
Invariants for Finite Instances and Beyond

Sylvain Conchon∗† Amit Goel‡ Sava Krstić‡ Alain Mebsout∗† Fatiha Zaı̈di∗

∗LRI, Université Paris Sud CNRS, Orsay F-91405
†INRIA Saclay – Ile-de-France, Orsay cedex, F-91893

‡Strategic CAD Labs, Intel Corporation

Abstract—Verification of safety properties of concurrent pro-
grams with an arbitrary numbers of processes is an old challenge.
In particular, complex parameterized protocols like FLASH are
still out of the scope of state-of-the-art model checkers. In
this paper, we describe a new algorithm, called BRAB, that is
able to automatically infer invariants strong enough to prove a
protocol like FLASH. BRAB computes over-approximations of
backward reachable states that are checked to be unreachable in
a finite instance of the system. These approximations (candidate
invariants) are then model checked together with the original
safety properties. Completeness of the approach is ensured by
a mechanism for backtracking on spurious traces introduced by
too coarse approximations.

I. INTRODUCTION

Nowadays, modern computing systems are often relying
on multi-core or distributed architectures. Inherently, the ver-
ification of mutual exclusion or cache coherence properties
for such systems is very challenging. Consider for instance
that, in the Stanford FLASH multiprocessor architecture, the
transition system describing the cache coherence protocol has
already more than 67 million states when just four processors
are in competition [99].

A standard way of verifying a transition system is to
enumerate the entire state space [2222], [2424] (modulo reduction
and compaction techniques). However, on large problems,
efficient enumerative model checkers reach their limits in both
time and memory consumption. For instance, Murϕ fails to
prove the safety of FLASH for five processes with a timeout
limit of 24 hours and 20 GB of memory.

An alternative is to verify a parameterized version of the
system. Model checking of such systems is an old and well
studied problem [55], [1212], [1818]. Yet, all automatic techniques
that allow properties to be verified for any number of processes
do not scale very well. For instance, state-of-the-art parametric
model checkers hit their limit on academic problems: most
tools need several minutes to prove the safety of the parame-
terized protocol given by German [3636], although this protocol
only has 28,000 reachable states for four processes.

Some approaches are known to scale on large prob-
lems: compositional and abstraction model checking tech-
niques [1010] have been used to prove a parameterized version of
FLASH [3030], [3838]. However, they all require human experts to
provide hand-crafted invariants. Designing algorithms to find
automatically good quality invariants is still a challenge and
an active research area [1313], [2121], [2828], [3131], [3636].

In this paper, we propose a novel algorithm that infers
invariants capable of proving complex protocols. Our contri-
butions are as follows:

• The BRAB algorithm (illustrated in Section IISection II). It
first computes a set M of reachable states using a
forward exploration for a finite instance of the system
with a fixed number of processes. Then, it performs
a backward reachability analysis of the parameter-
ized system. At each loop iteration, BRAB computes
an over-approximation of backward reachable states
and checks that it represents states that are not in
M. All these approximations, which can be seen as
candidate invariants, are model checked together with
the original safety properties. To ensure completeness,
BRAB backtracks when it encounters a spurious trace
introduced by a too coarse approximation.
The strength of our method resides in two aspects.
First, model checking approximations together makes
it possible for the proof of an approximation to use
part of the proof of another one. A second key insight
is that finite instances (even small) are generally good
oracles for guiding the choice of approximations as
they can be seen as a concentrated knowledge of the
system.

• A formalization of BRAB for a generic symbolic
framework where sets of states are represented by
logical formulas (Section IIISection III). We only require pre-
and post-images to be computable and the decidability
of backward reachability. Under these conditions, we
prove soundness, completeness and termination of our
algorithm. Such a generic presentation allows BRAB
to be implemented in different frameworks.

• An implementation of BRAB in the framework of
array-based transition systems (Section IVSection IV). This is a
syntactically restricted class of parametrized transition
systems with states represented as arrays indexed by
an arbitrary number of processes [1919]. Our implemen-
tation is available in the Cubicle model checker [1414].

• A comparison of our approach with state-of-the-art pa-
rameterized and enumerative model checkers on a set
of significant problems (Section VSection V). This comparison
effort demonstrates that our method is promising.

To our knowledge, Cubicle (with BRAB) is the first tool
that proves automatically the safety of FLASH.

II. INVARIANTS FOR FINITE INSTANCES AND BEYOND

We illustrate our method on a simplified version of the
directory based cache coherence protocol proposed by Ger-
man [3636]. The protocol consists of a global directory which
maintains the consistency of a shared memory between a

parameterized number of cache clients. The status of each
cache i is indicated by a variable Cache[i] which can be in
one of the three states: (E)xclusive (read and write accesses),
(S)hared (read access only) or (I)nvalid (no access to the
memory). Clients send requests to the directory when cache
misses occur: rs for a shared access (read miss), re for an
exclusive access (write miss). The directory has four variables:
a boolean flag Exg indicates whether a client has an exclusive
access to the main memory, a boolean array Shr, such that
Shr[i] is true when a client i is granted (read or write) access
to the memory, Cmd stores the current request (ε stands for
the absence of request), and Ptr contains the emitter of the
current request.

The initial states of the protocol are represented by the
following logical formula

∀i. Cache[i] = I ∧ ¬Shr[i] ∧ ¬Exg ∧ Cmd = ε

stating that the cache of each process is invalid, no access has
been given and there is no request to be processed.

