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General Terms

Packet delay and loss are two fundamental measures of perfor Design, Measurement, Performance, Theory.

mance. Using active probing to measure delay and loss t{jpina
volves sending Poisson probes, on the basis of the PASTAepisop
(Poisson Arrivals See Time Averages), which ensures tha-Po
son probing yields unbiased estimates. Recent work, hawkese
questioned the utility of PASTA for probing and shown that,de-
lay measurements, i) a wide variety of processes other thaséh
can be used to probe with zero bias and ii) Poisson probing uaioie
necessarily minimize the variance of delay estimates.

In this paper, we determir@ptimal probing processes that mini-
mize the mean-square error of measurement estinfietdxth de-
lay and loss Our contributions are twofold. First, we show that
a family of probing processes, specifically Gamma renewalbpr
ing processes, has optimal properties in terms of bias ananece.
The optimality result is general, and only assumes thatdtget
process we seek to optimally measure via probing, such assa lo
or delay process, has a convex auto-covariance functiooorfse
we use empirical datasets to demonstrate the applicabifityur
results in practice, specifically to show that the convegampdition
holds true and that Gamma probing is indeed superior to Bwiss
probing. Together, these results lead to explicit guidsion de-
signing the best probe streams for both delay and loss estima

Categories and Subject Descriptors

C.4 [Performance of Systemp Measurement Techniques, Mod-
eling Techniques, Performance Attributes.

*Work funded in part by the "Equipes Associés" INRIA Pro-
gramme on Internet Probing.

TARC Special Research Centre on Ultra-Broadband Informatio
Networks, CUBIN is an affiliated program of National ICT Aus-
tralia (NICTA).

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquiees prior specific
permission and/or a fee.

IMC’07, October 24-26, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-908-1/07/0010 ...$5.00.

Keywords

Active Probing, Convexity, Auto-covariance, Variance 3.

1. INTRODUCTION

In packet networks, packet loss and delay are two of the most
fundamental measures of performance. Their role is everemor
central when it comes to end-to-end measurements, pantiguis-
ing active probing Here, loss and delay are not only important
performance metrics in their own right, they ates information
carried by probes about the network ‘system’ they traverder-
mation that can be used to infer network parameters suchks li
capacities and available bandwidth.

Of the two, loss is harder to measure and exploit because it is
harder to find in many of today’s networks, in particular i tm-
ternet core, and because loss data manifests as a per-fms{ab-
loss indication, a binary variable, which is much coarsantbon-
tinuous delay, and thereby carries far less informationaAssult
of these difficulties, with few exceptions, probing for |dsas re-
mained straightforward and it has essentially consisteskiding
isolated probes and estimating average loss probabilityisgrv-
ing their empirical loss rate.

More sophisticated techniques have been proposed for delay
surements involving, for example, probe ‘trains’ at thedsmand
interpreting the spacing between train packets at thewveceAnal-
ogous techniques for loss are hampered by the fact that pteulti
losses in a train is an event so rare that it would almost rieseb-
served in experiments of reasonable length (excessivélysine
probing rate aside).

In all cases, using active probing to measure delay and ypss t
ically involves Poisson probes or trains, that is exporamiiobe
or train separations, on the basis of the PASTA propertyd$wi
Arrivals See Time Averages), which ensures that Poissohipgo
yields unbiased estimates from a single sample path. Thig-pr
erty has been used, in particular since Paxson’s work [05]}4-
tify sending probes as a Poisson stream. Although the taladi
PASTA itself is not in question, Baccelli et al. [2] recentiyes-
tioned its utility for network probing as a whole. Specifigate-
sults in [2] show that for delay measurements, a wide varidty



(non-intrusive) processes other than Poisson, which hamixiag
property, can be used to probe with zero bias.

This paper is motivated by the observation and counterelesmp
of [2] showing that Poisson probing is not optimal, that isjoes
not minimize the variance of delay estimates. This openshep t
general question of whether there exist optimal probinatsgies.
We address this not only for delay as in [2] but also for los&] a
not just for simple measures such as average loss and miadgina
lay distributions, but more complex ones such as loss atiogls
and delay jitter. We give rigorous results on probing styags us-
ing a network model general enough to include cases relé¢gant
today’s network practitioners, including multiple hopsevé loss
mechanisms may vary.

Our first set of results is theoretical. As mentioned egritevas
shown in [2], in the context of delay, that Poisson sampliag lse
sub-optimal for variance. We confirm that this holds alsoléss,
and go much further, by providing a theorem on minimizingi-var
ance with wide applicability and giving an explicit familgamma
renewal) of probing streams, all of which have variance ihaet-
ter than that of Poisson, and simultaneously zero samplehjas.
The optimality result is very general and can be applied yopmab-
ing problem assuming that the target process we seek to alhtim
measure via probing has a convex auto-covariance functiom
probing context, the target process could be a delay promeas
loss process, with measures of interest ranging from aeedatpy
to average loss, number of packets in a train lost, etc.

In our second set of results, we argue that the convexity-prop
erty is present in real systems and provide experimentaleexie
to support our argument. We use empirical datasets cotlemte
routers and on the Internet backbone to demonstrate thaioife
vexity condition holds true and that Gamma probing is indeed
perior to Poisson probing.

Together, these two sets of results lead to explicit guigslion
designing the best probe streams for both delay and logaatstin.
These guidelines are consistent with the spirit of the pimdtéern
separation ruleintroduced in [2] as a replacement to the Poisson
default.

The remainder of the paper is structured as follows. Se@ion
presents background information on sampling for delay asd.|
Section 3 proves two theorems on optimal variance for thienest
tion of delay and loss, and discusses their generality. biiGe4
and Sectiorb, we provide extensive measurement results primar-
ily based on a unique full-router dataset to support ourltesin
Section 7 we compare our work to that of others, and conclode i
Section 8.

