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Abstract

This paper presents a novel robust adaptive fuzzy tracking controller (RAFTC) for a

wide class of perturbed strict-feedback nonlinear systems with both unknown system

and virtual control gain nonlinearities. For unknown system nonlinearities, two types

for them are included: one naturally satisfies the ‘‘triangularity condition’’ and may

possess a class of unstructured uncertain functions which are not linearly parameterized,

while the other is partially known and consists of parametric uncertainties and known

‘‘bounding functions’’. The Takagi–Sugeno type fuzzy logic systems are used to

approximate unknown system nonlinearities and a systematic design procedure is

developed for synthesis of RAFTC by combining the backstepping technique and

generalized small-gain approach. The algorithm proposed is highlighted by three

advantages: (i) the semi-global uniform ultimate bound of RAFTC in the presence of

perturbed uncertainties and unknown virtual control gain nonlinearities can be guar-

anteed, (ii) the adaptive mechanism with minimal learning parameterizations is obtained

and (iii) the possible controller singularity problem in some of the existing adaptive

control schemes with feedback linearization techniques can be removed. Performance

and limitations of proposed method are discussed and illustrated with simulation re-

sults.
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1. Introduction

In the past decade, there has been a rapid growth of research efforts aimed at

the development of systematic design methods for the adaptive control of
nonlinear systems with parametric uncertainty. Many remarkable results have

been obtained owing to the advances in geometric nonlinear control theory,

and in particular, feedback linearization techniques [1,2]. As a breakthrough in

nonlinear control area, a recursive design procedure, adaptive backstepping

approach, was presented to obtain global stability and asymptotic tracking for

a large class of nonlinear systems which can be transformable to parametric

strict-feedback canonical ones, e.g. [3–6]. The overparametrization problem

was soon eliminated by Krstic et al. [7] by elegantly introducing the concept of
tuning function. Recently, nonlinear damping was also introduced in the

controller by Kanellakopoulos [8,9] to improve transient performance.

However, the common feature of the adaptive control algorithms discussed

in [3–9] is to deal with the case of uncertainties of the systems in the linearly

parameterized forms, that is, the system’s nonlinearities are assumed to be

known while parameters are unknown and linear with respect to those known

nonlinear functions. Unfortunately, in industrial control environment, some

systems are characterized by a wide class of uncertainties referred to as
unstructured ones, which cannot be modelled or repeatable. In order to cope

with such kind of uncertainties, as an alternative, approximator-based control

approaches have been studied for those systems in a Brunovsky form using

Lyapunov stability theory, e.g. [10–17]. Recently, the developed approximator-

based adaptive control approaches were extended to strict-feedback nonlinear

systems with unstructured uncertainties using the idea of adaptive backstepping

by means of the neural network or fuzzy system approximators, e.g. [18–20].

In this paper, we present a fuzzy system approximator-based robust adap-
tive control design procedure for a class of strict-feedback nonlinear systems in

the general form
_xi ¼ gið�xiÞxiþ1 þ fið�xiÞ þ Diðt; xÞ; 16 i6 n� 1
_xn ¼ fnðxÞ þ gnðxÞuþ Dnðt; xÞ
y ¼ x1

8<: ð1Þ
where x ¼ ½x1; x2; . . . ; xn�T 2 Rn is the system state vector, u 2 R is the input,
y 2 R is the output of system. Let �xi ¼ ½x1; x2; . . . ; xi�T. fið�xiÞ’s are unknown
smooth system functions with fið0Þ ¼ 0 and gið�xiÞ’s are unknown smooth
functions which are referred to as the virtual control gain ones. All of functions

fið�xiÞ and gið�xiÞ, i ¼ 1; 2; . . . ; n may not be linearly parameterized. Diðt; xÞ’s are
the disturbance uncertain nonlinearities of the system.
Note that for the adaptive fuzzy control design of uncertain strict-feedback

canonical system (1), there are two main difficulties. One comes from the
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uncertain virtual control gain functions gið�xiÞ, i ¼ 1; 2; . . . ; n. When gið�xiÞ’s
are unknown nonlinearities, if feedback linearization type controllers ai ¼
ð1=ĝið	ÞÞð�f̂ið	Þ þ viÞ are considered [45], where f̂ið	Þ and ĝið	Þ are the estimates
of fið	Þ and gið	Þ, respectively, and vi is a new control to be defined, the difficulty
arises when ĝið	Þ ! 0, which is referred to the controller singularity problem.

There are some robust adaptive control algorithms for system (1) have been

developed in [21–25], when the virtual control gain functions gið�xiÞ ¼ 1,
i ¼ 1; 2; . . . ; n� 1, for example, in [21], a stable adaptive fuzzy control was
presented for strict-feedback nonlinear systems with virtual control gains equal

to one and without the disturbance uncertain nonlinearities. The problem of

adaptive control of systems with unknown virtual control gain functions has

also received much attention in recent years. In [26], an adaptive control solu-
tion was presented for strict-feedback nonlinear systems with unknown virtual

control gain constants. The other is that many parameters need to be tuned in

the on-line learning laws when there are many state variables in the designed

systems, particularly by use of fuzzy logic systems adopted by [21], when many

rule bases are used in the fuzzy systems to approximate the uncertain nonlinear

functions, so that the learning time tends to become unacceptably large for

systems of higher order and time-consuming process is unavoidable when the

controllers above are implemented.
In this paper, a new systematic design procedure will be developed for the

synthesis of the stable robust adaptive fuzzy tracking controller for perturbed

strict-feedback canonical nonlinear systems in the presence of unstructured

uncertainties and unknown virtual control gain nonlinearities. Takagi–Sugeno

type fuzzy logic systems [27] are used to approximate the unstructured

uncertain functions. Then a stable robust adaptive fuzzy controller is proposed

by use of input-to-state stability (ISS) theory [28] and by combining back-

stepping technique with generalized small-gain approach [29]. The controller
proposed in this paper guarantees semi-global uniform ultimate boundedness

in the presence of unstructured uncertainties. The outstanding features of de-

rived controller are that it has the adaptive mechanism with minimal learning

parameterizations, no matter how many states in the designed systems are

investigated and how many rules in the fuzzy logic systems are used, the order

of the dynamic compensator is only 2n, where n is the dimensions of the state in
the designed systems, such that the burdensome computation of the algorithm

can be lightened and it is convenient to realize the algorithm in engineering,
and meanwhile it can avoid the possible controller singularity problem in

some of the existing adaptive control schemes with feedback linearization

techniques.

