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Abstract

The standard design of on-line auction systems places most of the compu-
tational load on the server and its adjacent links, resulting in a bottleneck in
the system. In this paper, we investigate the impact, in terms of the perfor-
mance of the server and its adjacent links, of introducing active nodes into the
network. The performance study of the system is done using the stochastic
process algebra formalism PEPA.

1 Introduction

In this paper we investigate the interplay of two emerging technologies: active net-
works and software agents to support electronic commerce.

Active networks[1] are a compelling new initiative in networking. An active net-
work extends a conventional one with the ability for network switches to process
data as it is being transmitted. The processing which is to be performed can be
customised by the network user on a per-application or even per-message basis. This
innovation is a dramatic departure from traditional network design where the em-
phasis is on the avoidance of examination or modification of data. Active networks
are supported by a variety of software technologies, execution environments and
node operating systems [2].
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Some recent work has focused on the performance gains that active network
technology may bring to distributed applications [3]. Examples include active re-
liable multi-cast [4] and cache routing [5]. In [3] on-line auctions are suggested as
applications which might benefit from processing at active nodes within the network.

The Internet offers exciting new prospects for electronic commerce, but it cannot
always deliver the performance necessary to make them viable. The electronic trans-
actions take a variety of forms but increasingly there is a move towards agent-based
systems in which personalised, semi-autonomous software agents act on behalf of
consumers or businesses [6]. In many cases such systems rely on the exchange of in-
formation and negotiation. If the integrity of such transactions is to be maintained,
there is a clear need for timely behaviour of the underlying infrastructure.

Several on-line auction systems have been developed experimentally, such as the
AuctionBot system (auction.eecs.umich.edu) from the University of Michigan,
the Fishmarket Project (www.fishmarket.com) [7] or the eAuctionHouse
(ecommerce.cs.wustl.edu) which supports combinatorial auctions and which is
from the University of Washington. In such systems, competitive behaviour on the
part of the bidder relies on a rapid response to submitted bids. However this may be
jeopardised by network latency and/or server overload. As suggested, but not inves-
tigated in [3], the in-network processing capabilities provided by an active network
appears to provide a solution to this problem. As far as we are aware no thorough
performance analysis of such a scenario has been carried out.

In this paper, we investigate the performance issues surrounding such a situation.
The idea we develop involves replacing standard, basic intermediary nodes of the
network by active nodes, the goal being to transfer some tasks from the server to
these nodes. This should result in a significant benefit in terms of both system
throughput and system latency. The resulting system is then analysed using the
stochastic process algebra modelling formalism PEPA [8].

The paper is organised as follows. In Section 2, we describe the on-line auction
system we investigate, and the motivation for the approach that we take. Then, in
Section 3, after a brief introduction to the modelling formalism we use, PEPA, we
present the details of our model. Our solution technique is outlined in Section 4,
together with the experiments we conducted and the numerical results we have
obtained. Some conclusions of this work, together with the possible extensions, are
discussed in Section 5.

2 The On-line Auction System

In an on-line auction system, a server receives and processes bids from remote soft-
ware agents representing interested consumers. These semi-autonomous agents sub-
mit bids according to a predetermined strategy together with the information that
they can ascertain from the server. The server processes bids, either accepting them
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or rejecting them, depending on their value. In some systems additional attributes
may be considered when comparing bids of the same or close value.

In addition to bids, bidder agents may also submit price notification requests,
asking the server to tell them the latest bidding price. Note that the bidder agents
can never be certain that they have an accurate representation of the current price
due to network latency. They can, however, be certain that their current represen-
tation is out of date when a submitted bid, which is higher than their idea of the
“current” price, is rejected.

The effectiveness of the bidder agents will depend on the proportion of time that
their price information is accurate. Maintaining such accurate information places
stringent performance requirements on the underlying infrastructure. Moreover the
scalability of such systems, in terms of the number of bidder agents that can be
satisfactorily accommodated, could be severely limited by the performance of the
network. From the point of view of accessibility it is important that such auction
systems use existing infrastructure, i.e. the Internet, and so the ability to directly
address performance problems may be limited. However, in this paper we consider
how such performance limitations may be circumvented, by incorporating active
nodes within the network.

