A*Prune: An Algorithm for Finding K Shortest
Paths Subject to Multiple Constraints

Gang Liu, K. G. Ramakrishnan

Abstract—We present a new algorithm, A*Prune, to list (in order of in-
creasing length) the first K Multiple-Constrained-Shortest-Path (KMCSP)
between a given pair of nodes in a digraph in which each arc is associated
with multiple Quality-of-Service (QoS) metrics. The algorithm constructs
paths starting at the source and going towards the destination. But, at each
iteration, the algorithm gets rid of all paths that are guaranteed to violate
the constraints, thereby keeping only those partial paths that have the po-
tential to be turned into feasible paths, from which the optimal paths are
drawn. The choice of which path to be extended first and which path can
be pruned depend upon a projected path cost function, which is obtained
by adding the cost already incurred to get to an intermediate node to an ad-
missible cost to go the remaining distance to the destination. The Dijkstra’s
shortest path algorithm is a good choice to give a good admissible cost. Ex-
perimental results show that A*Prune is comparable to the current best
known e-approximate algorithms for most of randomly generated graphs.
BA*Prune, which combines the A*Prune with any known polynomial time
e-approximate algorithms to give either optimal or e-approximate solutions
to the KMCSP problem, is also presented.

Keywords—shortest paths, constraint based routing, QoS routing, multi-
ple constrained path selection, Dijkstra algorithm, NP complete.

|. INTRODUCTION

In general, network routing consists of two basic tasks [5]:
distributing the network information and searching for best fea-
sible path with respect to given constraints. We focus on the
second task and assume that the network information is avail-
able to every node (e.qg., via link-state routing). Each link in the
network is associated with multiple QoS metrics, which can be
either static or dynamic (based on whether varying with time),
either additive or non-additive (based on the additivity along a
path) [7]. For the additive parameters (e.g., delay, hops, jitter),
the cost of an end-to-end path is given, exactly or approximately,
by the sum of the individual link values along that path. In con-
trast, the cost of a path with respect to a non-additive parameter,
such as bandwidth, is determined by the value of that constraint
at the bottleneck link. In the case of dynamic routing, the band-
width is a dynamic parameter since its value may change each
time a demand is routed or torn down, while the length of a
link is a static parameter since it remains unchanged. In this pa-
per we will mainly focus on additive and static parameters. The
constraints associated with non-additive or dynamic parameters,

QUALITY of Service (QoS) sensitive routing is of critical
a

) . N L can be dealt with first solving the KMCSP problem subject to all
importance in achieving a data network with high Spe.etf?e additive and static constraints, and then select one path from

QoS for each connection. While efficient utilization of networ ese K CSPs such t_hat all the other non-additive or dynamic
arameters are satisfied. Most of the current approaches handle

resources is important to the service provider, the user is o . - . .
P P Pu non-additive or dynamic constraints by first pruning out all

terested in both the speed and the quality of service provid . : :
The need for QoS routing can be justified for both reservatioﬁr]ks that do not satisfy these constraints and then solving the

. i CSP problem in the residual network. The MCSP procedure
based services (e.g., Intserv, ATM) as well as reservauonlesesed to be called each time a new demand need to be routed
services (e.g., Diffserv). The goal of QoS routing is to fin '

e . . : ._.and it may take time to find a feasible route if the MCSP pro-
a path that satisfies multlplle.QoS constraints while a(,thlevnggdure is time consuming, while our KMCSP method can speed
overall network resource efficiency [1]. A key challenge in Qo

routing is the K-Multiple-Constrained-Shortest-Path (KMCS p the online routing tlm_e, since sel_ectlng a feasible path from
o : . . the K precomputed candidate paths is generally much faster than
problem, which is to find K feasible Constrained-Shortest-Path; . . :
Iving a MCSP problem in a residual network.

(CSP) from a source node to a target node and subject to mits . . .
tiple constraints (e.g., bandwidth, delay, jitter, administrative Generally, a network design problem is to find a least cost

weight), and list them in order of increasing length. One spec%l a maximum revenue network, such that a given set of de-

case of KMCSP problem is the MuItipIe-Constrained-Shortesr?-andS are routed through routes which meet some given QoS

Path (MCSP), which is the KMCSP problem wiifi = 1 constraints. The KMCSP algorithms can be used to pre-compute

The MCSP problem is a basic optimization problem that iasset of the candidate paths, then the network design problem
~ prot . P prob . can be formulated as a path based Linear Programming (LP) or
both theoretically interesting and have many practical appllc[a-

tions [2], and hence has received considerable attention in Ht(geger Programming (IP) problem, or can be solved by select-
literature [3] - [8]. Ing pat_hs from the precomputed _path list through some other
Besides all the applications that are applicable to the MCSBHI > 2izgdbsés\é\éeoh?éiﬁpeﬁ:/lveoc:ktgighﬂnﬁgg [";']go”thm in
problem, the KMCSP problem can also have many other prac- ' P 9 '

tical applications, such as in the network routing and networkIn the case of single metric, the KMCSP problem becomes
designpgroblems, 9 a problem of findingk -Shortest-Paths (KSP) from one source

node to one target node. The KSP problem has many practi-

G. Liu is with the Aerie Networks, 1400 Glenarm Place, Denver, O 80208@l applications [10][11]. In multiple constrained metrics case,