2. OVERVIEW

In this section, we use prior work [2] to provide an overviefv o
the current state-of-art and motivate the problem we stdyfirst
start by discussing thground truthprocess, which is what we want
to measure.

2.1 The Ground Truth Process

Consider the measurement of loss. We begin by defining what it

is we actually want to measure, the ‘ground truth’ for loss @b-
vious candidate is the probabiligy. that a packet of size (bytes),
injected into the network at some source, would fail to @av the
receiver. However, despite its importange, is not rich enough
to describe the sampling that occurs during measuremestiedd,
we take our ground truth to be a binary stochastic prode$s),
which takes valud if a packet of sizer, if it were injected at time
t, would be lost, an® otherwise. We assume that thiss process
1. (t) is stationary, in which case, is well defined as its marginal

loss probabilityp, = P(I.(t) = 1), a constant for any time

The definition ofI.(¢) is natural and direct: it records whether
loss would have occurred or not, without askingw. It is there-
fore a general definition, and as it makes no assumption @ los
mechanism or policy, it applies to very general networks.

The following examples help to make this notion of the ground
truth as gprocessmore concrete. First, take a simple one hop path
model, consisting of a finite FIFO buffer with a continuousei
occupancy procesB(t) bytes, buffer sizeK bytes, and droptail
dropping policy. In this case, writingy for the indicator function,

L(t) = 1{B(t) + = > K}, @)

which depends strongly an. If, on the other hand, the dropping
policy was based on the numh&fi(¢) of packets, with a maximum
of K packets, then

L(t)=1{N(t) +1> K}, @

which is independent of. We now extend the first example to a
2-hop FIFO tandem network. To do so, note that the I&l) of
the second buffer must be observed when the packet woule: aori
it, provided it was not lost at the first. The loss process ésdfore

I(t) 1{B(t)+z > K} 3)
+ 1{B@)+z <K, Ba(t +ds(t)) + = > K2},

whered.(t) = (B(t) + z)/C is the delay over the first buffe€;
is the first hop bandwidth, anll; the size of buffer3,. The above
examples show that the actual loss behavior depends sgrongl
each of packet size, node policies, and network topologg [d6s
procesd,(t) is general enough to encompass all of these.

It is crucial to note thaf.(¢) describes what a probeould see
if it entered at timet, but the probedoes not actually do soThe
observed loss process is therefore a functional of the systate
which is not in any way perturbed by probes. Similarly, we can
define the ground truth process for delay, too. Specificélly,, (¢)
is the ground truth delay observed by a packet of sizbenD., (t)
is the delay a packet of sizewould have experienced had it been
injected into the system at time A special case is theirtual
delayprocessy (t), the delay experienced by a virtual (zero-sized)
probe injected into the system at tihe

The procesd.(t) relates to what a single probe would see. We
would also like to send in probe patterns, clusters or trafipsobes,
and ask what losses they would experience. For example, wd co
askwhether a probe train withn packets having size$ and inter-
probe spacings’, would lose at least one packet if it entered the
network at time.. Alternatively, we could inquire after the distri-
bution of the number of packets lost in a train. Questionhsas
these cannot be answered using the loss protggs. The time
dimension ofl.(t) corresponds simply to the fact that we can ask
the question, 'would a packet be lost’, at any time. It is mggble
to usel,.(.) at timest and¢’ to determine what losses would be ex-
perienced by two packets senttaindt’ simultaneously, because
I, (t) is uninfluenced by the probe gtand so the second probe,
like the first, arrives to an unperturbed system.

To answer questions on losses in probe trains, a more complex
notion of ground truth is needed, and one which is specificatio t
type. For example, we could define the following binary traiss
processlz 5(t), which takes value 1 if at least one probe in the
train (defined by the size and spacing vectoendp), sent into the
network at timet, is lost, and 0 otherwise. Note that just as in the
case forl,(t), these probe trains do not actually enter the system.
The train-loss proces$; ;5(¢) is a functional of the unperturbed
system only. Analogously to before, the variabls simply a way
to ask the question: ‘would probes in a train be lost if sent’no



2.2 Sampling and Intrusiveness

There are two main issues in measurement via probsam-
pling, andintrusiveness Sampling concerns the fact that probes
can only experience, and reveal, the state of the networkrétcp
ular discrete times. Intrusiveness refers to the fact thalt probes
perturb the network. This paper focuses on the samplingjssu
particular the question of variance, iman-intrusivecontext. Be-
fore we can do so we must explain what non-intrusivenesgyreal
means, and how it is attained.

Consider the case of the delay ground truth prodesét) de-
fined above. An ideal observer of the network would know the
value taken byD, (t) over continuous time. In practice, with ac-
tive probing, continuous observation is not possible.dadf probe
packets are sent at discrete tir{g3, }, and it seems natural to view
the observations as the samp{é2, (7’,) } of D (t). However, this
will not be the case because real probes perturb the netandkso
their experiences are not described exactlylby(t) but by some
perturbed form of it. Dealing with these perturbations isféatilt
problem that also interacts with sampling. Hence, to stuaip-s
pling, it is advantageous to somehow avoid perturbation[2]n
this motivated the use of the virtual delay procésg(t) as a ba-
sis of non-intrusive sampling, since zero sized probes daadd
to service time, yet will still return meaningful delays. flrct, in
many systems, they correspond precisely to the sardibe$7, ) }
of thez = 0 ground truthDy (¢).