Node
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Bidder

Bidder

Bidder

Bidder

Bidder

Bidder

Server

Node

Figure 1: The on-line auction network topology

The standard design of an on-line auction system necessarily places most of the
computational load on the server and its adjacent links, forming a bottleneck in the
system. We investigate the advantages of introducing bid caches at intermediary
nodes within the network between the server and some bidders (Figure 1). Such
nodes are “active” in the sense that, in addition to routing, they examine the con-
tents of bid and price request messages and form caches, storing recent bid and price
information. These caches do not have the ability to accept bids but may act as
filters, by rejecting bids which are known to be too low. This reduces the load on
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both the server and its adjacent network elements. We assume that the cache’s price
information is gleaned from the bids which it handles together with their respective
responses, but also from a periodic update message sent from the server. For bids
which are passed to the server the latency due to processing within the network is
increased; however the intention is that this will be more than compensated by the
reduced traffic reaching the bottleneck of the system.

In order to quantify the advantages of introducing an active node to act as a cache
for the on-line auction system, we compute and compare the performance of two such
systems: one system deployed on a simple network without active nodes and another
on the same network in which one node becomes active. The approach we take
to develop performance measures is based on the stochastic process algebra PEPA
(Performance Evaluation Process Algebra). PEPA serves as a high-level notation for
Markov modelling: it is possible to automatically generate a continuous-time Markov
process directly from the PEPA model which faithfully encodes the behavioural and
temporal aspects of the modelled system. Details of this mapping can be found
elsewhere [9]. Other high-level notations for Markov processes, such as GSPN [10]
or SAN [11] could equally have been used but the compositional structure of PEPA
seemed well-suited to the structure of the auction system. Using a formal model,
such as a process algebra, allows us to additionally verify the functional correctness of
the proposed system. Moreover, PEPA supports an automatic aggregation technique
which allows the state space of the model to be reduced without loss of information,
transparently to the user.

Our study is decomposed into two parts. In the first part, we consider the
system with only traditional nodes as given by Figure 1. We model that system and
compute its performance in terms of throughput. In the second part of the study,
we replace one of the traditional nodes by an active one. In the models we adopt a
number of assumptions and conventions.

• All bidder agents in the system adopt the same strategy. According to this
strategy, whenever a bid is rejected the bidder submits a price notification
request to get an updated price estimate before submitting any more bids.

• In the server, a serving agent is spawned to correspond with each bidder agent.
This agent is responsible for maintaining the current state of interactions with
the corresponding bidder.

• In the model all data dependent behaviour is abstracted. This means that we
do not represent the current price, nor the value of a bid. Nor do we represent
details of any bidding strategy, or selection strategy for choosing between bids
of comparable value. Instead we use probabilities to represent the relative
frequency with which bids are successful.

• Since bids which are subject to longer latencies are more likely to be unsuccess-
ful, we adjust the acceptance probabilities according to the routes by which
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bids will arrive at the server, or the cache.

• We make a distinction between the nodes of the system. This distinction re-
flects the position of the node in the system and thus the elements to which
it is connected. However, note that the essential behaviour and timing char-
acteristics of the nodes (without cache) are the same in each case.

• Our model is stochastic, meaning that all times are represented as random vari-
ables. Since we will use Markovian analysis to calculate performance measures,
all random variables are assumed to be exponentially distributed. Performance
measures are derived from equilibrium, or steady state, behaviour.

In the following section we briefly introduce the PEPA formalism, before pre-
senting the models of the auction system in detail.

3 The PEPA models

PEPA (Performance Evaluation Process Algebra) extends classical process algebra
by associating a random variable, representing duration, with every action. These
random variables are assumed to be exponentially distributed giving a clear rela-
tionship between the process algebra model and a Markov process.

PEPA models are described as interactions of components. Each component can
perform a set of actions: an action a ∈ Act is described as a pair (α, r), where
α ∈ A is the type of the action and r ∈ R

+ is the parameter of the negative
exponential distribution governing its duration. Whenever a process P can perform
an action, an instance of a given probability distribution is sampled: the resulting
number specifies how long it will take to complete the action. A small but powerful
set of combinators is used to build up complex behaviour from simpler behaviour.
The combinators are familiar from classical process algebra: prefix, choice, parallel
composition and abstraction. We explain each of the combinators informally below.
A formal operational semantics for PEPA is available in [8].