E-mail: GLiu@aerienetworks.com. both the MCSP and the KMCSP problems are known to be NP-
K. G. Ramakrishnan is with the Winphoria Networks, 2 Highwood Drive

Tewksbury, MA 01876. E-mail: ram@winphoria.com. complete [3][4][12][14]'
This work was done in 1999 when both authors worked at Bell Labs, Lucent Most of the current approaches are concentrated on develop-

Technologies, 600-700 Mountain Avenue Murray Hill, NJ 07974-0636. ing efficient polynomial or pseudo-polynomial-time algorithms

nd efficiency (high ratio of capacity/cost), as well as meetlnﬁ

0-7803-7016-3/01/$10.00 ©2001 IEEE 743 IEEE INFOCOM 2001

to give feasible or approximate solutions to MCSP problem. Ex-We use a bold character to represen{ Brt- 1)-dimensional
isting dlgorithmscan be grouped into three approaches: vector in this paper, such @& € EFf+! representsX =
1. e-approximate solutions given by pseudo-polynomial-timgXy, X1, ..., Xg). Generally, the constraints veciGxi, j) de-
algorithms in which the complexity depends on the actual vadends on the nodeand nodej, however, we sometimes ugk
ues of the link weights (e.g., maximum link weight) in additioro represen€C(s, t).
to the size of the network [4][14]. In the case of = 1, the KMCSP, or simply the MCSP prob-
2. Polynomial-time heuristics that are fast in searching forlam can be formulated as an integer programming (IP) problem
feasible path but cannot guarantee finding one in the netwarkfollows.
[2][3][5]. Definition 2: MCSP (KMCSP withKk = 1) as an (edge
3. e-approximate algorithms that are polynomial [12][13]. based) IP problem :

The main contribution of this paper is developing an algo- . ven -
rithm to give exact solutions to the KMCSP problem, and ca
also be applied to its special cases such as MCSP and KSP pr&w E),s €Vt E V’ R21,K 21,
lems. The algorithms presented in this paper can be applied & (% J) >0, V(i.j) € B, Vre(L2,..., R)
multiple constraints and can find any required number of CSP§ >0, G20, Vre(L,2,...,R)
To give an exact solution, the running time may be exponentidfé/ e : n
in the worst case. However, our test cases show that the actug (i, j) = 3 a,w, (4, j);
running time of our algorithm is comparable to the existing ap- =1
proximate algorithms for most of practical networks. r= 2 we(i5)2(65),Vr € (0,1,..., R); (3)

The rest of the paper is organized as follows. The KM mmmi;’;)eeEW

0;
CSP problem and its solutions are further analyzed in Sectlon Wbject to:
II. A*Prune, an algorithm for KMCSP problem, is presented z(i,§) € {0,1}, V(,j) € E;
in Section Ill. Section IV analyzes the performance of the PPN ’ .
. i ‘ " > owe (i,))x(i,5) <Cr, VYre(1,2,...,R);

A*Prune algorithm. Section V discusses some efficient methg; jyc g

ods for computing the lower-bounds, which are used to give 1, if i=s
the look-ahead feature in A*Prune, thus variant of A*Prune > z(i,j) — > =2(j,i)=4 -1, if i=d
corresponding different lower bounds for the KMCSP, such a&!(-/)€F (5,)€EE 0, else

Let d(p) be the destination node of the pathin this paper.
To cope with the KMCSP problem, we give notations to some
;sets of paths as follows.

A*Uniform, A*Dijkstra, are presented. In Section VI, we com-
bine the A*Prune with any knowe-approximate algorithm to
give the Bounded A*Prune (BA*Prune), which can give ei
ther exact ore-approximate solutions to KMCSP problem in P(V,V) ={z:|zisapathinG;

polynomial-time. In Section VIl we provide some experimentalp(i, V) ={z: |z € P(V,V)andiis its source noge
results and the comparisons for the algorithms presented in th}'s(iyj) ={z:|z € P(i,V) andjis its target node
paper and some well-known algorithms. Conclusions are Prep(i, Vv, f(z), C(i,t)) =

sented in Section VIII. All the proofs to the lemmas are givenin {i: |z € P(i, V), f(z) < C(i,t)}; (4)
the Appendix. P(i,j,f(z),C(3,4)) =
{z: |z € P,V,£(2),C(i, j)) andd(z) = j};
Il PROBLEM FORMULATION P(i, j,£(z),C(i,), K) = {z : |a € the first K shortest
The KMCSP problem can be defined as follows. length paths of (i, j, f(z), C(i,) };

Definition 1: KMCSP problem: Consider a network that is)) Rl
represented by a gragh = (V, E), whereV is the set of nodes Here,Co = o0, i € V,j € V, andf(p) € E“* repre-
and E is the set of links. Each linki, j) € E is associated sents (R+1) given functions of the path The constrainCy is

with R non-negative and additive QoS values; (i, j),r = redundantand thus can be set to infinity. .
1,2,...,R. Alength (sometime called cost) functian is de— Using these symbols, the solution sets of different problems
fined as follows: can be represented as follows.

