
0-7803-7016-3/01/$10.00 ©2001 IEEE

A*Prune: An Algorithm for Finding K Shortest
Paths Subject to Multiple Constraints

Gang Liu, K. G. Ramakrishnan

Abstract—We present a new algorithm, A*Prune, to list (in order of in-
creasing length) the first K Multiple-Constrained-Shortest-Path (KMCSP)
between a given pair of nodes in a digraph in which each arc is associated
with multiple Quality-of-Service (QoS) metrics. The algorithm constructs
paths starting at the source and going towards the destination. But, at each
iteration, the algorithm gets rid of all paths that are guaranteed to violate
the constraints, thereby keeping only those partial paths that have the po-
tential to be turned into feasible paths, from which the optimal paths are
drawn. The choice of which path to be extended first and which path can
be pruned depend upon a projected path cost function, which is obtained
by adding the cost already incurred to get to an intermediate node to an ad-
missible cost to go the remaining distance to the destination. The Dijkstra’s
shortest path algorithm is a good choice to give a good admissible cost. Ex-
perimental results show that A*Prune is comparable to the current best
known � -approximate algorithms for most of randomly generated graphs.
BA*Prune, which combines the A*Prune with any known polynomial time� -approximate algorithms to give either optimal or � -approximate solutions
to the KMCSP problem, is also presented.

Keywords—shortest paths, constraint based routing, QoS routing, multi-
ple constrained path selection, Dijkstra algorithm, NP complete.

I. I NTRODUCTION

UALITY of Service (QoS) sensitive routing is of critical
importance in achieving a data network with high speed

and efficiency (high ratio of capacity/cost), as well as meeting
QoS for each connection. While efficient utilization of network
resources is important to the service provider, the user is in-
terested in both the speed and the quality of service provided.
The need for QoS routing can be justified for both reservation-
based services (e.g., Intserv, ATM) as well as reservationless
services (e.g., Diffserv). The goal of QoS routing is to find
a path that satisfies multiple QoS constraints while achieving
overall network resource efficiency [1]. A key challenge in QoS
routing is the K-Multiple-Constrained-Shortest-Path (KMCSP)
problem, which is to find K feasible Constrained-Shortest-Path
(CSP) from a source node to a target node and subject to mul-
tiple constraints (e.g., bandwidth, delay, jitter, administrative
weight), and list them in order of increasing length. One special
case of KMCSP problem is the Multiple-Constrained-Shortest-
Path (MCSP), which is the KMCSP problem with

�����
.

The MCSP problem is a basic optimization problem that is
both theoretically interesting and have many practical applica-
tions [2], and hence has received considerable attention in the
literature [3] - [8].

Besides all the applications that are applicable to the MCSP
problem, the KMCSP problem can also have many other prac-
tical applications, such as in the network routing and network
design problems.

G. Liu is with the Aerie Networks, 1400 Glenarm Place, Denver, CO 80202.
E-mail: GLiu@aerienetworks.com.

K. G. Ramakrishnan is with the Winphoria Networks, 2 Highwood Drive,
Tewksbury, MA 01876. E-mail: ram@winphoria.com.

This work was done in 1999 when both authors worked at Bell Labs, Lucent
Technologies, 600-700 Mountain Avenue Murray Hill, NJ 07974-0636.

In general, network routing consists of two basic tasks [5]:
distributing the network information and searching for best fea-
sible path with respect to given constraints. We focus on the
second task and assume that the network information is avail-
able to every node (e.g., via link-state routing). Each link in the
network is associated with multiple QoS metrics, which can be
either static or dynamic (based on whether varying with time),
either additive or non-additive (based on the additivity along a
path) [7]. For the additive parameters (e.g., delay, hops, jitter),
the cost of an end-to-end path is given, exactly or approximately,
by the sum of the individual link values along that path. In con-
trast, the cost of a path with respect to a non-additive parameter,
such as bandwidth, is determined by the value of that constraint
at the bottleneck link. In the case of dynamic routing, the band-
width is a dynamic parameter since its value may change each
time a demand is routed or torn down, while the length of a
link is a static parameter since it remains unchanged. In this pa-
per we will mainly focus on additive and static parameters. The
constraints associated with non-additive or dynamic parameters,
can be dealt with first solving the KMCSP problem subject to all
the additive and static constraints, and then select one path from
these K CSPs such that all the other non-additive or dynamic
parameters are satisfied. Most of the current approaches handle
the non-additive or dynamic constraints by first pruning out all
links that do not satisfy these constraints and then solving the
MCSP problem in the residual network. The MCSP procedure
need to be called each time a new demand need to be routed,
and it may take time to find a feasible route if the MCSP pro-
cedure is time consuming, while our KMCSP method can speed
up the online routing time, since selecting a feasible path from
the K precomputed candidate paths is generally much faster than
solving a MCSP problem in a residual network.

Generally, a network design problem is to find a least cost
or a maximum revenue network, such that a given set of de-
mands are routed through routes which meet some given QoS
constraints. The KMCSP algorithms can be used to pre-compute
a set of the candidate paths, then the network design problem
can be formulated as a path based Linear Programming (LP) or
Integer Programming (IP) problem, or can be solved by select-
ing paths from the precomputed path list through some other
heuristic methods. We have applied the KMCSP algorithm in
SPIDER, a web based optical network design tool [9].

In the case of single metric, the KMCSP problem becomes
a problem of finding

�
-Shortest-Paths (KSP) from one source

node to one target node. The KSP problem has many practi-
cal applications [10][11]. In multiple constrained metrics case,
both the MCSP and the KMCSP problems are known to be NP-
complete [3][4][12][14].