E

S

I

Shr[i] := true
Exg := true

Exg := true

Shr[i] := true

Shr[i] := false
Exg := false

Exg := false

Shr[i] := false

Fig. 1: State diagram of the German-ish protocol

We give in Figure 1Figure 1 a high-level view of the evolution
of a single cache. Solid arrows show the evolution of the
cache following its own requests whereas, dashed arrows
depict transitions resulting from a request of another client.
For example, a cache moves from state I to S when a read
miss occurs and the directory grants it a shared access, while
recording it in the array Shr[i] := true. Similarly, when a
write miss occurs in another cache, the directory invalidates
all clients recorded in Shr before granting an exclusive access.
This has the effect of moving caches from states E or S to
state I.

The formal description of the protocol is given by the
transition system in Figure 2Figure 2. Following notations in [3636],
we describe each transition by a logical formula relating the
values of state variables before and after the transition. We
denote by X′ the value of the variable X after the execution
of the transition. For instance, transition t1 should read as: if
there exists a process i whose cache is invalid and there is no
command to be processed, then update variable Ptr to i and
set variable Cmd to rs.

This protocol ensures that when a cache client is in an
exclusive state then no other process has (read or write)
access to the memory. Proving this safety property amounts

t1 : ∃i. Cache[i] = I ∧ Cmd = ε ∧
Ptr′ = i ∧ Cmd′ = rs

t2 : ∃i. Cache[i] 6= E ∧ Cmd = ε ∧
Ptr′ = i ∧ Cmd′ = re

t3 : ∃i. Shr[i] ∧ Cmd = re ∧
¬Exg′ ∧ Cache′[i] = I ∧ ¬Shr′[i]

t4 : ∃i. Shr[i] ∧ Cmd = rs ∧ Exg ∧
¬Exg′ ∧ Cache′[i] = S

t5 : ∃i. Ptr = i ∧ Cmd = rs ∧ ¬Exg ∧
Cmd′ = ε ∧ Shr′[i] ∧ Cache′[i] = S

t6 : ∃i. Ptr = i ∧ Cmd = re ∧ ¬Exg ∧ ∀j. ¬Shr[j]
Cmd′ = ε ∧ Exg′ ∧ Shr′[i] ∧ Cache′[i] = E

Fig. 2: German-ish transition system

to checking that states that satisfy the following formula Θ
are not reachable:

Θ : ∃i, j. i 6= j ∧ Cache[i] = E ∧ Cache[j] 6= I

Finite Instance. We consider a finite instance of the protocol
with two caches. We give in Figure 3Figure 3 (left graph) the beginning
of a forward exploration starting from the state (circled node)
obtained by instantiating the initial formula with two distinct
processes #1 and #2. Each edge label t(#i) stands for the
instance of a transition t with process #i.

Backward Reachability. We then run a backward reachabil-
ity analysis for the parameterized system. Starting from Θ
(octagon node), we iteratively compute its pre-images (circle
nodes) for all transitions. Pre-images that are subsumed by
already visited nodes (dotted edges) are not expanded anymore.
This process ends either when a formula in a node intersects
the initial formula or when there is no more pre-image to
compute.

To improve this standard backward analysis, we try to
prune the search space by finding over-approximations of pre-
images. Since the set of possibilities is very large, we restrict
the choice to formulas that represent unreachable states in the
finite instance, and which are syntactic sub-formulas of pre-
images.

If it succeeds to extract an appropriate candidate, the newly
found approximation (rectangles connected with a bold dashed
arrow) replaces the original formula. To illustrate this we show
a partial graph of BRAB’s execution on the right of Figure 3Figure 3.

Starting from the unsafe formula ∃i 6= j. Cache[i] =
E ∧ Cache[j] 6= I, the pre-image by transition t5 returns the
node ∃i 6= j. ¬Exg ∧ Cmd = rs ∧ Ptr = j ∧ Cache[i] = E.
This node could be approximated by ¬Exg ∧ Cmd = rs. But
on closer inspection, ¬Exg ∧ Cmd = rs is already reachable
on the left graph of Figure 3Figure 3 as it is satisfied by a concrete
state of the finite instance (double-headed arrow with |=) so
it is undoubtedly not a good approximation. On the contrary

|=

|=

. . .
. . .

¬Exg
Cmd = ε

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

¬Exg
Cmd = re
Ptr = #2

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

¬Exg
Cmd = re
Ptr = #1

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

¬Exg
Cmd = rs
Ptr = #2

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

¬Exg
Cmd = rs
Ptr = #1

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

Exg
Cmd = ε
Ptr = #2

Cache[#1] = I
Cache[#2] = E
¬Shr[#1]
Shr[#2]

Exg
Cmd = ε
Ptr = #1

Cache[#1] = E
Cache[#2] = I

Shr[#1]
¬Shr[#2]

¬Exg
Cmd = ε
Ptr = #2

Cache[#1] = I
Cache[#2] = S
¬Shr[#1]
Shr[#2]

Exg
Cmd = rs
Ptr = #2

Cache[#1] = E
Cache[#2] = I

Shr[#1]
¬Shr[#2]

t2(#2)

t2(#1) t1(#2)

t1(#1)

t6(#2) t6(#1) t5(#2) t5(#1)

t2(#1) t1(#1) t2(#2)
t1(#2)

t2(#2) t2(#1) t1(#1)

