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ABSTRACT
Packet delay and loss are two fundamental measures of perfor-
mance. Using active probing to measure delay and loss typically in-
volves sending Poisson probes, on the basis of the PASTA property
(Poisson Arrivals See Time Averages), which ensures that Pois-
son probing yields unbiased estimates. Recent work, however, has
questioned the utility of PASTA for probing and shown that, for de-
lay measurements, i) a wide variety of processes other than Poisson
can be used to probe with zero bias and ii) Poisson probing does not
necessarily minimize the variance of delay estimates.

In this paper, we determineoptimal probing processes that mini-
mize the mean-square error of measurement estimatesfor both de-
lay and loss. Our contributions are twofold. First, we show that
a family of probing processes, specifically Gamma renewal prob-
ing processes, has optimal properties in terms of bias and variance.
The optimality result is general, and only assumes that the target
process we seek to optimally measure via probing, such as a loss
or delay process, has a convex auto-covariance function. Second,
we use empirical datasets to demonstrate the applicabilityof our
results in practice, specifically to show that the convexitycondition
holds true and that Gamma probing is indeed superior to Poisson
probing. Together, these results lead to explicit guidelines on de-
signing the best probe streams for both delay and loss estimation.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques, Mod-
eling Techniques, Performance Attributes.
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1. INTRODUCTION
In packet networks, packet loss and delay are two of the most

fundamental measures of performance. Their role is even more
central when it comes to end-to-end measurements, particularly us-
ing active probing. Here, loss and delay are not only important
performance metrics in their own right, they arethe information
carried by probes about the network ‘system’ they traverse,infor-
mation that can be used to infer network parameters such as link
capacities and available bandwidth.

Of the two, loss is harder to measure and exploit because it is
harder to find in many of today’s networks, in particular in the In-
ternet core, and because loss data manifests as a per-packetloss/no-
loss indication, a binary variable, which is much coarser than con-
tinuous delay, and thereby carries far less information. Asa result
of these difficulties, with few exceptions, probing for losshas re-
mained straightforward and it has essentially consisted insending
isolated probes and estimating average loss probability byobserv-
ing their empirical loss rate.

More sophisticated techniques have been proposed for delaymea-
surements involving, for example, probe ‘trains’ at the sender, and
interpreting the spacing between train packets at the receiver. Anal-
ogous techniques for loss are hampered by the fact that multiple
losses in a train is an event so rare that it would almost neverbe ob-
served in experiments of reasonable length (excessively intrusive
probing rate aside).

In all cases, using active probing to measure delay and loss typ-
ically involves Poisson probes or trains, that is exponential probe
or train separations, on the basis of the PASTA property (Poisson
Arrivals See Time Averages), which ensures that Poisson probing
yields unbiased estimates from a single sample path. This prop-
erty has been used, in particular since Paxson’s work [15], to jus-
tify sending probes as a Poisson stream. Although the validity of
PASTA itself is not in question, Baccelli et al. [2] recentlyques-
tioned its utility for network probing as a whole. Specifically, re-
sults in [2] show that for delay measurements, a wide varietyof



(non-intrusive) processes other than Poisson, which have amixing
property, can be used to probe with zero bias.

This paper is motivated by the observation and counterexamples
of [2] showing that Poisson probing is not optimal, that is, it does
not minimize the variance of delay estimates. This opens up the
general question of whether there exist optimal probing strategies.
We address this not only for delay as in [2] but also for loss, and
not just for simple measures such as average loss and marginal de-
lay distributions, but more complex ones such as loss correlations
and delay jitter. We give rigorous results on probing strategies us-
ing a network model general enough to include cases relevantto
today’s network practitioners, including multiple hops where loss
mechanisms may vary.

Our first set of results is theoretical. As mentioned earlier, it was
shown in [2], in the context of delay, that Poisson sampling can be
sub-optimal for variance. We confirm that this holds also forloss,
and go much further, by providing a theorem on minimizing vari-
ance with wide applicability and giving an explicit family (Gamma
renewal) of probing streams, all of which have variance thatis bet-
ter than that of Poisson, and simultaneously zero sample path bias.
The optimality result is very general and can be applied to any prob-
ing problem assuming that the target process we seek to optimally
measure via probing has a convex auto-covariance function.In a
probing context, the target process could be a delay processor a
loss process, with measures of interest ranging from average delay
to average loss, number of packets in a train lost, etc.

In our second set of results, we argue that the convexity prop-
erty is present in real systems and provide experimental evidence
to support our argument. We use empirical datasets collected on
routers and on the Internet backbone to demonstrate that thecon-
vexity condition holds true and that Gamma probing is indeedsu-
perior to Poisson probing.

Together, these two sets of results lead to explicit guidelines on
designing the best probe streams for both delay and loss estimation.
These guidelines are consistent with the spirit of the probepattern
separation ruleintroduced in [2] as a replacement to the Poisson
default.

The remainder of the paper is structured as follows. Section2
presents background information on sampling for delay and loss.
Section 3 proves two theorems on optimal variance for the estima-
tion of delay and loss, and discusses their generality. In Section 4
and Section5, we provide extensive measurement results primar-
ily based on a unique full-router dataset to support our results. In
Section 7 we compare our work to that of others, and conclude in
Section 8.

2. OVERVIEW
In this section, we use prior work [2] to provide an overview of

the current state-of-art and motivate the problem we study.We first
start by discussing theground truthprocess, which is what we want
to measure.

2.1 The Ground Truth Process
Consider the measurement of loss. We begin by defining what it

is we actually want to measure, the ‘ground truth’ for loss. An ob-
vious candidate is the probabilitypx that a packet of sizex (bytes),
injected into the network at some source, would fail to arrive at the
receiver. However, despite its importance,px is not rich enough
to describe the sampling that occurs during measurement. Instead,
we take our ground truth to be a binary stochastic processIx(t),
which takes value1 if a packet of sizex, if it were injected at time
t, would be lost, and0 otherwise. We assume that thisloss process
Ix(t) is stationary, in which casepx is well defined as its marginal

loss probabilitypx = P(Ix(t) = 1), a constant for any timet.
The definition ofIx(t) is natural and direct: it records whether

loss would have occurred or not, without askinghow. It is there-
fore a general definition, and as it makes no assumption on loss
mechanism or policy, it applies to very general networks.