Most of the current approaches are concentrated on develop-
ing efficient polynomial or pseudo-polynomial-time algorithms

743 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

to give feasible or approximate solutions to MCSP problem. Ex-
isting algorithms� can be grouped into three approaches:
1. � -approximate solutions given by pseudo-polynomial-time
algorithms in which the complexity depends on the actual val-
ues of the link weights (e.g., maximum link weight) in addition
to the size of the network [4][14].
2. Polynomial-time heuristics that are fast in searching for a
feasible path but cannot guarantee finding one in the network
[2][3][5].
3. � -approximate algorithms that are polynomial [12][13].

The main contribution of this paper is developing an algo-
rithm to give exact solutions to the KMCSP problem, and can
also be applied to its special cases such as MCSP and KSP prob-
lems. The algorithms presented in this paper can be applied to
multiple constraints and can find any required number of CSPs.
To give an exact solution, the running time may be exponential
in the worst case. However, our test cases show that the actual
running time of our algorithm is comparable to the existing ap-
proximate algorithms for most of practical networks.

The rest of the paper is organized as follows. The KM-
CSP problem and its solutions are further analyzed in Section
II. A*Prune, an algorithm for KMCSP problem, is presented
in Section III. Section IV analyzes the performance of the
A*Prune algorithm. Section V discusses some efficient meth-
ods for computing the lower-bounds, which are used to give
the look-ahead feature in A*Prune, thus variant of A*Prune
corresponding different lower bounds for the KMCSP, such as
A*Uniform, A*Dijkstra, are presented. In Section VI, we com-
bine the A*Prune with any known� -approximate algorithm to
give the Bounded A*Prune (BA*Prune), which can give ei-
ther exact or� -approximate solutions to KMCSP problem in
polynomial-time. In Section VII we provide some experimental
results and the comparisons for the algorithms presented in this
paper and some well-known algorithms. Conclusions are pre-
sented in Section VIII. All the proofs to the lemmas are given in
the Appendix.

II. PROBLEM FORMULATION

The KMCSP problem can be defined as follows.
Definition 1: KMCSP problem: Consider a network that is

represented by a graph� �
	�������
, where

�
is the set of nodes

and
�

is the set of links. Each link
	���������
�

is associated
with � non-negative and additive QoS values:��� 	��� ���!#"$��%�&')(*(*(* � . A length (sometime called cost) function�,+ is de-
fined as follows:

� + 	-�� �.�/�102��35476 � � � 	��� ���
(1)

Given a source node8 and a target node9 , and � constraints: � 	 8 9 �!�";���%�&'*()(*(! � . The KMCSP problem is to find either
the first

�
shortest length paths or all the paths (depending on

which number is smaller) from a source node8 to a target node9 such that< � 	>=?	 8 9 ���?@*A B� CDFE�G H�I JLKMDON�G P-I � � 	�������RQ : � 	 8 9 �S "��T	U�V�&')(*()(W � �!((2)

We use a bold character to represent an
	 �YX �L�

-dimensional
vector in this paper, such asZ �[� 0]\ 4 representsZ �	-^ + #^ 4)(*(*()#^ 0 �

. Generally, the constraints vector_ 	-�� �.�
de-

pends on the node
�

and node
�
, however, we sometimes use_

to represent_ 	 8 9 � .
In the case of

�`�a�
, the KMCSP, or simply the MCSP prob-

lem can be formulated as an integer programming (IP) problem
as follows.

Definition 2: MCSP (KMCSP with
� � �

) as an (edge
based) IP problem :b � c.dfehg� 	��/����! 8 �h�� 9 �i�� �
j �%�� j �Vk��� 	-������ jml S 	��� �����i�n S "��o	U�V�&')(*()(W � �!k
6 �pjql : �rjYl S "s�o	U�V�&t*(*()(W � �Wku dMvw� exdrg�,+ 	-������/� 0C��354 6 �*��� 	-�� �.�Wk< � � CDOE-G H�I J%y ��� 	-�� �.�Uz5	��� ���! S "��o	 l *�V*(*()(W � �Wk{ � e]� { �}|.d~g.< + k8)�]� �.dL� 9�9U� gz?	-������R��� l *���. S 	-������R�i�nkCDOE-G H�I J%y �,� 	-������Uz5	-�� �.��Q : � S "��o	U�V�&')(*()(W � �!k

CH��F� DFE�G H�I J%y z?	-�������� CH��F� D�H�G EOI J%y z?	F�V#�U����� �!���-�������� �!���-�����i�� �����F���

(3)

Let
u 	>=��

be the destination node of the path
=

in this paper.
To cope with the KMCSP problem, we give notations to some
sets of paths as follows.�n	�������/�a�fz�g¡ z

is a path in G
�Vk�n	-������/�$�)z�g¡ z����n	�������

and i is its source node
�Vk�n	-�� �.�/�$�)z�gw z����n	-����s�

and j is its target node
�.k�n	-����/�¢V	�zw�! _ 	-�� 9 ������)z�g¡ zh�i�n	-������!�¢.	-z��,Q _ 	��� 9 ���.k�n	-�� �%�¢V	�zw�W _ 	-��������£��)z�g¡ zh�i�n	-������¢.	-z��! _ 	��� ���#�

and
u 	-zw�£�¤�7�Vk�n	-�� �%�¢V	�zw�W _ 	-������W����£�¥�)z¦g¡ z��

the first K shortest
length paths of

�n	�����V�¢.	-z��! _ 	��� ���#���.k
(4)

Here,
: + �¨§

,
�©�ª�

,
�«�
�

, and
¢.	>=������ 0]\ 4 repre-

sents (R+1) given functions of the path
=
. The constraint

: + is
redundant and thus can be set to infinity.