This paper is organized as follows. In Section 2, we will review T–S fuzzy

logic systems, some necessary definitions of input–to–state stability (ISS), and

small-gain theorem. Section 3 proposes a motivating problem. In Section 4,

a systematic procedure for the synthesis of robust adaptive fuzzy tracking
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controller is developed. In Section 5, an application is used to demonstrate the

effectiveness of proposed schemes. The final section contains conclusions.

Notation: Throughout this paper, let k 	 k be any suitable norm. The vector
norm of x 2 Rn is Euclidean, i.e., kxk2 ¼ ðxTxÞ and the matrix norm of A 2 Rn�m

is defined by kAk2 ¼ kmaxðATAÞ, where kmaxðminÞð	Þ denotes the operation of
taking the maximum (minimum) eigenvalue. The vector norm over the space

defined by stacking the matrix columns into a vector, so that it is compatible

with the vector norm, i.e., kAxk6 kAk 	 kxk.
For any piecewise continuous function u : Rþ ! Rm, kuk1 denotes

supfjuðtÞj; tP 0g, which stands for L1 supremum norm, and for any pair of

times 06 t16 t2, the truncation u½t1;t2� is a function defined on Rþ which is equal

to uðtÞ on ½t1; t2� and is zero outside the interval. In particular, u½0;t� is the usual
truncated function ut.
2. Preliminaries

2.1. T–S fuzzy systems

In the past few years, various types of fuzzy logic systems (e.g. Mamdani type

and Takagi–Sugeno type) have been proved to be universal approximators in

that they can uniformly approximate any continuous functions defined on

compact domains to any degree of accuracy [30–33]. The fuzzy logic systems use

the fuzzy IF–THEN rules to perform a mapping from an input linguistic vector

xT ¼ ðx1; x2; . . . ; xnÞ 2 Rn to an output linguistic variable y 2 R. Generally, the
fuzzy logic systems can be constructed by the following KðK > 1Þ fuzzy rules
Ri : If x1 is Wi
h1
AND x2 is Wi

h2
AND . . .AND xn is Wi

hn

THEN yi is Xi
h1h2			hn ; i ¼ 1; 2; . . . ;K
where Xi
h1h2			hn denotes an output fuzzy set. If X

i
h1h2			hn is a singleton fuzzy set, its

membership function is 1 only at yi ¼ ri (an arbitrary unknown constant) and 0

at other position, then that is called Mamdani type fuzzy system. If Xi
h1h2			hn

is a function of ai0 þ ai1x1 þ ai2x2 þ 	 	 	 þ ainxn which aij, i ¼ 1; 2; . . . ;K,
j ¼ 0; 1; . . . ; n are the unknown constants, then that is called Takagi–Sugeno
type fuzzy system, T–S fuzzy system for short. The product fuzzy inference is

employed to evaluate the ANDs in the fuzzy rules. After being defuzzified by a

typical center average defuzzifier, we can write the output of T–S fuzzy system

in the vector form as follows
f̂ ðx;AxÞ ¼ nðxÞAx�x ð2Þ
where nðxÞ ¼ ½n1ðxÞ; n2ðxÞ; . . . ; nKðxÞ�, niðxÞ ¼
Qn

j¼1 li
hj
ðxjÞ=

PK
i¼1

Qn
j¼1 li

hj
ðxjÞ

h i
,

i ¼ 1; 2; . . . ;K is called as fuzzy basis function and �x :¼ ½1; x�. When the
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membership function li
hj
ðxjÞ in niðxÞ is denoted by some type of membership

function. In Eq. (2), we have
Az ¼

a10 a11 	 	 	 a1n
a20 a21 	 	 	 a2n
..
. ..

. ..
. ..

.

aK0 aK1 	 	 	 aKn

26664
37775:
For any continuous function f ðxÞ, there exists some type fuzzy logic system to
approximate it to an arbitrary accuracy. Then there exists the lemma proved by

Wang [32] and Cao et al. [33].

Lemma 1. Suppose that the input universal of discourse U is a compact set in Rr.
Then, for any given real continuous function f ðxÞ on U and 8e > 0, there exists a
T–S type fuzzy system in the form of (2) such that
sup
x2U

kf ðxÞ � f̂ ðx;AxÞk6 e ð3Þ
Remark 1. For any n-dimensional continuous function f ðxÞ, if Ni þ 1 input
fuzzy sets for each variable xi are used, there will be K ¼

Qn
i¼1ðNi þ 1Þ IF-

THEN fuzzy rules in the fuzzy system. If Mamdani type system is used to

approximate the function f ðxÞ, we observe that there are a total of
Qn

i¼1ðNi þ 1Þ
parameters to describe it. And while T–S type fuzzy system is used there are a

total of ðnþ 1Þ 	
Qn

i¼1ðNi þ 1Þ parameters to describe it.

2.2. ISS and small-gain theorem

The concepts of ISS and ISS-Lyapunov function proposed by [28,34,35]

have recently been used in various control problems such as nonlinear stabil-

ization, robust control and observer designs (see, e.g. [36–41]). In order to ease

the discussion of the design of RAFTC scheme, two definitions with respect to

input-to-state stability are reviewed in the following. First, we recall the class
K, K1 and KL functions which are standard in the stability literature, see Khalil
[42].

A class K-function c is a continuous, strictly increasing function from Rþ
into Rþ and cð0Þ ¼ 0. It is of class K1 if additionally cðsÞ ! 1 as s ! 1. A
function b : Rþ � Rþ ! Rþ is of class KL if bð	; tÞ is of class K for every tP 0

and bðs; tÞ ! 0 as t ! 1.

Definition 1. For the system _x ¼ f ðx; uÞ, it is said to be input-to-state practi-
cally stable (ISpS) if there exist a function c of class K, called the nonlinear L1
gain, and a function b of class KL such that, for any initial condition xð0Þ, each
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measurable essentially bounded control uðtÞ defined for all tP 0 and a non-

negative constant d, the associated solutions xðtÞ are defined on ½0;1Þ and
satisfy:
kxðtÞk6bðkxð0Þk; tÞ þ cðkutk1Þ þ d ð4Þ
When d ¼ 0 in (4), the ISpS property reduces to the input-to-state stability
(ISS) property introduced in [34].