Although virtual probes were well suited for the purposes of
[2], there are several problems with using them as a basisdor
intrusive probing in general. The most obvious one is thatdss,

x = 0 seems useless, since such probes would never be lost in 1

systems like Equation 1, and therefore would not carry vesful
information about the loss experienced by typical packeézond,
virtual probesare in fact intrusive whenever network elements act
on the number of packets rather than their byte-size (fomgte

in packet based loss systems such as Equation (2)), andatlis h
equally for loss and delay. The most important reason howisve
the following. Whereas in [2k = 0 was synonymous with non-
intrusiveness, our definition of ground truths for both lassl delay
are for arbitraryr > 0. Hence we need a definition of non-intrusive
probing which is independent of probe size. In fact, it mest b

(i) General: applicable to any loss or delay ground truth,

(ii) Faithful: i.e. guaranteed to be non-intrusive for apgtem,

(iif) Sampling Compatible: amenable to a direct samplingpin
pretation.
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Figure 1: Result from [2] illustrating how mixing processes
have zero sample-path bias whereas non mixing streams (such
as Periodic) may not.

truth processes. By ‘see time averages’, we mean that erabiri
averages made by the probe observations of a given groutid tru
tend to the true value, namely to the mean value of the statjon
ground truth process:

NILN

N
> (X (T0) = E[f(X(0))],

n=1

4)

where the convergence is in the almost sure (a.s.) sensdisin t
formula, f is an arbitrary positive function andl (¢) is the ground
truth process of interest. In statistical parlance, thgileis one
of strong consistencyf the estimator appearing on the LHS for
E[f(X(0))], namely estimates from a single sample path a.s. con-
verge to the true value when the number of samples grows.large
Such a property is very desirable in the active probing cantéere
only asinglesample path is available. In what follows, we will say
that when (4) holds the estimator has sample-path bias

In [2], Equation (4) was proved in the context of delay fotwal
probes, that isX (¢) = Do (t), and three examples ¢f functions
were given corresponding to average delays, the delayluison,

The only way to guarantee each of these properties is to define gng jitter. In fact, by using the definitions both of groundttr

a purely sampling viewpoint. In other words, relative to segi
ground truth procesX (¢), wedefine non-intrusive probing directly
as the sampling X (75,) }, where the{7T’, } are the times the probes
enter the system. Like virtual probes, this notion of nomisive
probing is theoretical, it cannot be obtained by real prolbes it
can be calculated by an oracle with full access to the systata.s
For completeness, recall that [2] also dealt with- 0, however
this was in an intrusive context for delay only. An extensibthat
intrusive case to loss is discussed in [3]. Here we do notidisthe
intrusive case at all beyond some comments in Section 6.

2.3 NIMASTA

In [2] we coined and proved the NIMASTA property, tHdon-
Intrusive Mixing Arrivals See Time Averagdhe context is that of
a probe point process which is independent of some grourtd tru
process. The latter is just assumed to be stationary andliergo
whereas the probe point process is assumed to be stationdry a
mixing Mixing is a strong form of ergodicity (see [2] for details)
which guaranteegint ergodicity between the probe and ground

given in section 2.1, and of non-intrusive probing (as defiire
section 2.2), the proof of Equation (4) generalizes nalyital ar-
bitrary ground truth processes (see [3]). In this way los$ delay
can be integrated into a single framework, and hence thétsesfu
[2] can be extended to loss.

The assumption that the probe point process is mixing is nec-
essary for strong consistency to hold. Figure 1 gives an plam
(taken from [2]) of ergodic probe processes, one of which Rbri-
odic case, is not mixing. In this case joint-ergodicity i$ satisfied,
resulting in a phase-lock phenomenon which lead to samgle-p
bias. Note that sample path bias differs from true bias: @asy
to show that the estimator defined in the LHS of (4) is unbideed
all ergodic probe point processes. In the case of periodiptag,
we have a lack of strong consistency (and hence a non-zenggesam
path bias as illustrated in the above example) combined zeth
true bias.

In this paper, we employ probes satisfying the mixing propso
as to guarantee strong consistency, and we examine optiotal p
ing through an analysis of variance within this framework.



3. SAMPLING FOR OPTIMAL VARIANCE

In this section, we explore a class of mixing renewal sangplin
(or probing) point processes (a point process is a renevesless
if it has i.i.d inter-arrival times) in an attempt to detemaiwhich
probe streams are best to use from the point of view of minimgiz
estimation variance. Recently, explicit but simple exasphere
given [2] showing the sub-optimality of Poisson probing i§R0o
son point processes belong to the class of mixing renewal pro
cesses). The main result we prove in this section is that-Pois
son probing/sampling is provably not optimal (in terms ofiva
ance) in this class under very general conditions, providecuto-
covariance function of the relevant ground trutlegvex Further-
more, under the same conditions, Gamma probing/sampliag pr
cesses (which are also mixing renewal) help achieve a \aitrat
is as close to the lowest as possible.

3.1 The Convexity Condition

We denote the ground truth continuous time stochastic gsce
which we seek to optimally sample, by(¢). We denote its mean
by p and its auto-covariance function by:

R(1) = E[X()X (t +7)] — p°.

We work within the same framework of general networks as de-
scribed in Section 2, but focus on those for which the aut@gance
function R(7) exists and igonvexfor 7 > 0.

The usual sample mean estimatopafsing N samples is

pr= 5 > oX(T)

whereTy = 0 by convention and’; is the sum ofi inter-sample
times, which due to stationarity, each have l&mvith mean .
HenceT’; has mear, and we denote its probability density Ify.
The variance op; is given by

®)

1

Var[p:]= Nz

i#]

(NE[X(O)Q] +2) E[X(Ti)X(Tj)]> —p’

—%(NE[X(OV] +2 Z/R(T)fij(T)dT> —p*(6)

i#]

which is a function both of the variability of the proceit) via
R(7), and that of the sampling stream via the

As a special case of Equation (5), we pick out the estimateeda
on periodic samples of periqd, namely

. 1 .
P2 = ZX(W),

for which the integralf R(7) f;—;|(7)dr in Equation (6) degener-
ates toR(|i — j|u).

@)

THEOREM 1. If R(7) is convex, then Vi§p:] > Var[pz].