Prefix: The prefix combinator “.” is used to designate the first action in the
behaviour of a component, e.g. (α, r).P will carry out an action of type α with an
average duration of 1/r and then behave as component P . In some cases, the rate
of an action is outside the control of this component. Such actions are carried out
jointly with another component, with this component playing a passive role. In this
case the rate of the action is denoted by the distinguished symbol, > (called “top”).

Choice: A choice between two possible behaviours is represented as the sum of
the possibilities, e.g. (α, r).P + (β, s).Q. A race condition is assumed to govern the
behaviour of simultaneously enabled actions so the choice combinator represents
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pre-emptive selection with re-sampling. The continuous nature of the probability
distributions ensures that the actions cannot occur simultaneously. Thus a sum will
behave as one of its summands.

Parallel composition: Parallel composition is used to represent the cases when
we expect two components of the system to cooperate to achieve some action. For
example, the system P ��

L
Q consists of two components P and Q which must co-

operate to achieve actions which are in the cooperation set L. Actions with types
not in this set may be carried out independently and concurrently by the two com-
ponents. Actions in this set, shared actions, require the simultaneous involvement
of both components. These will have the same type as the two contributing actions
and a rate reflecting the rate in the slowest participating component. Note that
this means that the rate of a passive action will become the rate of the action it
cooperates with. When the cooperation set L is empty, we use the notation P ‖ Q
to denote independent concurrent behaviour.

Abstraction: It is often convenient to hide some actions, making them private
to the component or components involved. The duration of the actions is unaf-
fected, but their type becomes hidden, appearing instead as the unknown type τ .
Components cannot synchronise on τ .

Using constants to name components and recursive definitions we are able to
describe components with infinite behaviours without the use of an explicit recursion
operator. Representing the components of the system as separate components means
that we can easily extend our model.

3.1 The system without active node

The PEPA model corresponding to the on-line auction system with only traditional
nodes is composed of six components. The configuration we consider is shown in
Figure 2.

The PEPA model is composed of components Server, B idder, N ode for the basic
node, CNode for the central node and TNode for the upstream one. For technical
reasons, a bidder connected to the central node is modelled using the component
B idderCN . Action types are used to ensure the correct routing within the network
model: the suffixes csb and csn are used to denote messages to the server via the
upstream node and via the central node and the upstream node, respectively. The
suffixes scb and scn denote messages in the reverse direction.

Let us now give details of the behaviour of the different components of the model.

Component Server: The auction server agent is represented by the PEPA com-
ponent Server. In our configuration this component consists of six basic agents,
responsible for each of the bidders. The behaviour of these agents are essentially
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Figure 2: The On-line Auction System with PEPA Components

identical although the action types differ according to the route between the bidder
and the server, as explained above. ServerN , ServerC and ServerT , deal with
the requests forwarded by the basic node, via the central node and directly through
the upstream node, respectively. For example, the behaviour of ServerN is that
it waits to receive bids (f orward bid) or price requests (f orward preq) forwarded
by the basic node. It is passive with respect to these actions. When receiving a
bid, it (probabilistically) accepts or rejects that bid. On receipt of a price request
it makes the price response action (presp s). In either case, we assume that the
mean duration of the server’s action is 1/r. The multipliers p and q denote the dif-
ferent probabilities with which actions occur. The PEPA equations for the server’s
components are shown in Figure 3.

Component B idder: The software agent representing the potential buyer is rep-
resented by the PEPA component B idder. The bidder submits a bid (bid in) or a
price request (preq in) via the network. It then enters a state waiting for an ap-
propriate response. After a rejected bid, the bidder always submits a price request.
After an accepted bid (f orward accept) or a price response (f orward presp) the
bidder returns to its original state. We assume that the rate at which the bidder
generates messages is s3. In its basic state, B idder, the component chooses be-
tween submitting a bid, at rate s1, and submitting a price request at rate s2. These
rates reflect the relative probabilities of the two types of message and so we assume
s1 + s2 = s3. The PEPA equations for this component are shown in Figure 4.