Definition 2. A C1 function V is said to be an ISpS-Lyapunov function for the
system _x ¼ f ðx; uÞ if there exist functions a1, a2, a3, a4 of class K and a constant
d > 0 such that
a1ðkxkÞ6 V ðxÞ6 a2ðkxkÞ; 8x 2 Rn ð5Þ
oV ðxÞ
ox

f ðx; uÞ6 � a3ðkxkÞ þ a4ðkukÞ þ d ð6Þ
When (6) holds with d ¼ 0, V is referred to as an ISS-Lyapunov function.
Then it holds that one may pick a nonlinear L1 gain c in (4) of the form [36]
cðsÞ ¼ a�1
1 � a2 � a�1

3 � a4ðsÞ; 8s > 0 ð7Þ

The following proposition establishes equivalence between ISpS and the exis-

tence of ISpS-Lyapunov function by Sontag and Wang [35], Praly and Wang

[40].

Proposition 1. The system _x ¼ f ðx; uÞ is ISpS if and only if there exists an ISpS-
Lyapunov function.

A trivial refinement of the proof of the generalized small-gain theorem given

by [29,41] yields the following variant.

Theorem 1. Consider a system in composite feedback form
R~zx :
_x ¼ f ðx;xÞ
~z ¼ HðxÞ

�
ð8Þ

Rx~z :
_y ¼ gðy;~zÞ
x ¼ Kðy;~zÞ

�
ð9Þ
of two ISpS systems. In particular, there exist two constants d1 > 0, d2 > 0, and
let bx and bn of class KL, and cz and cx of class K be such that, for each x in the
L1 supremum norm, each ~z in the L1 supremum norm, each x 2 Rn and each
y 2 Rm, all the solutions X ðx;x; tÞ and Y ðy;~z; tÞ are defined on ½0;1Þ and satisfy,
for almost all tP 0:
kHðX ðx;x; tÞÞk6 bxðkxk; tÞ þ czðkxtk1Þ þ d1 ð10Þ
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kKðY ðy;~z; tÞÞk6 bnðkyk; tÞ þ cxðk~ztk1Þ þ d2 ð11Þ
Under these conditions, if
czðcxðsÞÞ < s ðresp: cxðczðsÞÞ < sÞ 8s > 0; ð12Þ
then the solution of the composite systems (8) and (9) is ISpS.
3. A motivating problem

The primary goal of this paper is to track a given reference signal ydðtÞ while
keeping the states and control bounded. That is, the output tracking error

z1 ¼ yðtÞ � ydðtÞ should be small. The given bounded reference signal ydðtÞ is
generated from the following smooth model
_xdi ¼ fdiðxdÞ; 16 i6m
yd ¼ xd1; nPm

�
ð13Þ
where xd ¼ ½xd1; xd2; . . . ; xdm�T 2 Rm are the states, yd 2 R is the system output,

fdið	Þ’s are known nonlinear functions. Assume that the states of the reference
model remain bounded, i.e., xd 2 Xd , 8tP 0. We can define the tracking error

vector eðtÞ ¼ xðtÞ � �xdðnÞ.

Remark 2. Under the assumptions that the virtual control gain functions

gið�xiÞ ¼ 1, i ¼ 1; 2; . . . ; n� 1 and the unknown functions fið�xiÞ’s are linearly
parameterized as hTi wið�xiÞ with hi being the unknown constant parameters

vector, several adaptive robust control algorithms for strict-feedback nonlinear

systems (1) have been developed in [22–24]. If the unknown functions fið�xiÞ’s
cannot be linearly parameterized, the fuzzy logic system approximators were
used to approximate functions fið�xiÞ’s and gnðxÞ and an adaptive robust control
algorithm was presented in [21]. In [26], an adaptive robust control algorithm

was presented for strict-feedback nonlinear systems with unknown virtual

control gain constants. However, for more general class of nonlinear uncertain

systems like (1), few results are available in the literature. In this paper, we will

address this problem.

For the system (1), the following assumptions are introduced.

Assumption 1. The uncertain virtual control gain functions gið�xiÞ’s are confined
within a certain range such that
0 < bmin6 j gið�xiÞ j 6 bmax ð14Þ
where bmin and bmax are the lower and upper bound parameters respectively.
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The above assumption implies that smooth functions gið�xiÞ, i ¼ 1; 2; . . . ; n
are strictly either positive or negative. From now onwards, without loss of

generality, we shall assume gið�xiÞP bmin > 0, i ¼ 1; 2; . . . ; n. Assumption 1 is
reasonable because gið�xiÞ’s being away from zero is the controllable conditions
of system (1). It should be emphasized that the upper and lower bound

parameters, bmax and bmin, are required for analytical purposes, theirs true value
is not necessarily known.

Assumption 2. For 16 i6 n, there exists an unknown positive constant p�i such
that 8ðt; xÞ 2 Rþ � Rn
j Diðt; xÞ j 6 p�i /ið�xiÞ
where /ið	Þ is a known nonnegative smooth function.

Generally speaking, the control objective is to find a robust adaptive fuzzy

tracking controller for the system (1) in the following form
_v ¼ -ðv; nðeÞ; eÞ; v 2 Rp ð15Þ
u ¼ uðv; nðeÞ; eÞ ð16Þ
where nðeÞ is a known fuzzy base function vector. In such a way that all the
solutions of the closed-loop system (1), (15) and (16) are globally uniformly

ultimately bounded. Furthermore, the tracking error vector e can be rendered
small.

Remark 3. From Eqs. (15) and (16), we can observe that it is a dynamic

feedback controller and p is the order of the dynamic part v of the controller.
An important quality of the controller is of course the property that the order p
of v should be as small as possible, and in particular doses not depend on the
dimensions of the state. Therefore, the dynamic part of the controller is the

adaptive law for estimating the unknown parameters on-line and the order p of
v is equal to the number of parameters to be estimated. In the conventional
adaptive fuzzy controller, the order p of v is equal to the number of parameters
to be used for describing the fuzzy logic system, which is employed to

approximate the unknown uncertain functions in the designed systems.