PrROOF Equation (6) holds for all processes. So, to compare
the variances it is enough to compare, foright j, the cross terms,
namely [ R(7) fji—j (T)dr and R([i — j|p). But, if R(7) is con-
vex, Jensen’s inequality says that

/R(T)fk(f)dT >R </ tfk(t)dt) = R(kp)

for any k. The result follows. ad

®)

We have learnt that under the foregoing assumptioosther sam-
pling process has a variance which is lower than that of pario

sampling. As just one example, by takiggto be exponential in

p1 and inter-sample times to be independent, we learn that Pois
son sampling yields a higher variance than periodic. Howeke
result is much more powerful than this. It shows thatRifr) is
convex, no kind of train or other structure, no matter howtssip-
cated, can do better than periodic.

Unfortunately periodic sampling does has a disadvantagady
discussed: it is not mixing, which makes it vulnerable to gm
path bias due to phase locking effects. Assuming i{at) is con-
vex, we now determine sampling schemes that offer the bésithf
worlds: mixing to avoid sample-path bias, but with variactzse
to that offered by periodic sampling.

We will consider sampling using renewal processes that arer@a
distributed. A Gamma law has a two parameter density given by

A

(@) (Az)* e,

Lo x(z) = )
wherel'(+) is the familiar Gamma function, and has meas o/
and variancer® = a/\%. Sincel/\ > 0 is a scale parameter,
if T~ Lqx, thencI' ~ I'y y/.. Gamma laws are also stable
with respect to the shape parameterthat is, if {7; ~ I'a, r}
are independent, thep; T; ~ I'ss, o,,x- The exponential laws
correspond to the 1-parameter sub-fanily ». Another special
sub-family are distributions with thErlang law. These have only
integral shape values.

We will need one more technical result regarding Gamma laws,
the proof of which we leave to the appendix.

LEMMA 3.1. LetT ~ I'y x, Z ~ I'g,» be independent, and
setY =T+ Z. ThenC = E[T|Y] = aY/(a + 3) has density
Lot s (atp)r/ar With mean BC| = a/X\ = E[T].

We can now prove

THEOREM 2. The family of renewal sampling processg&3),
parametrized by3 > 0, with inter-sample time densitys gx(z),
provides, at constant mean sampling ratesampling variance for
p1 that monotonically decreases with The variance is larger
(equal or smaller) than Poisson sampling@ss smaller (equal or
larger respectively) than, and tends to that of periodic sampling
in the limit 8 — oo.

PROOF We assume an underlying probability space on which
the family of inter-sample variables are defined for egch> 0.
Equation (6) holds for each inter-sample l&#3). As the means
for each are equal to = 3/(8\) = 1/, proving the variance re-
sult reduces to showing that, for eakh> 0, [ R(7) fr,1(7)dr >
J R(7) fr,2(7)dr for any 8 values:, (3 satisfying32 > (i,
where i ; is the density of the surfi}, ; of k inter-sample times,
each with lawG(3;). We can apply Jensen’s inequality to show
that

/ R(7T) fr(T)dr

E[R(Tk.1)]

E[E[R(Tk,1)|Yk1]]
E[R(E[T%,1|Y%k1)]

EWUMH:/RMhAﬂM

Y

where to show Bl 1|Yk,1] = Tk,2 we identified(T,Y, a, 8, \)
with (Tx,1, Yx 1, kB1, k(B2—01), f1A) and used Lemma 3.1. Since
this holds for any3:, B2 with 82 > (31, we have monotonicity of
the variance irg. As (3 tends to infinity, there is weak convergence
of I'g s (x)(dx) to a Dirac measure dt/\, as is easily seen using



Laplace transforms. Since the functidhis convex, it is contin- 120
uous, and as it is also bounded (as a second order process), th
property 100

lim [ R(z)T's,gx(z)(dz) = /R(m)él/A(dm)

— 00

— First Dataset
—— Second Dataset

[e]
o

follows from the very definition of weak convergence. Thiswk

that the limit of the variances of the Gamma renewal estinsato

that of the deterministic probe case, namely the optimahwae.
|

[e2]
o

Mean Utilization (Mbps)

This result provides a family of sampling processes withdée
sired properties. By selecting > 1, we can ensure lower (more 20
precisely, no higher) variance than Poisson sampling. Bscse
ing 3 large, we obtain sampling variance close to the lowest possi
ble, whilst still using a mixing process. Exactly what vakieuld 0 : ‘

. 0 5 10 15 20 25
be chosen, however, will depend on other factors. For exampl Time (Hours)
extremely large values might increase vulnerability tarisient’
phase locks in atypical sampling paths or in systems thahaie
stationary. The important point is that the parameétean be used
to continuously tune for any desired trade-off, and to setsam-
pling variance arbitrarily close to the optimal case.

This theorem is quite general and applies to any sampling-pro
lem provided the selected ground truth process has a comtex a

g?\;anc?ncfe];:??g?r?é éﬁnallr:?%’ expLalr;ﬁz, |:)nst5?e ?roeg’cgetg)s(gs probability that the queue hds customers) is a convex combina-
(t) P .. (1) =(t) tion of convex decreasing functions ©&nd is hence itself convex

and temporal properties thereof, and to traln-base.d nsetoo. and decreasing in
Theorem 2 can hence be used to decrease the variance of our es-
timate ofp,, the average loss probability associated with the loss
processl,(t), or any other loss metric such as the train-loss pro- 4. FULL-ROUTER RESULTS

cesslz 5(t), or Mz 5(t), the number of packets in atrain whichare  oyrtheorems on the estimation variance of various probiegms
lost. are valid if the convexity condition is true. In the previcaection,

we described two simple systems in which this condition @vpr
3.2 Known Convex Examples ably true. It is not possible, however, to prove analytiedults

Figure 2: Utilization of the target output interfaces of the first
and second datasets. We also mark P1-P5 and Q1-Q4, the rep-
resentative time intervals used to illustrate the resultstirough-
out this paper.