Using these symbols, the solution sets of different problems
can be represented as follows.��¬ :; ��g`�n	 8 9 #®¯	°=w�! _ ����¬ :; �±g`�n	 8 9 #®¯	°=w�! _ ����) ² 3?4� ��g`�n	 8 9 #®¯	°=w�! _ ����) 0 3?4 G ³]´ 3¶µ (5)

Definition 3: Simple path: A simple path is a path without
loops.

Definition 4: Head path and tail path: Let node � be an
intermediate node of the path

=?	-������
. Node� divides path

=?	-������
into two paths, path

=5	-�� � �
and path

=?	 � ����
. then path

=5	-�� � �
is

called a head path of path
=5	��� ���

, path
=5	 � �.�

is called a tail path
of path

=5	��� ���
. We represent the path

=5	-�� �.�
as the combination

of a head path and a tail path in the following format:=?	-������/�·=5	-�� � �-=5	 � ����
(6)

744 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

Definition 5: Additive Parameters: Let
< � 	>=5	�������#�

be a
parameter associated with the path

=5	��� ���
, and

< � 	>=?	-��������¸�� � 	��� ���
when

=5	�������
is only one link path, then� � is called an

additive parameter if< � 	°=5	��� � �-=5	 � �.���/�¹< � 	°=5	��� � ��� X < � 	°=5	 � �.���
(7)

remains true for all
�����

,
�n�h�

, � �i�
.

Definition 6: lower-bound distance:Let
®¯	>=5	�������#�

be a
vector associated with the path

=?	-������
and as defined in (2), then

a vectorº 	-����V _ 	��� ���#�
is called a lower-bound distance vector

from node
�

to node
�

and associated with the constraint vector_ 	-������
if» � 	-����V _ 	��� ���#��� ¼¾½F¿KLDOE-G H�I J%ÀÁDFE-G H�G Â¤D>KWI}G Ã/DOE-G H�I-I < � 	>=?	-������#�S "��Ä	 l *�V*()(*(W � � (8)

Definition 7: Admissible distance:A vector Å 	-����V _ 	�������#�
is called an admissible distance from node

�
to node

�
and asso-

ciated with the constraint vector_ 	-������
ifÆ Q Å 	��� �V _ 	-��������RQ º 	-����V _ 	�������#�

(9)

Here, º is a lower-bound distance and the operator
Q

with two
vector operands is defined as:Ç Q¤ÈÄÉ¾Ê 6 � Q �!� S "��T	 l)�%*()(*(! � �

(10)
Definition 8: Projected distance:Given a path

=5	 8 #�U�Ë��n	 8 ����
, a constraint vector_ 	 8 9 � and an admissible distanceÅ 	�����V _ 	-�� �.���

, a path functionÌ 	°=5	 8 ��}��� is called a projected
distance associated with the node pair

	 8 9 � and the constraint_ 	 8 9 � ifÌ 	°=5	 8 ��U�#�/�q®¯	°=5	 8 ��U�#� X©Å 	��� 9 _ 	�Í%�Îf�'�¾®¯	°=5	 8 ��}���#� (11)
Definition 9: Feasible path:A path

=?	 8 9 � is called a feasible
path associated to the node pair

	 8 9 � and the constraint vector_ 	 8 9 � if
=5	 8 9 �R�i�n	 8 9 #®¯	°=w�W _ 	�ÍV#ÎL�#�

Within this meaning,�n	 8 9 #®¯	>=��! _ �
can also be called the feasible path set.

Definition 10: admissible head path:A path
=5	 8 ��}� is called

an admissible head path associated to the node pair
	 8 9 � and

the constraint vector_ 	 8 9 � if
=5	 8 ��U�R�Ï�n	 8 ��/ Ì 	>=?	 8 #�U�#�W _ �

.
Here Ì 	>=?	 8 #�U��� is a projected distance. Within this meaning,�n	-����/ Ì 	>=5	 8 #�U�#�W _ �

can also be called the admissible head
path set.

Based on the definitions given above, we make the following
observations.

Lemma 1:
�n	 8 9 Ì 	>=��! _ ����

is the solution set of KMCSP
problem, i.e.,�n	 8 9 Ì 	°=w�! _ ����/�¹�n	 8 9 �®¯	>=��! _ ����

(12)

Lemma 2:
S =Ë�Ð�n	 8 ����

, path
=

can always be expanded
from the trivial path

=5	 8 8 � .
Lemma 3:A path expanded from an inadmissible head path

must be an inadmissible head path, thus can never be a solution
path, i.e.,Ñ¸Ò���n	 8 ��� Ì 	°=w�W _ �/�xÊ ÑLÓ�Ò���n	 8 ��/ Ì 	>=��! _ �

(13)S Ñ �Ï�n	��/���� 6 e uÔS Ó ���n	�������
These Lemmas tell us that we can get the solution set of KM-

CSP by expanding the trivial path
=5	 8 8 � and all its extended

feasible head paths step by step. This gives the basic ideas of
the A*Prune Algorithm.