The following examples help to make this notion of the ground
truth as aprocess, more concrete. First, take a simple one hop path
model, consisting of a finite FIFO buffer with a continuous time
occupancy processB(t) bytes, buffer sizeK bytes, and droptail
dropping policy. In this case, writing1 for the indicator function,

Ix(t) = 1{B(t) + x > K}, (1)

which depends strongly onx. If, on the other hand, the dropping
policy was based on the numberN(t) of packets, with a maximum
of K packets, then

Ix(t) = 1{N(t) + 1 > K}, (2)

which is independent ofx. We now extend the first example to a
2-hop FIFO tandem network. To do so, note that the levelB2(·) of
the second buffer must be observed when the packet would arrive to
it, provided it was not lost at the first. The loss process is therefore

Ix(t) = 1{B(t) + x > K} (3)

+ 1{B(t) + x ≤ K, B2(t + dx(t)) + x > K2},
wheredx(t) = (B(t) + x)/C is the delay over the first buffer,C
is the first hop bandwidth, andK2 the size of bufferB2. The above
examples show that the actual loss behavior depends strongly on
each of packet size, node policies, and network topology. The loss
processIx(t) is general enough to encompass all of these.

It is crucial to note thatIx(t) describes what a probewould see
if it entered at timet, but the probedoes not actually do so. The
observed loss process is therefore a functional of the system state
which is not in any way perturbed by probes. Similarly, we can
define the ground truth process for delay, too. Specifically,if Dx(t)
is the ground truth delay observed by a packet of sizex, thenDx(t)
is the delay a packet of sizex would have experienced had it been
injected into the system at timet. A special case is thevirtual
delayprocessD0(t), the delay experienced by a virtual (zero-sized)
probe injected into the system at timet.

The processIx(t) relates to what a single probe would see. We
would also like to send in probe patterns, clusters or trainsof probes,
and ask what losses they would experience. For example, we could
askwhether a probe train withm packets having sizes~x, and inter-
probe spacings~τ , would lose at least one packet if it entered the
network at timet. Alternatively, we could inquire after the distri-
bution of the number of packets lost in a train. Questions such as
these cannot be answered using the loss processIx(t). The time
dimension ofIx(t) corresponds simply to the fact that we can ask
the question, ’would a packet be lost’, at any time. It is not possible
to useIx(.) at timest andt′ to determine what losses would be ex-
perienced by two packets sent att andt′ simultaneously, because
Ix(t) is uninfluenced by the probe att, and so the second probe,
like the first, arrives to an unperturbed system.

To answer questions on losses in probe trains, a more complex
notion of ground truth is needed, and one which is specific to train
type. For example, we could define the following binary train-loss
processI~x,~p(t), which takes value 1 if at least one probe in the
train (defined by the size and spacing vectors~x and~p), sent into the
network at timet, is lost, and 0 otherwise. Note that just as in the
case forIx(t), these probe trains do not actually enter the system.
The train-loss processI~x,~p(t) is a functional of the unperturbed
system only. Analogously to before, the variablet is simply a way
to ask the question: ‘would probes in a train be lost if sent now’.



2.2 Sampling and Intrusiveness
There are two main issues in measurement via probing:sam-

pling, and intrusiveness. Sampling concerns the fact that probes
can only experience, and reveal, the state of the network at partic-
ular discrete times. Intrusiveness refers to the fact that real probes
perturb the network. This paper focuses on the sampling issue, in
particular the question of variance, in anon-intrusivecontext. Be-
fore we can do so we must explain what non-intrusiveness really
means, and how it is attained.

Consider the case of the delay ground truth processDx(t) de-
fined above. An ideal observer of the network would know the
value taken byDx(t) over continuous time. In practice, with ac-
tive probing, continuous observation is not possible. Instead, probe
packets are sent at discrete times{Tn}, and it seems natural to view
the observations as the samples{Dx(Tn)} of Dx(t). However, this
will not be the case because real probes perturb the network,and so
their experiences are not described exactly byDx(t) but by some
perturbed form of it. Dealing with these perturbations is a difficult
problem that also interacts with sampling. Hence, to study sam-
pling, it is advantageous to somehow avoid perturbation. In[2],
this motivated the use of the virtual delay processD0(t) as a ba-
sis of non-intrusive sampling, since zero sized probes do not add
to service time, yet will still return meaningful delays. Infact, in
many systems, they correspond precisely to the samples{Dx(Tn)}
of thex = 0 ground truthD0(t).

Although virtual probes were well suited for the purposes of
[2], there are several problems with using them as a basis fornon-
intrusive probing in general. The most obvious one is that for loss,
x = 0 seems useless, since such probes would never be lost in
systems like Equation 1, and therefore would not carry very useful
information about the loss experienced by typical packets.Second,
virtual probesare in fact intrusive whenever network elements act
on the number of packets rather than their byte-size (for example
in packet based loss systems such as Equation (2)), and this holds
equally for loss and delay. The most important reason however is
the following. Whereas in [2]x = 0 was synonymous with non-
intrusiveness, our definition of ground truths for both lossand delay
are for arbitraryx ≥ 0. Hence we need a definition of non-intrusive
probing which is independent of probe size. In fact, it must be:
(i) General: applicable to any loss or delay ground truth,
(ii) Faithful: i.e. guaranteed to be non-intrusive for any system,
(iii) Sampling Compatible: amenable to a direct sampling inter-
pretation.
The only way to guarantee each of these properties is to define
a purely sampling viewpoint. In other words, relative to a given
ground truth processX(t), wedefine non-intrusive probing directly
as the sampling{X(Tn)}, where the{Tn} are the times the probes
enter the system. Like virtual probes, this notion of non-intrusive
probing is theoretical, it cannot be obtained by real probes, but it
can be calculated by an oracle with full access to the system state.