Anatural question is, how likely is it that networks of inést sat-  for real Internet traffic. Hence, in this section, we use efoai
isfy the convexity property for delay and/or loss? Theresineple datasets to demonstrate the applicability of our resultead net-
systems for which exact results are known. For example, Oft[  works, namely, that the convexity condition holds true amat €r-
showed that convexity holds for the virtual work processu@gdo lang (Gamma) probing is superior to Poisson probing. Wet btar
the delay of probes witlr = 0) of the M/G/1 queue. describing our dataset.

We now show that the loss process(t) of the M/M/1/K
queue, with the packet-based dropping model of Equatiarhé) 4.1 The Full-Router Dataset
a convex auto-covariance function. Denote)bgnd . the arrival The dataset we use is the so-called ‘full-router’ experitibat

and the service rates and py= A/p the load factor. From [19]  recordedall packets entering and exiting a router in the Sprint IP
(p.13, Theorem 1), the probability that the number of cusiain backbone [12, 7, 13]. This dataset, along with a model of the

the queue iS¢ at timet, given that it isk” at time0, is queueing process inside the router, enables us to compeitoth
—p tinuous time ground truth of the delay/loss metric being sueed.
Pre ke (t) = mp + We rely on a model-driven approach since today’s routerseain
X be directly queried to obtain the ground truth in continutiorse.
2 3 exp(=(A + p)t + 2t/ Apcos(mj/ (K 4 1)) The full-router experiment involved a gateway router in Speint
K+1+~ 1—=2\/pcos(mj/(K+1))+p backbone network. The input and output traffic from @inter-
= ) faces of the router were monitored using DAG passive pacet ¢
~(sin(Kjm /(K + 1)) — /psin(jm)) (10) ture cards. Two of the interfaces were OC-48 links conngdiie

router to two other backbone routers. The othénterfaces were
links to customers - two in Asia (OC-3 links) and two in the téxi
Presc(t) = 1 " States (one OC-3 and one OC-12 link).
’ 1+ K The passive packet capture cards were synchronized with the
K B . same GPS signal and generatedbyte records for each packet.
- 1 : ) exp( (12)\)75 + 2t COIS{(W{(K +1)) Excluding the layer-2 headers, this provided us withZbdyte IP
13 — cos(mj/(K +1)) headers and the firgtt bytes of the IP payload. In this paper, we
(sin(Kir /(K 4+ 1)) — sin(im))2 11 use two datasets collected with the full-router experim&he first
(sin(Kym/(K +1)) = sin(jm)) (11) of these was collected in Augu2d03 (and used in [7, 9, 13]) and
in the casep = 1. In both cases, the auto-covariance function of the second in Janua2p04. Both datasets captured packets from/to
I (t), which is equal tar(K) Pk, x (t) (with 7(K) the stationary the router for24 hours.

in the case whep # 1 and
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4.2 Two Router Queueing Models

We start by using our datasets to determine if the auto-évee
of the mean delay across a link is convex. Since our focusii®on
intrusive probing, we focus on the mean virtual delay. ToogHfer
the convexity condition, we need to use a model of the queuein
process in the router. We start with a simple FIFO model, ite
input timestamp of each packet destined to the chosen ot
face is considered to be the arrival time of that packet toFOFI
queue. The queue drains at the same rate as the OC-3 link. We
plot the (hormalized) auto-covariance of the virtual defiayction
obtained with both our datasets in Figure 3. In Figur&&ft), we
plot the auto-covariance computed usiy@0 and200 seconds of
P1. There are no visual signs of non-convexity once the neeaf
the auto-covariance estimates become negligible. We akssim-
ilar confirmation of the convexity condition for the secorataket
in Figure 3 Right).

Previous work [7] has shown that the simple FIFO model cannot
accurately predict per-packet delays. This is primarilgdaese the
model ignores the time spent by packets in traversing th&-bac
plane. It was shown in [7] that a more detailed model, which
uses backplane transit times dependent on packet sizegrexdint
per-packet delays more accurately. In Figure 4, we plot the-a

We post-processed the dataset to match packets from the inpu covariance of the virtual delay obtained by applying thisaded

interfaces to the output interfaces. For details on the hiagc
procedure, we refer the reader to [7]. The matching proaedur
provided us with the following data on each output interfaak
packets that exited that interface, the input timestamghé@ctorre-
sponding input interface), the output timestamp and th&qiagize.
Since the timestamps were synchronized, we could also lesdcu
the delay experienced by all packets across the monitorgéno

The output links of the chosen router had different levelstof
lization. To investigate convexity and the variance prtipsrof
various probing processes, we start by choosing a targptibint-
terface for each of our datasets. Since a low-utilizatidarface is
not of much interest, we choose two of the most heavilyzedi
(OC-3) interfaces of the router. The output interface weosleofor
the first dataset is the same as the one used in [7]. For eaah int
face, we illustrate our results using a few representativeinute
intervals. We show the utilization of the chosen interfaaed the
representative time intervals in Figure 2.

model on P2. We find that, even under this model, convexityis n
violated. The results presented in the rest of this sectiertrae
when either model is used with our datasets. To avoid reypetit
ness, we only present the results obtained by applying thplei
FIFO model on P2 and the detailed model on P1.

