = 0s) + 300k

where [|v,|| < 023, and ¢, = 1+ (1 + [lou [D[| &[] + da(x2) +

L]
Oxy

oy

|

¢y (x1) +
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Now, choose the intermediate stabilizing function o, and adaptive laws as

) . 0
oy = —kyzy — 4722525;22 — 0y, tanh <92‘§;Z2> (34)
2
Ja =Ty [@ézé% — 021 (A — /1(2))]
0, =TIy [¢2||Zz|| — 0 (éz - 9(2))}

where k,, 0,, 12, (93, g, and oy, are design constants. )
Let Cy = min{c1,2bmmk2, 021bmin1"21 s O'zzbminrzz}, then Vz is converted to

(35)

1< —CzV2+g22223+Z“/,w Wi + Wy (36)
i=1
where u, = ,ul—l-bmm(52+2‘cez—} |"+16, - ]

A similar procedure is employed recursively for each step k(3<k<n—1).
By considering the equation of system (1) for i =k, = g + fi(%) +
A (t,x), and the Lyapunov function candidate
1 -

Ebminr 1:21 Hi
where ;Lk (bmmc()k /() and ak (Ok 01{)

We may design the control function o, and learning laws for 4, and 0,
which take similar forms of (27) and (35), respectively. The controller u for the
system (1) shall be constructed in step 7.

Step n: Define the error variable as z, = x, — o, — yf,”fl). We have

Zy = gu(X)u + fu(x) + A, — 6y _ya(ln)
Using the similar way to (31) in Step 2, we have

1, 1 .
Vo= Vi 4525 + 5 bl +

. 0oty
Op—1 = Z 1 {gﬂrl(xﬁ‘l)xﬂ‘l +f}(x/) + A }

= x;

Then
= &n x>u_gn—lzn—l +f;,< n— laxnaxdn 1 )+A _yd

nz: 60(,,1 ; aoc,,,l ()
ax/ a ‘S/'—l)yd

j=1

Wheref,;:f,,(x)—fn in (Zn- 1> Xns Xd(n— 1)+gn 1Zn—1-
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We also use a T-S fuzzy system to approximate the unknown function
Si(Zu-1,Xy,Xa(n—1)) and obtain

I = &udulZa1, X, Xa(n— 1] + &
= & ANz, x| + AR, )+ e
=&A,z7, +d,
where d, = £,4)? (oc,, L U) + & ARy + 6 Let 0, = A2'Z,, con = || 4] |
and 4! = ¢y,A™. Let u = o, —&—yg(,"), we get
Zy = 8nOn — &n-1Zn-1 F ConCuWn + Vi

where v, = d, + A, + (g,(x) = 1)y = Y <ag§jl A; + S yd>),

a (/
Taking the following Lyapunov function candidate

1, 1
V, =V, 1+2zn+2bmmF 242 bmmrngei

its time derivative is

I'/n = I'/n—l +Zn(gnan — &n—1Zn—-1 + C(),,f,,Wn + Vn) - bminF}] }Ln;’vn
n—1

- mm éé —C,, IV 1+Z%w wl+zlul+bmm5

i=1 i=1
)v,, A 9;1 n“n
+z, 8nlln + bmin ) fn éTZn + bminenlpn tanh £
4y Sn

+ bminr;llzﬂ( / ) + bminFn_Z1 én (FnZIanzn“ - én)

where

[Vall < O,

and

Vo =1+ (1 flowalDIEl + ¢, +

Zl (a“n 1 aan—l >
+
j=1 Xj aya(,’ )
Now, we get k, > 0 as a design constant and are ready to choose the con-
troller as

n j-n p én n“n n
u=ua, +yf, ) _ —kyz, — anéfzn — 0.y, tanh <$> —|—y6(, ) (37)
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and adaptive laws in step n as
jy =T [if,,éTzz — 01 (0 — /10)]
0, = Iy [lzall = 22 (8, — 69)

According to the recursive control design procedure above, at the last step (i.e.,
i = n), picking the robust adaptive fuzzy control « in (37) and the adaptive laws
in (38), we arrive at

(38)

.Vn < - CnVn + ZV?CU,TU% + Wy
i=1

< —alp+ 7ol + g, (39)
where Aun:Z:l 1lluz+bmm<5 +;’ 5n*/122+%’0n762|2>a w:[whwb"'a

T 12
o, and y = (37 + 93+ +77)

We are now in a position to state our main result on semi-global robust
adaptive fuzzy controller.