∃i 6= j. Cache[i] = E
Cache[j] 6= I

∃i 6= j. Exg
Cmd = rs

Cache[i] = E
Shr[j]

∃i 6= j. ¬Exg
Cmd = rs
Ptr = j

Cache[i] = E

∃i 6= j. ¬Exg
Cmd = rs
Ptr = j

Cache[i] = E

Cache[i] = E

∃i 6= j. Exg
Cmd = rs

Cache[i] = E
Shr[j]

∃i 6= j. Cmd = re
Cache[i] = E

Shr[j]

∃i. ¬Exg∃i. Cmd = rs
Cache[i] = E

¬Exg
Cmd = rs

∃i 6= j. Shr[j]
Cache[i] = E

pre(t4(j)) pre(t5(j)) pre(t6(i))

pre(t5(j))
pre(t4(j))pre(t3(j))

Fig. 3: BRAB on the German-ish protocol

no instances of ∃i. ¬Exg ∧ Cache[i] = E is reachable on
the finite system of Figure 3Figure 3. This approximation is inserted
in the backward reachability loop which continues as usual.

As we can see on the graph Figure 3Figure 3, the sub-graphs of
some approximations intersect. These sub-graphs depict the
proof of unreachability for each approximation, this means that
proofs are factorized, hence the benefit of inserting them during
the main search. For example, part of the pre-image of the first
approximation is subsumed by the second approximation (and
vice-versa).

Naturally approximations can introduce spurious traces.
When one is exposed, BRAB restarts from scratch the con-
struction of the reachability graph, while remembering this ap-
proximation to avoid exploring the same spurious behaviours.
For example, if we had built the finite model using only one
process variable, nothing would prevent the algorithm from
considering the bad approximation ∃i.Cmd = rs∧Cache[i] = E

In our example, with a finite model with two processes,
no approximation introduces an error trace and the system
is proved safe. As a consequence, each node in the graph is
unreachable and its negation is an invariant of the system.
In particular, approximations yield the following non-trivial
invariants (the last one is not shown on the graph):

I1: ∀i, j. i 6= j ∧ Cache[i] = E =⇒ ¬Shr[j]
I2: ∀i. Cache[i] = E =⇒ Exg
I3: ∀i. Cache[i] 6= I =⇒ Shr[i]

III. FORMALIZING THE BRAB ALGORITHM

A. Notations and Preliminaries

We assume the usual syntactic and semantic notions of
first-order logic. In particular, we use the symbol |= for
the logical entailment relation between sets of formulas. For
convenience, disjunctions are represented by sets of formulas.

We adopt a symbolic framework for specification of pa-
rameterized systems where states are described by a fixed set

of state variables Q. Each variable x ∈ Q is defined over a
finite or infinite domain Dx. This domain may be unspecified,
in which case we call it a parameter of the system. We assume
that in this framework (sets of) system states can be described
by formulas in a decidable fragment of the first-order logic.

A parameterized system S is defined by a pair (I, T) where
I is a formula describing the initial states of the system and
T is a set of (possibly quantified) formulas, called transitions,
relating states of S. For a state formula ϕ and a transition
τ ∈ T , let pre(τ, ϕ) be the formula describing the set of states
from which a state satisfying ϕ can be reached in one τ -step.
The pre-image closure of ϕ, denoted by PRE∗(ϕ), is defined
as follows

PRE0(ϕ) , ϕ

PREn(ϕ) ,
⋃
{pre(τ, ψ) | ψ ∈ PREn−1(ϕ), τ ∈ T }

PRE∗(ϕ) ,
⋃

k∈N PREk(ϕ)

and the pre-image of a set of formulas V is defined by
PRE∗(V) =

⋃
ϕ∈V PRE∗(ϕ). We also write PRE(ϕ) for

PRE1(ϕ). Similarly, we define the post-image post(τ, ϕ) of ϕ
with respect to τ as the set of states that are reachable from ϕ
in one step by taking the transition τ . The definition of POST∗

is given by the equations for PRE∗, with post in place of pre.
For our purpose, we assume PRE to be effectively computable
and POST to be effectively computable on finite instances.

Definition 1. A set of formulas V is said to be reachable
iff POST∗(I) ∧ V is satisfiable, or equivalently, PRE∗(V) ∧ I
satisfiable. It is unreachable otherwise.

Definition 2. An invariant of a system is any property that
holds in all reachable states of the system.

We give a standard backward reachability algorithm for this
framework, as defined by the function BWD in Algorithm 11.
Starting with an empty set V of visited nodes (state formu-
las/set really) and a queue Q of pending nodes initialized

with a formula Θ, BWD iteratively computes the backward
reachability graph of PRE∗(Θ). The algorithm terminates when
a node fails the safety check (consistency with the initial
condition — line 66), or when all nodes in Q are subsumed
by the nodes in V (line 88).

The decidability of BWD is assumed to be guaranteed in
the symbolic framework under consideration.

Algorithm 1: Backward Reachability Analysis
Input: a parameterized system (I, T) and a formula Θ
Variables:
V: visited nodes
Q: work queue

1 function BWD() : begin
2 V := ∅;
3 push(Q, Θ);
4 while not_empty(Q) do
5 ϕ := pop(Q);
6 if (I ∧ ϕ sat) then
7 return unsafe
8 else if (ϕ 6|= V) then
9 V := V ∪ {ϕ};

10 push(Q, PRE(ϕ));
11 end
12 end
13 return safe
14 end

B. The BRAB Algorithm

BRAB is defined by Algorithms 22 and 33. It implements an
extended version of backward reachability that computes over-
approximations during the search loop and backtracks when
spurious traces are introduced by too coarse formulas.