4.3 Comparing Probing Streams

Since our empirical evaluation appears to support the cdtye
condition, we next investigate if the conclusions of Theozhold
good. To do so, we chooskkinds of probing streams - Poisson,
deterministic (periodic probing) and two different Erlapgpbing
streams (recall that an Erlang law is a Gamma law with an fateg
shape value). We choose two different shape paramet2@nd
4 - for the Erlang probing streams. For each representative fi
interval, we conduct0000 experiments with each probing stream.
In every experiment, the probing stream starts at a randaom ti
from the beginning of the representative time interval. Prabing



115

Estimation Standard Deviation
» S
- N

w
©

3.8

—— Poisson 5 — poigson ‘ —— Poisson
-e- Erlang (Shape:Z) I -e- Erlang (Shape=2) 1.25¢ -e- Erlang (Shape=2)
o ErIa_ngA(Shape—tl) s -o- Erlang (Shape=4) s o Erlang (Shape=4)
¢ Periodic = o Periodic = 12r % Periodic
g >
&8 11 &11s)
° e i
g § 11r N
g S10s ¢
c c
€105 £ 1r .
a £ £ Tl
= % 0.95¢ o~
& i o BTTITS
0.9 o
1L . . . . . . 0.85— . . . . . .
0.01 0.02 0.05 01 02 0.5 1 0.01 0.02 0.05 0.1 02 0.5 1 0.01 0.02 0.05 01 0.2 0.5 1

Mean Inter—probe Time [secs]

Mean Inter-probe Time [sebs]

Mean Inter-probe Time [seés]

Figure 6: Comparison of the standard deviation of the mean wvitual delay estimates achieved with P2Z0 probes) (Left), P4 Q0

probes) (Middle) and Q3 Q0 probes) (Right).

-4

1.2%10 N

—— Poisson
| -e- Erlang (Shape=2) ||

s 1.15 -o- Erlang (Shape=4)
= ~6 Periodic
S 1.1f 1
()
[a}
el
T 1.05¢ 1
e}
c
8
" 1r 1
o
§e]
IS L i
£ 0.95
k7
i}

0.9r 1

0.85 L L L

0.01 0.02 005 01 02 05 1 2 5
Mean Inter—probe Time [secs]

Figure 5: Plot illustrating the higher standard deviation of
Poisson probing as compared to Gamma probing with P110
probes). We use a log-scale on the x-axis.

stream consists of virtual probes, whose delays are cordsieg
one of our two queueing models. These virtual delays areuked
to estimate the mean virtual delay.

In Figure 5, we plot the standard deviation of the mean videa
lay estimates obtained with P1(( probes) for various mean inter-
probe times. We make three observations. First, Poisso- pro
ing clearly demonstrates higher variance than both typé&slahg
probing especially at the low inter-probe times. For ipesbe
gaps closer to a second, we find that the difference in vazibiee
comes minimal. Second, at small inter-probe times, theogari
probing stream has the lowest variance. This agrees witbhrehe
2. Third, as the inter-probe times increase, the variangenbdic
probing actually increases before decreasing at the prtare time
of 5s.

In Figure 6, we show plots similar to Figure 5 for P2, P4 and Q3
(with 20 probes). The first two observations hold true in all of them
- Poisson probing continues to be worse than Erlang prolspg-e
cially at smaller mean inter-probe times. However, thearace of
periodic probing does not always increase. In P4 and Q3sitlea
lowest variance, which is consistent with Theorem 2.

4.4 Number of Probes

When we used up t@0 probes, we found that Poisson is dis-
tinctly inferior to Gamma probing (Erlang probing being asjal
case) and periodic probing especially at small mean inteloe
times. We now investigate if this behavior depends on the-num
ber of probes used. To do so, we compare the standard devidtio
the various strategies by varying the number of probes. \&ktpé
results for P1 and Q3 (for inter-probe time tdms) in Figure 7.
We find that the number of probes does not affect the relagve p
formance of the probing strategies. Moreover, the reseitsain
consistent with our theorems. Periodic is optimal and Eyleon-
verges to the optimal value as the shape parameter increases

Slower links are likely to have non-zero auto-covariancaath
larger lag values than OC-3 links. Hence, if the convexitydition
is true, we expect that Poisson probing will be inferior ton@aa
probing on slower links for a larger range of inter-probimges.
Hence, in practice, the sub-optimality of Poisson probmtkiely
to be more significant.

4.5 Periodic Probing

In Figure 5, we saw that the variance of periodic probing amom
lously increased before converging to the variance of akkpprob-
ing strategies at an average inter-probe timésfTo investigate if
this behavior is consistent, we plot similar results for R 2 in
Figure 8 Left andMiddle). We find that the variance of periodic
probing is not predictable - it shows an anomalous increas2
but not for Q2.

There are a few possible reasons behind the anomalous behavi
of periodic probing. Though the auto-covariance plots Fa vir-
tual delay in either dataset show no visible signs of non+egity,
there might be non-convex effects that are significant ontggain
lag values. The anomalous behavior could also be a marnifasta
of residual phase-locking effects that make the systeméagid-
icity when periodic probing is used. Indeed, one of the gbals
hind Theorem 2 and our use of Gamma probing over periodic-prob
ing was precisely to avoid such potential sample-path biagew
achieving near-optimal variance (wWhéi{r) is convex).

In Figure 8 Right) we compare Erlang probing streams with
shape parameters betwe2and2048. We find that the shape pa-
rameterst and16 possess good variance reduction properties. We
also see that, with higher shape parameters, the variariedasfg
probing streams does converge to that seen by periodic myobi
Thus, empirically, small shape parameters of Erlang betwemnd
16 appear to provide a good trade-off - lack of sample-path bias
due to the mixing property and a near-optimal variance.
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4.6 Quantile Estimation

As discussed in Section 2, loss can be defined using quaafiles
queue size (or virtual delay) at a hop. In particular, the jo®cess

I, (t) of a probe of size: can be given by:

I.(t) = P(B(t) > K — x). (12)

where K is the maximum buffer size. Even when no loss occurs,
high delays are a measure of congestion since they triggé&t TC
timeouts. This has been used in many prior works on loss astim
tion, for example, [18]. Thus, estimating the indicatordtians of
delay quantiles is of natural interest to us. Though theaonmoni-
tored in the full-router experiment had no losses, quantiefined
on its output links can be thought to represent a congestinregs.
We investigate this now.