Theorem 2. Consider the system (1) with unknown system and virtual control
gain nonlinearities, and suppose that the packaged uncertain functions
Sz, %, X)), i = 1,2,...,n can be approximated by T-S fuzzy systems in the
sense that ¢; is bounded Ifwe pick y < landk; > — i=1,2,...,nin (39), then
the robust adaptive fuzzy tracking control law u = ocn +y; wzth the intermediate
stabilizing functions o, i = 1,2, ..., n and adaptive laws for /; and 0; can make all
the solutions (z(t),1,0) of the derlved closed-loop system uniformly ultimately
bounded. Furthermore, given any @w > 0, we can tune our controller parameters

such that the output error z; = y(t) — y;(¢) satisfies lim,_, | z;(t) | < w.

Proof. In order to use Theorem 1 (small-gain theorem), it is necessary to
construct a system in composite feedback form with X:,-subsystem and Z:-
subsystem. We begin with the X:,-subsystem. According to the error variables

Z; =X — O] — y;"*”, i=1,2,...,n, 09 = 0defined in Section 4, we substitute z;
into (1) and use T-S fuzzy systems to approximate the packaged uncertain
functions f}(z;_1,x;,Xa@), i =1,2,...,n, then the closed-loop system can be

given as follows

Zl = gl(xl)(fxl +22) +cpéior + v

> . gi(x) (o +zi1) — gizior +epéioi + v, 2<i<n—1
* ( )M 8n—1Zpn-1 + c()nénwn + v,
z= H(z) =z
(40)
where o = [y, w,, ... ,w,,]T is considered as the virtual input and z as the

output.
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For subsystem X, if picking &; > 1 /by, i = 1,2,...,n from (39), we obtain
: 2
V< =2+ o)+ 6,

By Definition 2, we propose the robust adaptive fuzzy tracking controller such
that the requirement of ISpS for system X, can be satisfied with the functions
a3(s) = s? and oy = y%s? of class K. According to (7), we can get a gain
function y,(s) of Z;,-subsystem

1

7.(s) =o; ooyt ooy, Vs>0

where o (z) < V,(z) < o (z2).
For X ,;-subsystem, it is

w); = A’l"zl
T _
Wy = A;n[Zl 722} = A’znZZ
ng N . (41)
W, =A"z1, 22, . ... 7z,,]T = A"z,

We can rewrite the above equations as

w, a0 -0 2
(05] A'znl A'zn2 T 0 22
o= =K(z) = = Az
Wy AytoArr A |z
and obtain
ol < l4]l]z]l = 7'll=]l (42)

Then the gain function y,, for system X; is 7,,(s) = y's. In order to check the
requirement y,(y,,(s)) < s in small-gain theorem 1, we select (40) as (8), and (42)
as (9), and obtain yy’ < 1. Due to 7' = ||4]| <1, the condition of small-gain
theorem 1 can be satisfied by choosing y < 1, such that it can be proven that
the composite closed-loop system is ISpS. Therefore, direct use of Definition 1
yields that the composite closed-loop system has bounded solutions over
[0,00). More precisely, there exists a class KL-function  and a positive con-
stant d; such that

I2(), 2(2), 00| < B(1|=(0), 2(0), B(0) |, 1) + &,

where A = [A1, 42, ..., /)" and 0= [0,0,,...,0,]".