The behaviour of a bidder attached to the central node (CNode) is essentially
the same, although some actions have different names. The equations for such a
bidder (B idderCN), are shown in Figure 5.
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ServerN
def= (f orward bid,>).ServerN ′ + (f orward preq,>).ServerN ′′

ServerN ′ def= (accept s, p× r).ServerN + (reject s, (1− p)× r).ServerN

ServerN ′′ def= (presp s, r).ServerN

ServerC
def= (f orward bid csn,>).ServerC ′ + (f orward preq csn,>).ServerC ′′

ServerC ′ def= (accept scn, q × r).ServerC + (reject scn, (1 − q)× r).ServerC

ServerC ′′ def= (presp scn, r).ServerC

ServerT
def= (f orward bid csb,>).ServerT ′ + (f orward preq csb,>).ServerT ′′

ServerT ′ def= (accept scb, p × r).ServerT + (reject scb, (1 − p)× r).ServerT

ServerT ′′ def= (presp scb, r).ServerT

Server
def= ServerT ‖ ServerT ‖ ServerC ‖ ServerC ‖ ServerN ‖ ServerN

Figure 3: PEPA definition of the server components

Bidder
def= (bid in, s1).W aitingBid + (preq in, s2).W aitingPrice

W aitingBid
def= (f orward accept,>).Bidder + (f orward reject,>).Incorrect

W aitingPrice
def= (f orward presp,>).Bidder

Incorrect
def= (preq in, s3).W aitingPrice

Figure 4: PEPA definition of the basic bidder component

Component N ode: A basic node in the network is merely responsible for forward-
ing messages back and forth between the server and the bidders. It can passively
accept messages of various types: bid in, preq in, accept s, reject s, presp s corre-
sponding to bids, price requests, bid acceptances, bid rejections and price responses
respectively. It then forwards these appropriately, with rate s. The PEPA equations
for this component are shown in Figure 6.

Component CNode: The central node has essentially the same functionality as
the basic node. Some actions are renamed to avoid misrouting. The PEPA defini-
tions for this type of node are shown in Figure 7.

Component TNode: The behaviour of the upstream node is similar to the be-
haviour of the basic node (Node) except that it may also have to forward bids and
price requests that flow through the central node (CNode), distinguishing them from
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BidderCN
def= (bid′ in, s1).W aitingBidCN + (preq′ in, s2).W aitingPriceCN

W aitingBidCN
def= (f orward accept′,>).BidderCN + (f orward reject′,>).IncorrectCN

W aitingPriceCN
def= (f orward presp′,>).BidderCN

IncorrectCN
def= (preq′ in, s3).W aitingPriceCN

Figure 5: PEPA definition of a bidder attached to the central node (CNode)

N ode
def= (bid in,>).N ode1 + (preq in,>).N ode2

+ (accept s,>).(f orward accept, s).N ode

+ (reject s,>).(f orward reject, s).N ode

+ (presp s,>).(f orward presp, s).N ode

N ode1
def= (f orward bid, s).N ode

+ (accept s,>).(f orward accept, s).N ode1

+ (reject s,>).(f orward reject, s).N ode1

+ (presp s,>).(f orward presp, s).N ode1

N ode2
def= (f orward preq, s).N ode

+ (accept s,>).(f orward accept, s).N ode2

+ (reject s,>).(f orward reject, s).N ode2

+ (presp s,>).(f orward presp, s).N ode2

Figure 6: PEPA definition of the basic node

those that it receives from a bidder agent directly. For that reason, the component
TNode consists of two independent components TNodeB and TNodeN . Thus the
actions corresponding to messages routed between the CNode and the TNode and
vice versa have suffix nc and sc respectively. As previously, receiving messages is
assumed to be passive, whilst transmitting messages occurs at rate s. The defining
equations for the corresponding PEPA components are shown in Figure 8.

The Complete System The complete model has 87480 states and 405864 tran-
sitions after automatic aggregation. The PEPA equation for our configuration is the
following:

((Server ��
L1

(Bidders ��
L2

TNode) ��
L3

(CNode ��
L4

BiddersCN )) ��
L5

(N ode ��
L6

Bidders)

where

B idders
def
= B idder ‖ B idder and B iddersCN

def
= B idderCN ‖ B idderCN
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CNode
def= (bid′ in,>).CNode1 + (preq′ in,>).CNode2