R KMCSP: P(s,t,W(p),C,K)
i,j) = Zarwr(i,j) 1) MCSP: P(s,t,W(p),C,K)|k=1 (5)
KSP: P(s7taw(p)7caK)|R=1,01:oo

Given a source node and a target nodeg and R constraints Definition 3: Simple path: A simple path is a path without

Cr(s,t),r =1,2,..., R. The KMCSP problem is to find eitherloops.

the firstK shortest length paths or all the paths (depending onDefinition 4: Head path and tail path: Let nodeu be an

which number is smaller) from a source nadi® a target node intermediate node of the paik, j). Nodeu divides patlp(i, 5)

t such that into two paths, patl(i,) and pattp(u, 7). then pathp(i, u) is
called a head path of paifi, j), pathp(u, j) is called a tail path
of pathp(i, j). We represent the paji{i, j) as the combination

W (s, 1) “E S we(i,f) < Cr(s,t) @ of a head path and a tail path in the following format:
(i,5)€p(s:t)
vre(1,2,...,R). p(i,) = p(i, uw)p(u, j) (6)

0-7803-7016-3/01/$10.00 ©2001 IEEE 744 IEEE INFOCOM 2001

Definition 5: Additive Parameters: Let W, (p(i,5)) be a [1l. A*P RUNE ALGORITHM
parameter associated with the patl, j), andW..(p(4, j)) = A*-search[15][16][17][18], as well as uniform-search,

wT(Z:’.j) whenp (i,j)_is only one link path, thew, is called an breadth-first-search and depth-first-search are well known
additive parameter if searching strategies in Artificial Intelligence [19]. We com-
W, (p(i,u)p(u, j)) = W,(p(i,uw)) + W,(p(u,j)) (7) bine the A*-search with a proper pruning technique to get the
remains true forall € V. i € V. u € V A*Prune algorithm, which can be used to solve the KMCSP
T) J U } . problem. Using the terminologies described in the previous sec-
Definition 6: lower-bound distance:Let W(p(i, j)) be a N . ; . .
vector associated with the pashi, j) and as defined in (2) thentlons’ the A*Prune algorithm can be simply described as: start-
Pa, j ’ ing from expanding the path(s, s), potentially, all the paths in

a vectorD(i, 7, C(4,4)) is called a lower-bound distance vecto&a(s V) can be reached; however, with a proper pruning against

ngT]r;?f(j €i to nodej and associated with the constraint vect%e given constraint€, only the paths in admissible head path
’ setP(s,V,H(p), C) remain as candidate paths for further ex-
D.(i,5,C(i,5)) = » m%’r& i W,(p(i,7)) panding; furthermore, the candidate paths are ordered properly,
vﬁ(’é’()g 1(’?’_‘ (]%’ (6.9)) (8) such that the path with shortest projected lenBi(p) is se-
Definition 7: Admissiblé c’iista’nce@\ vector A (i, j, C(i, §)) lected and expanded first, then we can terminate our expansion
is called an admissible distance from nade node’j émd :':ISSO- procedure once we have found _enough numbe_r of CSPs or there
ciated with the constraint vect@(i, j) if are no candidate paths left. This procedure will only expand a
’ subset of the admissible head pathRBét, V, H(p), C).

0 < A(i,5,C(i, 7)) <D(,4,C(,5)) (99 A pseudo-code of A*Prune algorithm is shown in Figure 1.
Here,D is a lower-bound distance and the operatowith two The key processes in A*Prune are explained and analyzed as
vector operands is defined as: follows. o _ . , _
1. Pre-compute an admissible distanck(i, t, C(i,t)), Vi €
a<b<a <b, Vre(0,1,....,R) (10) y: HereC(i,t) represents some known constraints associated

Definition 8: Projected distance:Given a pathp(s,i) € to the node pai(i,t)_ We can SeC(i7t) = oo if nothing is
P(s,V), a constraint vectoC(s, t) and an admissible distancexnown aboutC(i,¢). Many existing algorithms, such as Di-
A(i,4,C(i, 7)), a path functiorH (p(s, 1)) is called a projected jkstra’s shortest path algorithm can be used in finding a good
distance associated with the node pairt) and the constraint 3gmissible distance. We will ook at the question of designing
C(s,t) if good admissible distances in Section V.

