
Lightweight, Dynamic and Programmable Virtual Private Networks

Rebecca Isaacs
Computer Laboratory

University of Cambridge
Cambridge, UK

Rebecca.Isaacs@cl.cam.ac.uk

Abstract— A Virtual Private Network (VPN) that exists over a public
network infrastructure like the internet is both cheaper and more flexi-
ble than a network comprising dedicated semi-permanent links such as
leased-lines. In contrast to leased-line private networks, the topology of
such a VPN can be altered on-the-fly, and its lightweight nature means
that creation and modification can take place over very shorttimescales.

In a programmable networking environment, such VPNs can be en-
hanced with fine-grained customer control right down to the level of the
physical network resources, allowing a VPN to be employed for almost
any conceivable network service. This paper examines some of the issues
present in the provision of programmable VPNs. In particular, automated
VPN “design” is considered, that is, how a VPN description can be trans-
lated to a set of real physical resources that meets customerrequirements
while also satisfying the goals of the VPN Service Provider (VSP). This
problem—the distribution of resource allocations across network nodes in
an optimal manner—has relevance for other approaches to VPNprovision
such as differentiated services in the internet [1].

The work described in this paper was carried out using a pro-
grammable networks infrastructure based on the switchletsmecha-
nism [2]. It shows that automated VPN creation resulting in aguaran-
teed resource allocation is a feasible procedure that workswell for both
the VSP and for the customer that has requested a VPN. The problems in-
herent in dynamic VPN reconfiguration are also briefly explored together
with the methods by which these might be addressed.

I. I NTRODUCTION

Until recently, the management and control functionality of
networks has been tightly coupled to the network hardware,
leading to a “closed” and restrictive environment. The provi-
sion of new network services, signalling protocols and other
software has been exclusively the domain of network equip-
ment manufacturers, often, but not always, under the auspices
of international standards bodies. The drawbacks of this ap-
proach are widely recognised:� Although the use of standards ensures interoperability, the
process of defining them is a slow and often highly political ex-
ercise. It is not unusual that by the time a standard is produced,
technological developments have made it largely obsolete.� Due to their monolithic nature, standards can be heavy-
weight and unwieldy, further stifling the impetus to develop
and quickly deploy new network services.� Mechanisms for introducing innovative network services are
invariably very limited. If the demand has not already been
anticipated, it is unlikely the network will be able to cater for
the service in the optimal manner, if at all.� Close integration of the network control software and the in-
ternal network elements makes upgrades and bug fixes difficult
and costly.

Many illustrations of these shortcomings can be cited with
respect to commonly deployed networks. Examples include
the awkward integration of intelligent network services into the

telephone network, and the requirement for some ten thousand
lines of code on every switch for UNI/NNI signalling in ATM
networks.

A. Programmable Networking

Programmable networking has been advocated as a means
of addressing these issues. The main idea of this approach
is that the network can be programmed, in other words its
physical resources accessed and manipulated, through an open
programmable interface. Such an interface allows control and
management functionality to be devolved from the internal net-
work hardware to external processors, hence separating the
role of equipment vendors from that of software and service
providers.

Potential advantages of programmable networking include
the opening up of the network to third parties, the easy in-
troduction of sophisticated and hitherto unanticipated network
services, and significant speedups in the deployment of such
services. However, in practice these benefits are hard to de-
liver and pose some challenging questions such as how pro-
grammable network interfaces should be defined, how much
abstraction is called for, as well as performance, robustness and
security issues. Many of these issues are under active consid-
eration in the research community [3].

B. Virtual Private Networks

Virtual Private Networks (VPNs) that make use of existing
(possibly public) network infrastructure are a way of procuring
the equivalent of a private leased-line network that is relatively
cheap and flexible. Permanently dedicated resources are not re-
quired, and the topology and size of the VPN can be altered as
required. These VPNs are most commonly deployed on the in-
ternet, often to provide connectivity between corporate LANs,
or to enable individual mobile users to access a private LAN.
The establishment of internet VPNs does not require large over-
heads: tunnelling is used to provide routing and addressing,
and security measures such as encryption of the VPN’s traffic
and authentication protocols prevent data tampering and unau-
thorised access.

Issues of network performance and guaranteed quality of ser-
vice, as well as mechanisms for pricing and charging where
appropriate (especially when multiple ISPs participate at the
boundary of the VPN), have not as yet been fully addressed,
although their importance is recognised. Current VPN product
offerings either operate solely on IP networks, or over a small
number of other protocols.



C. Programmable VPNs

The provision of VPNs in a programmable network envi-
ronment takes the VPN concept a step further. It contains the
means for a VPN to control not just its routing and address-
ing mechanisms, but any aspect of the underlying network re-
sources that can be “programmed”. Thus a VPN is not con-
strained to use a particular networking protocol.

Depending on the programmable interface used, the expo-
sure of the network internals can guarantee VPN performance,
and provide a low-level monitoring and charging mechanism
for the VPN Service Provider (VSP). This scenario is possi-
ble when there is a means to isolate one VPN from another, so
that each VPN can have exclusive control of and access to “its”
resources. The switchlets concept [2] does exactly this by par-
titioning the physical resources and policing those partitions.
An open control interface allows a VPN to access its partition
without interference from any other VPN.