+ (f orward accept sc,>).(f orward accept′, s).CNode

+ (f orward reject sc,>).(f orward reject′, s).CNode

+(f orward presp sc,>).CNode5

CNode1
def= (f orward bid nc, s).CNode

+ (f orward accept sc,>).(f orward bid nc, s).CNode3

+ (f orward reject sc,>).(f orward bid nc, s).CNode4

+ (f orward presp sc,>).(f orward bid nc, s).CNode5

CNode2
def= (f orward preq nc, s).CNode

+ (f orward accept sc,>).(f orward preq nc, s).CNode3

+ (f orward reject sc,>).(f orward preq nc, s).CNode4

+ (f orward presp sc,>).(f orward preq nc, s).CNode5

CNode3
def= (f orward accept′, s).CNode

CNode4
def= (f orward reject′, s).CNode

CNode5
def= (f orward presp′, s).CNode

Figure 7: PEPA definition of the central node

The cooperation sets are defined as follows:

L1 = {accept scb, reject scb, presp scb, accept scn, reject scn, presp scn,

f orward bid csb, forward preq csb, forward bid csn, forward preq csn}
L2 = {bid in, preq in, forward accept, forward reject, forward presp}
L3 = {f orward bid nc, forward preq nc, forward accept sc,

f orward reject sc, forward presp sc}
L4 = {bid′ in, preq′ in, forward accept′, forward reject′, forward presp′}
L5 = {accept s, reject s, presp s, forward preq, forward bid}
L6 = {bid in, preq in, forward accept, forward reject, forward presp}

3.2 The system with an active node

Consider now the same configuration but with one of the nodes (the upstream
one) replaced by an active one. This node is active in the sense that, in addition
to routing, it examines the contents of bid and price request messages that flow
through it. Because of the cache it provides, this node may store bid and price
information. Moreover this allows the active node to filter the messages to the
server. The corresponding PEPA model of such a system differs from the cacheless
model essentially by the component Cache which models the active node and which
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TNodeB
def= (bid in,>).(f orward bid csb, s).TNodeB

+ (preq in,>).(f orward preq csb, s).TNodeB

+ (accept scb,>).(f orward accept, s).TNodeB

+ (reject scb,>).(f orward reject, s).TNodeB

+ (presp scb,>).(f orward presp, s).TNodeB

TNodeN
def= (f orward bid nc,>).(f orward bid csn, s).TNodeN

+ (f orward preq nc,>).(f orward preq csn, s).TNodeN

+ (accept scn,>).(f orward accept sc, s).TNodeN

+ (reject scn,>).(f orward reject sc, s).TNodeN

+ (presp scn,>).(f orward presp sc, s).TNodeN

TNode
def= TNodeB ‖ TNodeN

Figure 8: PEPA definition of the upstream node

replaces component TNode (Figure 9). Otherwise, we have the same components:
Server, B idder, B idderCN , N ode and CNode. Indeed, some of these, B idderCN

and N ode remain completely unchanged.

Node

CNode

Bidder

Bidder

Bidder
CN

Bidder
CN

Bidder

Bidder

Server

Cache

Figure 9: The On-line Auction system with PEPA components

Component Server: The server agents retain much of their behaviour from the
cacheless model; only the handling of price requests is removed from ServerT and
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ServerC agents since these messages are now filtered by the cache. Moreover, as
the server has to send periodic messages to update the price information in the
active node, we need to introduce a new action (update) on which these agents
and the cache must synchronise. As previously, different probabilities reflect the
different expected latencies of bids arriving by different routes. Due to the increased
processing at the active node, the latency of bids arriving at ServerN and ServerT
can no longer be regarded as the same. The new PEPA equations for this component
are shown in Figure 10.

ServerT
def= (f orward bid csb,>).ServerT ′ + (update,w).ServerT

ServerT ′ def= (accept scb, p1 × r).ServerT + (reject scb, (1− p1)× r).ServerT

ServerC
def= (f orward bid csn,>).ServerC ′ + (update,w).ServerC

ServerC ′ def= (accept scn, p2 × r).ServerC + (reject scn, (1− p2)× r).ServerC

ServerN
def= (f orward bid,>).ServerN ′ + (f orward preq,>).ServerN ′′

ServerN ′ def= (accept s, p3 × r).ServerN + (reject s, (1− p3)× r).ServerN

ServerN ′′ def= (presp s, r).ServerN

Server
def= (ServerT ��

{update}ServerT ��
{update}ServerC ��

{update}ServerC) ‖ ServerN ‖ ServerN

Figure 10: PEPA definition of the server component

Component B idder: The introduction of the cache means that the bidders con-
nected to the active node may receive two new message types, presp c and reject c,
representing price responses and bid rejections respectively. These are synchronised
with the cache. Conversely, price responses are no longer expected from the server.
The PEPA equations for this component are shown in Figure 11.