For completeness, recall that [2] also dealt withx > 0, however
this was in an intrusive context for delay only. An extensionof that
intrusive case to loss is discussed in [3]. Here we do not discuss the
intrusive case at all beyond some comments in Section 6.

2.3 NIMASTA
In [2] we coined and proved the NIMASTA property, thatNon-

Intrusive Mixing Arrivals See Time Averages. The context is that of
a probe point process which is independent of some ground truth
process. The latter is just assumed to be stationary and ergodic,
whereas the probe point process is assumed to be stationary and
mixing. Mixing is a strong form of ergodicity (see [2] for details)
which guaranteesjoint ergodicity between the probe and ground
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Figure 1: Result from [2] illustrating how mixing processes
have zero sample-path bias whereas non mixing streams (such
as Periodic) may not.

truth processes. By ‘see time averages’, we mean that empirical
averages made by the probe observations of a given ground truth
tend to the true value, namely to the mean value of the stationary
ground truth process:

lim
N→∞

1

N

N
X

n=1

f(X(Tn)) = E[f(X(0))], (4)

where the convergence is in the almost sure (a.s.) sense. In this
formula,f is an arbitrary positive function andX(t) is the ground
truth process of interest. In statistical parlance, this result is one
of strong consistencyof the estimator appearing on the LHS for
E[f(X(0))], namely estimates from a single sample path a.s. con-
verge to the true value when the number of samples grows large.
Such a property is very desirable in the active probing context where
only asinglesample path is available. In what follows, we will say
that when (4) holds the estimator hasno sample-path bias.

In [2], Equation (4) was proved in the context of delay for virtual
probes, that isX(t) = D0(t), and three examples off functions
were given corresponding to average delays, the delay distribution,
and jitter. In fact, by using the definitions both of ground truth
given in section 2.1, and of non-intrusive probing (as defined in
section 2.2), the proof of Equation (4) generalizes naturally to ar-
bitrary ground truth processes (see [3]). In this way loss and delay
can be integrated into a single framework, and hence the results of
[2] can be extended to loss.

The assumption that the probe point process is mixing is nec-
essary for strong consistency to hold. Figure 1 gives an example
(taken from [2]) of ergodic probe processes, one of which, the Peri-
odic case, is not mixing. In this case joint-ergodicity is not satisfied,
resulting in a phase-lock phenomenon which lead to sample-path
bias. Note that sample path bias differs from true bias: it iseasy
to show that the estimator defined in the LHS of (4) is unbiasedfor
all ergodic probe point processes. In the case of periodic sampling,
we have a lack of strong consistency (and hence a non-zero sample
path bias as illustrated in the above example) combined withzero
true bias.

In this paper, we employ probes satisfying the mixing property so
as to guarantee strong consistency, and we examine optimal prob-
ing through an analysis of variance within this framework.



3. SAMPLING FOR OPTIMAL VARIANCE
In this section, we explore a class of mixing renewal sampling

(or probing) point processes (a point process is a renewal process
if it has i.i.d inter-arrival times) in an attempt to determine which
probe streams are best to use from the point of view of minimizing
estimation variance. Recently, explicit but simple examples were
given [2] showing the sub-optimality of Poisson probing (Pois-
son point processes belong to the class of mixing renewal pro-
cesses). The main result we prove in this section is that Pois-
son probing/sampling is provably not optimal (in terms of vari-
ance) in this class under very general conditions, providedthe auto-
covariance function of the relevant ground truth isconvex. Further-
more, under the same conditions, Gamma probing/sampling pro-
cesses (which are also mixing renewal) help achieve a variance that
is as close to the lowest as possible.

3.1 The Convexity Condition
We denote the ground truth continuous time stochastic process,

which we seek to optimally sample, byX(t). We denote its mean
by p and its auto-covariance function by:

R(τ ) = IE[X(t)X(t + τ )] − p2.

We work within the same framework of general networks as de-
scribed in Section 2, but focus on those for which the auto-covariance
functionR(τ ) exists and isconvexfor τ ≥ 0.

The usual sample mean estimator ofp usingN samples is

p̂1 =
1

N

X

i

X(Ti) (5)

whereT0 = 0 by convention andTi is the sum ofi inter-sample
times, which due to stationarity, each have lawG with meanµ.
HenceTi has meaniµ, and we denote its probability density byfi.
The variance of̂p1 is given by

Var[p̂1]=
1

N2

0

@NE[X(0)2] + 2
X

i6=j

IE[X(Ti)X(Tj)]

1

A−p2

=
1

N2

0

@NE[X(0)2] + 2
X

i6=j

Z

R(τ )f|i−j|(τ )dτ

1

A−p2 (6)

which is a function both of the variability of the processX(t) via
R(τ ), and that of the sampling stream via thefk.

As a special case of Equation (5), we pick out the estimator based
on periodic samples of periodµ, namely

p̂2 =
1

N

X

i

X(iµ), (7)

for which the integral
R

R(τ )f|i−j|(τ )dτ in Equation (6) degener-
ates toR(|i − j|µ).

THEOREM 1. If R(τ ) is convex, then Var[p̂1] ≥ Var[p̂2].

PROOF. Equation (6) holds for all processes. So, to compare
the variances it is enough to compare, for alli 6= j, the cross terms,
namely

R

R(τ )f|i−j|(τ )dτ andR(|i − j|µ). But, if R(τ ) is con-
vex, Jensen’s inequality says that

Z

R(τ )fk(τ )dτ ≥ R

„Z

tfk(t)dt

«

= R(kµ) (8)

for anyk. The result follows. ⊓⊔

We have learnt that under the foregoing assumptions,noother sam-
pling process has a variance which is lower than that of periodic

sampling. As just one example, by takingG to be exponential in
p̂1 and inter-sample times to be independent, we learn that Pois-
son sampling yields a higher variance than periodic. However, the
result is much more powerful than this. It shows that, ifR(τ ) is
convex, no kind of train or other structure, no matter how sophisti-
cated, can do better than periodic.