In general, resource partitioning combined with open net-
work control has a number of benefits. Including:� the removal of the need for a single instantiation of a pre-
scribed control system (i.e. signalling mechanism or network-
ing protocol)—each partition of the network can be controlled
by a different system;� the support for true multi-service networks where each type
of service can operate in its appropriate environment, unaf-
fected by other users of the network;� the potential for a network operator to offer aVPN Service,
in which VPNs comprising some subset of the available phys-
ical resource (in terms of both topology and capacity), can be
acquired on demand and their allocated physical resources ma-
nipulated at will.

A VPN deployed in this environment can be extremely
lightweight. Its existence could be as brief as a matter of min-
utes, and the network control software as minimal as required.
An example is a VPN created purely for the duration of a video
conference, runningservice specificcontrol software tuned to
support the requirements of video conferencing [4]. During
the lifetime of such a VPN, its resource requirements might
change, for example as a result of participants joining or leav-
ing the conference, and this can be reflected in corresponding
changes in its underlying physical topology and resource allo-
cation.

This paper examines some of the issues involved in the pro-
vision of programmable VPNs, from the point of view of both
the VSP and the VPN customer. These issues include:� The tradeoff between expressiveness and simplicity for a
VPN specification language that must cater for descriptions
that range from the minimal to the comprehensive.� The conflict between VSP goals of maximising resource us-
age, and customer demands for the best VPN to meet their
needs.� The theoretical intractability of finding an optimal VPN
topology given these conflicting requirements.

The feasibility of automated VPN creation has been investi-
gated by observing how VPN topology search performs with a

naive implementation, and to what extent a simple heuristic im-
proves performance. The scenario of a VSP using the switch-
lets infrastructure provides the context and the motivation for
this work and is described in Section II. Section III proposes
an approach to automated VPN design, encompassing a speci-
fication mechanism that reconciles the goals of the two parties
to produce a cost function that is subsequently used to compute
a VPN topology. Section IV presents the implementation ex-
perience, and further work concerning the problems inherent in
dynamic reconfiguration of VPNs is discussed in Section V.

II. CONTEXT

A. Infrastructure

The infrastructure over which dynamic VPNs are provided
is based on open signalling concepts. Control of the phys-
ical network is, as far as possible, devolved from the inter-
nal elements to general-purpose workstations. The function-
ality of the switch or router is encapsulated in an open control
interface—typical operations available through such an inter-
face include connection management, routing, alarm notifica-
tion and the gathering of statistics. Examples of open switch
control interfaces include GSMP [5] and VSI [6]. We use an in-
terface developed in the Computer Laboratory called Ariel [7],
[8].

Partitioning of the physical network is achieved by subdivid-
ing the resources of individual switches into one or more logi-
cally separateswitchlets. Each of these is presented to its own-
ing control system through an open switch control interface,
which gives the illusion that the control system is managing an
entire switch. This is the crucial feature that allows multiple
control systems to co-exist on a single physical network, whilst
also giving them fine-grained control of the resources they have
been allocated.

A process called theDivider manages the creation, dele-
tion and modification of switchlets. The Divider runs on a
general-purpose workstation, ideally in a resource-controlled
environment such as that provided by the Nemesis operating
system [9]. Invocations on switchlet interfaces are policed on
the control path by a Divider (one per switch) to ensure there is
no interference between control systems. Fig. 1 shows multiple
control systems sharing the resources of the physical network.
Each control system makes invocations on the Ariel interface
exported by the Divider for the corresponding resource alloca-
tion on that switch.

A full-blown virtual network can be constructed by acquir-
ing switchlets in one or more network nodes. TheNetwork
Builder is responsible for the creation and deletion of virtual
networks, and for allocating the resources required by those
virtual networks. The topology of a virtual network need not
map directly onto the underlying physical network. A single-
link virtual network can span multiple physical links simply by
reserving resources on all intervening nodes without exporting
Ariel interfaces—such resource reservations are termedtunnel
switchlets.



Ariel Ariel Ariel

Divider

Ariel

Ariel Ariel Ariel

Divider

Ariel

Control
System

invocations on switchlets

invocation on the switch

Control
System

Control
System

Fig. 1. Control systems operating simultaneously.

Network
Builder

Trader

Ariel

Divider

Ariel

Divider

Ariel Ariel

Control
System

getNetbuilder1

setupConnection4

getSwitchlet3

createNetwork2

Fig. 2. Acquisition of a virtual network.

Communication between these architectural components
takes place using a DPE, which runs over its own virtual net-
work. A bootstrap virtual network is employed at start of day.

Fig. 2 illustrates the steps involved in the acquisition of a
virtual network by a control system: a control system locates
the Network Builder using a trader, and then asks it for a new
network comprising some specified resources. The Network
Builder in turn locates the Divider at each of the constituent
nodes, and requests a new switchlet at each. After creating
a switchlet, the Divider returns a new Ariel interface for that
switchlet to the Network Builder. The switchlet interfaces are
then passed back to the control system, which can then make
invocations on switchlets directly and hence control its parti-
tion of the physical network resources.

The operation of control systems across possibly non-
cooperating intervening networks is also addressed within the
infrastructure [10]. Virtual networks can be set up that span
multiple domains, with the result that a control system need not
necessarily be aware of the underlying administrative bound-
aries. The infrastructure will take care of the tunnelling of traf-
fic across other types of network, albeit with a potential loss of

service guarantees.
The provision for multiple control systems to operate simul-

taneously means that no single system need be prescribed for
all users (which is not to say that multiple instances of the same
control system can not co-exist). Although for many users stan-
dard, general-purpose control systems will suffice, others are
able to run service-specific control systems tailored to their in-
dividual needs, if they wish to do so.