Bidder
def= (bid in, s1).W aitingBid + (preq in, s2).W aitingPrice

W aitingBid
def= (f orward accept,>).Bidder + (f orward reject,>).Incorrect

+ (reject c,>).Incorrect

W aitingPrice
def= (presp c,>).Bidder

Incorrect
def= (preq in, s3).W aitingPrice

Figure 11: PEPA definition of the basic bidder component
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Component CNode: At the central node, the action representing price responses
from the server (f orward presp sc) is replaced by one representing a response from
the cache (presp cn). We also introduce a new action representing the rejection of
bids by the cache: reject cn. The PEPA definitions for this type of node are shown
in Figure 12.

CNode
def= (bid′ in,>).CNode1 + (preq′ in,>).CNode2

+ (f orward accept sc,>).(f orward accept′, s).CNode

+(f orward reject sc,>).(f orward reject′, s).CNode

+ (reject cn,>).(f orward reject′, s).CNode

+(presp cn,>).(f orward presp′, s).CNode

CNode1
def= (f orward bid nc, s).CNode

+ (f orward accept sc,>).(f orward accept′, s).CNode1

+ (f orward reject sc,>).(f orward reject′, s).CNode1

+ (reject cn,>).(f orward reject′, s).CNode1

+(presp cn,>).(f orward presp′, s).CNode1

CNode2
def= (f orward preq nc, s).CNode

+ (f orward accept sc,>).(f orward accept′, s).CNode2

+ (f orward reject sc,>).(f orward reject′, s).CNode2

+ (reject cn,>).(f orward reject′, s).CNode2

+(presp cn,>).(f orward presp′, s).CNode2

Figure 12: PEPA definition of the CNode in the modified system

Component Cache: The Cache component, based on the TNode component of
the cacheless model, reflects the additional capabilities of the active node, i.e. to
intercept bids and price requests and generate responses itself. On receiving a bid it
will examine it and either reject it immediately (reject c or reject cn) or pass it on
to the server (f orward bid csb or f orward bid csn). On receiving a price request it
will respond to it directly (presp c or presp cn). On its own behalf it may receive
update messages from the server. When handling bids or price requests the active
node is expected to have timing behaviour similar to that of the server, so the rate
of processing these messages is now r instead of s. The defining equations for the
corresponding PEPA components are shown in Figure 13.

The probabilities q1 and q2 reflect the proportion of bids which are filtered out by
the active node because the bid value is known to be too low. These probabilities are
assumed to differ because the latency will be higher for the messages which arrive
via the intermediate node.
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CacheB
def= (bid in,>).CacheB1 + (preq in,>).CacheB2 + (update,>).CacheB

+ (accept scb,>).CacheB3 + (reject scb,>).CacheB4

CacheB1
def= (f orward bid csb, (1− q1)× r).CacheB + (reject c, q1 × r).CacheB

CacheB2
def= (presp c, r).CacheB

CacheB3
def= (f orward accept, s).CacheB

CacheB4
def= (f orward reject, s).CacheB

CacheN
def= (f orward bid nc,>).CacheN 1 + (f orward preq nc,>).CacheN 2

+ (accept scn,>).CacheN 3 + (reject scn,>).CacheN 4

+ (update,>).CacheN

CacheN 1
def= (f orward bid csn, (1 − q2)× r).CacheN + (reject cn, q2 × r).CacheN

CacheN 2
def= (presp cn, r).CacheN

CacheN 3
def= (f orward accept sc, s).CacheN

CacheN 4
def= (f orward reject sc, s).CacheN

Cache
def= CacheB ‖ CacheN

Figure 13: PEPA definition of an active node (Cache)

The complete system: The PEPA equation for the configuration depicted in
Figure 9 is shown below. This model has 41472 states and 222588 transitions after
automatic aggregation.