This, in turn, implies that the tracking error vector z(¢) is bounded over
[0, 00). According to Proposition 1, there exists an ISpS-Lyapunov function for
the composite closed-loop system. By substituting (42) into (39), the ISpS-
Lyapunov function is satisfied as follows
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. | P
V< =202 =570 = 50700 + %Il +
lip o« lap -
S 1052100 =5 0000+ [ + g
g - Can + :un (43)

where
0 = diaglky, ky, . .. , k]
0, = diag[oy, 012, ..., 01"
0, = diag[oy, 00, .. ., azn]T
¢ = Min{2(Anin(0) = 1/bmin) s Amin (01)/ Amax (I7), Zmin (02) / Amax (5 1) }
Iy= [y, .. Tt
and
=1y, Ty, ... To]"

From (44), we obtain

v <y <Vn(t0) &)e—(r—m
€1 €1

It results that the solutions of composite closed-loop system are uniformly
ultimately bounded, and implies that, for any @, > (u,/c;)"?, there exists a
constant 7 > 0 such that ||z,(¢)|| <@ for all ¢ > ¢ + T. The last statement
holds readily since (u,/c1)"* can be made arbitrarily small if the design
parameter vectors 0. 0% 5, o1, o, are chosen appropriately. Finally, we have
proved Theorem 2. [

Remark 7. Since the function approximation property of fuzzy systems is only
guaranteed within a compact set, the stability result proposed in this paper is
semi-global in the sense that, for any compact set, there exists a controller with
sufficiently large number of fuzzy rules such that all the closed-loop signals are
bounded when the initial states are within this compact set. In practical
applications, the number of fuzzy rules usually cannot be chosen too large due
to the possible computation problem. This implies that the fuzzy system
approximation capability is limited, that is, the approximating accuracy ¢;’s for
the estimated the packaged uncertain functions f (Z;,_1,x;, Xa@;))’s will be greater
when chosen small number of fuzzy rules. But we can choose appropriately the
design parameter vectors 0.0, 5, 61, 65 to improve both stability and per-
formance of the closed-loop systems.
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5. Illustrative example

In order to reveal the control performance of the proposed RAFTC, the
following simulation example, an uncertain chaotic nonlinear system, i.e.,
Brusselator model in dimensionless form, is considered in this section.

{):c]:A—(B;i—l)xl—i—xfxz (44)

= Bx; — xix»

where x; and x, denote the concentrations of the reaction intermediates: 4, B > 0
are parameters describing the (constant) supply of “reservoir” chemicals. The
Brusselator model is a simplified model describing a certain set of chemical reac-
tions. This model was introduced by Turing [43] and studied in detail by Prigogine
and coworkers [44]. This model was named Brusseltor because its originators
worked in Brussels. It has become one of the most popular nonlinear oscillatory
models of chemical kinetics, as well as one of the paradigms in the research of chaos.

As a simplified model depicting chemical reactions, the Brusselator model is
derived from partial differential equations after a series of approximations.
Thus, there must exist modelling errors and other types of unknown nonlin-
earities in the practical chemical reactions. The controller Brusselator with
disturbance [45] is assumed as

)'Cl =4 - (B + 1))(1 —‘y—X%Xz + Al(xl,xbt)
).Cz = Bx1 — xfxz —+ (2 —+ Cos(xl))u —+ Az(xl,xz, t) (45)
y=x

where A; and A, are the disturbance terms, the nonlinearities f(x;) =
A—(B+1xi, gilx))=x1, fo(¥2) = Bx; —xIx2, g2(%) =2 +cos(x;) are as-
sumed unknown to the controller u. In the simulation, we get A;(x,x,,) =
0.7x? cos(1.5¢) and Ay(xy,x3,7) = 0.5(x} +x3) sin’ z.