An implementation of this control framework is currently
operational on an ATM network consisting of 5 ATM switches,
5 host workstations and 7 audio/video codecs. Ongoing devel-
opments include novel and innovative control systems, feder-
ated virtual networks over wide-area links, investigation into
pricing and charging mechanisms, dynamic resource realloca-
tion and adaptive control systems, and control system interop-
erability. For a general overview and more information see [7]
and [8].

B. Related Work

Virtual networks within a programmable networking envi-
ronment have been explored from two different angles. Inac-
tive networks[11] programs can be inserted into the routers or
switches and then executed on the messages passing through
those nodes. This form of active network is the most extreme
form of network programmability, but because the control and
data paths are not distinguished it is difficult to provide hard
guarantees for differentiation of services.

In contrast, the alternative approaches, which include the
switchlets approach, partition network resources among virtual
networks and provide some mechanism for independent opera-
tion of the virtual networks. Schemes such as Genesis [12] and
VNRM [13] deploy a specific control system on a virtual net-
work by instantiating objects that implement the desired con-
trol interface and protocol.

Using switchlets, no such built-in functionality is provided,
but rather a handle onto a subset of the real, physical re-
sources, which enables low-level and fine-grained manipula-
tion of those resources. In consequence, a virtual network in-
stantiated by means of a switchlet will be more lightweight and
hence amenable to the automated VPN design that is the sub-
ject of this paper.

As an aside, direct manipulation of physical resources does
not preclude the use of off-the-shelf control systems in a
switchlets virtual network (indeed we run a cut-down version
of IP on one of our virtual networks). It also does not mandate
a particular resource abstraction for control, hence avoids need-
lessly restricting operations on the resource, or compromising
efficiency, flexibility and performance.

Genesis addresses the automated deployment of virtual net-
works and their control systems through a process called
spawning. This uses a network blueprint in the form of an exe-
cutable profiling script which lists requirements for addressing,
routing, management, topology, resources and so on. The pro-
filing script is produced manually by a network architect, and
the conflicting goals of VSP and virtual network customer that



are the subject of this paper are not addressed. Although Gen-
esis has not as yet been implemented, the implementation plan
described in [12] intends to tackle some of these issues.

Ongoing work concerning resource management in VPNs
includes the “hose model” [14], in which a performance ab-
straction for IP-based VPNs is proposed that characterises the
desired performance characteristics of a VPN by an aggregated
capacity figure. Extensive evaluation using trace driven simula-
tions shows that considerable benefit is gained by statistically
multiplexing traffic across the VPN as a whole—a technique
that can also be employed in the context of this work where ap-
propriate because of the hard partitioning of resources between
VPNs.

Proposals for differentiated services in the internet [1] ef-
fectively partition resources in a public network in a similar
way. However, mechanisms for dynamically shifting resources
from one aggregate traffic classification to another have not as
yet been defined, although the desirability of such behaviour is
recognised.

C. A VPN Service Provider

The nature of the issues considered in this paper is moti-
vated by the envisaged requirements of a VPN Service Provider
(VSP) making use of the infrastructure to sell dynamic and
flexible VPNs to a range of customers. A VSP will benefit
from the potential for efficient use of network resources, multi-
plexing gains inside the network, and flexible and fast response
times to customer demands. The VSP may also offer extra
value over the standard VPN service, for example with con-
figurable reliability for VPNs, advance VPN reservations or
the facility for dynamically loadable customer code inside a
switchlet (i.e. extremely close to the physical network itself).
A flexible and easy-to-use environment is needed in order to be
able to introduce new services as desired.

The customers of a dynamic VPN service will include not
only corporate users who currently employ VPNs over the in-
ternet or leased lines for their private network, but also compa-
nies selling network services themselves. These might be tele-
phone companies, ISPs, off-the-street users needing a network
for a short time, perhaps for a distributed game or a broadcast
lecture, or even designers and developers of other network ser-
vices. All these customers will have different needs over dif-
ferent timescales—some VPNs will be semi-permanent, while
others rapidly and frequently change their resource require-
ments, or even only persist for a matter of minutes.

To fully realise the potential of the technology in this sce-
nario, the VSP must offer a responsive, reliable and flexible
service. Administrative overheads must be minimised; in par-
ticular the automated creation and modification of VPNs is
paramount, not only to cope with large volumes of such re-
quests, but also to be able to respond to them quickly and to
cater for the many different types of customer. The remainder
of this paper considers VPN specification and realisation in this
context.

A

D E

B
C

Network
cloud

1Host 2Host

Fig. 3. Example network where preferred VPN topology from Host1 to Host2
is different for VSP and customer.

III. VPN DESIGN

So far this paper has described programmable VPNs and
their advantages, as well as reviewing the switchlets concept
and the prototype implementation of a VPN Service that pro-
vided the motivation for this work. The deployment of such
a service on a real-world network is an attractive prospect,
but in order to cater to the demands created by short-lived,
lightweight and dynamic VPNs, automation of their provision-
ing is essential. The challenges of doing so are now investi-
gated, with the overall aim of showing that in spite of some
inherent difficulties, the automated design and deployment of
VPNs is a feasible procedure.

The goal in VPN design is to create a virtual network that
conforms to the specification provided by the customer, whilst
maximising subsequent resource availability for the VSP. In or-
der to increase the likelihood of being able to satisfy future
customer requirements, the VSP should endeavour to spread
the load of bandwidth, label space and switchlet allocation. As
an example, Fig. 3 shows a network topology where although
a customer might prefer that their VPN from Host1 to Host2
passes through the single nodeB, the VSP will route the VPN
throughD andE in order to maximise the local resource avail-
ability for VPNs originating within the network cloud.