III. A*P RUNE ALGORITHM

A*-search[15][16][17][18], as well as uniform-search,
breadth-first-search and depth-first-search are well known
searching strategies in Artificial Intelligence [19]. We com-
bine the A*-search with a proper pruning technique to get the
A*Prune algorithm, which can be used to solve the KMCSP
problem. Using the terminologies described in the previous sec-
tions, the A*Prune algorithm can be simply described as: start-
ing from expanding the path

=?	 8 8 � , potentially, all the paths in�n	 8 ����
can be reached; however, with a proper pruning against

the given constraints_ , only the paths in admissible head path
set

�n	 8 ��� Ì 	°=w�W _ �
remain as candidate paths for further ex-

panding; furthermore, the candidate paths are ordered properly,
such that the path with shortest projected lengthÕÖ+ 	>=��

is se-
lected and expanded first, then we can terminate our expansion
procedure once we have found enough number of CSPs or there
are no candidate paths left. This procedure will only expand a
subset of the admissible head path set

�n	 8 ��/ Ì 	>=��! _ �
.

A pseudo-code of A*Prune algorithm is shown in Figure 1.
The key processes in A*Prune are explained and analyzed as

follows.
1. Pre-compute an admissible distance,Å 	��� 9 _ 	-�� 9 �#� , S �i��

: Here _ 	-�� 9 � represents some known constraints associated
to the node pair

	-�� 9 � . We can set_ 	-�� 9 �Ï�×§
if nothing is

known about_ 	-�� 9 � . Many existing algorithms, such as Di-
jkstra’s shortest path algorithm can be used in finding a good
admissible distance. We will look at the question of designing
good admissible distances in Section V.
2. Path expanding:Suppose we have an admissible head path
list, ØÙÕ � Ú¡d 6 = , which is initialized to contain the trivial path=5	 8 8 � . The path expanding process first selects and removes
a path

=
from Ø~Õ � Ú7d 6 = , then expands the selected path one

step further to get all possible extended paths and inserts all the
admissible head paths into theØ~Õ � Ú7d 6 = .
3. CSP collecting:Each time we take a path fromØ~Õ � Ú¡d 6 = ,
we first check if the path is a CSP. If it is, the path is saved as a
solution and will not be expanded further.
4. Candidate path list ordering: If the candidate path listØÙÕ � Ú7d 6 = is ordered in a way such that the path with shortest
projected lengthÕÖ+ 	°=w�

, and the largest length
< + 	°=w�

if breaking
the tie, is put on the head ofØ~Õ � Ú7d 6 = , then we can stop the
expanding process once we have found enough number of CSPs
without any loss of the optimality. Once the candidate list is
ordered in this way, the A*Prune search will be best (with short-
est Õ�+ 	>=��

) first search, and depth (largest
< + 	°=w�

) first search if
several paths has the same value ofÕ + 	°=w�

. The heap-sort[20]
algorithm is used here for its efficiency. The candidate path
list Ø~Õ � Ú7d 6 = is heap-sorted whenever a path is added or re-
moved.
5. Inadmissible head path pruning:Once a new path is gen-
erated in the path expanding process, a check is made against
the given constraints, using some lookahead features. The
newly generated path will be put into the candidate path
list ØÙÕ � Ú7d 6 = if it belongs to the feasible head path set�n	 8 ��/ Ì 	>=w�W _ �

. All the inadmissible head paths are pruned
out and will not be expanded further. So, if the path ex-
panding process is combined with the constraint pruning pro-
cess, all the paths inØÙÕ � Ú7d 6 = are admissible head paths,

745 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

function ØpÛ =¡" � exd�	 � 8 9 #Üh	����! _ ��h � �
inputs:� �$	��/����

, a graph with node set
�

and edge set
�

;	 8 9 � : a node pair with source8 and target9 ;�
: number of paths to be found;� : number of constraints,� ���

if applied to KSP;Üh	�dM�
: R metrics associated to each link

ds�i�
;_ � _ 	 8 9 � : R constraints;

1.
S �/���/�� Ò� 8 �� Ò� 9 and

S "��Ä	#�%�&'*()(*(W � �
, compute:» � 	��� 9 �!k // length of Dijkstra path from

�
to 9» � 	 8 ��U�!k // length of Dijkstra path from8 to

�: � 	��� 9 �/Ý : � 	 8 9 �?�T» � 	 8 #�U� ;Ø � 	-�� 9 _ 	-�� 9 ���/Ý¨» � 	-�� 9 � ;//Addmissible distance
2. Initialize:Þ Ý l ; // number of CSPs found®¯	>=?	 8 8 ����Ý Æ

;Ì 	>=?	 8 8 ����Ý Å 	 8 9 _ 	 8 9 �#� ;ØÙÕ � Ú7d 6 =¸Ýß��=?	 8 8 ��� ; // admissible head path heap:; � à�� 8)9 Ýß�%�
; // set of found CSPs

3. while (
Þ QY�

and ØÙÕ � Ú7d 6 = is not empty)
4. Ñ 	 8 � �/Ý

the first path ofØÙÕ � Ú¡d 6 = ;
5. Remove the first path ofØÙÕ � Ú¡d 6 = ;
6.

Ú7d 6 = 8f� " 9 	 Ø~Õ � Ú¡d 6 =��
;

7. � Ý
the end node ofÑ 	 8 � �

;
8. if � � 9 then
9. insertÑ 	 8 � �

into
:; � à-� 8)9 ;

10.
Þ Ý Þ X �

;
11. goto 3;
12. end if // Ñ 	 8 � �

is saved as a CSP solution
13. áp�w9 � u b d 8 Ýâ�

all edges outgoing node� �
;

14. while (áp�¡9 � u b d 8 not empty)
15.

d�	 � �c��ÁÝ
a removed edge fromáp�w9 � u b d 8 ;

16.
=?	 8 #c'�/Ý Ñ 	 8 � �#d�	 � #c'�

;
17.

