
Statistical Control of RBF-like Networks forClassi�cationNorbert Jankowski1 and Visakan Kadirkamanathan21 Nicholas Copernicus University, Toru�n, Poland, e-mail:norbert@phys.uni.torun.pl2 The University of She�eld, UK, e-mail: visakan@acse.shef.ac.ukAbstract. Incremental Net Pro (IncNet Pro) with local learning featureand statistically controlled growing and pruning of the network is intro-duced. The architecture of the net is based on RBF networks. ExtendedKalman Filter algorithm and its new fast version is proposed and usedas learning algorithm. IncNet Pro is similar to the Resource AllocationNetwork described by Platt in the main idea of the expanding the net-work. The statistical novel criterion is used to determine the growingpoint. The Bi-radial functions are used instead of radial basis functionsto obtain more exible network.1 IntroductionThe Radial Basis Function (RBF) networks [13,12] were designed as a solutionto an approximation problem in multi{dimensional spaces. The typical form ofthe RBF network can be written asf(x;w;p) = M∑i=1 wiGi(jjxjji;pi) (1)where M is the number of the neurons in hidden layer, Gi(jjxjji;pi) is the i-th Radial Basis Function, pi are adjustable parameters such as centers, biases,etc., depending on Gi(jjxjji;pi) function which is usually choosed as a Gaus-sian (e�jjx�tjj2=b2), multi-quadratics or thin-plate spline function1. In contrastto many arti�cial neural networks (ANNs) including well known multi-leyeredperceptrons (MLPs) networks the RBF networks have well mathematical prop-erties. Girosi and Poggio [6,12] proved the existence and uniqueness of best ap-proximation for regularization and RBF networks. In the 1991 Platt publishedthe article on the Resource{Allocating Network [11]. The RAN network is anRBF-like network that grows when two criteria are satis�ed:yn � f(xn) = en > emin; jjxn � tcjj > �min (2)en is equal the current error, tc is the nearest center of a basis function to thevector xn and emin; �min are some experimentally choosen constants. The grow-ing network can be described by f (n)(x;p) = ∑k�1i=1 wiGi(x;pi)+enGk(x;pk) =1 For a interesting review of many other transfer function see [3].



∑ki=1 wiGi(x;pi), where pk includes centers xn and others adaptive parameterswhich are set up with some initial values. If the growth criteria are not satis�edthe RAN network uses the LMS algorithm to estimate free parameters. AlthoughLMS algorithm is faster than Extended Kalman Filter (EKF) algorithm [1] wedecided to used EKF algorithm because it exhibits fast convergence, use lowernumber of neurons in hidden layer [9] and gives some tools which would be usefulin control of the growth and pruning process.The Goal of IncNet Pro The main goal of our researche was to build a networkwhich would be able to adjust the complexity of the network to complexity ofthe data shown to the network during the learning time.The IncNet Pro tries to solve the above task in 4 ways: � Estimation: Thetypical learning process is based on fast EKF algorithm. � Growing: If thenovelty criterion is satis�ed then a new neuron is added to the hidden layer.� Direct Pruning: IncNet algorithm checks whether or not a neuron shouldbe pruned. If yes, then the neuron with the smallest saliency is removed. � Bi-Radial Functions: The Bi-radial transfer function estimate more complexdensity of input data through using the separate biases and separate slopes ineach dimension and for each neuron.Similar work has been done in recent years by several authors, but it is quite rareto combine growing and pruning in one network, which is quite important for optimalgeneralization of the network. Weigend, Rumelhart & Huberman [16] described weight-decay, pruning neurons with smallest magnitude of weights. LeCun et al. [10] describedmore e�ective pruning method, Optimal Brain Damage. Hassibi in 1993 [7] publishedthe Optimal Brain Surgeon algorith, which works without assumption used by LeCunthat the Hessian matrix is near diagonal.RAN network using EKF learning algorithm (RAN-EKF) was proposed by [9]. TheM-RAN net [17] is based on RAN-EKF with pruning based on removing neurons withsmallest normalized output from hidden layer. The previous version of the IncNet [8] isa RAN-EKF network with statistically controlled growth criterion. Another very goodexample, derived from MLP network, is the Cascade{Correlation algorithm [4]. FeatureSpace Mapping (FSM) system is the system which joins two strategies: growing andpruning, see [2] for more information. For more exhaustive description of ontogenicneural network see [5].2 The IncNet Pro FrameworkFast EKF: We introduce new fast version of the EKF learning algorithm, de-scribed in [1]. The EKF was chosen because it can estimate not only adaptiveparameters, but also some others values which will be used in novelty criterionand in pruning.Covariance matrix Pn can be quite large for real data because its size is thesquare of the total number of adaptive parameters. Assuming that correlationsbetween parameters of di�erent neurons are not very important we can simplifythe matrix Pn assuming block-diagonal structure of P̃n with P̃in, i = 1 : : :M .