This section considers the two main steps of the design
process—customer specification of the desired VPN, and a
means of mapping that specification to a near optimal topol-
ogy and resource allocation.

A. VPN Description

The characteristics of a VPN that a customer may specify in
a creation or modification request include:� (virtual) topology;� performance characteristics such as bandwidth, delay, loss
tolerance, size of label space etc;� temporal attributes i.e. start time and duration;� cost;� built-in extras, such as redundancy;� contractual issues—penalties etc.



This type of specification, which describes both the desired
VPN and specifies the guarantees made by the VSP with re-
spect to that VPN, is often known as aservice level agreement
(SLA). Traditional SLAs used by WAN service providers are
contracts between customer and network service provider that
detail the level of service agreed in terms of measurable param-
eters. The content of an SLA usually covers type of service,
data rate and QoS issues as well as contractual matters such
as charging and compensation in the event of non-compliance
with the agreement.

The automated translation of a VPN specification to a set of
physical resources requires a formalised notation that is suf-
ficiently expressive to capture a range of requirements, but is
not unnecessarily restrictive. As pointed out in [8], VPN de-
scriptions may range from the ill-defined (eg, “a cheap network
between A and B”), to the comprehensively specified. Further-
more, the difficulties of predicting network traffic characteris-
tics from a given source are well known. Insisting on a precise
specification when the user does not know or understand their
requirements in such detail only leads to sub-optimal network
usage, either because the source exceeds its usage parameters
and loses data, or else because the network is over-provisioned
and resources wasted.

A VPN may not necessarily be double-ended, in other words
a VPN specification which describes the origin and characteris-
tics of the traffic without explicitly stating its destination should
be valid. The conversion to a complete specification should be
able to take into account potential optimisations resulting from
this single-endedness to multiplex where possible.

The exact nature of the notation adopted depends to some
extent on the capabilities of the underlying network and the
degree of specification that the VSP wishes to allow its cus-
tomers. Greater freedom leads inevitably to more complexity
in the system. In our experimental environment we allow a
fairly limited choice of VPN parameters, namely participating
nodes, size of label space, bandwidth and maximum hop count.
Other characteristics that could easily be incorporated include
delay, jitter, duration, start-time, redundancy and so on.

After an SLA is defined, the partial VPN specification it con-
tains must be converted to a complete specification, that is, one
that represents an instantiation of the specified VPN on the ac-
tual physical networks. This involves an augmentation of the
incomplete description such that all of the necessary physical
topology, together with the resources required on each node
and link, is explicitly specified.

Once a complete description is arrived at, a VPN can easily
be expressed as a set of switchlet specifications. The mapping
of a customer-provided VPN description to a complete descrip-
tion is the most complex step in the process of creating a VPN.
Two questions must be addressed:
1. Does the described VPN make sense in terms of the actual
physical topology—is the descriptionfeasible?
2. How do we arrive at an arrangement of VPN topology
which:� satisfies the customer requirements,

� can be realised with available resources, and� is optimal for the VSP?
Checking of feasibility is straightforward, as the VSP has

global knowledge about the network topology. At this step it
may also be able to refine the SLA so that it includes at least
those nodes thatmustbe present to meet the stated require-
ments. In contrast, the second question is quite difficult to an-
swer, and is discussed at length in the next section.

B. VPN Routing

Determining an optimal route, or topology, of a VPN is a
non-trivial problem. It can be expressed formally as follows:
The cost of a subgraphG0

is determined by some functionf(G0). Given a weighted graphG and a set of vertices inG
denotedV , what is the cheapest way of forming a connected
subgraph containingV according to the cost functionf?

This problem is similar to that of finding a minimum Steiner
Tree, where the goal is to connect a set of vertices in the graph
by finding a minimum-weight spanning tree that can also use
any of the remaining vertices. The difference is that the aim is
not to find a minimum spanning tree, but to find the cheapest
subgraph according to a cost function that will vary from one
VSP to another, and may even be altered over time at the same
VSP.

As an example consider the networks shown in Fig. 4. The
requested VPN consists of the nodesA, B andC, and the
edge weights have been calculated as shown, according to the
VPN resource description, current resource availability and lo-
cal policy. A costing function that favours the minimum-weight
VPN topology will produce the subgraph highlighted in the
left-hand network, whereas the subgraph of the middle network
is produced if minimising the number of links is given greater
priority. If full redundancy together with minimum-weight is
required, the subgraph highlighted in the right-hand network
will be the result.

It is clear from the problem description that once a partial
VPN specification has been derived from the given SLA, there
are then three stages in reaching a solution:

B.1 Assign edge weights

The weight assigned to any individual edge will depend on:� availability of the resources specified in the VPN description
(either explicitly or implicitly) as required for that link;� any arbitrary cost associated with a link, as determined by
local policy.
A link that is unable to provide the required resources is imme-
diately assigned a weight of infinity and removed from further
consideration.

B.2 Generate a cost function

The cost of a VPN is determined by a combination of cus-
tomer requirements—a candidate VPN that doesn’t meet the
specifications of the SLA will have infinite cost—and the cir-
cumstances of the individual VSP. For example, in some cases
bandwidth may “cost” more than label space (perhaps because



B

C

X1

X2

A

1

2

4

3

1

1

1

B

C

X1

X2

A

1

2

4

3

1

1

1

B

C

X1

X2

A

1

2

4

3

1

1

1

Minimum weight. Minimum number of links. Minimum weight with redundancy.