Remark 4. Wang et al. [21] presented an adaptive fuzzy controller for the

system (1) with gið�xiÞ ¼ 1, i ¼ 1; 2; . . . ; n� 1. The authors used the Mamdani
type fuzzy systems to approximate the functions fið�xiÞ, i ¼ 1; 2; . . . ; n and gnðxÞ.
According to Remark 1, we know that there are

Pn
j¼1
Qj

i¼1ðNi þ 1Þ parameters
for fið�xiÞ, i ¼ 1; 2; . . . ; n and

Qn
i¼1ðNi þ 1Þ parameters for gnðxÞ needed to be

estimated in the adaptive fuzzy control scheme. In order to make our point

clearer, we give a simple example here, i.e., let us discuss a system which has the
order n ¼ 3 and use Ni þ 1 ¼ 5 to be continuous input fuzzy sets, as a result
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there will be 5 + 5 · 5+ 5 · 5 · 5+ 5 · 5 · 5¼ 280 parameters needed to be esti-
mated in the adaptive fuzzy controller proposed by Wang et al. [21]. From this

small example, we can see that there will be many parameters needed to be

estimated in the on-line adaptive law when there are many state variables in the
designed systems and many rule bases in the fuzzy system are used to

approximate the uncertain nonlinear functions. It will result in that the

learning time tends to become unacceptably large and time-consuming process

is unavoidable when the controller is implemented.

Remark 5. In [21], it was assumed that the approximation errors and external

disturbances were square integrable. However, the square-integrable property

of the approximation error and external disturbance is difficult to show for
given plant and this calculation may require knowledge of plant dynamics.

Remark 6. In this paper, we will present a robust adaptive fuzzy tracking

control algorithm with the structure as Eqs. (15) and (16) for a class of per-

turbed strict-feedback uncertain nonlinear system (1) by use of input-to-state

stability theory and by combining backstepping technique with generalized

small-gain approach. The outstanding feature of the algorithms proposed in

this paper is that the order p of v is 2n, no matter how many states in the
designed systems are investigated and how many rules in the fuzzy system are

used, i.e., for the small example given above, there will be only 6 parameters

needed to be estimated in the derived algorithms.
4. Design of robust adaptive fuzzy tracking control

The backstepping design procedure contains n steps. At each step, an
intermediate control function ak shall be developed using an appropriate

Lyapunov function Vk. We give the proceeding of the backstepping design as

follows:

Step 1. Define the error variables z1 ¼ x1 � yd and z2 ¼ x2 � a1 � _yd , then
_z1 ¼ g1ðx1Þx2 þ f1ðx1Þ þ D1ðt; xÞ � _yd

¼ g1ðx1Þðz2 þ a1Þ þ f1ðx1Þ þ D1ðt; xÞ þ ðg1ðx1Þ � 1Þ _yd ð17Þ
Since f1ðx1Þ is an unknown continuous function, according to Lemma 1, T–S
fuzzy system bf1ðx1;A1Þ with input vector x1 2 Ux1 for some compact set Ux1 � R
is proposed here to approximate the uncertain term f1ðx1Þ where A1 is a matrix
containing unknown constants. Then f1ðx1Þ can be expressed as
f1ðx1Þ ¼ n1ðx1ÞA1x1 þ e1 ¼ n1ðx1ÞA1z1 þ n1ðx1ÞA1yd þ e1

¼ ch1n1ðx1Þx1 þ n1ðx1ÞA1yd þ e1 ð18Þ



220 Y. Yang, C. Zhou / Information Sciences 170 (2005) 211–234
where x1 ¼ Am
1 z1 and e1 is a parameter denoting approximating accuracy. Let

ch1 ¼ kA1k, such that Am
1 ¼ c�1h1 A1 and kAm

1 k6 1.
Substituting (18) into (17), we get
_z1 ¼ g1ðx1Þðz2 þ a1Þ þ ch1n1ðx1Þx1 þ m1 ð19Þ
where m1 ¼ n1ðx1ÞA1yd þ e1ðx1Þ þ D1ðt; xÞ þ ðg1ðx1Þ � 1Þ _yd and ch1 is an un-

known constant. In light of Assumption 2, we can obtain a bound for m1 as
follows
km1k6 kn1ðx1ÞA1yd þ e1 þ D1ðt; xÞ þ ðg1ðx1Þ � 1Þ _ydk

6 kA1ydkkn1ðx1Þk þ ke1k þ p�1/1ðx1Þ þ ðbmax þ 1Þk _ydk

6 bminh1w1ðx1Þ ð20Þ
where h1 ¼ b�1min maxðkA1ydk; ke1k; p�1; ðbmax þ 1Þk _ydkÞ and w1ðx1Þ ¼ 1þ kn1kþ
/1ðx1Þ.
Consider the stabilization of the subsystem (19) and the Lyapunov function

candidate is
V1ðz1; k1; ĥ1Þ ¼
1

2
z21 þ

1

2
bminC�1

11
~k21 þ

1

2
bminC�1

12
~h21 ð21Þ
where C11 and C12 are the positive definite constants. ~k1 ¼ ðb�1minc2h1 � k1Þ and
~h1 ¼ ðh1 � ĥ1Þ. k1 and bh1 are the estimates of b�1minc2h1 and h1, respectively. The
time derivative of V1 is
_V1ðz1; k1; ĥ1Þ ¼ z1½g1ðx1Þðz2 þ a1Þ þ ch1n1ðx1Þx1 þ m1� � C�1
11
~k1 _k1 � C�1

12
~h1
_̂h1

ð22Þ
Let c1 > 0, we can get
ch1n1ðx1Þx1z1 ¼ ch1n1ðx1Þx1z1 � c21x
T
1x1 þ c21x

T
1x1

¼ �c21 x1

�
� ch1

2c21
n1z1

�2
þ c2h1
4c21

n1n
T
1 z
2
1 þ c21x

T
1x1

6
c2h1
4c21

n1n
T
1 z
2
1 þ c21x

T
1x1

6 bmin
k1
4c21

n1n
T
1 z
2
1 þ bmin

~k1
4c21

n1n
T
1 z
2
1 þ c21x

T
1x1 ð23Þ
Using (20), we can get
m1z16 bminh1w1ðx1Þkz1k6 bminĥ1w1ðx1Þkz1k þ bmin~h1w1ðx1Þkz1k ð24Þ
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Therefore, we can get the intermediate stabilizing function a1 as follows
a1 ¼ �k1z1 �
k1
4c21

n1ðx1ÞnT1 ðx1Þz1 � ĥ1w1ðx1Þ tanh
ĥ1w1ðx1Þz1

d1

 !

where k1 > 0 and d1 > 0 are the design constants. Then we get
g1ðx1Þa1z1 ¼ g1ðx1Þ
 

� k1z21 �
k1
4c21

n1ðx1ÞnT1 ðx1Þz21 � ĥ1w1ðx1Þz1 tanh
ĥ1w1ðx1Þz1

d1

 !!