BRAB takes as input a parameterized system (I, T), a
formula Θ, and two integers dmax and k. In addition to the
set V of visited nodes and the work queue Q, our algorithm
requires three variables M, B and F , and a couple of maps
Kind and From. These variables are used as follows:

• M is a set of reachable states for a finite instance of
the system with k processes;

• B is a set of bad (or too coarse) over-approximations;

• F contains the last visited node that fails the safety
check during the backward analysis;

• Kind maps formulas to values in {Orig,Appr}. It
is used to differentiate formulas in PRE∗(Θ) (Orig
formulas) from pre-images of over-approximations
(Appr formulas);

• From associates pre-images with their original ances-
tor formula.

The entry point of the algorithm is the function BRAB. It
starts by initializing some variables : B is the empty set, Θ is
recorded as the initial value of PRE∗(Θ) in Kind and From,
and M is the set FWD(dmax, k) of reachable states constructed
by a forward exploration of the reachability graph starting in

I(#1) ∧ · · · ∧ I(#k) and limited to depth dmax. BRAB then
enters a verification loop (line 3434). It first calls the function
BWDA which verifies the safety of Θ in the parameterized
case by a backward reachability with approximations. If BWDA
returns safe, so does BRAB. Otherwise, F contains the last
formula that fails the safety check in BWDA and BRAB returns
unsafe if F is a pre-image of Θ. If F is (a pre-image of) an
approximation, then BRAB ignores this spurious result, saves
the original ancestor of F in B to avoid reproducing the same
trace, and continues its verification loop.

BWDA implements a reachability loop similar to Algo-
rithm 11. It only differs at two lines. It saves in F the formula
which fails the safety check (line 2121). It also calls function
Approx in place of PRE (line 2525) to find over-approximations
of the current node ϕ. The function Approx limits potential
candidates to subformulas subsuming ϕ that are not already
known to be bad approximations and which represent states
that are not in M. If it fails to find such an approximation,
Approx returns the pre-image of ϕ. Regarding the correctness
of BRAB, the set candidates(ϕ) must be finite (imple-
mentation details are given in Section IVSection IV). If Approx finds
a new approximation ψ, it is tagged with Appr in Kind and
From(ψ) is set to ψ. Otherwise, formulas in PRE(ϕ) inherit
the information of ϕ in Kind and From.

C. Correctness

The correctness of BRAB relies on the decidability of BWD
(assumed in Section III-ASection III-A) the following loop invariants:

(Inv1) V does not contain immediately reachable formu-
las, i.e. V |= ¬I

(Inv2) PRE∗(Θ) is incrementally computed in V and Q,
i.e. PRE∗(Θ) |= V ∨ PRE∗(Q)

(Inv3) if Kind(ϕ) = Orig then ϕ ∈ PRE∗(Θ)

Theorem 1. If BRAB() returns safe then Θ is unreachable.

Proof: When BRAB returns safe, the loop (line 2727) ter-
minates with Q empty. Now, by contradiction, suppose Θ is
reachable. By definition PRE∗(V)∧ I is satisfiable. Since Q is
empty, by (Inv2) PRE∗(Θ) |= V and V ∧ I thus satisfiable too,
which contradicts the invariant (Inv1) V |= ¬I .

Theorem 2. If BRAB() returns unsafe then Θ is reachable

Proof: If BRAB returns unsafe, then there exists a formula
ϕ such that ϕ ∧ I is satisfiable and Kind(ϕ) = Orig. By
(Inv3), we conclude that PRE∗(Θ) ∧ I is satisfiable.

Theorem 3. BRAB() always returns safe or unsafe

Proof: Suppose the algorithm 22 does not terminate then
whether:

1) BWDA does not terminate, or
2) BRAB does not terminate

(11) Since BWDA only differs from BWD by Approx, its
termination is assured by the fact that candidates returns a
finite set of formuals. (22) The co-domain of From is a subset of

Algorithm 2: Backward Reachability with Approxima-
tions and Backtracking (BRAB)

Input: a parameterized system (I, T), a formula Θ to
be verified, the maximal depth dmax for the
forward exploration and the number k of
processes to be considered for the finite instance
of the system

Variables:
V: visited nodes
Q: work queue
M : Finite model obtained by forward exploration
B: bookkeeping of bad approximations
F : last node visited when unsafety discovered
Kind: map formulas 7−→ {Orig,Appr}
From: map formulas 7−→ formula

1 function Approx(ϕ) : begin
2 foreach ψ in candidates(ϕ) do
3 if ψ 6∈ B ∧M 6|= ψ then
4 Kind(ψ) := Appr;
5 if Kind(ϕ) = Orig then From(ψ) := ψ

else From(ψ) := From(ϕ) return ψ
6 end
7 end
8 foreach ψ in PRE(ϕ) do
9 Kind(ψ) := Kind(ϕ);