Fig. 4. Three cost functions producing different optimal VPN topologies.

the VSP has very few customers), whereas in other networks
the reverse will be true. The costing function should reflect the
relative priorities in the local domain, and balance the require-
ments for a particular VPN with the overall needs of the VSP.

A cost function routine is automatically generated by parsing
the SLA to derive explicit rules and incorporating these in a
template that includes rules dictated by local policy. The details
of this procedure will vary from one VSP to another, but there is
always commonality in that the cost calculation routine used at
any one time is (probably) unique to the individual VPN under
consideration.

B.3 Find the best VPN topology

As stated above, a VPN’s topology will be determined by a
combination of the edge weights and the cost function, accord-
ing to local policy.

Intuitively, an implementation that always finds the best sub-
graph (i.e. VPN topology) will be computationally expensive
because of the large number of candidate subgraphs. If we
consider a subgraph cost function that is simply the sum of the
constituent edge weights, and if cycles are not permitted in the
subgraph, then the problem becomes that of finding the mini-
mum Steiner Tree. This is known to be NP-complete [15], and
thus so is the optimal VPN topology problem described here.

Nevertheless, using a combination of sensible heuristics and
careful engineering, an implementation can be produced that
gives tolerable performance for a network of reasonable size.
In the following section the brute-force solution is analysed
in order to derive heuristics that give close to optimal solu-
tions, as well as making the problem tractable within the de-
sired bounds. These bounds are determined by deciding what
“tolerable” performance is, and how large a “reasonable” size
of network should be. Experimental observation supports the
claim that the performance of the resulting algorithm is ade-
quate.

IV. I MPLEMENTATION EXPERIENCE

This section examines in some detail the implementation of
the search for an optimal VPN topology. By means of exper-
imental results we compare the performance of the naive ap-
proach with that possible using a simple heuristic.

A. Algorithm

A brute force method of determining the optimal VPN topol-
ogy is to construct every possible connected subgraph that sat-
isfies the given VPN description, calculate the cost of each and
then choose the cheapest. The pseudo-code of Fig. 5 describes
an algorithm that takes this approach. For clarity, finer points
of the implementation such as finding optimal topologies that
incorporate redundant links are ignored.

Let V 0
denote the set of nodes in the VPN. For anyv 2 V 0

,
single-hops[v] contains all paths fromv to each of the
other nodes inV 0

, that do not pass through any other node inV 0
and do not contain any cycles. The functionCALCULATE-

COST is generated as described in Section III-B.2.
The construction ofsingle-hops is straightforward us-

ing a modified form of the Floyd-Warshall transitive closure
algorithm to generate one possible set of paths between VPN
nodes, and then taking the transitive closure of the resulting
paths to obtainall possible paths. At this stage paths with edges
that have infinite weight (i.e. cannot fulfill the resource require-
ments) are discarded.

The algorithm to find the minimum-cost subgraph contain-
ing V 0

is shown in Fig. 5. At line 7 whichever VPN node was
added last to the subgraph is taken, and its paths to other VPN
nodes looked up insingle-hops. The procedure is then
called recursively for each of these paths. Note that the result-
ing collection of paths will not necessarily be disjoint, but a
subgraph is a candidate (i.e. costed) only if it contains all of
the nodes in the VPN. At line 8 processing is also carried out
to ensure that continuously cycling paths are not considered,
and to guarantee termination within a reasonable time period,
the search is abandoned after a certain (large) number of recur-
sions.



MIN-SUBGRAPH(subgraph)
1 if all nodes V 0

in subgraph then
2 c = CALCULATE-COST(subgraph)
3 if c < min-cost then
4 min-cost = c
5 min-subgraph = subgraph
6 else
7 paths = single-hops[subgraph.last]
8 for each p in paths do
9 MIN-SUBGRAPH(subgraph + p)

Fig. 5. Brute-force algorithm to find a minimum-cost subgraph.

Letm be the number of edges in the graphG and letk de-
note the number of nodes in the VPN. The number of paths
between any two nodes without cycles is at most2m, and for
any nodev there are paths to at mostk� 1 other nodes. There-
fore the maximum number of iterations of the loop at line 8 is
at most(k�1), with each iteration recursing at most2m times.
As expected, the brute-force algorithm is computationally in-
tractable.

B. Heuristics

The intractability of this algorithm arises because the cost
function is not monotonically increasing, i.e. the overall cost
of a subgraph may reduce as it encompasses more of the VPN
nodes (for example if redundancy is required by the customer).
As stated above, if the cost function does happen to be cumu-
lative, then the solution is the minimum spanning tree and can
be found in polynomial time using any of the well known algo-
rithms.

However, even with a non-monotonic cost function, heuris-
tics can be applied to make the procedure practical for networks
of reasonable size. At the potential expense of sub-optimal re-
sults, the search time can be speeded up by reducing the size of
the search space. Two approaches are possible:� abandon partial subgraphs that are thought likely not to be
optimal in the future;� order the search sequence to consider first those subgraphs
that are most likely to be optimal and stop the search at the first
hit.