Diagonal elements represents correlations of adaptive parameters of the i-thneuron.Let m be the number of adaptive parameters per neuron and M the numberof neurons. The size of matrix Pn is m �M � m �M , but matrix P̃n has onlym2M elements not equal to zero. For a given problem P the complexity ofmatrixPn is O(M2), and matrix P̃n just O(M ) (m is constant in P)! Using thisapproximation the fast version of the EKF algorithm is:en = yn � f(xn;pn�1)din = @f(xn;pn�1 )@pin�1Ry = Rn + d1nT P̃1n�1d1n + � � �+ dMn T P̃Mn�1dMnkin = P̃in�1din=Rypin = pin�1 + enkinP̃in = [I� kindinT ]P̃in�1+ Q0(n)I i = 1; : : : ;M (3)the su�xes n�1 and n denote the priors and posteriors. pn consists of all adap-tive parameters: weights, centers, biases, etc. To prevent too quick convergenceof the EKF, which leads to data over�tting, the Q0I adds a random change,where Q0 is scalar (sometimes decreasing to small values around 10�5) and I isthe identity matrix.Novelty Criterion: Using methods which estimate during learning covariance ofuncertainty of each parameter, the network output uncertainty can be deter-mined and the same criterion as in the previous version of IncNet [8] may beused. Then the hypothesis for the statistical inference of model su�ciency isstated as follows: H0 : e2Var[f(x;p) + �] = e2Ry < �2n;� (4)where �2n;� is �% con�dence on �2 distribution for n degree of freedom, e =y � f(x;p) is the error and Ry = Var[f(x;p) + �] (part of EKF) | see Eq. 3.If this hypothesis is satis�ed the current model is su�cient and the IncNetnetwork continues learning using the fast EKF algorithm. Otherwise, a newneuron (M + 1)-th should be added with some initial parameters. For Gaussianfunctions GM+1(�) these parameters are: wM+1 := en; tM+1 := xn; bM+1 :=b0; Pn := [Pn 00 P0I], where en is the error for given input vector xn, b0 and P0are some initial values for bias (depending on a given problem) and covariancematrix elements (usually 1).Pruning: As a result of the learning process a neuron can become completelyuseless and should be pruned. Assume the structure of vector pn and the covari-ance matrix as: pn = [w1; : : : ; wM ; : : :]T P = [Pw PwvPTwv Pv ] (5)