Unfortunately periodic sampling does has a disadvantage already
discussed: it is not mixing, which makes it vulnerable to sample-
path bias due to phase locking effects. Assuming thatR(τ ) is con-
vex, we now determine sampling schemes that offer the best ofboth
worlds: mixing to avoid sample-path bias, but with varianceclose
to that offered by periodic sampling.

We will consider sampling using renewal processes that are Gamma
distributed. A Gamma law has a two parameter density given by

Γα,λ(x) =
λ

Γ(α)
(λx)α−1 e−λx, (9)

whereΓ(·) is the familiar Gamma function, and has meanµ = α/λ
and varianceσ2 = α/λ2. Since1/λ > 0 is a scale parameter,
if T ∼ Γα,λ, thencT ∼ Γα,λ/c. Gamma laws are also stable
with respect to the shape parameterα, that is, if {Ti ∼ Γαi,λ}
are independent, then

P

i Ti ∼ ΓP

i
αi,λ. The exponential laws

correspond to the 1-parameter sub-familyΓ1,λ. Another special
sub-family are distributions with theErlang law. These have only
integral shape values.

We will need one more technical result regarding Gamma laws,
the proof of which we leave to the appendix.

LEMMA 3.1. Let T ∼ Γα,λ, Z ∼ Γβ,λ be independent, and
setY = T + Z. ThenC = IE[T |Y ] = αY/(α + β) has density
Γα+β,(α+β)λ/α, with mean IE[C] = a/λ = IE[T ].

We can now prove

THEOREM 2. The family of renewal sampling processesG(β),
parametrized byβ > 0, with inter-sample time densityΓβ,βλ(x),
provides, at constant mean sampling rateλ, sampling variance for
p̂1 that monotonically decreases withβ. The variance is larger
(equal or smaller) than Poisson sampling asβ is smaller (equal or
larger respectively) than1, and tends to that of periodic sampling
in the limitβ → ∞.

PROOF. We assume an underlying probability space on which
the family of inter-sample variables are defined for eachβ > 0.
Equation (6) holds for each inter-sample lawG(β). As the means
for each are equal toµ = β/(βλ) = 1/λ, proving the variance re-
sult reduces to showing that, for eachk > 0,

R

R(τ )fk,1(τ )dτ ≥
R

R(τ )fk,2(τ )dτ for any β valuesβ1, β2 satisfyingβ2 > β1,
wherefk,i is the density of the sumTk,i of k inter-sample times,
each with lawG(βi). We can apply Jensen’s inequality to show
that

Z

R(τ )fk,1(τ )dτ = IE[R(Tk,1)]

= IE[IE[R(Tk,1)|Yk,1]]

≥ IE[R(IE[Tk,1|Yk,1)]

= IE[R(Tk,2)] =

Z

R(τ )fk,2(τ )dτ

where to show IE[Tk,1|Yk,1] = Tk,2 we identified(T, Y, α, β, λ)
with (Tk,1, Yk,1, kβ1, k(β2−β1), β1λ) and used Lemma 3.1. Since
this holds for anyβ1, β2 with β2 > β1, we have monotonicity of
the variance inβ. As β tends to infinity, there is weak convergence
of Γβ,βλ(x)(dx) to a Dirac measure at1/λ, as is easily seen using



Laplace transforms. Since the functionR is convex, it is contin-
uous, and as it is also bounded (as a second order process), the
property

lim
β→∞

Z

R(x)Γβ,βλ(x)(dx) =

Z

R(x)δ1/λ(dx)

follows from the very definition of weak convergence. This shows
that the limit of the variances of the Gamma renewal estimators is
that of the deterministic probe case, namely the optimal variance.

⊓⊔

This result provides a family of sampling processes with thede-
sired properties. By selectingβ > 1, we can ensure lower (more
precisely, no higher) variance than Poisson sampling. By select-
ing β large, we obtain sampling variance close to the lowest possi-
ble, whilst still using a mixing process. Exactly what valueshould
be chosen, however, will depend on other factors. For example,
extremely large values might increase vulnerability to ‘transient’
phase locks in atypical sampling paths or in systems that arenot
stationary. The important point is that the parameterβ can be used
to continuously tune for any desired trade-off, and to set the sam-
pling variance arbitrarily close to the optimal case.

This theorem is quite general and applies to any sampling prob-
lem provided the selected ground truth process has a convex auto-
covariance function. As already explained, in the probing context,
X(t) can refer to the simple delayDx(t) and lossIx(t) processes
and temporal properties thereof, and to train-based metrics too.
Theorem 2 can hence be used to decrease the variance of our es-
timate ofpx, the average loss probability associated with the loss
processIx(t), or any other loss metric such as the train-loss pro-
cessI~x,~p(t), orM~x,~p(t), the number of packets in a train which are
lost.

3.2 Known Convex Examples
A natural question is, how likely is it that networks of interest sat-

isfy the convexity property for delay and/or loss? There aresimple
systems for which exact results are known. For example, Ott [11]
showed that convexity holds for the virtual work process (equal to
the delay of probes withx = 0) of the M/G/1 queue.