6 bmin

 
� k1z21 �

k1
4c21

n1ðx1ÞnT1 ðx1Þz21 � ĥ1w1ðx1Þz1 tanh
ĥ1w1ðx1Þz1

d1

 !!
ð25Þ
Using (23)–(25), _V1 can be written as
_V1ðz1; k1; ĥ1Þ6 � bmink1z21 þ g1ðx1Þz1z2 þ bminĥ1w1ðx1Þkz1k

� bminĥ1w1ðx1Þz1 tanh
ĥ1w1ðx1Þz1

d1

 !
þ c21x

T
1x1

þ bminC�1
11
~k1

C11
4c21

n1n
T
1 z
2
1

�
� _k1

�
þ bminC�1

12
~h1 C12w1ðx1Þkz1k
�

� _̂h1
�

ð26Þ
As in [18], in order to prevent parameters drift, we present the following

adaptive laws incorporating a leakage term based on a variation of r-modifi-
cation. Let the parameter adaptive laws for k1 and ĥ1 now chosen as
_k1 ¼ C11 1
4c2
1

n1ðx1ÞnT1 ðx1Þz21 � r11ðk1 � k01Þ
h i

_̂h1 ¼ C12 w1ðx1Þkz1k � r12ðĥ1 � h01Þ
h i

8<: ð27Þ
where k01, h
0
1, r11 and r12 are design parameters.

And we deal with the relative term in Eq. (26). By using the lemma proved

by [18], we can get
ĥ1w1ðx1Þkz1k � ĥ1w1ðx1Þz1 tanh
ĥ1w1ðx1Þz1

d1

 !
6 d1 ð28Þ
Let c1 ¼ minf2bmink1;r11bminC11; r12bminC12g. Then _V1 is converted into
_V1ðz1; k1; ĥ1Þ6 � c1V1ðz1; k1; ĥ1Þ þ g1ðx1Þz1z2 þ c21x
T
1x1 þ l1 ð29Þ
where l1 ¼ bmin d1 þ 1
2
j c2h1 � k01 j2 þ 1

2
j h1 � h01 j2

� �
.

Step 2.
_z2 ¼ g2ð�x2Þx3 þ f2ð�x2Þ þ D2ðt; xÞ � _a1 � €yd ð30Þ
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Then the time derivative of a1 is
_a1 ¼
oa1
ox1

_x1 þ
oa1
ok1

_k1 þ
oa1

oĥ1

_̂h1 þ
oa1
oyd

_yd

¼ oa1
ox1

g1ðx1Þx2ð þ f1ðx1Þ þ D1ðt; xÞÞ þ
oa1
ok1

_k1 þ
oa1

oĥ1

_̂h1 þ
oa1
oyd

_yd

¼ f12ðz1;�x2Þ þ
oa1
ox1

D1ðt; xÞ þ
oa1
oyd

_yd ð31Þ
Substituting (31) into (30), we get
_z2 ¼ g2ð�x2Þx3 � g1z1 þ f2ð�x2Þ þ g1z1 þ D2ðt; xÞ � f12ðz1;�x2Þ

� oa1
ox1

D1ðt; xÞ �
oa1
oyd

_yd � €yd

¼ g2ð�x2Þx3 � g1z1 þ f 0
2ðz1; z2; ydÞ þ D2ðt; xÞ �

oa1
ox1

D1ðt; xÞ �
oa1
oyd

_yd � €yd

ð32Þ
We also use a T–S fuzzy system to approximate the unknown function

f 0
2ðz1; z2; ydÞ and obtain
f 0
2ðz1; x2; ydÞ ¼ n2ðz1; x2; ydÞA2½z1; x2; yd �T þ e2 ¼ n2A

1
2½z1; x2�

T þ n2A
2
2yd þ e2

¼ ch2n2x2 þ d2
where x2 ¼ Am
2�z2 and ch2 ¼ kA12k ¼ k1=2maxðA1T2 A12Þ, such that A12 ¼ ch2Am

2 and

kAm
2 k6 1. d2 ¼ n2A122 ða1 þ ydÞ þ n2A22yd þ e2.
Defining a error variable z3 as z3 ¼ x3 � a2 � €yd , Eq. (32) can be written as
_z2 ¼ g2ð�x2Þðz3 þ a2Þ � g1z1 þ ch2n2x2 þ m2 ð33Þ

where m2 ¼ d2 þ D2 � oa1

ox1
D1 � oa1

oyd
_yd þ ðg2ð�x2Þ � 1Þ€yd .

Choosing Lyapunov function candidate
V2 ¼ V1 þ
1

2
z22 þ

1

2
bminC�1

12
~k22 þ

1

2
bminC�1

22
~h22
A similar procedure with (23) and (24) is used and the time derivative of V2
becomes
_V26 � c1V1 þ g1z1z2 þ c21x
T
1x1 þ l1 þ z2 g2ðz3½ þ a2Þ � g1z1�

þ bmin
k2
4c22

n2n
T
2 z
2
2 þ bminĥ2w2kz2k þ bminC�1

21
~k2

C21
4c22

n2n
T
2 z
2
2

�
� _k2

�
þ bminC�1

22
~h2 C22w2kz2k
�

� _̂h2
�
þ c22x

T
2x2
where km2k6 h2w2 and w2 ¼ 1þ ð1þ ka1kÞkn2k þ /2ð�x2Þ þ oa1
ox1

��� ���/1ðx1Þ þ oa1
oyd

��� ���.
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Now, choose the intermediate stabilizing function a2 and adaptive laws as
a2 ¼ �k2z2 �
k2
4c22

n2n
T
2 z2 � ĥ2w2 tanh

ĥ2w2z2
d2

 !
ð34Þ

_k2 ¼ C21 1
4c2
2

n2n
T
2 z
2
2 � r21 k2 � k02

� �h i
_̂h2 ¼ C22 w2kz2k � r22 ĥ2 � h02

� �h i
8<: ð35Þ
where k2, d2, k
0
2, h02, r21 and r22 are design constants.

Let c2 ¼ minfc1; 2bmink2; r21bminC21;r22bminC22g, then _V2 is converted to
_V26 � c2V2 þ g2z2z3 þ
X2
i¼1

c2i x
T
i xi þ l2 ð36Þ
where l2 ¼ l1 þ bmin d2 þ 1
2
c2h2 � k02
�� ��2 þ 1

2
h2 � h02
�� ��2� �

.