((Server ��
L′

1

(B idders ��
L′

2

Cache) ��
L′

3

(CNode ��
L4

B iddersCN)) ��
L5

(N ode ��
L′

6

B idders)

where L4 and L5 are the action sets defined in the basic model, and where

L′
1 = {accept scb, reject scb, forward bid csb, accept scn, reject scn,

f orward bid csn, update}
L′

2 = {bid in, preq in, forward accept, forward reject, presp c,

reject c, forward presp}
L′

3 = {f orward bid nc, forward accept sc, forward preq nc,

f orward reject sc, presp cn, reject cn}
L′

6 = {bid in, preq in, forward accept, forward reject, forward presp,

presp c, reject c}
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4 Experiments and Numerical Results

Through the analysis and solution of the Markov process underlying a PEPA model,
the modeller can undertake an experimental investigation of the system. The PEPA
Workbench is a suite of tools which perform the well-formedness checking of PEPA
models as well as the generation and solution of the corresponding Markov process
[9]. It detects faults such as deadlocks and cooperations which do not involve active
participants. In the most recent version, it includes support for a modal logic, allow-
ing behavioural requirements of a model to be formally expressed and automatically
checked [12].

In essence, the translation process which occurs within the PEPA Workbench
accepts a PEPA model as input and produces a matrix containing the Markov
process encoding of the model given. In the most straightforward translation a
state of the Markov process is associated with each syntactic term of the PEPA
model obtained by application of the structured operational semantics rules. To
solve the models presented in this paper we took advantage of a modified version
of the Workbench which automatically aggregates models, during exploration of the
state space. Using this translation one state of the Markov process is associated with
each equivalence class of states, where two states are considered equivalent if they
generate the same observable behaviour. More details of this automatic aggregation
can be found in [13].

Performance measures are derived via the steady state probability distribution
of the Markov process. A variety of linear algebra techniques may be employed to
obtain this vector and the PEPA Workbench supports a number of them. To solve
the models presented here we used the preconditioned biconjugate gradient method.
This is implemented as a C program and is the most efficient of the available solvers.

We conducted two sets of model solutions. In the first experiment we compared
the cacheless system and the cached system, under varying workloads. For each
model solution we calculated the average throughput of the server. In the case of
the cached system, we also computed the cache throughput. In the final experiment
we considered only the cached system and investigated the effect of varying the
reject probability of the bids at the cache level. In all cases we made the following
assumptions:

• The workload is uniformly split between the bidders, that is they all generate
bids and respond to returned bids at the same rate. This rate is parameter
s3 which is varied during the experiments between the values 0.1 and 10.
Moreover, we assume a proportion of 4 bids for 1 price request i.e. s1 = 4×s2.

• If the route of a bid through the network is longer, resulting in greater latency,
the probability of the bid being successful is less, i.e. in the original Server,
q < p.

• The probability p, in the cacheless model, reflects the percentage of success-
ful bids arriving by the route (B idder → TNode/Cache → Server). This

15



Rate Value Rate Value
p 0.7 w 2.0
q 0.4 q1 0.2
r 2.0 q2 0.5
s 5.0

Table 1: Input parameters

percentage is assumed to remain fixed when the active node is acting as fil-
ter for the bids. For this route, the probability that a bid is passed from
the cache to the server is (1 − q1). The probability that the bid is ac-
cepted by the server is then set as p1 = p/(1 − q1). Similarly for the route
(B idder → CNode→ TNode/Cache→ Server), p2 = q/(1 − q2), whilst for
the route (B idder→N ode→ Server) the probability that a bid is accepted
remains unchanged p = p3.

• Throughout the experiments the basic rates of processing by nodes and the
server remain unchanged: non-active nodes process messages at rate s and the
server agent processes messages at rate r, where we assume that s > r. The
active node, which mimics the behaviour of the server, processes messages at
rate r.

Our primary objective was to evaluate the impact of introducing an active node
(cache) on the server load; the performance criteria we are interested in are server
throughput and the cache throughput. As there are no losses in our system, evaluat-
ing these two measures will allow us to estimate the proportion of messages entering
the system which are handled solely by the cache. The server throughput is mea-
sured in terms of bids and price responses and the cache throughput in terms of
price responses and bids rejected at the cache level. The values of the rates we have
used in the experiments are given in Table 1.

In the first experiment, we study the impact of the active node on the server
load. Figures 14 to 16 summarise the main results we have obtained.

Figure 14 shows the behaviour of the server throughput in both models as a
function of the message request arrival rate (s3). We can see that as the arrival rate
increases, both throughtputs increase. In the cacheless model, the throughput of
the server represents also the throughput of the system.