®¯	°=5	 8 �c�����Ýã®¯	 Ñ 	 8 � �#� X Üh	�d�	 � �c����
;

18. if simple path is required and
cä� Ñ 	 8 � �

19. then goto 14;
20. end if //non-simple head paths are pruned
21. for

"s�$�V�&t*(*()(! �
22. if Õ¾� 	>=?	 8 #c'�#��å : � then goto 14;
23. end if
24. end for // inadmissible head paths are pruned
25. Insert

=?	 8 #c'�
into Ø~Õ � Ú¡d 6 = ;

26.
Ú¡d 6 = 8f� " 9 	 ØÙÕ � Ú7d 6 =w�

;
27. end while //

=5	 8 � �
has been expanded

28. end while
29. return

:; � à-� 8)9 ;
30. stop
function Õ¾� 	°=5	 8 �c����
returns

< � 	>=?	 8 #c'�#� X·Ø � 	�c¡ 9 _ 	-cw 9 ��� ;
function

Ú¡d 6 = 8f� " 9 	 ØÙÕ � Ú7d 6 =w�
returns a heapØÙÕ � Ú¡d 6 = such that the path

=?	 8 #�U� with minimumÕÖ+ 	>=?	 8 #�U��� , and maximum
< + 	°=5	 8 ��}��� in case of breaking

the tie, is put on the head of the heapØ~Õ � Ú¡d 6 = .

Fig. 1. Algorithm of A*Prune

i.e., ØÙÕ � Ú¡d 6 =¨æç�n	 8 ��� Ì 	°=w�! _ �
. Furthermore, all the

paths in
�n	 8 ��/ Ì 	>=��! _ �

, will be eventually expanded once theØÙÕ � Ú7d 6 = is exhausted to empty.
6. non-simple path pruning (required for simple path searching
only): This step is required only if simple path is an additional
requirement to the CSPs. Any non-simple path does not need to
be put on the candidate path list, since any of its extended paths
must also be non-simple. Suppose all the paths in the candidate
path list are simple paths, then a newly generated path extended
from any of the candidate paths is simple if its end node presents
only once in the path. So we can prune out all the non-simple
paths by checking the appearance of the end node in a newly
generated path.
7. Terminating condition:The A*Prune program will be termi-
nated either it has found the required number of CSPs or there
are no paths left in the candidate path list. The candidate path
ordering steps let the candidate path with shortest projected path
length, and the longest length path if breaking the tie, to be ex-
panded first. So the ordering steps may result in finding the
required number of CSPs as early as possible before exhausting
all the paths inØ~Õ � Ú7d 6 = . The pruning steps try to keep theØÙÕ � Ú7d 6 = to contain candidate paths as less as possible.

The A*Prune algorithm combines all these processes to se-
lect, expand, prune the candidate path list step by step, until the
required number of CSPs are found or there are no candidate
paths left.

IV. T HE PERFORMANCE OFA*PRUNE

The performance of an algorithm is usually evaluated in terms
of the following four criteria [19]:è Completeness:is the algorithm guaranteed to find a solution
when there is one?è Optimality: does the algorithm find the highest-quality solu-
tion when there are several different solutions?è Time complexity:how long does it take to find the solution?è Space complexity:how much memory does it need?

Lemma 4: The completeness of A*Prune:A*Prune is com-
plete in finding simple KMCSP paths. However, A*Prune may
not be complete in finding complex KMCSP paths.

Lemma 5: The optimality of A*Prune:A*Prune is optimal in
finding either simple or complex KMCSP paths.

Let é be the number of expanded paths, then, the space com-
plexity of A*Prune is é , and the time complexity of A*Prune
is

u é 	 �êX Ú XYëFìVíRé �
, Where

�
is the number of paths to be

found,
Ú

is the maximum hops of these
�

shortest paths,
u

is
the degree of� and � is the number of the constrained metrics.
However, A*Prune can still be exponential, sinceé may be ex-
ponential. It has been proved that A* can be sub-exponential
growth if the error in the heuristic function grows no faster than
the logarithm of the actual path cost[21][22]. Because of the
pruning, our A*Prune is more efficient than A*. Thus, the above
conclusion for A* also remains true for A*Prune. In mathemat-
ical notation, the condition for sub-exponential growth is that º 	��� 9 _ 	-�� 9 �#��� Å 	��� 9 _ 	-�� 9 �#�* 'Q á 	 ëFìVí º 	��� 9 _ 	-�� 9 �#�* �
Therefore, it is always better to use an admissible distanceÅ 	��� 9 _ 	��� 9 �#� with higher values, as long as it does not overes-
timate the lower-bound distanceº 	-�� 9 _ 	��� 9 �#� .

746 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

When applied to KSP problem, A*Prune becomes polyno-
mial growth algorithm and the length of candidate path list is
bounded by: é Qq��Ú u Qm��îhï

(14)

Then the space complexity of A*Prune for KSP is
��Ú u

and the
time complexity isá 	���Ú u ï 	�Ú X·�qXoëOì%í 	��ÄÚ u �#���

.

V. M ETHODS FORCOMPUTING ADMISSIBLE DISTANCE

So far we have seen the two extreme ends of admissible dis-
tances: Å 	��� 9 _ �Ö� Æ

and º 	-�� 9 _ 	-�� 9 ��� given in (8). The
former one does not need any computation but does little help
to the look ahead search, while the second one is really helpful
to the look ahead search but it also increases the precomputa-
tion time. We need some admissible distances between the two
extreme ends, such that they are close to the best admissible dis-
tance and can be computed efficiently.

A problem with less restrictions than the original problem is
called arelaxed problem. It can be easily shown that a solu-
tion of any relaxed problem of the MCSP problem, as shown
in (3), always gives an admissible distanceÅ 	 8 9 _ 	 8 9 �#� . In
this section, we present some efficient methods for computing
admissible distances by solving a relaxed problem of (3).