The control objective is to guarantee (i) all the signals in the closed-loop
system remain bounded, and (ii) the output y follows the reference signal
¥ya = 3+ sin(0.5¢) 4+ 0.5sin(1.5¢). The robust adaptive fuzzy tracking controller
is chosen according to Theorem 2 as follows:

Define five fuzzy sets for each variable xi, zj, z, y; and so on with labels ‘P,'".
(NL), ¥;, (NM), ¥;, (ZE), ¥;, (PM), ¥;, (PL) which are characterized by the
following membership functions

iy = expl—(x+ 1)’
gy = expl—(x+0.5)"
M = exp[—x7] (46)
fs = expl—(x — 0.5
fps = expl—(x— 17
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The first stabilizing function ¢ is
o = —50z — Ja&, &'z — 01, tanh (wlzl /1.0) (47)

where /;(x;) = 1 + ||&(x1)|| + 7 and z; = y — y;. Then the adaptive laws are
given as follows

i = 1000[&, &2 — 0.3(4 — 0.1)]
{ 6, = 0.5 Wl =038y —0.1))]

and we obtain the controller law as
u=—152 — Jr&¢)z — Oy, tanh (ézlpzzz /1000) + i (49)

where Zy) = X3 — 0 —j/d.
Then adaptive laws are

/:12 = 30[52525 —0.3(% — 0-3)]
0 =5 [Yllzall = 0.3(0y — 1))]
Oy Oy

where ¥, (x1,x2) = 1+ (1 + || )|&]] + 7 +23 + |2t + |22

Simulation results in Figs. 1-4 show the effectiveness of the proposed robust
adaptive fuzzy tracking control design for Brusselator model with the reference
signal y, = sin(¢) 4+ 0.5sin(1.5¢). Fig. 1 shows that the systems output and the
boundedness of control u. Fig. 2 shows that the tracking error converges to a
small neighborhood around zero. Figs. 3 and 4 show the variations of adaptive
parameters A, 91, o and @2, which are also bounded.

60(]

6. Conclusion

In this paper, the tracking control problem has been considered for a class of
perturbed strict-feedback uncertain nonlinear systems with both unknown
system and virtual control gain nonlinearities. We have discussed that the
systems possess two types of uncertainties: one naturally satisfies the “trian-
gularity condition” and is not linearly parameterized, while the other is par-
tially known and consists of parametric uncertainties and known “bounding
functions™, and used Takagi-Sugeno type fuzzy logic systems to approximate
uncertain functions. Combining backstepping technique with small-gain ap-
proach, we have proposed a robust adaptive fuzzy tracking control (RAFTC)
algorithm which can guarantee that the closed-loop system is semi-globally
uniformly ultimately bounded. The main feature of the algorithm proposed is
the adaptive mechanism with minimal learning parameterizations, that is, no
matter how many states in the system are investigated and how many rules in
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20 40 60 80 100
(a) time [sec]

0 20 40 60 80 100
(b) time [sec]

Fig. 1. Simulation results for Brusselator model with y, = sin(¢) + 0.5sin(1.57). (a) System output y
and reference signal y, (solid line: y and dashed line: y;,), (b) control .

_ 0.15
S o0Ay
o
= 0.05 :
= Ay
§-005¢ ]
=01}
0 20 40 60 80 100
(a) time [sec]
0.5
NN
S o :
5]
-0.5 . . . .
0 20 40 60 80 100
(b) time [sec]

Fig. 2. Simulation results for Brusselator model with y, = sin(¢) 4+ 0.5sin(1.57). (a) Tracking error
z1, (b) intermediate error variable z,.
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0.015
0.01f
-
0.005¢
0 n " "
0 20 40 60 80 100
(a) time [sec]

0 20 40 60 80 100
(b) time [sec]

Fig. 3. Simulation results for Brusselator model with y; = sin(¢) + 0.5sin(1.5¢). (a) Adaptive
parameter 4, (b) adaptive parameter 0,.
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Fig. 4. Simulation results for Brusselator model with y; = sin(¢) +0.5sin(1.5¢). (a) Adaptive
parameter 4,, (b) adaptive parameter 0,.



232 Y. Yang, C. Zhou | Information Sciences 170 (2005) 211-234

the fuzzy system are used, only 2n parameters are needed to be adapted on-line.
Then the computation load of the algorithm can be reduced, and it is a con-
venience to realize this algorithm for engineering. Finally, a simulation
example has been presented to illustrate the tracking and stabilization per-
formance of the closed-loop systems by use of the proposed RAFTC algo-
rithm.
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