A similar procedure is employed recursively for each step kð36 k6 n� 1Þ.
By considering the equation of system (1) for i ¼ k; _xk ¼ gkxkþ1 þ fkð�xkÞþ
Dkðt; xÞ, and the Lyapunov function candidate
Vk ¼ Vk�1 þ
1

2
z2k þ

1

2
bminC�1

k1
~k2k þ

1

2
bminC�1

k2
~h2k
where ~kk ¼ ðb�1minc2hk � kkÞ and ~hk ¼ ðhk � ĥkÞ.
We may design the control function ak, and learning laws for kk and ĥk,

which take similar forms of (27) and (35), respectively. The controller u for the
system (1) shall be constructed in step n.

Step n: Define the error variable as zn ¼ xn � an�1 � yðn�1Þd . We have
_zn ¼ gnðxÞuþ fnðxÞ þ Dn � _an�1 � yðnÞd
Using the similar way to (31) in Step 2, we have
_an�1 ¼
Xn�1
j¼1

oan�1

oxj
gjþ1ð�xjþ1Þxjþ1
n

þ fjð�xjÞ þ Dj

o
þ oan�1

okn�1
_kn�1 þ

oan�1

oĥn�1

_̂hn�1 þ
Xn�1
j¼1

oan�1

oyðj�1Þd

yðjÞd

¼ fðn�1Þnð�zn�1;�xn;�xdðn�1ÞÞ þ
Xn�1
j¼1

oan�1

oxj
Dj þ

Xn�1
j¼1

oan�1

oyðj�1Þd

yðjÞd
Then
_zn ¼ gnðxÞu� gn�1zn�1 þ f 0
nð�zn�1; xn;�xdðn�1ÞÞ þ Dn � yðnÞd

�
Xn�1
j¼1

oan�1

oxj
Dj

 
þ oan�1

oyðj�1Þd

yðjÞd

!

where f 0

n ¼ fnðxÞ � fðn�1Þnð�zn�1;�xn;�xdðn�1ÞÞ þ gn�1zn�1.
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We also use a T–S fuzzy system to approximate the unknown function

f 0
nð�zn�1; xn;�xdðn�1ÞÞ and obtain
f 0
n ¼ nnAn½�zn�1; xn;�xdðn�1Þ�T þ en

¼ nnA
1
n½�zn�1; xn�

T þ nnA
2
n�x
T
dðn�1Þ þ en

¼ nnA
1
n�z
T
n þ dn
where dn ¼ nnA12n an�1 þ yðn�1Þd

� �
þ nnA2n�x

T
dðn�1Þ þ en. Let xn ¼ Am1

n �zn, chn ¼ Am1
n

�� ��
and A1n ¼ chnAm1

n . Let u ¼ an þ yðnÞd , we get
_zn ¼ gnan � gn�1zn�1 þ chnnnwn þ mn
where mn ¼ dn þ Dn þ ðgnðxÞ � 1ÞyðnÞd �
Pn�1

j¼1
oan�1
oxj

Dj þ oan�1
oyðj�1Þd

yðjÞd

� �
.

Taking the following Lyapunov function candidate
Vn ¼ Vn�1 þ
1

2
z2n þ

1

2
bminC

�1
n1
~k2n þ

1

2
bminC

�1
n2
~h2n
its time derivative is
_Vn ¼ _Vn�1 þ zn gnanð � gn�1zn�1 þ chnnnwn þ mnÞ � bminC
�1
n1
~kn
_kn

� bminC�1
n2
~hn
_̂hn 6 � cn�1Vn�1 þ

Xn
i¼1

c2i x
T
i xi þ

Xn�1
i¼1

li þ bmindn

þ zn gnan

 
þ bmin

kn

4c2n
nnn

T
n zn þ bminĥnwn tanh

ĥnwnzn
dn

 !!

þ bminC�1
n1
~kn

Cn1

4c2n
nnn

T
n z
2
n

�
� _kn

�
þ bminC�1

n2
~hn Cn2wnkznk
�

� _̂hn

�

where
kmnk6 hnwn
and
wn ¼ 1þ ð1þ kan�1kÞknnk þ /n þ
Xn�1
j¼1

oan�1

oxj
/j

 ����� þ oan�1

oyðj�1Þd

!�����

Now, we get kn > 0 as a design constant and are ready to choose the con-

troller as
u ¼ an þ yðnÞd ¼ �knzn �
kn

4c2n
nnn

T
n zn � ĥnwn tanh

ĥnwnzn
dn

 !
þ yðnÞd ð37Þ
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and adaptive laws in step n as
_kn ¼ Cn1
1
4c2n

nnn
T
n z
2
n � rn1 kn � k0n

� �h i
_̂hn ¼ Cn2 wnkznk � rn2 ĥn � h0n

� �h i
8<: ð38Þ
According to the recursive control design procedure above, at the last step (i.e.,

i ¼ n), picking the robust adaptive fuzzy control u in (37) and the adaptive laws
in (38), we arrive at
_Vn 6 � cnVn þ
Xn
i¼1

c2i x
T
i xi þ ln

6 � cnVn þ c2kxk2 þ ln ð39Þ
where ln ¼
Pn�1

i¼1 li þ bmin dn þ 1
2
c2hn � k0n
�� ��2 þ 1

2
hn � h0n
�� ��2� �

, x ¼ ½x1;x2; . . . ;

xn�T and c ¼ c21 þ c22 þ 	 	 	 þ c2n
� �1=2

.

We are now in a position to state our main result on semi-global robust

adaptive fuzzy controller.

Theorem 2. Consider the system (1) with unknown system and virtual control
gain nonlinearities, and suppose that the packaged uncertain functions
f 0
i ð�zi�1; xi;�xdðiÞÞ, i ¼ 1; 2; . . . ; n can be approximated by T–S fuzzy systems in the
sense that ei is bounded. If we pick c < 1 and ki > 1

bmin
, i ¼ 1; 2; . . . ; n in (39), then

the robust adaptive fuzzy tracking control law u ¼ an þ yðnÞd with the intermediate
stabilizing functions ai, i ¼ 1; 2; . . . ; n and adaptive laws for ki and ĥi can make all
the solutions ðzðtÞ; k; ĥÞ of the derived closed-loop system uniformly ultimately
bounded. Furthermore, given any - > 0, we can tune our controller parameters
such that the output error z1 ¼ yðtÞ � ydðtÞ satisfies limt!1 j z1ðtÞ j 6-.