A. Uniform Distance

Obviously,Å 	-�� 9 _ 	-�� 9 ���/� Æ S �Á�h�
, is an admissible dis-

tance, which is calleduniform distance. A*Prune with uniform
distance is calledA*Uniform algorithm.

A*Uniform, like A*Prune, expands all paths from source
node. However, instead of using heuristic functions as look-
ahead feature, A*Uniform checks the actual path criteria for
pruning and the shortest length path is expanded first.

A*Uniform seems too greedy and probably is not as efficient
as A*Prune with greater admissible distance. However, in the
case of finding CSPs from one source node to

î
target nodes

and with uniform constraints (_ 	��� 9 ��� _ 	 8 9 �W S �i�ð�
),

A*Uniform maybe more efficient than running
î

rounds of
A*Prune.

B. Dijkstra Distance

For each metric�,� , we can use Dijkstra’s algorithm to find
the path with shortest

< � 	>=w�
. We can find� shortest metrics

associated with each
"h�«	U�%�&')(*(*(* � �

. These� shortest met-
rics make up a vector, which is called the Dijkstra distance and is
represented by the symbolº 	-����V�§m�

. By definition and using
(8), we have:» � 	��� �V�§m�/� ¼Ö½O¿KMDFE�G H�I J%À�DFE�G H�I < � 	°=5	��� ���#�

(15)S "��T	 l *�%)(*()(W � �
Lemma 6:The Dijkstra distance is admissible.
Therefore, A*Prune can use Dijkstra distance as an admissi-

ble distance and is called A*Dijkstra algorithm in that case. The
A*Dijkstra algorithm remaines unchanged as shown in figure 1
except the procedure of updating the admissible distance at lines
?? and?? can be omitted.

In the case of simple path is also a requirement to KM-
CSP problem, we can compute the Dijkstra distance in network�;ñ � � � 8 (the network G with node s and all the edges linked
to node s removed), since we really do not want any of the looka-
head paths passing through node8 again. Usually, the Dijkstra
distance in network�;ñ can give a better admissible distance than
the Dijkstra distance in network� .

C. Admissible Distance Given by Other Known Heuristic Algo-
rithms

There are many known algorithms which can give lower
bounds to the MCSP problem [12]. Given an� -approximate
solutions [14], a strict lower bound can also be retrieved by sub-
tracting the error from the approximate solution. Lagrangian
relaxation method [23] can also be used to generate a lower-
bound to the IP problem listed in (3). Obviously, any of these
algorithms can be used for computing the admissible distance in
our A*Prune.

VI. BA*P RUNE

Despite all the nice properties of the A*Prune algorithm, such
as optimality, completeness, ability to solve KMCSP, A*Prune
is not polynomial time. Both the time and space complexities
of A*Prune remain exponential. Compared with some existing
approximate algorithms [12][14], the uncertainty of time and
space complexities is the main drawback of A*Prune algorithm.
In this section, we combine the A*Prune with any known� -
approximate algorithms to give a Bounded A*Prune algorithm,
BA*Prune, which can give either exact or� -approximate solu-
tions to KMCSP problem in polynomial-time. However, the
BA*Prune can only be applied to� QÐ&

cases due to the ap-
plicability of known � -approximation algorithms.

Let � -KMCSP be a known� -approximate algorithm to KM-
CSP problem, BA*Prune will first run A*Prune for a bounded
time ò and bounded memory

(say the length of the candidate

list é), for example we can select
 �ðîhó

and ò �ðîhóWô
sec.

If A*Prune is successful to give the exact solution within the
bounded time and memory, we are done. Otherwise, BA*Prune
executes the� -KMCSP to find an� -approximate solution. Since
we can select

and ò as polynomials of

î
, then the BA*Prune

is polynomial efficient algorithm if the� -KMCSP is polynomial
algorithm. However the trade off for getting this efficiency is
that BA*Prune is partially optimal rather than optimal: it is op-
timal if it is run in the bounded time, otherwise is� -approximate.
The completeness of BA*Prune is guaranteed by the complete-
ness of� -KMCSP. All the other advantages of A*Prune are re-
mained in BA*Prune, such as find

�
CSP paths and multiple

constraints, as long as BA*Prune can be run in the bounded time
and memory.

VII. COMPARISON OFALGORITHMS AND EXPERIMENTAL

RESULTS

In this section we compare the following algorithms in terms
of CPU times:è A*Dijkstra: The A*Prune algorithm with Dijkstra distance,
i.e., the A*Dijkstra algorithm presented in this paper. It gives

�
exact CSPs from one source node8 to one target node9 .

747 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

TABLE I

ALG
õ

ORITHM RUNNING TIME COMPARISON(ö � �f÷ ø
, TIME UNIT:

MICROSECOND)

Input Data 1-1 target 1-N targets
N D K A*Dijks L-Scale A*Unifo T-Scale

100 249 1 5357 8443 160734 71020
10 32773

100 336367
200 241 1 20714 # 18420 1084268 1286781

10 54749
100 365116

300 238 1 38160 11705 2994072 1619317
10 186266

100 1673267
400 236 1 114843 # 85745 4940668 1197150

10 372441
100 3291033

500 234 1 98889 # 111651 9548881 2880185
10 205030

100 3670254

è L-Scale: The length scaling algorithm presented by R. Hassin
[14]. It gives one CSP from one source node8 to one target node9 with length in the range of� -approximation.è A*Uniform: The A*Prune algorithm with uniform distance,
i.e., the A*Uniform algorithm presented in this paper. It gives�

exact CSPs from one source node8 to each of the
î

target
nodes.è T-Scale: The delay scaling algorithm presented in [12]. It
gives one CSP from one source node8 to each of the

î
target

nodes with delay in the range of� -approximation.