We now show that the loss processIx(t) of the M/M/1/K
queue, with the packet-based dropping model of Equation (2), has
a convex auto-covariance function. Denote byλ andµ the arrival
and the service rates and byρ = λ/µ the load factor. From [19]
(p.13, Theorem 1), the probability that the number of customers in
the queue isK at timet, given that it isK at time0, is

PK,K(t) =
1 − ρ

1 − ρK+1
ρK +

2

K + 1

K
X

j=1

exp(−(λ + µ)t + 2t
√

λµ cos(πj/(K + 1))

1 − 2
√

ρ cos(πj/(K + 1)) + ρ

· (sin(Kjπ/(K + 1)) −√
ρ sin(jπ))2 (10)

in the case whenρ 6= 1 and

PK,K(t) =
1

1 + K
+

1

K + 1

K
X

j=1

exp(−(2λ)t + 2λt cos(πj/(K + 1))

1 − cos(πj/(K + 1))

· (sin(Kjπ/(K + 1)) − sin(jπ))2 (11)

in the caseρ = 1. In both cases, the auto-covariance function of
Ix(t), which is equal toπ(K)PK,K(t) (with π(K) the stationary
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Figure 2: Utilization of the target output interfaces of the first
and second datasets. We also mark P1-P5 and Q1-Q4, the rep-
resentative time intervals used to illustrate the results through-
out this paper.

probability that the queue hasK customers) is a convex combina-
tion of convex decreasing functions oft and is hence itself convex
and decreasing int.

4. FULL-ROUTER RESULTS
Our theorems on the estimation variance of various probing streams

are valid if the convexity condition is true. In the previoussection,
we described two simple systems in which this condition is prov-
ably true. It is not possible, however, to prove analytical results
for real Internet traffic. Hence, in this section, we use empirical
datasets to demonstrate the applicability of our results toreal net-
works, namely, that the convexity condition holds true and that Er-
lang (Gamma) probing is superior to Poisson probing. We start by
describing our dataset.

4.1 The Full-Router Dataset
The dataset we use is the so-called ‘full-router’ experiment that

recordedall packets entering and exiting a router in the Sprint IP
backbone [12, 7, 13]. This dataset, along with a model of the
queueing process inside the router, enables us to compute the con-
tinuous time ground truth of the delay/loss metric being measured.
We rely on a model-driven approach since today’s routers cannot
be directly queried to obtain the ground truth in continuoustime.

The full-router experiment involved a gateway router in theSprint
backbone network. The input and output traffic from all6 inter-
faces of the router were monitored using DAG passive packet cap-
ture cards. Two of the interfaces were OC-48 links connecting the
router to two other backbone routers. The other4 interfaces were
links to customers - two in Asia (OC-3 links) and two in the United
States (one OC-3 and one OC-12 link).

The passive packet capture cards were synchronized with the
same GPS signal and generated64-byte records for each packet.
Excluding the layer-2 headers, this provided us with the20-byte IP
headers and the first24 bytes of the IP payload. In this paper, we
use two datasets collected with the full-router experiment. The first
of these was collected in August2003 (and used in [7, 9, 13]) and
the second in January2004. Both datasets captured packets from/to
the router for24 hours.
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Figure 3: (Left) Plot illustrating the convexity of the auto-covariance of the mean virtual delay for P1. Variance with the estimation
of the auto-covariance is significant if we use only a few seconds of P1 to compute the auto-covariance. (Right) Plot illustrating the
convexity condition for Q1-Q4. The auto-covariance is computed using200 seconds of these representative time intervals.
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Figure 4: Plot illustrating the convexity condition for P2 using
the queueing model involving minimum transit times across the
router backplane.

We post-processed the dataset to match packets from the input
interfaces to the output interfaces. For details on the matching
procedure, we refer the reader to [7]. The matching procedure
provided us with the following data on each output interface: all
packets that exited that interface, the input timestamp (atthe corre-
sponding input interface), the output timestamp and the packet size.
Since the timestamps were synchronized, we could also calculate
the delay experienced by all packets across the monitored router.

The output links of the chosen router had different levels ofuti-
lization. To investigate convexity and the variance properties of
various probing processes, we start by choosing a target output in-
terface for each of our datasets. Since a low-utilization interface is
not of much interest, we choose two of the most heavily-utilized
(OC-3) interfaces of the router. The output interface we choose for
the first dataset is the same as the one used in [7]. For each inter-
face, we illustrate our results using a few representative5-minute
intervals. We show the utilization of the chosen interfacesand the
representative time intervals in Figure 2.

4.2 Two Router Queueing Models
We start by using our datasets to determine if the auto-covariance

of the mean delay across a link is convex. Since our focus is onnon-
intrusive probing, we focus on the mean virtual delay. To check for
the convexity condition, we need to use a model of the queueing
process in the router. We start with a simple FIFO model, i.e., the
input timestamp of each packet destined to the chosen outputinter-
face is considered to be the arrival time of that packet to a FIFO
queue. The queue drains at the same rate as the OC-3 link. We
plot the (normalized) auto-covariance of the virtual delayfunction
obtained with both our datasets in Figure 3. In Figure 3 (Left ), we
plot the auto-covariance computed using2, 20 and200 seconds of
P1. There are no visual signs of non-convexity once the variance of
the auto-covariance estimates become negligible. We also see sim-
ilar confirmation of the convexity condition for the second dataset
in Figure 3 (Right).

Previous work [7] has shown that the simple FIFO model cannot
accurately predict per-packet delays. This is primarily because the
model ignores the time spent by packets in traversing the back-
plane. It was shown in [7] that a more detailed model, which
uses backplane transit times dependent on packet sizes, canpredict
per-packet delays more accurately. In Figure 4, we plot the auto-
covariance of the virtual delay obtained by applying this detailed
model on P2. We find that, even under this model, convexity is not
violated. The results presented in the rest of this section are true
when either model is used with our datasets. To avoid repetitive-
ness, we only present the results obtained by applying the simple
FIFO model on P2 and the detailed model on P1.

4.3 Comparing Probing Streams
Since our empirical evaluation appears to support the convexity

condition, we next investigate if the conclusions of Theorem 2 hold
good. To do so, we choose4 kinds of probing streams - Poisson,
deterministic (periodic probing) and two different Erlangprobing
streams (recall that an Erlang law is a Gamma law with an integral
shape value). We choose two different shape parameters -2 and
4 - for the Erlang probing streams. For each representative time
interval, we conduct50000 experiments with each probing stream.
In every experiment, the probing stream starts at a random time
from the beginning of the representative time interval. Theprobing
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Figure 6: Comparison of the standard deviation of the mean virtual delay estimates achieved with P2 (20 probes) (Left), P4 (20
probes) (Middle) and Q3 (20 probes) (Right).
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Figure 5: Plot illustrating the higher standard deviation of
Poisson probing as compared to Gamma probing with P1 (10
probes). We use a log-scale on the x-axis.

stream consists of virtual probes, whose delays are computed using
one of our two queueing models. These virtual delays are thenused
to estimate the mean virtual delay.