Proof. In order to use Theorem 1 (small-gain theorem), it is necessary to

construct a system in composite feedback form with R~zx-subsystem and Rx~z-

subsystem. We begin with the R~zx-subsystem. According to the error variables

zi ¼ xi � ai�1 � yði�1Þd , i ¼ 1; 2; . . . ; n, a0 ¼ 0 defined in Section 4, we substitute zi
into (1) and use T–S fuzzy systems to approximate the packaged uncertain

functions f 0
i ð�zi�1; xi;�xdðiÞÞ, i ¼ 1; 2; . . . ; n, then the closed-loop system can be

given as follows
R~zx :

_z1 ¼ g1ð�x1Þða1 þ z2Þ þ ch1n1x1 þ m1
_zi ¼ gið�xiÞðai þ ziþ1Þ � gi�1zi�1 þ chinixi þ mi; 26 i6 n� 1
_zn ¼ gnðxÞu� gn�1zn�1 þ chnnnxn þ mn
~z ¼ HðzÞ ¼ z

8>><>>:
ð40Þ
where x ¼ ½x1;x2; . . . ;xn�T is considered as the virtual input and ~z as the
output.
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For subsystem R~zx, if picking ki > 1=bmin, i ¼ 1; 2; . . . ; n from (39), we obtain
_Vn 6 � z2 þ c2kxk2 þ d0
n

By Definition 2, we propose the robust adaptive fuzzy tracking controller such

that the requirement of ISpS for system R~zx can be satisfied with the functions

a3ðsÞ ¼ s2 and a4 ¼ c2s2 of class K1. According to (7), we can get a gain

function czðsÞ of R~zx-subsystem
czðsÞ ¼ a�1
1 � a2 � a�1

3 � a4; 8s > 0
where a1ðzÞ6 VnðzÞ6 a2ðzÞ.
For Rx~z-subsystem, it is
Rx~z :

x1 ¼ Am
1 z1

x2 ¼ Am
2 ½z1; z2�

T ¼ Am
2�z2

..

.

xn ¼ Am
n ½z1; z2; . . . ; zn�

T ¼ Am
n�zn

8>>><>>>: ð41Þ
We can rewrite the above equations as
x ¼

x1

x2

..

.

xn

26664
37775 ¼ KðzÞ ¼

Am
1 0 	 	 	 0

Am1
2 Am2

2 	 	 	 0

..

. ..
.

	 	 	 ..
.

Am1
n Am2

n 	 	 	 Amn
n

26664
37775

z1
z2
..
.

zn

26664
37775 ¼ Az
and obtain
kxk6 kAkkzk ¼ c0kzk ð42Þ
Then the gain function cw for system Rx~z is cwðsÞ ¼ c0s. In order to check the
requirement czðcxðsÞÞ < s in small-gain theorem 1, we select (40) as (8), and (42)
as (9), and obtain cc0 < 1. Due to c0 ¼ kAk6 1, the condition of small-gain
theorem 1 can be satisfied by choosing c < 1, such that it can be proven that
the composite closed-loop system is ISpS. Therefore, direct use of Definition 1

yields that the composite closed-loop system has bounded solutions over

½0;1Þ. More precisely, there exists a class KL-function b and a positive con-
stant d1 such that
kzðtÞ; kðtÞ; ĥðtÞk6 bðkzð0Þ; kð0Þ; ĥð0Þk; tÞ þ d0
n

where k ¼ ½k1; k2; . . . ; kn�T and ĥ ¼ ½ĥ1; ĥ2; . . . ; ĥn�T.
This, in turn, implies that the tracking error vector zðtÞ is bounded over

½0;1Þ. According to Proposition 1, there exists an ISpS-Lyapunov function for
the composite closed-loop system. By substituting (42) into (39), the ISpS-

Lyapunov function is satisfied as follows
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_Vn 6 � zTQz� 1
2
~kTQ1~k � 1

2
~hTQ2~h þ c02c2kzk2 þ ln

6 � zTQz� 1
2
~kTQ1~k � 1

2
~hTQ2~h þ kzk2 þ ln

6 � c1Vn þ ln ð43Þ
where
Q ¼ diag½k1; k2; . . . ; kn�

Q1 ¼ diag½r11; r12; . . . ; r1n�T

Q2 ¼ diag½r21; r22; . . . ; r2n�T

c1 ¼ minf2ðkminðQÞ � 1=bminÞ; kminðQ1Þ=kmaxðC�1
1 Þ; kminðQ2Þ=kmaxðC�1

2 Þg

C1 ¼ ½C11;C12; . . . ;C1n�T
and
C2 ¼ ½C21;C22; . . . ;C2n�T
From (44), we obtain
VnðtÞ6
ln

c1
þ Vnðt0Þ
�

� ln

c1

�
e�ðt�t0Þ
It results that the solutions of composite closed-loop system are uniformly

ultimately bounded, and implies that, for any -1 > ðln=c1Þ
1=2
, there exists a

constant T > 0 such that kz1ðtÞk6-1 for all tP t0 þ T . The last statement
holds readily since ðln=c1Þ

1=2
can be made arbitrarily small if the design

parameter vectors k0, h0, d, r1, r2 are chosen appropriately. Finally, we have
proved Theorem 2. h

Remark 7. Since the function approximation property of fuzzy systems is only

guaranteed within a compact set, the stability result proposed in this paper is
semi-global in the sense that, for any compact set, there exists a controller with

sufficiently large number of fuzzy rules such that all the closed-loop signals are

bounded when the initial states are within this compact set. In practical

applications, the number of fuzzy rules usually cannot be chosen too large due

to the possible computation problem. This implies that the fuzzy system

approximation capability is limited, that is, the approximating accuracy ei’s for
the estimated the packaged uncertain functions f 0

i ð�zi�1; xi;�xdðiÞÞ’s will be greater
when chosen small number of fuzzy rules. But we can choose appropriately the
design parameter vectors k0, h0, d, r1, r2 to improve both stability and per-
formance of the closed-loop systems.
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5. Illustrative example

In order to reveal the control performance of the proposed RAFTC, the

following simulation example, an uncertain chaotic nonlinear system, i.e.,
Brusselator model in dimensionless form, is considered in this section.
_x1 ¼ A� ðBþ 1Þx1 þ x21x2
_x2 ¼ Bx1 � x21x2

�
ð44Þ
where x1 and x2 denote the concentrations of the reaction intermediates: A;B > 0
are parameters describing the (constant) supply of ‘‘reservoir’’ chemicals. The
Brusselator model is a simplified model describing a certain set of chemical reac-

tions. This model was introduced by Turing [43] and studied in detail by Prigogine

and coworkers [44]. This model was named Brusseltor because its originators

worked in Brussels. It has become one of the most popular nonlinear oscillatory

models of chemical kinetics, as well as one of the paradigms in the research of chaos.