H(p(s,i)) = W(p(s,i)) +A(i,t,C(s, t) —W(p(s,i))) (11) 2. Path expanding:Suppose we have an admissible head path

Definition 9: Feasible pathA pathp(s, t) is called a feasible liSt. AHP_heap, which is initialized to contain the frivial path
path associated to the node p@ir¢) and the constraint vectorP(s, s). The path expanding process first selects and removes
C(s,t) if p(s,t) € P(s,t, W(p), C(s, t)) Within this meaning, & Pathp from AHP _heap, 'Fhen expands the selectgd path one
P(s,t, W(p), C) can also be called the feasible path set. step.fur.ther to get all pqssmle extended paths and inserts all the

Definition 10: admissible head pattk pathp(s, i) is called 2dmissible head paths into theH P_heap.
an admissible head path associated to the node(paiy and 3- CSP collectingEach time we take a path froH P _heap,
the constraint vecto€(s, t) if p(s,i) € P(s, V, H(p(s,i)),C). We f|rst check |_f the path is a CSP. If it is, the path is saved as a
Here H(p(s, 7)) is a projected distance. Within this meaningSolution and will not be expanded further. .
P(i,V,H(p(s,i)),C) can also be called the admissible heaff Candidate path list ordering:If the candidate path list
path set. AH P_heap is ordered in a way such that the path with shortest

Based on the definitions given above, we make the followirjojected lengtti, (p), and the largest lengliy (p) if breaking
observations. the tie, is put on the head ofH P_heap, then we can stop the

Lemma 1: P(s, ¢, H(p), C, K) is the solution set of KMCSP expanding process once we have found enough number of CSPs
problem, i.e., without any loss of the optimality. Once the candidate list is
ordered in this way, the A*Prune search will be best (with short-
P(s,t,H(p), C,K) = P(s,t, W(p),C, K) (12) st (p)) first search, and depth (largdh (p)) first search if
several paths has the same valugfip). The heap-sort[20]
Lemma2:¥p € P(s,V), pathp can always be expandedalgorithm is used here for its efficiency. The candidate path
from the trivial pathp(s,). list AH P_heap is heap-sorted whenever a path is added or re-
Lemma 3: A path expanded from an inadmissible head pathoved.
must be an inadmissible head path, thus can never be a soluiofnadmissible head path pruningdnce a new path is gen-
path, i.e., erated in the path expanding process, a check is made against
the given constraints, using some lookahead features. The
q ¢ P(s,V,H(p),C) = qy € P(s,V,H(p),C) (13) newly generated path will be put into the candidate path
Vge P(V,V) and Yye P(V,V) list AHP_heap if it belongs to the feasible head path set
These Lemmas tell us that we can get the solution set of KNP{(s, V, H(p), C). All the inadmissible head paths are pruned
CSP by expanding the trivial paf#(s, s) and all its extended out and will not be expanded further. So, if the path ex-
feasible head paths step by step. This gives the basic ideapariding process is combined with the constraint pruning pro-
the A*Prune Algorithm. cess, all the paths illH P_heap are admissible head paths,

0-7803-7016-3/01/$10.00 ©2001 IEEE 745 IEEE INFOCOM 2001

function A*prune(G, s,t,w(E),C, K, R)
inputs:

G = (V, E), a graph with node séf and edge seE;
(s,t): anode pair with sourceand target;

K: number of paths to be found;

R: number of constraintd? = 1 if applied to KSP;
w(e): R metrics associated to each liak E;

C = C(s,t): R constraints;

1. VieV,i#s,i#tandVr € (1,2,...,R), compute:
D..(i,t); /I length of Dijkstra path fromi to ¢
D,.(s,1); Il length of Dijkstra path frons to 4
Cr(i,t) + Cr(s,t) — D, (s,1);

A.(i,t,C(i,t)) < D.(i,t);//Addmissible distance

2. Initialize:
k< 0; [/l number of CSPs found
W(p(s,s)) < 0;

H(p(s, s)) < A(s,t,C(s,1));
AHP_heap + {p(s, s)}; Il admissible head path heap
CSP_list + {}; [l setof found CSPs

3. while (¥ < K andAH P_heap is not empty)

4. q(s,u) « the first path ofAH P_heap;

5. Remove the first path of H P_heap;

6 heapsort(AH P _heap);

7 u the end node of(s, u);

8

. if u =t then
9. insertg(s, u) into CSP_list;
10. k+—k+1;
11. goto 3;
12. end if Il q(s,u) is saved as a CSP solution
13. OutEdges +{all edges outgoing node};
14. while (Out Edges not empty)
15. e(u,v) < aremoved edge froutEdges;
16. p(s,v) q(s,u)e(u,v);
17. W(p(s,v)) < W(q(s,u)) + w(e(u,v));
18. if simple path is required ande ¢(s, u)
19. then goto 14;
20. end if //non-simple head paths are pruned
21. forr=1,2,...,R
22. if H.(p(s,v)) > C, then goto 14;
23. end if
24. end for // inadmissible head paths are prung
25. Insertp(s,v) into AH P _heap;
26. heapsort(AH P_heap);
27. end while // p(s,u) has been expanded
28. end while
29. return CSP_list;
30. stop

function H,.(p(s,v))

returns W,.(p(s,v)) + A, (v,t,C(v,1t));

function heapsort(AHP_heap) returns a heap
AHP _heap such that the pattp(s,i) with minimum
Hy(p(s, 1)), and maximuni¥y(p(s,4)) in case of breaking
the tie, is put on the head of the hedpl P_heap.