In Figure 5, we plot the standard deviation of the mean virtual de-
lay estimates obtained with P1 (10 probes) for various mean inter-
probe times. We make three observations. First, Poisson prob-
ing clearly demonstrates higher variance than both types ofErlang
probing especially at the low inter-probe times. For inter-probe
gaps closer to a second, we find that the difference in variance be-
comes minimal. Second, at small inter-probe times, the periodic
probing stream has the lowest variance. This agrees with Theorem
2. Third, as the inter-probe times increase, the variance ofperiodic
probing actually increases before decreasing at the inter-probe time
of 5s.

In Figure 6, we show plots similar to Figure 5 for P2, P4 and Q3
(with 20 probes). The first two observations hold true in all of them
- Poisson probing continues to be worse than Erlang probing espe-
cially at smaller mean inter-probe times. However, the variance of
periodic probing does not always increase. In P4 and Q3, it has the
lowest variance, which is consistent with Theorem 2.

4.4 Number of Probes
When we used up to20 probes, we found that Poisson is dis-

tinctly inferior to Gamma probing (Erlang probing being a special
case) and periodic probing especially at small mean inter-probe
times. We now investigate if this behavior depends on the num-
ber of probes used. To do so, we compare the standard deviation of
the various strategies by varying the number of probes. We plot the
results for P1 and Q3 (for inter-probe time of10ms) in Figure 7.
We find that the number of probes does not affect the relative per-
formance of the probing strategies. Moreover, the results remain
consistent with our theorems. Periodic is optimal and Erlang con-
verges to the optimal value as the shape parameter increases.

Slower links are likely to have non-zero auto-covariance atmuch
larger lag values than OC-3 links. Hence, if the convexity condition
is true, we expect that Poisson probing will be inferior to Gamma
probing on slower links for a larger range of inter-probing times.
Hence, in practice, the sub-optimality of Poisson probing is likely
to be more significant.

4.5 Periodic Probing
In Figure 5, we saw that the variance of periodic probing anoma-

lously increased before converging to the variance of all other prob-
ing strategies at an average inter-probe time of5s. To investigate if
this behavior is consistent, we plot similar results for P2 and Q2 in
Figure 8 (Left andMiddle ). We find that the variance of periodic
probing is not predictable - it shows an anomalous increase for P2
but not for Q2.

There are a few possible reasons behind the anomalous behavior
of periodic probing. Though the auto-covariance plots for the vir-
tual delay in either dataset show no visible signs of non-convexity,
there might be non-convex effects that are significant only at certain
lag values. The anomalous behavior could also be a manifestation
of residual phase-locking effects that make the system lackergod-
icity when periodic probing is used. Indeed, one of the goalsbe-
hind Theorem 2 and our use of Gamma probing over periodic prob-
ing was precisely to avoid such potential sample-path bias while
achieving near-optimal variance (whenR(τ ) is convex).

In Figure 8 (Right) we compare Erlang probing streams with
shape parameters between2 and2048. We find that the shape pa-
rameters4 and16 possess good variance reduction properties. We
also see that, with higher shape parameters, the variance ofErlang
probing streams does converge to that seen by periodic probing.
Thus, empirically, small shape parameters of Erlang between 4 and
16 appear to provide a good trade-off - lack of sample-path bias
due to the mixing property and a near-optimal variance.
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Figure 8: Comparison of the various probing strategies in the case of P2 (Left) and Q2 (Middle) with10 probes. Comparing different
Erlang probing strategies for P1 (Right) with 10 probes.
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Figure 7: Comparison of the various probing strategies for var-
ious number of probes in the case of P1 (inter-probe time of
10ms)(Top) and Q3 (inter-probe time of10ms) (Bottom).

4.6 Quantile Estimation
As discussed in Section 2, loss can be defined using quantilesof

queue size (or virtual delay) at a hop. In particular, the loss process

Ix(t) of a probe of sizex can be given by:

Ix(t) = P (B(t) > K − x). (12)

whereK is the maximum buffer size. Even when no loss occurs,
high delays are a measure of congestion since they trigger TCP
timeouts. This has been used in many prior works on loss estima-
tion, for example, [18]. Thus, estimating the indicator functions of
delay quantiles is of natural interest to us. Though the router moni-
tored in the full-router experiment had no losses, quantiles defined
on its output links can be thought to represent a congestion process.
We investigate this now.

As with mean virtual delay, we start by calculating the auto-
covariance of the indicator function of virtual delay quantiles in
P1 and P2. In Figure 9 (Left and Middle ), we show the auto-
covariances of the0.95-quantile and0.5-quantile of these datasets
respectively. As with mean virtual delay, we find no visual signs of
non-convexity. In Figure 9 (Right), we plot the standard deviation
of various probing strategies for the0.95-quantile of virtual delay
in P1. The results are similar to what we observed before; Poisson
is distinctly inferior to Gamma probing especially at higher probing
frequencies and periodic probing can be anomalous.

5. ADDITIONAL DATASETS
In the previous section, we computed the virtual delays using the

full-router datasets. Our analysis showed that the mean as well as
quantiles of the virtual delay process have a convex auto-covariance
and that Poisson probing has higher variance than Gamma (or Er-
lang) probing especially at smaller timescales. We also sawthe
advantages of Gamma probing over periodic; the latter can have
higher variance due to residual phase-locking effects. In this sec-
tion, we present results performing similar analysis for other datasets.
First, we present results analyzing the virtual delay across a10Gbps
OC-192 link we monitored. Then, we use simulation-based exper-
iments to investigate our results for multi-hop paths.