As a simplified model depicting chemical reactions, the Brusselator model is

derived from partial differential equations after a series of approximations.

Thus, there must exist modelling errors and other types of unknown nonlin-
earities in the practical chemical reactions. The controller Brusselator with

disturbance [45] is assumed as
_x1 ¼ A� ðBþ 1Þx1 þ x21x2 þ D1ðx1; x2; tÞ
_x2 ¼ Bx1 � x21x2 þ ð2þ cosðx1ÞÞuþ D2ðx1; x2; tÞ
y ¼ x1

8<: ð45Þ
where D1 and D2 are the disturbance terms, the nonlinearities f ðx1Þ ¼
A� ðBþ 1Þx1, g1ðx1Þ ¼ x21, f2ð�x2Þ ¼ Bx1 � x21x2, g2ð�x2Þ ¼ 2þ cosðx1Þ are as-
sumed unknown to the controller u. In the simulation, we get D1ðx1; x2; tÞ ¼
0:7x21 cosð1:5tÞ and D2ðx1; x2; tÞ ¼ 0:5ðx21 þ x22Þ sin

3 t.
The control objective is to guarantee (i) all the signals in the closed-loop

system remain bounded, and (ii) the output y follows the reference signal
yd ¼ 3þ sinð0:5tÞ þ 0:5 sinð1:5tÞ. The robust adaptive fuzzy tracking controller
is chosen according to Theorem 2 as follows:

Define five fuzzy sets for each variable x1, z1, z2, yd and so on with labels W1
hi

(NL), W2
hi (NM), W

3
hi (ZE), W

4
hi (PM), W

5
hi (PL) which are characterized by the

following membership functions
lW1hi
¼ exp½�ðxþ 1Þ2�

lW2hi
¼ exp½�ðxþ 0:5Þ2�

lW3hi
¼ exp½�x2�

lW4hi
¼ exp½�ðx� 0:5Þ2�

lW5hi
¼ exp½�ðx� 1Þ2�

ð46Þ
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The first stabilizing function a1 is
a1 ¼ �50z1 � k2n1n
T
1 z1 � ĥ1w1 tanh ĥ1w1z1=1:0

� �
ð47Þ
where w1ðx1Þ ¼ 1þ kn1ðx1Þk þ x21 and z1 ¼ y � yd . Then the adaptive laws are
given as follows
_k1 ¼ 1000 n1n
T
1 z
2
1 � 0:3ðk1 � 0:1Þ

� �
_̂h1 ¼ 0:5 w1kz1k � 0:3 ĥ1 � 0:1

� �h i(
ð48Þ
and we obtain the controller law as
u ¼ �15z2 � k2n2n
T
2 z2 � ĥ2w2 tanh ĥ2w2z2=1000

� �
þ €yd ð49Þ
where z2 ¼ x2 � a1 � _yd .
Then adaptive laws are
_k2 ¼ 30 n2n
T
2 z
2
2 � 0:3ðk2 � 0:3Þ

� �
_̂h2 ¼ 5 w2kz2k � 0:3 ĥ1 � 1

� �h i(
ð50Þ
where w2ðx1; x2Þ ¼ 1þ ð1þ ja1jÞkn2k þ x21 þ x22 þ oa1
ox1

��� ���x21 þ oa1
oyd

��� ���.
Simulation results in Figs. 1–4 show the effectiveness of the proposed robust

adaptive fuzzy tracking control design for Brusselator model with the reference

signal yd ¼ sinðtÞ þ 0:5 sinð1:5tÞ. Fig. 1 shows that the systems output and the
boundedness of control u. Fig. 2 shows that the tracking error converges to a
small neighborhood around zero. Figs. 3 and 4 show the variations of adaptive

parameters k1, ĥ1, k2 and ĥ2, which are also bounded.
6. Conclusion

In this paper, the tracking control problem has been considered for a class of

perturbed strict-feedback uncertain nonlinear systems with both unknown

system and virtual control gain nonlinearities. We have discussed that the
systems possess two types of uncertainties: one naturally satisfies the ‘‘trian-

gularity condition’’ and is not linearly parameterized, while the other is par-

tially known and consists of parametric uncertainties and known ‘‘bounding

functions’’, and used Takagi–Sugeno type fuzzy logic systems to approximate

uncertain functions. Combining backstepping technique with small-gain ap-

proach, we have proposed a robust adaptive fuzzy tracking control (RAFTC)

algorithm which can guarantee that the closed-loop system is semi-globally

uniformly ultimately bounded. The main feature of the algorithm proposed is
the adaptive mechanism with minimal learning parameterizations, that is, no

matter how many states in the system are investigated and how many rules in
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Fig. 1. Simulation results for Brusselator model with yd ¼ sinðtÞ þ 0:5 sinð1:5tÞ. (a) System output y
and reference signal yd (solid line: y and dashed line: yd ), (b) control u.
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Fig. 2. Simulation results for Brusselator model with yd ¼ sinðtÞ þ 0:5 sinð1:5tÞ. (a) Tracking error
z1, (b) intermediate error variable z2.
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Fig. 4. Simulation results for Brusselator model with yd ¼ sinðtÞ þ 0:5 sinð1:5tÞ. (a) Adaptive
parameter k2, (b) adaptive parameter ĥ2.
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Fig. 3. Simulation results for Brusselator model with yd ¼ sinðtÞ þ 0:5 sinð1:5tÞ. (a) Adaptive
parameter k1, (b) adaptive parameter ĥ1.
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the fuzzy system are used, only 2n parameters are needed to be adapted on-line.
Then the computation load of the algorithm can be reduced, and it is a con-

venience to realize this algorithm for engineering. Finally, a simulation

example has been presented to illustrate the tracking and stabilization per-
formance of the closed-loop systems by use of the proposed RAFTC algo-

rithm.
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