10 From(ψ) := From(ϕ)
11 end
12 return PRE(ϕ)
13 end
14
15 function BWDA() : begin
16 V := ∅;
17 push(Q, Θ);
18 while not_empty(Q) do
19 ϕ := pop(Q);
20 if (I ∧ ϕ sat) then
21 F := ϕ;
22 return unsafe
23 else if (ϕ 6|= V) then
24 V := V ∪ {ϕ};
25 push(Q, Approx(ϕ))
26 end
27 end
28 return safe
29 end
30
31 function BRAB() : begin
32 B:= ∅; Kind(Θ) := Orig; From(Θ) := Θ;
33 M := FWD(dmax,k);
34 while BWDA() = unsafe do
35 if Kind(F)= Orig then return unsafe;
36 B := B ∪ {From(F)};
37 end
38 return safe
39 end

Algorithm 3: Finite and Depth-Limited Forward Analy-
sis

Input: a parameterized system (I, T)
Variables:
V: visited nodes
Q: work queue

1 function FWD(dmax,k) : begin
2 V := ∅;
3 push(Q, (0, I(#1) ∧ · · · ∧ I(#k)));
4 while not_empty(Q) do
5 (d, ϕ) := pop(Q);
6 if (ϕ 6∈ V and d ≤ dmax) then
7 V := V ∪ {ϕ};
8 N := {(d+ 1, ψ) | ψ ∈ POST(ϕ)};
9 push (Q, N)

10 end
11 end
12 return V
13 end

A =
⋃

ϕ∈Vf candidates(ϕ) (guaranteed by line 55), where
Vf is the final set obtained by BWD on Θ. Since Vf is finite,
A is also finite. The condition ψ 6∈ B at line 33 guarantees that
approximations added in B at line 3636 are always distinct and in
A. In other words B cannot grow forever, so BRAB terminates.

Remark Notice that the correctness of BRAB does not depend
on the content of M, which thus acts as an oracle.

IV. IMPLEMENTATION

We have implemented BRAB in the logical framework of
array-based transition systems that was proposed by Ghilardi
and Ranise [1919]. In this framework, states are represented by
infinite arrays indexed by processes. This class is useful to
model several infinite state systems and allows some topology
constraints to be specified on indexes (linear ordering, multi-
sets). Although this framework does not have all the desirable
properties of Section III-ASection III-A for completeness, Theorem 1Theorem 1 is still
applicable.

In this framework, unsafe properties are cubes (conjunc-
tions of literals existentially quantified by distinct variables).
Safety properties are decidable by backward reachability as
soon as a well-quasi ordering can be exhibited on models
(configurations). The interested reader is referred to [1919] for
further details. We present here the choices we made for this
implementation and its practical aspects.

In FWD, the construction of M only relies on the im-
plementation of POST. Computing POST symbolically could
be advantageous for some problems but we found out that
a forward enumerative exploration worked best (efficiency
wise) on our benchmarks. This forces us to abstract away
all variables living in unbounded domains and can lead to
a model where unreachable states were explored. Since the
correctness does not depend on the finite model in any way, its
construction can incorporate any state-of-the-art enumerative
techniques or methods tailored to bug finding. For instance,
its precision could be improved by adding a way of restricting

unbounded types (e.g. to handle infinite systems with arith-
metic operations). In any case, the only significant quality of
the partial model is to be able to disprove the majority of
wrong approximations.

In Approx, to ensure termination of BRAB, we restrict
candidates(ϕ) to a finite set of strict syntactic sub-
formulas of ϕ. In Cubicle, nodes of the proof graph are cubes,
seen as sets of literals, so when looking for an approximation,
we successively test all its subsets starting from the coarsest
ones, i.e. the ones that represent the largest sets of states.
Choosing first the most general approximations will yield
stronger invariants. We keep the first that is not disproved by
M or the set B. Notice this forbids us to directly approximate
an approximation. In some cases, no suitable approximation
can be found, and we continue the algorithm as usual. Going
further than our implementation of candidates, for instance
to consider all formula ψ such that ψ |= ϕ, is possible but is a
complicated matter as there exists infinitely many such ψ. In
addition, the framework guarantees that pre-images of cubes
are computable as disjunctions of cubes.

The efficiency of BRAB relies essentially on two aspects:
the choice of approximations and the content of the set M.
Indeed, choosing an approximation that is not general enough
will delay the convergence of the algorithm and inserting a
too general approximation will lead to unnecessary restarts.
Similarly, if the exploration of the finite instance is incomplete
or too imprecise, some wrong approximation will not be
detected before the backward reachability exposes an error
trace, resulting in a costly restart. In our implementation,
we limit the negative effect of restarts trying to do them as
early as possible, by finding wrong approximations sooner.
For example, it is a wise choice to give a higher priority
in the queue to pre-images of approximations (i.e. ψ such
that kind(ψ) = Appr) so as to ensure they will be checked
before expanding too much of the original formulas. Instead of
restarting the algorithm from scratch, a possible improvement
that we did not implement, is to keep as much information
as possible from the previous run. It is indeed possible, yet
costly, to maintain dependency information at run time to retain
the nodes of V and Q that are not affected by the wrong
approximation. BRAB is distributed in the open source model
checker Cubicle.