0-7803-7016-3/01/$10.00 ©2001 IEEE

Fig. 1. Algorithm of A*Prune

746

i.e., AHP heap C P(s,V,H(p),C). Furthermore, all the
pathsinP(s,V, H(p), C), will be eventually expanded once the
AH P _heap is exhausted to empty.

6. non-simple path pruning (required for simple path searching
only): This step is required only if simple path is an additional
requirement to the CSPs. Any non-simple path does not need to
be put on the candidate path list, since any of its extended paths
must also be non-simple. Suppose all the paths in the candidate
path list are simple paths, then a newly generated path extended
from any of the candidate paths is simple if its end node presents
only once in the path. So we can prune out all the non-simple
paths by checking the appearance of the end node in a newly
generated path.

7. Terminating conditionThe A*Prune program will be termi-
nated either it has found the required number of CSPs or there
are no paths left in the candidate path list. The candidate path
ordering steps let the candidate path with shortest projected path
length, and the longest length path if breaking the tie, to be ex-
panded first. So the ordering steps may result in finding the
required number of CSPs as early as possible before exhausting
all the paths inAH P_heap. The pruning steps try to keep the
AH P_heap to contain candidate paths as less as possible.

The A*Prune algorithm combines all these processes to se-
lect, expand, prune the candidate path list step by step, until the
required number of CSPs are found or there are no candidate
paths left.

IV. THE PERFORMANCE OFA*PRUNE

The performance of an algorithm is usually evaluated in terms
of the following four criteria [19]:

« Completenessis the algorithm guaranteed to find a solution
when there is one?

« Optimality: does the algorithm find the highest-quality solu-
tion when there are several different solutions?

« Time complexityhow long does it take to find the solution?

« Space complexitypow much memory does it need?

Lemma 4: The completeness of A*PrurféPrune is com-
plete in finding simple KMCSP paths. However, A*Prune may
not be complete in finding complex KMCSP paths.

Lemma 5: The optimality of A*Pruné&*Prune is optimal in
finding either simple or complex KMCSP paths.

Let @ be the number of expanded paths, then, the space com-

d plexity of A*Prune is@, and the time complexity of A*Prune

is dQ(R + h + log Q), WhereK is the number of paths to be
found, h is the maximum hops of thed€ shortest paths] is

the degree off and R is the number of the constrained metrics.
However, A*Prune can still be exponential, sin@emay be ex-
ponential. It has been proved that A* can be sub-exponential
growth if the error in the heuristic function grows no faster than
the logarithm of the actual path cost[21][22]. Because of the
pruning, our A*Prune is more efficient than A*. Thus, the above
conclusion for A* also remains true for A*Prune. In mathemat-
ical notation, the condition for sub-exponential growth is that

|D(i,t,C(i,t)) — A(i, ¢, C(i,t))| < O(log|D(i, ¢, C(i,1))|)

Therefore, it is always better to use an admissible distance
A (i, t,C(3,t)) with higher values, as long as it does not overes-
timate the lower-bound distand(i, ¢, C(4, t)).

IEEE INFOCOM 2001

When applied to KSP problem, A*Prune becomes polyno- In the case of simple path is also a requirement to KM-
mial growth algorithm and the length of candidate path list GSP problem, we can compute the Dijkstra distance in network
bounded by: G' = G — s (the network G with node s and all the edges linked

to node s removed), since we really do not want any of the looka-
Q < Khd < KN? (14) head paths passing through nodagain. Usually, the Dijkstra

) . distance in network’ can give a better admissible distance than
Then the space complexity of A*Prune for KSPR%id and the the Dijkstra distance in netwoi&.
time complexity iSO(Khd?(h + R + log(K hd))).
C. Admissible Distance Given by Other Known Heuristic Algo-
V. METHODS FORCOMPUTING ADMISSIBLE DISTANCE rithms

So far we have seen the two extreme ends of admissible diss . . .
tances:A (i, t,C) = 0 andD(i,t, C(i. 1)) given in (8). The bSThere are many known algorithms which can give lower

f q i d tation but d little h Iounds to the MCSP problem [12]. Given aapproximate
ormer oné does not need any computation but does lithe (51utions [14], a strict lower bound can also be retrieved by sub-
to the look ahead search, while the second one is really hel

_) cting the error from the approximate solution. Lagrangian
to the look ahead search but it also increases the precomp%%xation method [23] can also be used to generate a lower-

tion time. We need some admissible distances between the %}S?md to the IP problem listed in (3). Obviously, any of these
extreme ends, such that they are close to the best admissible Igférithms can be used for computing the admissible distance in

tance and can pe computeq efficiently. o our A*Prune.
A problem with less restrictions than the original problem is
called arelaxed problem. It can be easily shown that a solu- V]. BA*P RUNE
tion of any relaxed problem of the MCSP problem, as shown
in (3), always gives an admissible distankés, ¢, C(s, t)). In Despite all the nice properties of the A*Prune algorithm, such
this section, we present some efficient methods for computigg optimality, completeness, ability to solve KMCSP, A*Prune

admissible distances by solving a relaxed problem of (3). is not polynomial time. Both the time and space complexities
of A*Prune remain exponential. Compared with some existing