where Pw is a matrix of correlations between weights, Pwv between weights andother parameters, Pv only between others parameters (excluding all weights).Then by checking the inequality P presented below we can decide whetherto prune or not and �nd the neuron for which value L has smallest saliency andshould be pruned.P : L=Ry < �21;# L = mini w2i =[Pw]ii (6)where �2n;# is #% con�dence on �2 distribution for one degree of freedom.Neurons are pruned if the saliency L is too small and/or the uncertainty ofthe network output Ry is too big.Bi-radial Transfer Functions: To obtain greater exibility the bi-radial trans-fer functiona [3] are used instead of Gaussians. These functions are build fromproducts of pairs of sigmoidal functions for each variable and produce decisionregions for classi�cation of almost arbitrary shapes.Bi(x; t;b; s) = N∏i=1�(esi � (xi � ti + ebi))(1 � �(esi � (xi � ti � ebi))) (7)where �(x) = 1=(1 + e�x). The �rst sigmoidalfactor in the product is growing for increasinginput xi while the second is decreasing, local-izing the function around ti. Shape adaptationof the density Bi(x; t;b; s) is possible by shift-ing centers t, rescaling b and s, see Fig. 1. Thenumber of adjustable parameters per processingunit is in this case (excluding weights wi) 3N .Dimensionality reduction is possible as in thegaussian bar case [3], but we can obtain moreexible density shapes, thus reducing the num- Bi−RBF(x,0,0,1)        
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1.5Fig. 1: A few shapes of the bi-radial functions in two dimensions.ber of adaptive units in the network. Exponentials esi and ebi are used insteadof si and bi to prevent oscillations during learning procedure (learning becomesmore stable).Classi�cation using IncNet Pro: k independed IncNet network are used fork-class problem. Each of them receivesinput vector x and 1 if index of i-th In-cNet is equal to desired number of class,otherwise 0. The output of i-th IncNetPro network is equal to probability thatthe vector belongs to i-th class. See �g- (x; y = 1) IncNet C1 p(C1)(x; y) ... ... ...(x; y = k) IncNet Ck p(Ck)ure on the right.3 ResultsThe two-spiral problem. The data consists of two sets (training and testing)with 194 patterns each for two spirals. After 10,000 iterations (it took about 35



minutes on PC Pentium 150MHz) we got result which �t 192 points out of 194(99%) for training set and 191 (98.5%) for the test set. Final net has 79 neu-rons. The fast version of EKF accelerates computation 50 times in comparisionwith standard EKF learning. There are other nets which are able to solve thetwo-spiral problem too, for example one of the best is an MLP using a globaloptimization algorithm by Shang and Wah [14]. Their network is able to get100% correct results for the training set but never more than 95.4% for the testset. Although it used only 6 neurons, it takes about 200 minutes to train.Breast Cancer, Hepatitis, Pima Indi-ans Diabetes, Heart Disease are medicaldiagnosis benchmarks considered in [15].Short summary of the data: Breast Can-cer { 2 classes, 9 attributes, 699 instances;Hepatitis { 2 classes, 19 attributes, 155 in-stances; Diabetes { 2 classes, 8 attributes,768 instances. Heart { 2 classes, 13 at-tributes, 303 instances.Breast Cancer problem used 49 neu-rons and 3000 iterations, the accuracieson training and test sets was very similar:97.7%, 97.1%, computation time: 5150 sec.Hepatitis data used 97 neurons and 500 it-
method Breast Hepat. Diab. HeartIncNet 97.1 82.3 77.6 90.0BP 96.7 82.1 76.4 81.3LVQ 96.6 83.2 75.8 82.9CART 94.2 82.7 72.8 80.8Fisher 96.8 84.5 76.5 84.2LDA 96.0 86.4 77.2 84.5QDA 34.5 85.8 59.5 75.4KNN 96.6 85.3 71.9 81.5LFC 94.4 81.9 75.8 75.1ASI 95.6 82.0 76.6 74.4Table 1: Accuracies (%) for medicalbenchmarkserations, the accuracies on training and test sets was: 98.6%, 82.3%, computa-tion time: 3100 sec. Diabetes data used 100 neurons and 5000 iterations, thetest accuracy was better on test set (77.6%) than on the training set (77.2%),computation time: 11200 sec. Heart data used 117 neurons and 1000 iterations,the training accuracy was 92.6% and test was 90.0%, computation time: 7400sec.4 ConclusionsThe IncNet network is able to control the complexity of its structure by growingand pruning the network. In spite of incremental character of the algorithm,the pruning time is determined by theoretical criterion | not in random timemoment or by checking the error on the whole training/test data set. Anotheradvantage of the direct pruning is reduction of the time of computation. Nearlyall parameters of the network are controlled automatically by EKF algorithm, theother parameters are very similar for di�erent benchmark problems (excludingthe biases and slopes, which are de�ned by the resolution of data). Anotherpositive feature of IncNet Pro is the capacity of uniform generalization. In manybenchmarks (see section 3) the errors on testing and training sets are much moresimilar than for other networks.In some classi�cation problems it would be useful to add the possibility ofmerging two neurons Gi and Gj which can be replaced by another neuron Gnew



with a con�dence �, for example using the criterion:
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