V. EXPERIMENTAL RESULTS

A. Experiments

We have evaluated our implementation of the BRAB al-
gorithm on challenging mutual exclusion algorithms, fault-
tolerance and cache coherence protocols. In the table Figure 4Figure 4,
we compare the performance of Cubicle when using a clas-
sical backward reachability loop (second column), and when
using BRAB (first column). We run BRAB with an unlimited
depth forward exploration for two processes in all benchmarks
excepted for the different versions of FLASH. We also in-
clude the results for an enumerative model checker CMurphi
5.4.9 [3535] and different parameterized model checkers (MCMT
2.0 [2020], PFS [2323], Undip [3737]) to show that the examples we
chose are far from trivial.

For each tool we report the execution times obtained with
the best setting we found. T.O. indicates a timeout if a tool

didn’t answer within 24 hours and O.M. means that it exceeded
a memory limit of 20 GB. For CMurphi, we give the time used
to prove the safety of each benchmark for a fixed number
of processes between parentheses. The last columns gives the
maximum number of processes we were able to reach with
20 GB. We denote by / benchmarks that we were unable
to easily translate due to syntactic restrictions. For instance
PFS does not allow the update of multiple local variables at
the same time, Undip does not allow variables of the type of
processes and MCMT doesn’t support systems with more than
50 transitions or multi-dimensional arrays.

All benchmarks were executed on a 64 bits machine with
an Intel R© Xeon R© processor @ 3.2 GHz and 24 GB of memory.
The source code for Cubicle and its implementation of the
BRAB algorithm as well as all the detailed benchmarks are
available at http://cubicle.lri.fr/fmcad2013http://cubicle.lri.fr/fmcad2013.

In this table, Szymanski at (resp. Szymanski na) is
an atomic (resp. non-atomic) version of Szymanski’s mutual
exclusion algorithm. German Baukus is a version of Steven
German’s protocol extracted from [77]. German.CTC is the
version translated from Ching-Tsun Chou’s Murϕ models,
adding data paths to German Baukus. German pfs is an
encoding of the German that was extracted from the dis-
tribution of PFS [2323] where invalidation is performed non
atomically. Chandra-Toueg is a version of Chandra and
Toueg’s reliable broadcast protocol [88] with the send omission
failures model extracted from [44].

These experiments show that BRAB is very efficient on
examples from the literature and is several orders of magnitude
faster than backward reachability on almost all benchmarks.

B. The FLASH Cache Coherence Protocol

The Stanford FLASH (FLexible Architecture for SHared
memory) multiprocessor [2727] is a modular architecture de-
signed to scale to thousands of processing units. Each pro-
cessor maintains a local cache memory, whose coherence is
ensured by a message passing protocol on a point-to-point
network with arbitrary latency. Each memory address is owned
by a processing unit called Home (the physical location of the
given memory address).

Related work. The first proof was performed by Park and
Dill [3434] in 1996 using the PVS proof assistant but it requires
to construct inductive invariants by hand and detail the proof
steps in the assistant. This protocol was also verified by
Das, Dill and Park [1515] using a manually guided predicate
abstraction. The method of compositional model checking and
data type reduction developed by McMillan [3030] which first
relied on BDD based model checking in SMV was later
elaborated by Chou, Mannava and Park in a framework called
CMP [99]. The CMP method, formalized by Krstic̀ [2626], works
by iteratively abstracting a protocol and strengthening the in-
variants from the analysis of counterexamples produced by the
model checker. As of today, it is the method that scales best but
it requires a lot of expert knowledge and manual intervention
to devise non interference lemmas from counterexamples. In
2008, Talupur and Tuttle came up with the insight of using
message flows conceived by protocol designers as a source
of potential invariants to help the CMP method converge
faster [3333], [3838]. Although their method is able to automatically

http://cubicle.lri.fr/fmcad2013

BRAB Cubicle MCMT PFS Undip CMurphi
Szymanski at 0.14s 0.30s 0.29s T.O. 32.1s 8.04s (8) 5m12s (10) 2h50m (12)
Szymanski na 0.19s T.O. / / / 0.88s (4) 8m25s (6) 7h08m (8)
German Baukus 0.25s 7.03s 33m15s / 9m43s 0.74s (4) 19m35s (8) 4h49m (10)
German.CTC 0.29s 3m23s T.O. / / 1.83s (4) 43m46s (8) 12h35m (10)
German pfs 0.34s 3m58s 5m58s 36m05s T.O. 0.99s (4) 22m56s (8) 5h30m (10)
Chandra-Toueg 2m17s 2h01m 49m25s / / 5.68s (4) 2m58s (5) 1h36m (6)
Flash nodata 0.36s O.M. / / / 4.86s (3) 3m33s (4) 2h46m (5)
Flash 5m40s O.M. / / / 1m27s (3) 2h15m (4) O.M. (5)

Fig. 4: Benchmarks

generate invariant candidates from message flows, the CMP
method still requires adding extra hand crafted non interference
lemmas to achieve convergence on the German and FLASH
protocols.

We have modeled this protocol in Cubicle’s input language
from the Murϕ models by Ching-Tsun Chou that were used
in [99], [3838]. These models only account for one memory line
but they (and their properties) are straightforwardly general-
izable to an arbitrary number of memory addresses. The only
difference we introduced is that we abstracted away the Home
processor and for all arrays indexed by Home, each occurrence
of A[Home] was replaced by a global variable A home. The
control property we want to verify for FLASH is

∀x, y. x 6= y ⇒
CacheState[x] = Exclusive⇒ CacheState[y] 6= Exclusive

and the data properties are

∀x. CacheState[x] = Exclusive⇒ Data[x] = Currdata
∀x. CacheState[x] = Shared ∧ Collecting

⇒ Data[x] = PrevData
∀x. CacheState[x] = Shared ∧ ¬Collecting⇒

Data[x] = CurrData

where CurrData, PrevData and Collecting are auxiliary
variables introduced only to specify these data properties.