A. Uniform Distance approximate algorithms [12][14], the uncertainty of time and
Obviously,A (i, ¢, C(i,t)) = 0,Vi € V, is an admissible dis- space complexities is the main drawback of A*Prune algorithm.

tance, which is calledniform distance. A*Prune with uniform In this _sec'uon, we comblng the A*Prune W';[h any knov\fn
distance is called*Uniform algorithm. approximate algorithms to give a Bounded A*Prune algorithm,

* I I I i -
A*Uniform, like A*Prune, expands all paths from sourc .A Prune, which can give .e|ther exact empproximate solu
ns to KMCSP problem in polynomial-time. However, the

node. However, instead of using heuristic functions as IOOE?&*P v b lied @& < 2 d h
ahead feature, A*Uniform checks the actual path criteria for, rune can only be applied itx < = cases due to the ap-
plicability of knowne-approximation algorithms.

pruning and the shortest length path is expanded first. X .
A*Uniform seems too greedy and probably is not as efficient -6t €KMCSP be a knowre-approximate algorithm to KM-

as A*Prune with greater admissible distance. However, in tﬁieSP probcljebm, Bg*grune will first ruhn 'IA*P“F']nef f?]r a bo(lj"_ngd
case of finding CSPs from one source nodé\tdarget nodes ume T and bounded memoty (say the length of the candidate

i — N3 — N3
and with uniform constraintsQ(i,£) = C(s,), Vi € V), IISt&Q), for example we can seleft= N* andT' = N°usec.

A*Uniform maybe more efficient than runningy rounds of If A*Prung is successful to give the exact solutiqn within the
A*Prune. bounded time and memory, we are done. Otherwise, BA*Prune

executes the-KMCSP to find are-approximate solution. Since
B. Dijkstra Distance we can selec§ andT as polynomials ofV, then the BA*Prune
is polynomial efficient algorithm if the-KMCSP is polynomial
algorithm. However the trade off for getting this efficiency is
that BA*Prune is partially optimal rather than optimal: it is op-
imal ifitis run in the bounded time, otherwisedisapproximate.
fie completeness of BA*Prune is guaranteed by the complete-
ness ofe-KMCSP. All the other advantages of A*Prune are re-

For each metriav,, we can use Dijkstra’s algorithm to find
the path with shortesd#, (p). We can findR shortest metrics
associated with each e (1,2,...,R). TheseR shortest met-
rics make up a vector, which is called the Dijkstra distance an
represented by the symbbi(4, j, 00). By definition and using

(8), we have: mained in BA*Prune, such as finf CSP paths and multiple
. _ . . constraints, as long as BA*Prune can be run in the bounded time
D"‘ (ZJJ7 OO) - p(i,jr)rélg(i,j) W”‘ (p(Z,J)) (15) and memory.
vr e (0,1,...,R) VIl. COMPARISON OFALGORITHMS AND EXPERIMENTAL

. . . o RESULTS
Lemma 6: The Dijkstra distance is admissible.

Therefore, A*Prune can use Dijkstra distance as an admissiin this section we compare the following algorithms in terms
ble distance and is called A*Dijkstra algorithm in that case. T CPU times:
A*Dijkstra algorithm remaines unchanged as shown in figures1 A*Dijkstra: The A*Prune algorithm with Dijkstra distance,
except the procedure of updating the admissible distance at lines the A*Dijkstra algorithm presented in this paper. It gi¥és
?? and?? can be omitted. exact CSPs from one source nodi® one target node

0-7803-7016-3/01/$10.00 ©2001 IEEE 747 IEEE INFOCOM 2001

TABLE |
ALGORITHM RUNNING TIME COMPARISON(p = 0.4, TIME UNIT:

VIII. CONCLUSIONS

MICROSECOND) A*Prune, an algorithm for findind< shortest paths subject to
multiple constraints, has been presented. The algorithm grows
Input Data 1-1 target I-N targets a candidate path list, which contains the paths starting from the
N [D | K] ADiks [L-Scale]|| A*Unifo [T-Scale source node and is initialized to the trivial path dofs, s). The
100 | 249 1 5357 8443 || 160734 | 71020 candidate path list is ordered such that the path that most likely
| s to project to a shortest feasible path is extended first. All the
300 | 241 1 50714 | # 18420 || 1084268 | 1286781 extended paths that are guaranteed to violate the constraints are
10 54749 pruned from the candidate list. Dijkstra’s shortest path length
100 || 365116 can be used as lookahead feature in both the candidate path
300 | 238 1%) 132;22 11705)) 2994072 1619317 pruning and ordering processes. Experimental results show that
100 || 1673267 A*Prune is comparable to the current best known polynomial-
400 | 236 1| 114843| #85745 || 4940668 | 1197150 time e-approximate algorithms. BA*Prune, an algorithm com-
1(1)8 3?2’3‘(‘)% bines the A*Prune with any other knowrapproximate algo-
500 232 1 98889 | Z 111651 9548881 2880185 rithm to give either optimal oe-approximate solution to the
10 || 205030 KMCSP problem in polynomial time, is also presented.
100 || 3670254

APPENDIX

We give proofs to the lemmas given in this paper.