5.1 OC-192 Experiment
In Figures 3 and 4, we showed that the convexity condition ap-

pears to be valid for the OC-3 link of a gateway router. We now pro-
vide some evidence that the convexity condition is true for higher-
speed links in the Internet core. The dataset we use consistsof
packet traces collected by monitoring one input and one output in-
terface of a backbone router. Both interfaces terminated10Gbps
OC-192 links. These traces were collected for20 seconds using
DAG packet capture cards that had a timestamp accuracy of100ns.
The monitored output interface had an average utilization of 30%.
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Figure 9: Auto-covariance of the estimated mean value of delay-based quantiles with P2 (quantile value of0.5) (Left) and P1 (quantile
value of0.95) (Middle). Comparison of the standard deviation of variousprobing strategies with the latter (Right).
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Figure 10: Auto-covariance of the virtual delay process calcu-
lated using the OC-192 dataset.

The traces collected at the input interface provide us with the
arrival times of a majority (about60 − 65%) of the traffic exit-
ing the output interface. Since our traces do not include thearrival
times of the remaining exiting traffic, we cannot apply the queue-
ing models used with the full-router datasets. So we calculate the
continuous-time virtual delay process across the output OC-192 in-
terface using the following approach. For each captured packet,
we first calculate its delay from the observed input and departure
timestamps. Then, we subtract its (size-dependent) transmission
time from the observed delay. Assuming a simple FIFO model for
the router, the resulting values are essentially samples ofthe virtual
delay process. We then use a linear intrapolation of these samples
to calculate the continuous time virtual delay process at arbitrary
times. In Figure 10, we plot the auto-covariance of the virtual de-
lay process thus computed. We see that there are no visual signs of
non-convexity.

5.2 Simulations
So far, we tested the convexity condition for delays across asin-

gle hop. Since our dataset had no loss, we also did not directly
analyze the nature of the congestion process except using delay
quantiles. In the absence of detailed loss data and datasetsspan-
ning multiple hops, we turn to simplens-2[20] simulations to un-
derstand these areas better.

We simulate a3-hop system with link capacities of6, 20 and
10Mbps. All hops use FIFO queues with droptail byte-based drop-
ping policies. We use the ground truth calculator describedin the
appendix to access the loss processIx(t). We calculate the auto-
covariance of the computed loss processIx(t) for x = 1540 bytes.
We calculate the auto-covariance with high confidence usingmulti-
ple simulations each of which is100 seconds long. We follow this
approach for various choices of cross-traffic over the threehops.

In Figure 11 (theRight plot is a zoom of theLeft plot), we plot
the auto-covariance (un-normalized to indicate the absolute value)
of the loss process in three scenarios. In all three, the middle hop
carries traffic generated according to a Pareto process. Thelast
hop carries periodic cross-traffic in the first and Poisson inthe rest.
In all three scenarios,3-hop persistent traffic generated according
to a Poisson process flows across all three hops. In the first two
scenarios, a similar3-hop persistent TCP flow is present. In each
of the three scenarios, the ground truth auto-covariance function is
close to convex. This is despite that fact that the TCP flow, which
traverses all three hops in two of the three scenarios, creates oscil-
lations, and even despite the periodic traffic on hop three inthe first
scenario.

We expect feedback, especially from TCP, to generate some neg-
ative correlation over a range of lags, which breaks convexity. How-
ever, we see this only in a few extreme examples. We illustrate
some of these examples in Figure 12. For reference, we keep the
same third scenario as in Figure 11. In the first two scenarios, we
remove the3-hop persistent Poisson traffic. We continue to use
the 3-hop persistent TCP flow. We find that, some form of non-
convexity creeps in due to the significant feedback introduced by
this single persistent TCP flow. As the third scenario indicates, this
vanishes when the persistent TCP flow shares all of its links with
other traffic.

Scenarios such as those in Figure 12, where convexity does not
hold, would happen, for example, if covariance functions oscillate.
However, a necessary condition for such oscillation is thattypical
sample paths themselves oscillate in reproducible ways. Weexpect
this to happen only when a very few number of flows with feedback
have a significant impact on a path. As our results show, this does
not happen in the Internet core. We also note that even ifR(τ ) is
not convex everywhere, it may be for some domain of interest.For
example there may be probing rates that we may be constrained
to use, resulting in the non-convex domain ofR(τ ) never being
sampled in any case. In other words, practical sampling may be
above time scales (or below, when stationarity fails at verylarge
scales) where a lack of convexity is a problem. In all such cases,
our theorems are still very useful.
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Figure 11: Auto-covariance (un-normalized) function ofIx for a 3-hop system involving a combination of TCP, Poisson and Pareto
cross-traffic. The left hand plot is a zoom of the right hand one, showing more points. Three results are shown depending onhow
many cross-traffic streams have periodic features.

6. PRACTICAL IMPLICATIONS
In [2], we introduced the probe separation rule as a guideline

to design probing streams. Although Gamma distributions for all
finite β do not have a lower bound above zero, as suggested by
this rule, the work in this paper is consistent with its spirit. This
is because the probability that inter-probe times are smaller than
ǫ goes to0 whenβ goes to infinity for allǫ strictly less then the
mean inter-probe time. Apart from being generic (applicable to
probe patterns) and mixing (therefore, free of sample-pathbias),
all Gamma probing streams withβ > 1 are superior to Poisson
probing streams in terms of variance whenR(τ ) is convex. This
endows the Gamma family with an important property that is also
suggested by the probe separation rule: tunability to enable differ-
ent trade-offs. We exploited this property in Section 4.5 tosuggest
the use of Gamma probing streams with small shape values, which
would likely avoid the anomalous behavior exhibited by Gamma
probing streams with high shape values and yet be superior toPois-
son probing.