We measured their execution times on a 450MHz SUN So-
laris machine. For simplicity, we only tested for the case of two
constraints,�,+ � �ù4 is length and the� ï is delay. The error
tolerance parameter� was set to 5% for the two� -approximate
algorithms, L-Scale and T-Scale.

For our experiments we used random graphs of a given node
size

î
and connectivity

=
which is defined as the probability of

a link existence between node pair
	�������

. The link length, link
delay and delay-limit

»
are also random numbers uniformly

distributed in the open interval (0, 1000). The running times
of the four algorithms for some randomly generated graphs are
listed in Table I. To see how the running time varies with

�
,

the A*Dijkstra algorithm is tested for
�¨�

1, 10 and 100 cases,
while the other three algorithms are only tested for

�����
case.

The running time prefixed with a # indicates the non-optimal
solution.

These experimental results show that the A*Dijkstra is com-
parable to L-Scale and the A*Uniform is comparable to T-Scale
in running time. Considering A*Dijkstra and A*Uniform can
find

�
exact CSP solutions, and can be applied to multiple con-

straints and all the metrics can be float numbers, while the L-
Scale and T-Scale can only give one� -approximate CSP solu-
tion and can only be applied to two constraints with integer met-
rics, we can say that our A*Dijkstra and A*Uniform have better
performance on the average than the best known� -approximate
algorithms, L-Scale and T-Scale.

VIII. C ONCLUSIONS

A*Prune, an algorithm for finding
�

shortest paths subject to
multiple constraints, has been presented. The algorithm grows
a candidate path list, which contains the paths starting from the
source node8 and is initialized to the trivial path of

	 8 8 � . The
candidate path list is ordered such that the path that most likely
to project to a shortest feasible path is extended first. All the
extended paths that are guaranteed to violate the constraints are
pruned from the candidate list. Dijkstra’s shortest path length
can be used as lookahead feature in both the candidate path
pruning and ordering processes. Experimental results show that
A*Prune is comparable to the current best known polynomial-
time � -approximate algorithms. BA*Prune, an algorithm com-
bines the A*Prune with any other known� -approximate algo-
rithm to give either optimal or� -approximate solution to the
KMCSP problem in polynomial time, is also presented.

APPENDIX

We give proofs to the lemmas given in this paper.
Lemma 1. Proof: Since

=
is a path from node8 to node9 , then º 	 9 9 _ 	 9 9 �#��� ÆÌ 	°=w���â®¯	>=��

Hence (12) is true.
Lemma 2. Proof: Suppose the edges on

=
is listed in

the increasing order of number of hops from the start node8 as�fd 4 �d ï *()(*()�dMú��
, where h is the number of edges on path

=
, then=©�o=5	 8 8 �#d 4 d ï (*()(�dMú

Since path
=?	 8 8 �#d 4 is one step expanded path from path

=?	 8 8 � ,=5	 8 8 �Ud 4 d ï is two steps expanded path from path
=5	 8 8 � , etc.,

the path
=

is
Ú

steps expanded path from path
=?	 8 8 � .

Lemma 3. Proof: Assume pathÑ is an inadmissible
head path, i.e.,û "±�ã	#�%�&'*()(*(W � �! Õ¾� 	 Ñ �qå : � . Let

z
be

an path expanded fromÑ , i.e., û Ó �a�n	�������W#z¥� ÑLÓ . Thenû "Ï�Y	#�%�&'*()(*(W � �
, such thatÕ � 	-z��Ù�
< � 	 ÑLÓ � XYØ � 	 u 	 Ó �#�~�< � 	 Ñ � X 	�< � 	 Ó � X�Ø � 	 u 	 Ó �#��� j < � 	 Ñ � X�Ø � 	 u 	 Ñ ���#�,å : � . This

proves that path
z

must be an inadmissible head path. Lemma 3
is true considering that

z
is any extended path of the inadmissi-

ble head pathÑ .
Lemma 4. Proof: As we said that because A*Prune

expands paths in the admissible head path set
�n	 8 ��/ Ì 	>=��! _ �

in the increasing order ofÕÖ+ 	°=w�
, and all feasible paths also be-

long to the admissible head path set, it must eventually expand to
reach a feasible path. This is true unless there are infinitely many
admissible head paths q withÕÖ+ 	 Ñ ���n	 8 ��/ Ì 	>=w�W _ �#�âQÕÖ+ 	°=m�Y�n	 8 9 Ì 	>=w�W _ �#�

. In the simple path search case, the
admissible head path set must be limited, since its super set, the
set of all simple paths in a graph is limited. However, in the com-
plex path search case, loops with infinitely small length may re-
sult in A*Prune searching infinitely many admissible head paths
before finding a feasible solution.