)) . Lemmal. Proof: Sincep is a path from node to node
« L-Scale: The length scaling algorithm presented by R. Hassjnihan

[14]. 1t gives one CSP from one source naede one target node _
t with length in the range of-approximation. D1, C(t,%) = 0
o A*Uniform: The A*Prune algorithm with uniform distance, H(p) = W(p)
i.e., the A*Uniform algorithm presented in this paper. It gives
K exact CSPs from one source nod each of thelV target Hence (12) is true. u
nodes. Lemma 2. Proof: Suppose the edges gnis listed in
« T-Scale: The delay scaling algorithm presented in [12]. Ithe increasing order of number of hops from the start node
gives one CSP from one source nad® each of theV target {ei1,e2,-..,ex}, where his the number of edges on patthen
nodes with delay in the range efapproximation.
p=p(s,s)eres...ep

We measured their execution times on a 450MHz SUN So-
laris machine. For simplicity, we only tested for the case of twince pattp(s, s)e; is one step expanded path from path, s),
constraintswo = w; is length and thev, is delay. The error P(s;s)eiez is two steps expanded path from paifs, s), etc.,
tolerance parameterwas set to 5% for the twe-approximate the pathp is h steps expanded path from paits, s). u
algorithms, L-Scale and T-Scale. Lemma 3. Proof: Assume pathy is an inadmissible
head path, i.edr € (1,2,...,R),H.(q) > C,. Letz be

For our experiments we used random graphs of a given n path expanded from i.e., 3y € P(V,V),z = qy. Then

size N and connectivity which is defined as the probability ofar € (1,2,...,R), such thati, (z) = W, (qy) + A, (d(y)) =

a link existence between node péirj). The link length, link W, (:
oo ; (@) +(Wr(y) +Ar(d(y))) > Wr(g)+Ar(d(g))) > C;. This
delay and delay-limitD are also random numbers uniformly roves that patlk must be an inadmissible head path. Lemma 3

distributed in the open interval (0, 1000). The running im€s ;e considering that is any extended path of the inadmissi-
of the four algorithms for some randomly generated graphs 8 head patly. n

listed in Table I. To see how the running time varies wikh
the A*Dijkstra algorithm is tested faK =1, 10 and 100 cases
while the other three algorithms are only testedkoe= 1 case.
The running time prefixed with a # indicates the non-optim
solution.

Lemma 4. Proof: As we said that because A*Prune

’expands paths in the admissible head pattPgetV, H(p), C)
in the increasing order d,(p), and all feasible paths also be-

ng to the admissible head path set, it must eventually expand to
reach a feasible path. This is true unless there are infinitely many

These experimental results show that the A*Dijkstra is comadmissible head paths q witHo(¢ € P(s,V,H(p),C)) <
parable to L-Scale and the A*Uniform is comparable to T-Scaléy(p € P(s,t, H(p), C)). In the simple path search case, the
in running time. Considering A*Dijkstra and A*Uniform canadmissible head path set must be limited, since its super set, the
find K exact CSP solutions, and can be applied to multiple coget of all simple paths in a graph s limited. However, in the com-
straints and all the metrics can be float numbers, while the plex path search case, loops with infinitely small length may re-
Scale and T-Scale can only give on@pproximate CSP solu- sultin A*Prune searching infinitely many admissible head paths
tion and can only be applied to two constraints with integer mdtefore finding a feasible solution. |
rics, we can say that our A*Dijkstra and A*Uniform have better Lemma 5. Proof: Given two pathsu andwv, both
performance on the average than the best kneapproximate are feasible solutions of the KMCSP problem, dfig(u) <
algorithms, L-Scale and T-Scale. Wo(v). HereWy(p) is defined as the length of path A search

0-7803-7016-3/01/$10.00 ©2001 IEEE 748 IEEE INFOCOM 2001

strategy for KMCSP problems is optimal if it findsearlier than Ring Auto-Recovery and Optical Cross-Connect Restoration in Core Op-
. tical Networks. Technical Report10009626-000126-01TM, Bell Labora-

. tories/Lucent Technologies, 2000.
Assume A*Prune find earlier thanu. The optimality of 10 p. Eppstein. Finding the shortest PathsProc. 35th IEEE Symp. FOCS,

A*Prune can be proved by proving this assumption can not be 154-165. 1994.

true. We first decomposeinto three parts: [11] D. Eppstein. Finding thk shortest PathsSIAM J. Computind28(2):652-
) ’ 673.1999.
[12] A. Goel, D. Kataria, D. Logothetis and K. G. Ramakrishnan. An Efficient
u = aeb Algorithm for Constraint-based Routing in Data NetworK&chnical Re-

port, BL0O112120-990616-11TM, Bell Laboratories/Lucent Technologies,

1999.
Wwherea € P(S’V’H(I:)’C)' b .E P(d(e), V).’ e € E. Then [13] D.Razand D. H. Lorenz. Simple Efficient Approximation Scheme for the
at the moment that A*Prune finds there exist patha andb Restricted Shortest Path Problerifechnical Report10009674-991214-

and an edge, such thata is expanded bute is not. Sinceu 04TM, Bell Laboratories/Lucent Technologies, 1999.