Our results in Section 4 and Section 5 show the advantages of
Gamma probing for a wide range of metrics including mean delay,
delay quantiles and loss indicator functions. We did find extreme
cases in which a single dominating TCP flow can introduce non-
convexity for loss probing. In future work, we intend to understand
better the reasons behind such non-convexity and investigate if it
ever occurs in practice.

Throughout this paper we assumed non-intrusive probing andig-
nored the perturbative impact of probing. As we discussed in[2],
non-intrusive results can be applied to the estimation of delay-based
metrics in practice as long as probing is rare. In [3], we showed
that similar results are valid for the estimation of loss-based met-
rics, too. The general idea is that, if a system ‘forgets it past’ fast
enough, then probes sent rarely enough emulate well non-intrusive
probing. Rare probing is one way in which our results in this pa-
per can be applied in practice. In particular, we can benefit from the
low variance of Gamma probing if its perturbative effect is arguably
minimal. However, the problem of removing the impact of intru-
sivenesswithout relying on rare probing is technically challenging
and remains open.

7. RELATED WORK
Delay and loss measurement has been the focus of many earlier

papers [14, 15, 18, 22]. Early measurement studies [15] focused on
end-to-end measurement, primarily using Poisson sampling. Zhang
et al. [22] used Poisson sampling to study the time-varying nature
of delay, loss and other path characteristics. In all these prior stud-
ies, Poisson sampling was justified as an application of the PASTA
principle [21]. The IETF IP Performance Metrics (IPPM) Group
[8] also recommends Poisson sampling for loss measurement.

Recently, the utility of Poisson sampling for delay was ques-
tioned [2, 17]. Empirical studies [18, 10] have also questioned this
premise. The importance of variance, in addition to bias, for good
measurements was stated in [2]. A few preliminary results show-
ing the non-optimality of Poisson probing was also providedin [2].
Techniques have been proposed for better probing. For instance,
Badabing [18] is a tool for loss measurement that proposed a partic-
ular probing process assuming that the loss process is Markovian.
In contrast, our work is quite general and provides insightsinto the
measurement of any metric.

8. CONCLUSIONS
We have taken a fundamental look at the issue of optimal probing

for delay and loss measurement. Given that a large variety ofso-
called mixing probe processes enjoy the strong consistencyprop-
erty, we investigated the mixing probing process that wouldmini-
mize estimation variance. In the context of non-intrusive probing,
we proved that periodic probing has the least variance if theauto-
covariance of the measured metric is convex. But periodic probing
is not mixing as it can have phase-locking issues resulting in sig-
nificant sample path bias. We showed that an alternative family
of probing processes, Gamma renewal processes, provide a good
middleground - they have no sample-path bias and can achievevari-
ance as close to periodic as possible when the auto-covariance of
the measured metric is convex. Using extensive experiments, pri-
marily on a unique set of full-router datasets, we demonstrated the
validity of this convexity condition and the sub-optimality of Pois-
son probing.
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Figure 12: Auto-covariance (un-normalized) function ofIx for 3-hop systems involving a single high-rate TCP flow that can introduce
some non-convexity. The left hand plot is a zoom of the right hand one, showing more points.
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11. APPENDIX

11.1 Calculating Auto-Covariance ofIx()

In Section 5.2, we calculate the auto-covariance ofIx(t), the
ground truth loss process. We now explain how we calculateIx(t).
Consider a single hop in a network employing a byte-based drop-



ping policy. By definition,Ix(t) for that hop depends only on the
queue size at that hop (andx). Using a complete trace of packet
sizes and arrival times to the hop, we can compute the queue size
of that hop at any timet and, therefore, computeIx(t), too. Though
Ix(t) is a continuous time process, it can be efficiently stored. To
see why, note that there are a finite set of ‘changepoints’ where the
value ofIx(t) changes. These are precisely those instants when the
queue size crosses a threshold (above which there are fewer thanx
bytes available).

We use a similar approach to calculateIx(t) for multi-hop paths.
However, recall thatIx(t) is an indicator function for the event that
a probe of sizex, had it entered the system at timet, encounters
a queue that has less thanx bytes available. Hence, in a multi-
hop path,Ix(t) depends on the buffer size of intermediate hops
at time instants that may be aftert. Therefore, to calculateIx(t),
we also compute these time instants. As with single-hop paths,
Ix(t) can be efficiently stored; it has a finite set of ‘changepoints’,
which correspond to the time instants when any queue along the
path crosses a threshold.

In ns-2, queue occupancy does not include the current packet
being transmitted. Hence, to obtain the ground truth loss process
for our simulations, we calculate ‘changepoints’ of this alternative
definition of queue size.

11.2 Proof of Lemma 3.1
Let T ∼ Γα,λ, Z ∼ Γβ,λ be independent, and setY = T + Z.

ThenC = IE[T |Y ] = αY/(α + β) has densityΓα+β,(α+β)λ/α,
with mean IE[C] = a/λ = IE[T ].

PROOF. From the scaling property of Gamma,Y ∼ Γα+β,λ.
SinceT andZ are independent, the density of(T |Y =y) is

Pr(T =x|Y =y) =
Pr(T =x, Y =y)

Pr(Y =y)
=

Pr(T =x,Z =y − x)

Pr(Y =y)

=
Γα,λ(x)Γβ,λ(y − x)

Γα+β,λ(y)

=
Γ(α + β)

Γ(α)Γ(β)
xα−1(y − x)β−1y1−(α+β).

Recall theBeta functionB(x, y) = Γ(α)Γ(β)/Γ(α + β). The
required conditional expectation is given by

IE[T |Y = y] =
y1−(α+β)

B(α, β)

Z y

0

xα(y − x)β−1 dx (13)

=
y1−(α+β)

B(α, β)
yα+βB(α + 1, β)

=
α y

α + β
(14)

using the integral identity 3.191(1) from [6]. Now viewingy as a
sample ofY , we haveC = IE[T |Y ] = αY/(α + β), which is
Gamma as stated by the scaling property. ⊓⊔