The first approach can be implemented by choosing a rea-
sonable cut-off point, and abandoning partial subgraphs that
exceed this cost. This is obviously more likely to perform well
if the cost function is ‘almost’ monotonic. Additionally, the
cost function may contain cumulative aspects that can be con-
sidered in isolation. For example, partial subgraphs can be dis-
carded on the basis of exceeding the desired hop count or end-
to-end delay. However, a significant drawback with this ap-
proach is that the additional computation associated with calcu-
lating costs of partial subgraphs may dominate the running time
and negate any improvements gained from the smaller number

of subgraphs considered in total.
In contrast, the second technique will tend not to return as

good results, especially with denser graphs, but will spend sig-
nificantly less time calculating partial subgraph costs. Another
key advantage is that if a subgraph that meets the customer’s
requirements (with the possible exception of a cost constraint)
exists, then it will always be found. The first technique runs the
risk of not finding a solution, due to having abandoned that sub-
graph earlier, whereas with ordered search if a solution exists
then it is guaranteed to be found eventually.

Thus with the ordered search heuristic the VSP may lose
out on fulfilling its overall goals, and the customer may be pe-
nalised on VPN price, but both gain substantially from search
speed increases. Of course in practice the VSP can subse-
quently mitigate any losses by modifying the cost function ap-
propriately. The results in the following section support this
analysis, and demonstrate that by incorporating the ordered
search heuristic, automated VPN design is a feasible procedure.

C. Experimentation

This section presents experimental results to back up the as-
sertion that in spite of its computational complexity, the pro-
cess of automated VPN creation is practical on a reasonably
large network.

For ease of implementation, an interpreted scripting lan-
guage was used, hence the CPU usage timings give an idea
of relative improvements rather than demonstrating what can
be achieved absolutely. A well-engineered solution written
with the appropriate tools would perform much better. The
network topologies were generated using the TIERS random
network topology simulator [16], with a small range of edge
densities reflecting the sparsity generally found in real-life net-
works. The networks are assumed to be under the administra-
tive control of a single VSP and are accordingly no larger than
25 nodes.

Because the topologies are produced randomly no two runs
give the same results and there are occasional large fluctuations
for relatively large and dense networks. Notwithstanding this,
some care has been taken to ensure that the results included rep-
resent typical executions, and all data points are average values
over 10 runs.

The graph in Fig. 6 shows how badly the brute-force algo-
rithm actually performs in practice. It indicates the extreme
deterioration in performance as both the graph size and the pro-
portional VPN size increase. Once the VPN covers more than
about 30% of the network, the search time increases dramati-
cally.

Problems are also caused for brute-force searching by in-
creases in graph density, and this is shown by the graph in
Fig. 7. This graph shows the search time for a VPN covering
a fixed proportion of the physical network—60%, with aver-
age node degree increasing from 1 to 4. Search times increase
substantially once the graph size exceeds 10 nodes. Clearly the
brute-force approach is not adequate for any network of rea-
sonable size.



20 30 40 50 60 70 80 90 100
VPN size

(% of network size) 10
12

14
16

18
20

22
24

network size

0

50

100

150

200

250

300

350

search time (s)

Fig. 6. Performance of brute-force search on sparse networks.

1
1.5

2
2.5

3
3.5

4
redundancy degree

of network 6
7

8
9

10
11

12

network size

0

200

400

600

800

1000

1200

1400

search time (s)

Fig. 7. Performance of brute-force search for VPN size 60% ofnetwork size.

The next experiment examines the gains that can be made
using the ordered search heuristic as well as the corresponding
cost penalty. The heuristic is incorporated in the pseudo-code
algorithm of Fig. 5 by ordering thepaths list iterated over
at line 8 according to the result of applying the cost function
to each one. Recall that these are acyclic single-hop paths be-
tween 2 nodes of the VPN, therefore the overheads of the cost
calculations are minimal.

The graph in Fig. 8 compares the search times of the brute-
force algorithm and the ordered search algorithm for a medium-
sized graph of 20 nodes. It shows the expected marked im-
provement in performance using the heuristic. Note that the
y-axis is log scale.

Finally, the first two experiments run using brute-force
searching are repeated with the ordered search heuristic. To
facilitate comparison, the results are plotted with the same Z-
axis range which confirms that the large humps present in the
graphs of Figs. 6 and 7 only appear here for much bigger net-
works. As expected, ordered search performs much better in
both cases.

0.01

0.1

1

10

100

1000

20 30 40 50 60 70 80 90 100

se
ar

ch
 ti

m
e 

(s
)

VPN size (% of network size)

brute force
ordered search

Fig. 8. Brute-force vs ordered search on a 20-node sparse network.

20
30

40
50

60
70

80
VPN size

(% of network size) 10
12

14
16

18
20

22
24

network size

0

50

100

150

200

250

300

350

search time (s)

Fig. 9. Performance of the ordered search heuristic on sparse networks.

V. FURTHER WORK

So far the issue of automated VPN creation has been ad-
dressed without regard to possible reconfigurations of the VPN
in the future. In fact, the ability to alter the topology and re-
source allocation of a VPN on-the-fly is one of the main advan-
tages of the VPN Service described in this paper. Some scenar-
ios where dynamic reconfiguration might be used include:� A service-specific control system tailored to a particular
multicast application, for example video-conferencing, where
changes to group membership may require switchlets to be
created at additional nodes, or even for nodes to be removed
from the VPN. Similarly, end-user requests for improvements
in video quality may be met by increasing the bandwidth allo-
cation of the VPN on the relevant links.� A control system for a VPN supporting mobility that mod-
ifies its topology in response to the movement of wireless
devices—holding on to resources only at adjacent base stations,
and discarding those that are “far away” from the current loca-
tion.� An efficient IP-on-ATM control system where the size of the
label space in the underlying switchlets is altered rapidly in
response to the creation or termination of traffic flows.



1
1.5

2
2.5

3
3.5

4
redundancy degree

of network 6
7

8
9

10
11

12

network size

0

200

400

600

800

1000

1200

1400

search time (s)

Fig. 10. Performance of the ordered search heuristic for VPNsize 60% of
network size.