; ; ; icai 14] Refael Hassin. Approximation schemes for the restricted shortest path
is a feasible path, IFS head patla .mUSt be ar? a(.ijSSIble he‘?‘d problem. Mathematics of Operations Researctif(1):36-42, February
path. Therue is put into the candidate path list instead of being 1992

pruned when its parent pathis expanded. Sinceis expanded [15] S. Lin. Computer solutions of the traveling salesman problBeil Sys-

; . tems Technical Journafl4(10):2245-2269, 1965.
butae is not, then we must have: [16] P. E. Hart, N.J. Nilsson and B. Raphael. A formal basis for the heuris-
tic determination of minimum cost path$EEE Transactions on Systems

Hy(v) < Hy(ae) Science and Cybernetic8SC-2(2):100-107, 1968.
[17] P. E. Hart, N.J. Nilsson and B. Raphael. Correction to “A formal basis
d(v) =t = Hy(v) = Wo(v) go7r:t2hse:2h;u1rés7tlzc-determlnatlon of minimum cost pathSTART Newsletter,
Hence: [18] A. Newell and G. Ernst, The search for generalityformation Process-
’ ing 1965: Proceedings of IFIP Congresmlume 1, pages 17-24. Spartan.
1965.
Wo(v) < Ho(ae) [19] Stuart Russell and Peter Norvig. Artificial Intelligence, A Modern Ap-
< Wo(ae) + Do(d(ae),t,C) proach.Prentice-Hall, Inc. pp. 70-118, NJ, 1996.
< Wo(ae) + W (b) (16) [20] A.V.Aho and J. D. UllmanFoundations of Computer Sciené&Edition,
- pp. 280-285, W. H. Freeman and Company, New York, 1995.
< Wo (U)9 [21] 1. Pohl. First results on the effect of error in heuristic seaMhchine In-

telligence 5pages 219-236. Elsevier/North-Holland, Amsterdam, London,
This contradicts to the given condition. Then our assumption, New York, 1970.

* ; ; ; 22] |. Pohl. Practical and theoretical considerations in heuristic search algo-
A*Prune findsv earlier tharu, can not be true. This proves thé rithms. Machine Intelligence 8pages 55-72. Ellis Horwood, Chichester,

optimality of A*Prune. n England. 1977.
Lemma 6. Proof: Itis obvious that [23] S. Ahuja and J. Orlin. Network FlowsAddison-Wesley Publishing Com-
pany,MA, 1998.

P(i,j, W(p), C(i,j)) C P(i,5)
then

Wi (p(i,5)) <

< m Wr(p(i, 5
p(i,)EP(id, W), C(iy)) (ol)

nm
p(i,5)EP(ig)
vr € (0,1,...,R)

or equivalently,D(i, j,00) < D(i,5,C(i,5)) must be re-
mained true. This proves that the Dijkstra distance is admissible.
[|

REFERENCES

[1] D. Mitra and K. G. Ramakrishnan. A Case Study of Multiservice, Multi-
priority Traffic Engineering Design for Data NetworkiBroceedings of the
GLOBECOM'99 Conferencé&eneral Conference (Part B), pp 1077-1083.
IEEE, 1999.

[2] Dean H. Lorenz and Ariel Orda. QoS routing on networks with uncertain
parameters.IEEE/ACM Transactions on Networking(6):768-778, De-
cember 1998.

[3] M. R. Garey and D. S. Johnso@omputers and Intractability, A Guide to
the Theory of NP-CompletenesBreeman, San Francisco, 1979.

[4] J. M. Jaffe. Algorithms for finding paths with multiple constraintdet-
works,14:95-116, 1984.

[5] S.Chenand K. Nahrstedt. On finding multi-constrained pa@hsceedings
of ICC’'98 Conferencepp. 874-879. IEEE, 1998.

[6] W. C. Lee, M. G. Hluchyi, and P. A. Humble. Routing subject to quality of
service constraints in integrated communication netwotk&E Network,
pp. 46-45, July/August 1995.

[7] Z. Wang. On the complexity of quality of service routindgnformation
Processing Letter§9(3):111-114, 1999.

[8] A. Warburton. Approximation of pareto optima in multiple-objective short-
est path problemgOperations Researcl35:70-79, 1987.

[9] E. Bouillet, G. Liu and I. Saniee. Algorithms for WEDM Mesh Network
Design: Routing and Wavelength Assignment for Dedicated Protection,

0-7803-7016-3/01/$10.00 ©2001 IEEE 749 IEEE INFOCOM 2001