We show the results obtained with Cubicle ran with op-
tion -brab on different versions of the FLASH protocol in
Figure 5Figure 5. The line nodata gives the result when we only asked
to verify control properties whereas in line Flash we asked to
verify both control and data properties. Finally we give the
results on a version of FLASH where we introduced an error
in line buggy. On this version, Cubicle exhibits an error trace
highlighting a buggy behaviour.

Forward Backward Total
k dmax |M| time |V| # inv |B| time

nodata 2 6 439 0.02s 37 30 0 0.36s
buggy 2 6 445 0.02s 228 / 0 2.97s
Flash 3 14 452,523 8.54s 1047 131 0 5m40s

Fig. 5: Verification of FLASH with Cubicle

Below are a few of the invariants inferred for the FLASH:
they are not trivial although each one of them connects the

values of only two or three variables.

(Inv1) ¬Invmarked[Home]
(Inv2) CacheState[Home] = Shared⇒

(Dir Local ∨ ¬Dir Pending)
(Inv3) ∀x. CacheState[x] = Exclusive⇒ Dir Dirty
(Inv4) ∀x. CacheState[x] = Exclusive⇒

(x = Home⇒ ¬Dir HeadVld) ∧
(x 6= Home⇒ Dir HeadVld)

VI. RELATED WORK

Parameterized verification being a largely studied problem,
we focus here on the most closely related work.

Invariant generation: Ghilardi and Ranise describe in
[1919] an invariant synthesis algorithm for array-based systems.
Their backward reachability analysis always computes precise
formulas and their mechanism of guessing candidate invariants
guided by the goal is similar to BWDA but the candidates are
only filtered by syntactic heuristics. The main difference with
our approach is that candidates are model checked one at a
time in a completely independent resource limited backward
reachability loop. Other approaches for generating inductive
invariants include network invariants [2121] which uses finite
automata learning algorithms and split invariants [3232] which
connects small-model properties, inductive methods and com-
positional reasoning.

Cutoffs: The method of invisible invariants [66], [3636]
aims at discovering inductive invariants for parameterized
systems that are checked up to a certain cutoff value obtained
with a syntactic criterion. Similarly to our approach, it extracts
information from a forward exploration of a finite instance
of the original system. This information is generalized and,
contrary to our technique, must amount to inductive invariants,
whereas we only use it as an oracle. Although in Section IISection II
I1 ∧ I2 ∧ I3 ∧ ¬Θ is an inductive invariant, it is generally not
the case. In [1717], finite instances are also used in conjunction
with a template mechanism to obtain formulas that describe
interesting system behaviors. Approaches based on cutoff and
small model properties have been most successful when the
value is detected dynamically such as in [2525] although their
method only works for petri-nets, and most recently in [33]
which is capable of handling multiple process topologies
(arrays, rings, trees, multisets) whereas our implementation of
BRAB for array based transition systems only applies for linear
topologies (and multisets) but scales for the Flash.

Abstraction: Abdulla et al. propose in [11], [22] versions
of backward reachability analysis with approximated transi-
tions. Other methods for parameterized verification are based
on abstraction: the method of indexed predicates [2828] automat-
ically infers quantified predicated from which the technique of

predicate abstraction is able to construct inductive invariants:
the tool UCLID which implements this technique is able to
verify the German protocol [2929] but not the FLASH, counter
abstraction [1616] whose idea is to keep track of the number
of processes that satisfy a given property, and environment
abstraction [1111] which combines predicate abstraction with
counter abstraction. In our case, we do not abstract the original
system, abstractions are performed on the fly.

VII. CONCLUSION AND PERSPECTIVES

We have presented a novel backward reachability algo-
rithm with approximations and backtracking to check safety
properties of parameterized systems. Given a correct backward
reachability algorithm, we have proved the correctness of our
extension. We believe that small instances of the original
problem already exhibit behaviors that constitute a valuable
source of knowledge. Our algorithm uses this information to
filter approximations which are then model checked altogether,
allowing a factoring of the proofs. It can be seen as a technique
for automatically inferring invariants. We provide an open
source implementation BRAB and have demonstrated the via-
bility of our approach on several examples from the literature
and FLASH, a near industrial cache coherence protocol.

An immediate line of future work is to experiment this
approach on real industrial protocols such as Intel’s LCP or
hierarchical cache coherence protocols. While satisfactory, we
think that the backtracking mechanism can be improved and
that other oracles can be used for the exploration of the finite
instance. Finally we would also like to explore the idea of
approximations guided by finite instances in other frameworks.

ACKNOWLEDGMENT

This work was partially supported by the French ANR
project ANR-12-INSE-0007 Cafein.

REFERENCES

[1] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular
model checking without transducers. In TACAS. Springer, 2007.

[2] P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification
of infinite-state processes with global conditions. In CAV. Springer,
2007.

[3] P. A. Abdulla, F. Haziza, and L. Holı́k. All for the price of few. In
VMCAI, pages 476–495, 2013.

[4] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Automated
support for the design and validation of fault tolerant parameterized
systems: a case study. ECEASST, 35, 2010.