VPNs that reconfigure as and when required can make more
efficient use of network resources and are more flexible than
statically pre-configured networks. The risk for the VPN owner
is that a reconfiguration request may be rejected by the VSP,
perhaps because of lack of resources, with the resulting loss
for the VPN owner of efficiency, flexibility and possibly even
the ability to provide a service to their own customers. The
appropriate charging mechanisms to reflect this trade-off are
the responsibility of the VSP.

Automated reconfiguration should be built in to the system
for the same reasons that automated creation and deletion are
necessary, as discussed in Section II-C. Reconfiguration can
involve changes to either the VPN topology, or to its resource
allocation, or both. The problem considered here concerns just
alterations to VPN topology, which may of course result in
changes to the overall VPN resource allocation as well. The
details of in-place reconfiguration of resources at a particular
switch are currently the subject of ongoing research.

A. Analogy With Dynamic Multicast Routing

The problems of dynamic VPN topology reconfiguration
parallel those found in dynamic multicast routing (but not for
datagram networks). The issues, which are extensively dis-
cussed in the literature (see, for example [17]) involve compro-
mises between optimal placement of a node joining the multi-
cast session and the corresponding deterioration of the tree as
a whole.

As with VPN creation, the initiation of a multicast session
generally involves a computation of the optimal topology. The
topology of multicast trees, which are single source to multi-
ple receivers, can be influenced by many different constraints.
These include scalability, QoS requirements such as end-to-end
delay bounds, efficiency requirements and algorithm complex-
ity considerations. When a new destination is introduced into
the multicast tree, naive (computationally cheap) placement of
the new node can result in deterioration of the quality of the
tree—with some chance of making the initial effort expended
in calculating an optimal tree a waste of time. On the other

hand, constant reconfigurations of the topology to maintain an
optimal, or close to optimal, tree are also expensive, and can
disrupt traffic to existing members of the multicast group. Most
solutions adopt a compromise where changes to the tree are
kept as localised as possible, and periodically the entire tree is
re-routed to try and maintain a close to optimal topology.

Some examples of current research in this area include [18]
and [19]. In [18], an algorithm is presented that maintains a
good (but not optimal) multicast tree (in terms of minimising
the sum of the edge weights) without undue computational cost
using Kruskal’s shortest-path algorithm. Rearrangements are
triggered after a certain amount of deterioration in the quality
of the tree—determined by counting the number of changes in
a vicinity—but enough state is maintained to be able to confine
the necessary rearrangements to localised regions. In contrast,
in [19] the quality of the multicast tree is assessed according to
whether it meets delay variation constraints. However there is
a similar emphasis on minimising the effects of leave and join
operations on the tree as a whole.

B. Discussion

Although it has a lot in common with the multicast problem,
dynamic reconfiguration in the context of VPNs in the switch-
lets environment has some important differences.

On the one hand, the allocation of physical network re-
sources directly to a VPN owner means that topological rear-
rangements of the VPN at the whim of the VSP are not neces-
sarily going to suit the way the customer is using their portion
of the network. On the other, the difficulties can be eased by the
fact that the customer may be able to explicitly identify “sensi-
tive” regions of their network that should not be modified, and
nodes where disruption is tolerated. Any threshold of deteri-
oration (which will roughly translate to cost to the customer)
can be chosen on a per-VPN basis, and to take this to an ex-
treme, the mechanism by which the topology is updated can
also be specified by the VPN customer. In effect this gives the
VPN owner, i.e. the person paying for the network, a great deal
of control, allowing them to tailor the dynamic reconfiguration
behaviour as appropriate.

However, it must also be expected that many VPN customers
will not willing or able to specify such details. A minimal VPN
specification such as “Give me a network containing nodes A,
B and C” which at some point in the future is modified by “Add
node D to my network” is a perfectly valid one. The question is
whether this customer would be happy with a less than optimal
topology whereD is simply joined toA, B andC, or whether
a rearrangement of all the links in the VPN at this point would
be acceptable. In general it seems unlikely that the latter option
would be preferred, and indeed should a customer require this
they could always request a new network containingA, B, C
andD at the appropriate time. On the other side of the coin, the
VSP may have expended much effort in calculating the original
network topology, and this effort may subsequently be rendered
useless by the changes requested by the customer, especially if
these changes occur frequently. It would be in the interests of



the VSP to have some sort of characterisation of the “dynam-
icity” of a VPN at the time of creation. A VPN that is likely
to change a lot over its lifetime can be given a topology that is
sub-optimal in terms of cost but is more resilient and gives a
cheaper overall topology with plentiful changes.

In summary, the following aspects relating to reconfiguration
can be specified by the VPN customer:� the expected rate of membership modification;� tolerance of disruption to the VPN as a whole;� tolerance of disruption at particular nodes;� any preferred means of rearrangement;� thresholds for triggering rearrangement;� amount prepared to pay.

A combination of these factors could be used to influence the
choice of initial routing. A VPN that underestimates its degree
of dynamicity will initially pay an extra cost for unanticipated
reorganisation overheads. However it is also possible in this
situation that the system could slowly adapt to the observed be-
haviour of a misbehaving VPN, and successively produce less
optimal but more resilient topologies.

The nature of a VPN topology that is resilient to change,
in terms of maintaining its overall cost as its membership al-
ters, will vary according to the cost function in use by the VSP.
Algorithms proposed for dynamic multicast routing, such as
ARIES [18], could be adapted to operate in this environment
according to the chosen cost function. Investigation into this
aspect of the provision of dynamic VPNs is continuing.