Lemma 5. Proof: Given two paths� and
c
, both

are feasible solutions of the KMCSP problem, and
< + 	 � ��ü< + 	�c��

. Here
< + 	>=w�

is defined as the length of path
=
. A search

748 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

strategy for KMCSP problems is optimal if it finds� earlier thanc
.
Assume A*Prune finds

c
earlier than� . The optimality of

A*Prune can be proved by proving this assumption can not be
true. We first decompose� into three parts:� � 6 d �
where 6 �¥�n	 8 ��/ Ì 	>=��! _ �

, � �¥�n	 u 	�dL�W����
,
d·�¥�

. Then
at the moment that A*Prune finds

c
, there exist paths6 and �

and an edge
d
, such that6 is expanded but6 d is not. Since�

is a feasible path, its head path6 d must be an admissible head
path. Then6 d

is put into the candidate path list instead of being
pruned when its parent path6 is expanded. Since

c
is expanded

but 6 d
is not, then we must have:Õ�+ 	-c'�,Q ÕÖ+ 	 6 dM�u 	-c'��� 9 �¶Ê Õ�+ 	-c'�/�«< + 	-c'�

Hence: < + 	-c'�ýQ ÕÖ+ 	 6 dM�Q < + 	 6 dL� X » + 	 u 	 6 dL�W 9 _ �Q < + 	 6 dL� X < + 	 � �Q < + 	 � �Wk (16)

This contradicts to the given condition. Then our assumption,
A*Prune finds

c
earlier than� , can not be true. This proves the

optimality of A*Prune.
Lemma 6. Proof: It is obvious that�n	��� �V#®¯	>=��! _ 	�������#�Ræq�n	-������

then þ�ÿ��
������� 	�
���������	�
 ����� ö � ���������� þ�ÿ��

������� 	�
���������� 	�� ��� ��
� !����� 	�
�
 �"��� ö � �������#�
$&%(' � � ���!� ÷U÷�÷ �*)+�

or equivalently, º 	�����V�§m�ªQ º 	-����V _ 	�������#�
must be re-

mained true. This proves that the Dijkstra distance is admissible.

REFERENCES

[1] D. Mitra and K. G. Ramakrishnan. A Case Study of Multiservice, Multi-
priority Traffic Engineering Design for Data Networks.Proceedings of the
GLOBECOM’99 Conference,General Conference (Part B), pp 1077-1083.
IEEE, 1999.

[2] Dean H. Lorenz and Ariel Orda. QoS routing on networks with uncertain
parameters.IEEE/ACM Transactions on Networking,6(6):768-778, De-
cember 1998.

[3] M. R. Garey and D. S. Johnson.Computers and Intractability, A Guide to
the Theory of NP-Completeness.Freeman, San Francisco, 1979.

[4] J. M. Jaffe. Algorithms for finding paths with multiple constraints.Net-
works,14:95-116, 1984.

[5] S. Chen and K. Nahrstedt. On finding multi-constrained paths.Proceedings
of ICC’98 Conference,pp. 874-879. IEEE, 1998.

[6] W. C. Lee, M. G. Hluchyi, and P. A. Humble. Routing subject to quality of
service constraints in integrated communication networks.IEEE Network,
pp. 46-45, July/August 1995.

[7] Z. Wang. On the complexity of quality of service routing.Information
Processing Letters,69(3):111-114, 1999.

[8] A. Warburton. Approximation of pareto optima in multiple-objective short-
est path problems.Operations Research,35:70-79, 1987.

[9] E. Bouillet, G. Liu and I. Saniee. Algorithms for WEDM Mesh Network
Design: Routing and Wavelength Assignment for Dedicated Protection,

Ring Auto-Recovery and Optical Cross-Connect Restoration in Core Op-
tical Networks. Technical Report,10009626-000126-01TM, Bell Labora-
tories/Lucent Technologies, 2000.

[10] D. Eppstein. Finding thek shortest Paths.Proc. 35th IEEE Symp. FOCS,
154-165. 1994.

[11] D. Eppstein. Finding thek shortest Paths.SIAM J. Computing,28(2):652-
673. 1999.

[12] A. Goel, D. Kataria, D. Logothetis and K. G. Ramakrishnan. An Efficient
Algorithm for Constraint-based Routing in Data Networks.Technical Re-
port, BL0112120-990616-11TM, Bell Laboratories/Lucent Technologies,
1999.

[13] D. Raz and D. H. Lorenz. Simple Efficient Approximation Scheme for the
Restricted Shortest Path Problem.Technical Report,10009674-991214-
04TM, Bell Laboratories/Lucent Technologies, 1999.

[14] Refael Hassin. Approximation schemes for the restricted shortest path
problem. Mathematics of Operations Research,17(1):36-42, February
1992.

[15] S. Lin. Computer solutions of the traveling salesman problem.Bell Sys-
tems Technical Journal,44(10):2245-2269, 1965.

[16] P. E. Hart, N.J. Nilsson and B. Raphael. A formal basis for the heuris-
tic determination of minimum cost paths.IEEE Transactions on Systems
Science and Cybernetics,SSC-2(2):100-107, 1968.

[17] P. E. Hart, N.J. Nilsson and B. Raphael. Correction to “A formal basis
for the heuristic determination of minimum cost paths”.SIART Newsletter,
37:28-29, 1972.

[18] A. Newell and G. Ernst, The search for generality.Information Process-
ing 1965: Proceedings of IFIP Congress,volume 1, pages 17-24. Spartan.
1965.

[19] Stuart Russell and Peter Norvig. Artificial Intelligence, A Modern Ap-
proach.Prentice-Hall, Inc.,pp. 70-118, NJ, 1996.

[20] A. V. Aho and J. D. Ullman.Foundations of Computer Science.C Edition,
pp. 280-285, W. H. Freeman and Company, New York, 1995.

[21] I. Pohl. First results on the effect of error in heuristic search.Machine In-
telligence 5,pages 219-236. Elsevier/North-Holland, Amsterdam, London,
New York, 1970.

[22] I. Pohl. Practical and theoretical considerations in heuristic search algo-
rithms. Machine Intelligence 8,pages 55-72. Ellis Horwood, Chichester,
England. 1977.

[23] S. Ahuja and J. Orlin. Network Flows.Addison-Wesley Publishing Com-
pany,MA, 1998.

749 IEEE INFOCOM 2001