We can observe in that figure that the difference beween the two curves increases
as the arrival rate increases. This difference corresponds to the throughput that the
cache may have in the cached model. But when comparing the system throughput
of the cacheless model with the total throughput of the cached model (Server +
Cache), we obtain the results depicted by Figure 15. These results show that the
total throughput is reduced by the introduction of the active node.
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Figure 14: Server throughput versus arrival rate
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Figure 15: Total system throughput versus arrival rate

Even though the cache throughput increases, Figure 16 shows that the proportion
of the system throughput that it represents decreases. This figure consists of two
curves. The first one depicts the proportion of the system throughput handled by the
server and the second one depicts the proportion of the system throughput handled
by the cache.

As the arrival rate s3 increases, the first one increases whereas the second one
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Figure 16: Cache and server throughput ratios versus arrival rate

decreases. This might suggest that the cache becomes a bottleneck in the system.
Thus the bidders attached via the cache spend a significant proportion of their time
blocked, waiting for a response. In contrast, the bidders attached to the server only
via the non-active node spend relatively more time generating new messages, all of
which are handled by the server. However, as discussed below, Figure 17, makes
it clear that the server remains the bottleneck within the system. Nevertheless,
the increased latency experienced by bidders attached via the cache reduces the
frequency with which they can submit messages, and consequently the throughput
of the cache. This has the effect of making the system throughput decrease and
the proportion of the server throughput increase. For the cache, as the arrival rate
increases, the throughput also increases (see Figure 14), but not enough to make
the proportion of the system throughput it represents increase. Note, however, that
more than 20% of requests may be treated and satisfied at the cache level.

The objective of the second experiment was to study the impact of the values of
the probabilities q1 and q2 on the cache throughput. These probabilities represent
the relative frequency with which the submitted bids are rejected by the cache.
Thus, the higher this frequency is, the lower the proportion of bids forwarded to the
server will be.

Figure 17 depicts the behaviour of the cache throughput and the influence of
the reject probabilities on this performance measure. The first curve corresponds
to the case when the reject probabilities are relatively high (q1 = 0.6 and q2 = 0.8)
and the second to the case when they are relatively low (q1 = 0.2 and q2 = 0.5). In
both curves and as the arrival rate increases, the cache throughput increases until a
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Figure 17: Cache throughput versus arrival rate

certain point and then decreases slowly. Note that in the case of high probabilities,
the throughput is higher and it begins to decrease later.

In both cases, the decrease of the throughput may be explained by the limiting
effect of the server as it becomes overloaded. This effect is less pronounced in
the case when the probability of a bid being rejected by the cache is relatively high.
Moreover, when the server is overloaded the number of bids generated by the bidders
decreases as each one spends a greater proportion of its time waiting for responses.

To summarise, we believe that the cache throughput plays an increasingly im-
portant role as cache’s ability to reject bids increases. In the system we investigated,
the cache has a high service demand since more than 65% of the bidders are con-
nected to it directly or via another node. The results we obtained suggest that
if we consider another system topology, such as a system with one cache for each
pair of bidders, the contribution of the cache would be more significant. Using sev-
eral caches means using several filters in the system and dividing the total service
demand of the bidders. This will certainly reduce the latency experienced by the
bidders, especially if the relative frequency at which the submitted bids are rejected
by the cache is high and the price request rate is significant. Otherwise, as stated
previously, the real bottleneck remains the server.

5 Conclusion

In this paper, we have investigated an on-line auction system using the process alge-
bra formalism PEPA. In this study, we were interested in the impact on the server
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load of introducing active nodes as caches in intermediary nodes. Our performance
measures have concerned the cache throughput and the system throughput, and the
relation between them.

The system topology considered is rather simple, a server, three nodes, of which
one is active, and six bidders. However this has allowed us to have an idea about the
ratio of load the cache may treat. Further performance measures, such as system
latency, remain to be studied in the future. An extension of this work consists of
considering a more realistic topology with several active nodes and a greater number
of bidder agents.

Another future work is to investigate placement strategies for active nodes in
the network. Indeed, the effectiveness of the caches to filter unsuccessful bids relies
on them capturing such bids as soon as possible. This would seem to suggest that
they should be placed towards the edges of the network, close to the bidders. On
the other hand, their ability to act as a filter relies on them having up-to-date price
information and being exposed to as many bids as possible. This would seem to
suggest that they should be placed close to the server.
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