[5] K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-
state concurrent systems. Inf. Process. Lett., 22(6):307–309, May 1986.

[6] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized
verification with automatically computed inductive assertions. In CAV,
pages 221–234. Springer, 2001.

[7] K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized verification of
a cache coherence protocol: Safety and liveness. In VMCAI, pages
317–330. Springer, 2002.

[8] T. D. Chandra and S. Toueg. Time and message efficient reliable
broadcasts. In Distributed algorithms, pages 289–303. Springer, 1991.

[9] C.-T. Chou, P. K. Mannava, and S. Park. A simple method for
parameterized verification of cache coherence protocols. In FMCAD,
pages 382–398. Springer, 2004.

[10] E. Clarke, D. Long, and K. McMillan. Compositional model checking.
In LICS, pages 353–362. IEEE Press, 1989.

[11] E. Clarke, M. Talupur, and H. Veith. Environment abstraction for
parameterized verification. In VMCAI, pages 126–141. Springer, 2006.

[12] E. M. Clarke, O. Grumberg, and M. C. Browne. Reasoning about
networks with many identical finite-state processes. In PODC’86. ACM.

[13] A. Cohen and K. S. Namjoshi. Local proofs for global safety properties.
Form. Methods Syst. Des., 34(2):104–125, Apr. 2009.

[14] S. Conchon, A. Goel, S. Krstić, A. Mebsout, and F. Zaı̈di. Cubicle:
A Parallel SMT-based Model Checker for Parameterized Systems. In
CAV, pages 718–724. Springer, 2012.

[15] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction.
In CAV, pages 160–171. Springer, 1999.

[16] E. A. Emerson and K. S. Namjoshi. On model checking for non-
deterministic infinite-state systems. In LICS, pages 70–80. IEEE, 1998.

[17] M. Emmi, R. Majumdar, and R. Manevich. Parameterized verification
of transactional memories. In PLDI, pages 134–145. ACM, 2010.

[18] S. M. German and A. P. Sistla. Reasoning about systems with many
processes. J. ACM, 39(3):675–735, July 1992.

[19] S. Ghilardi and S. Ranise. Backward reachability of array-based systems
by SMT solving: Termination and invariant synthesis. LMCS, 6(4),
2010.

[20] S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories.
In IJCAR, pages 22–29, 2010.

[21] O. Grinchtein, M. Leucker, and N. Piterman. Inferring network
invariants automatically. In IJCAR, pages 483–497. Springer, 2006.

[22] O. Grumberg and H. Veith, editors. 25 Years of Model Checking: His-
tory, Achievements, Perspectives. Springer-Verlag, Berlin, Heidelberg,
2008.

[23] N. B. Henda and A. Rezine. The PFS prototype model checker.
http://www.it.uu.se/research/docs/fm/apv/tools/pfs/http://www.it.uu.se/research/docs/fm/apv/tools/pfs/.

[24] G. J. Holzmann. Design and validation of computer protocols. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[25] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in
parameterized concurrent programs. In CAV, pages 645–659, 2010.

[26] S. Krstić. Parametrized system verification with guard strengthening
and parameter abstraction. In AVIS, 2005.

[27] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. Hennessy. The Stanford FLASH multiprocessor.
In ISCA, pages 302–313. IEEE, 1994.

[28] S. K. Lahiri and R. E. Bryant. Constructing quantified invariants via
predicate abstraction. In VMCAI, pages 267–281. Springer, 2004.

[29] S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for
unbounded system verification. In CAV, pages 135–147, 2004.

[30] K. L. McMillan. Parameterized verification of the FLASH cache
coherence protocol by compositional model checking. In CHARME,
pages 179–195. Springer, 2001.

[31] K. L. McMillan. Quantified invariant generation using an interpolating
saturation prover. In TACAS, pages 413–427. Springer, 2008.

[32] K. S. Namjoshi. Symmetry and completeness in the analysis of
parameterized systems. In VMCAI, pages 299–313, 2007.

[33] J. W. O’Leary, M. Talupur, and M. R. Tuttle. Protocol verification using
flows: An industrial experience. In FMCAD. IEEE, 2009.

[34] S. Park and D. L. Dill. Protocol verification by aggregation of
distributed transactions. In CAV, pages 300–310. Springer, 1996.

[35] G. D. Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V. Zilli.
Exploiting transition locality in automatic verification of finite-state
concurrent systems. STTT, 6(4):320–341, 2004.

[36] A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive verification
with invisible invariants. In TACAS, pages 82–97. Springer, 2001.

[37] A. Rezine. UNDIP. http://www.it.uu.se/research/docs/fm/apv/tools/undiphttp://www.it.uu.se/research/docs/fm/apv/tools/undip.
[38] M. Talupur and M. R. Tuttle. Going with the flow: Parameterized

verification using message flows. In FMCAD, pages 1–8. IEEE, 2008.

http://www.it.uu.se/research/docs/fm/apv/tools/pfs/
http://www.it.uu.se/research/docs/fm/apv/tools/undip

	Introduction
	Invariants for Finite Instances and Beyond
	Formalizing the BRAB Algorithm
	Notations and Preliminaries
	The BRAB Algorithm
	Correctness

	Implementation
	Experimental results
	Experiments
	The FLASH Cache Coherence Protocol

	Related Work
	Conclusion and Perspectives
	References