As with mean virtual delay, we start by calculating the auto-
covariance of the indicator function of virtual delay qubes in
P1 and P2. In Figure 9Léft and Middle), we show the auto-
covariances of th8.95-quantile and).5-quantile of these datasets
respectively. As with mean virtual delay, we find no visuais of
non-convexity. In Figure 9Right), we plot the standard deviation
of various probing strategies for tte95-quantile of virtual delay
in P1. The results are similar to what we observed beforesdooi
is distinctly inferior to Gamma probing especially at higpeobing
frequencies and periodic probing can be anomalous.

5. ADDITIONAL DATASETS

In the previous section, we computed the virtual delaysgsia
full-router datasets. Our analysis showed that the meaneilsas/
quantiles of the virtual delay process have a convex awas@nce
and that Poisson probing has higher variance than Gamma{or E
lang) probing especially at smaller timescales. We also theawv
advantages of Gamma probing over periodic; the latter cae ha
higher variance due to residual phase-locking effects hitn gec-
tion, we present results performing similar analysis foestdatasets.
First, we present results analyzing the virtual delay axed9Gbps
0C-192 link we monitored. Then, we use simulation-baseeexp
iments to investigate our results for multi-hop paths.

5.1 0OC-192 Experiment

In Figures 3 and 4, we showed that the convexity condition ap-
pears to be valid for the OC-3 link of a gateway router. We nowv p
vide some evidence that the convexity condition is true fghér-
speed links in the Internet core. The dataset we use corfists
packet traces collected by monitoring one input and oneuatitp
terface of a backbone router. Both interfaces termindt@@bps
0C-192 links. These traces were collected Z6rseconds using
DAG packet capture cards that had a timestamp accurat§yoois.
The monitored output interface had an average utilizatfo30g6.
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The traces collected at the input interface provide us with t
arrival times of a majority (about0 — 65%) of the traffic exit-
ing the output interface. Since our traces do not includeathigal
times of the remaining exiting traffic, we cannot apply theug-
ing models used with the full-router datasets. So we cateutze
continuous-time virtual delay process across the outputlOZin-
terface using the following approach. For each capturedkgiac
we first calculate its delay from the observed input and depar
timestamps. Then, we subtract its (size-dependent) trigsim
time from the observed delay. Assuming a simple FIFO model fo
the router, the resulting values are essentially sampléseofirtual
delay process. We then use a linear intrapolation of thesples
to calculate the continuous time virtual delay process bitrary
times. In Figure 10, we plot the auto-covariance of the wirtle-
lay process thus computed. We see that there are no visual cig
non-convexity.

5.2 Simulations

So far, we tested the convexity condition for delays acrosiaa
gle hop. Since our dataset had no loss, we also did not directl
analyze the nature of the congestion process except usiag de
quantiles. In the absence of detailed loss data and datssats
ning multiple hops, we turn to simples-2[20] simulations to un-
derstand these areas better.

We simulate a3-hop system with link capacities @, 20 and
10Mbps. All hops use FIFO queues with droptail byte-based-drop
ping policies. We use the ground truth calculator describethe
appendix to access the loss procés&). We calculate the auto-
covariance of the computed loss procés&) for z = 1540 bytes.
We calculate the auto-covariance with high confidence usinigi-
ple simulations each of which €0 seconds long. We follow this
approach for various choices of cross-traffic over the tineges.

In Figure 11 (theRight plot is a zoom of thé.eft plot), we plot
the auto-covariance (un-normalized to indicate the alisalalue)
of the loss process in three scenarios. In all three, the lmidop
carries traffic generated according to a Pareto process. |agte
hop carries periodic cross-traffic in the first and Poissotérest.

In all three scenarios3-hop persistent traffic generated according
to a Poisson process flows across all three hops. In the ficst tw
scenarios, a simila3-hop persistent TCP flow is present. In each
of the three scenarios, the ground truth auto-covarianeetion is
close to convex. This is despite that fact that the TCP flovickvh
traverses all three hops in two of the three scenarios, e&sezcil-
lations, and even despite the periodic traffic on hop threkerirst
scenario.

We expect feedback, especially from TCP, to generate soge ne
ative correlation over a range of lags, which breaks cornyekiow-
ever, we see this only in a few extreme examples. We illustrat
some of these examples in Figure 12. For reference, we keep th
same third scenario as in Figure 11. In the first two scenavies
remove the3-hop persistent Poisson traffic. We continue to use
the 3-hop persistent TCP flow. We find that, some form of non-
convexity creeps in due to the significant feedback intreduloy
this single persistent TCP flow. As the third scenario ingisathis
vanishes when the persistent TCP flow shares all of its linikis w
other traffic.

Scenarios such as those in Figure 12, where convexity ddes no
hold, would happen, for example, if covariance functionsiltze.
However, a necessary condition for such oscillation is tigical
sample paths themselves oscillate in reproducible waysexplect
this to happen only when a very few number of flows with feeétbac
have a significant impact on a path. As our results show, thésd
not happen in the Internet core. We also note that evét(if) is
not convex everywhere, it may be for some domain of inteifest.
example there may be probing rates that we may be constrained
to use, resulting in the non-convex domain ®fr) never being
sampled in any case. In other words, practical sampling neay b
above time scales (or below, when stationarity fails at \arge
scales) where a lack of convexity is a problem. In all suctesas
our theorems are still very useful.
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6. PRACTICAL IMPLICATIONS

In [2], we introduced the probe separation rule as a guidelin
to design probing streams. Although Gamma distributiomsafb