VI. CONCLUSION

The automation of VPN design and deployment has many
advantages for both VSP and customer. It allows a customer
to obtain a VPN extremely quickly, while still being able to
explicitly specify the VPN’s performance and other character-
istics. The administrative overheads for the VSP are greatly
reduced, and network usage efficiency is enhanced. With the
incorporation of charging mechanisms correlated against com-
puted VPN cost, the administrative burden can easily be further
minimised.

This paper has shown that in spite of computational com-
plexities it is feasible to automate VPN topology generation in
accordance with both customer requirements for the VPN itself
and VSP goals for the network as a whole. A VPN service level
agreement, together with current resource allocation and global
policy, can be incorporated in a cost function that is then used to
determine the optimal physical topology of a VPN that satisfies
the specification. The generation of this topology is made com-
putationally tractable by means of an ordered search heuris-
tic. Experiments have demonstrated that even within a non-
optimised environment, a VPN can generally be determined in
under 2 minutes on a sparse, reasonably sized network of up to
about 25 nodes.

A programmable network infrastructure, such as that facili-
tated by switchlets, opens up the way in which a VPN can be
exploited. As well as a flexible and dynamic network topology
and resource allocation, there are no built-in restrictions on the

control system, network protocol or end-user applications us-
ing that network. This “open” environment, with lightweight
and dynamic VPNs, is a practical realisation of “networks-on-
demand”.

REFERENCES

[1] S.Blake, D.Black, M.Carlson, E.Davies, Z.Wang, and W.Weiss. An ar-
chitecture for differentiated services. RFC 2475, December 1998.

[2] Jacobus E. van der Merwe and Ian Leslie. Switchlets and dynamic virtual
ATM networks. In Aurel Lazar, Roberto Saracco, and Rolf Stadler, edi-
tors, Integrated Network Management V, pages 355–368. IFIP & IEEE,
Chapman & Hall, May 1997.

[3] Opensig working group. Details athttp://comet.columbia.
edu/opensig/.

[4] Jacobus E. van der Merwe and Ian M. Leslie. Service specific control ar-
chitectures for ATM.IEEE Journal on Selected Areas in Communication,
16(3):424–436, April 1998.

[5] P. Newman, W. Edwards, R. Hinden, E. Hoffman, F. Ching, T.Lyon, and
G. Minshall. Ipsilon’s General Switch Management Protocolspecifica-
tion version 2.0. RFC 2297, March 1998.

[6] William P. Buckley. Virtual Switch Interface (VSI) implementation
agreement. Available fromhttp://www.msforum.org/, Novem-
ber 1998.

[7] Sean Rooney, Jacobus E. van der Merwe, Simon A. Crosby, and Ian M.
Leslie. The Tempest: A framework for safe, resource-assured pro-
grammable networks.IEEE Communications Magazine, 36(10):42–53,
October 1998.

[8] Jacobus E. van der Merwe, Sean Rooney, Ian Leslie, and Simon Crosby.
The Tempest—a practical framework for network programmability.
IEEE Network Magazine, 12(3):20–28, May 1998.

[9] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The design
and implementation of an operating system to support distributed multi-
media applications.IEEE Journal on Selected Areas in Communication,
14(7):1280–1297, September 1996.

[10] Herbert Bos. Application-specific policies: Beyond the domain bound-
aries. In Morris Sloman, Subrata Mazumdar, and Emil Lupu, editors,
Integrated Network Management VI, pages 827–840, Boston, May 1999.
IFIP & IEEE, Chapman & Hall.

[11] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden. A survey of active network research.
IEEE Communications Magazine, 35(1):80–86, January 1997.

[12] Andrew T. Campbell, Michael E. Kounavis, Daniel A. Villela, John B.
Vicente, Hermann G. De Meer, Kazuho Miki, and Kalai S. Kalaichelvan.
Spawning networks.IEEE Network Magazine, 13(4):16–29, July/August
1999.

[13] Andrew Do-Sung Jun and Alberto Leon-Garcia. Virtual network re-
sources management: A divide-and-conquer approach for thecontrol of
future networks. InProceedings of the IEEE Global Telecommunications
Conference (Globecom 98), Sydney, Australia, 1998.

[14] N.G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K.K. Ra-
makrishnan, and Jacobus E. Van der Merwe. A flexible model forre-
source management in virtual private networks.Computer Communica-
tion Review, 29(4):95–108, October 1999. Proceedings of SIGCOMM
September 1999.

[15] Michael R. Garey and David S. Johnson.Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and Company,
1979.

[16] Matthew B. Doar. A better model for generating test networks. InPro-
ceedings of the IEEE Global Telecommunications Conference(Globe-
com 96), pages 86–93, London, UK, November 1996. Source code
available fromftp://ftp.nexen.com/pub/papers/tiers1.
2.tar.gz.

[17] Matthew Doar and Ian Leslie. How bad is naive multicast routing? In
IEEE INFOCOM’93, pages 82–89, San Francisco, USA, April 1993.

[18] Fred Bauer and Anujan Varma. ARIES: A rearrangeable inexpensive
edge-based on-line Steiner algorithm.IEEE Journal on Selected Areas
in Communication, 15(3):382–397, April 1998.

[19] George N. Rouskas and Ilia Baldine. Multicast routing with end-to-end
delay and delay variation constraints.IEEE Journal on Selected Areas in
Communication, 15(3):346–356, April 1998.