7. RELATED WORK

Delay and loss measurement has been the focus of many earlier
papers [14, 15, 18, 22]. Early measurement studies [15kedon

finite 8 do not have a lower bound above zero, as suggested by end-to-end measurement, primarily using Poisson sampfihgng

this rule, the work in this paper is consistent with its gpifThis

is because the probability that inter-probe times are smd#fian

€ goes to0 when 3 goes to infinity for alle strictly less then the
mean inter-probe time. Apart from being generic (applieatd
probe patterns) and mixing (therefore, free of sample-jdis),
all Gamma probing streams with > 1 are superior to Poisson
probing streams in terms of variance whA&ir) is convex. This
endows the Gamma family with an important property that seal
suggested by the probe separation rule: tunability to endiffler-
ent trade-offs. We exploited this property in Section 4.5uggest
the use of Gamma probing streams with small shape valueshwhi
would likely avoid the anomalous behavior exhibited by Gaanm
probing streams with high shape values and yet be superiRuit
son probing.

et al. [22] used Poisson sampling to study the time-varyismigine
of delay, loss and other path characteristics. In all these ptud-
ies, Poisson sampling was justified as an application of A&TR
principle [21]. The IETF IP Performance Metrics (IPPM) Gpou
[8] also recommends Poisson sampling for loss measurement.
Recently, the utility of Poisson sampling for delay was ques

tioned [2, 17]. Empirical studies [18, 10] have also quewibthis
premise. The importance of variance, in addition to biasgfmd
measurements was stated in [2]. A few preliminary resultswsh
ing the non-optimality of Poisson probing was also providef2].
Techniques have been proposed for better probing. Forriosta
Badabing [18] is a tool for loss measurement that proposexitacp
ular probing process assuming that the loss process is Marko
In contrast, our work is quite general and provides insights the

Our results in Section 4 and Section 5 show the advantages of measurement of any metric.

Gamma probing for a wide range of metrics including meanydela
delay quantiles and loss indicator functions. We did findeare

cases in which a single dominating TCP flow can introduce non-

convexity for loss probing. In future work, we intend to unstand
better the reasons behind such non-convexity and invéstigi
ever occurs in practice.

Throughout this paper we assumed non-intrusive probinggnd
nored the perturbative impact of probing. As we discusse@]in
non-intrusive results can be applied to the estimation lafydbased
metrics in practice as long as probing is rare. In [3], we strbw
that similar results are valid for the estimation of lossdxh met-
rics, too. The general idea is that, if a system ‘forgets #tpast
enough, then probes sent rarely enough emulate well nonsine
probing. Rare probing is one way in which our results in thas p
per can be applied in practice. In particular, we can benefibthe
low variance of Gamma probing if its perturbative effectriguably
minimal. However, the problem of removing the impact of intr
siveneswithoutrelying on rare probing is technically challenging
and remains open.

8. CONCLUSIONS

We have taken a fundamental look at the issue of optimal pgpbi
for delay and loss measurement. Given that a large variespof
called mixing probe processes enjoy the strong consistpray-
erty, we investigated the mixing probing process that wanidi-
mize estimation variance. In the context of non-intrusivebmng,
we proved that periodic probing has the least variance ifilte-
covariance of the measured metric is convex. But periodibipg
is not mixing as it can have phase-locking issues resultingjd-
nificant sample path bias. We showed that an alternativelyfami
of probing processes, Gamma renewal processes, provided go
middleground - they have no sample-path bias and can achaeve
ance as close to periodic as possible when the auto-couariain
the measured metric is convex. Using extensive experimerits
marily on a unique set of full-router datasets, we demotestréhe
validity of this convexity condition and the sub-optimglitf Pois-
son probing.
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11. APPENDIX

11.1 Calculating Auto-Covariance of..()

In Section 5.2, we calculate the auto-covarianceldft), the
ground truth loss process. We now explain how we calculate).
Consider a single hop in a network employing a byte-baseg-dro



ping policy. By definition,I, (t) for that hop depends only on the
queue size at that hop (ang. Using a complete trace of packet
sizes and arrival times to the hop, we can compute the quege si
of that hop at any timéand, therefore, computg (¢), too. Though
1.(t) is a continuous time process, it can be efficiently stored. To
see why, note that there are a finite set of ‘changepointsievtie
value ofI,(t) changes. These are precisely those instants when the
gueue size crosses a threshold (above which there are flearer t
bytes available).

We use a similar approach to calculdtgt) for multi-hop paths.
However, recall thal . (¢) is an indicator function for the event that
a probe of sizer, had it entered the system at timeencounters
a queue that has less thanbytes available. Hence, in a multi-
hop path,Z.(¢t) depends on the buffer size of intermediate hops
at time instants that may be after Therefore, to calculaté, (¢),
we also compute these time instants. As with single-hopspath
1.(t) can be efficiently stored; it has a finite set of ‘changepaints
which correspond to the time instants when any queue aloag th
path crosses a threshold.

In ns-2 queue occupancy does not include the current packet
being transmitted. Hence, to obtain the ground truth lossgss
for our simulations, we calculate ‘changepoints’ of thiteatative
definition of queue size.

11.2 Proof of Lemma 3.1
LetT ~ I'qx, Z ~ I'g,x be independent, and s&t = 7" + Z.
ThenC = E[T|Y] = aY/(a + () has density",, 5 (a+8)1/a:
with mean EC| = a/\ = E[T].

PROOF From the scaling property of Gammg, ~ T'ny3,x.
SinceT andZ are independent, the density @f|Y =y) is

P(T=x,Y=y) Pi(T=xZ=y—x)

PIT=el=v) = "oy =y Py —y)
_ Tan@)lga(y — )
B Fatsa(y)
F(a+p) a1 81,1 (ot ).

= Tore” @9 v

Recall theBeta functionB(z,y) = I'(a)['(8)/T'(a + 3). The
required conditional expectation is given by

1—=(a+B) ry
E[T]Y =y — yB(aiﬂ)/o P y—2) Ve (13)
B y17<a+ﬁ) ot
= my B(a+1,5)
_ oy
 a+8 (14)

using the integral identity 3.191(1) from [6]. Now viewingas a
sample ofY, we haveC = E[T|Y] = aY/(a + 3), which is
Gamma as stated by the scaling property. a



