
On Algorithms for Ordinary Least Squares Regression SplineFitting: A Comparative Study�Thomas C. M. LeeyOctober 15, 2001; Revised: January 30, 2002AbstractRegression spline smoothing is a popular approach for conducting nonparametric regression.An important issue associated with it is the choice of a \theoretically best" set of knots. Di�er-ent statistical model selection methods, such as Akaike's information criterion and generalizedcross{validation, have been applied to derive di�erent \theoretically best" sets of knots. Typ-ically these best knot sets are de�ned implicitly as the optimizers of some objective functions.Hence another equally important issue concerning regression spline smoothing is how to opti-mize such objective functions. In this article di�erent numerical algorithms that are designed forcarrying out such optimization problems are compared by means of a simulation study. Boththe univariate and bivariate smoothing settings will be considered. Based on the simulationresults, recommendations for choosing a suitable optimization algorithm under various settingswill be provided.Keywords: Bivariate Smoothing, Generalized Cross{Validation, Genetic Algorithms, RegressionSpline, Stepwise Selection�Running Title: Regression Spline Fitting AlgorithmsyPostal: Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877, USA; Email:tlee@stat.colostate.edu; Phone: (970) 491 2185; Fax: (970) 491 7895.1



1 IntroductionAn increasingly popular approach for performing nonparametric curve estimation is regressionspline smoothing. For this approach it is customary to assume that the \true" curve f(x) to berecovered admits the expressionf(x) = b0 + b1x+ : : :+ brxr + mXj=1 �j(x� kj)r+; (1)where r is the order of the regression spline (usually chosen a priori), kj is the jth knot, � =(b0; : : : ; br; �1; : : : ; �m)T is a set of coe�cients and (a)+ = max(0; a). In order to estimate f(x)using (1), one needs to choose the number and the placement of the knots, as well as to estimate�. As mentioned in Wand (2000), there are two general strategies for carrying out this task.The �rst strategy is to select a relatively small number of knots and estimate � using ordinaryleast squares (further details will be given below). With this strategy, the choice of the knotsis extremely important. Regression spline smoothing procedures following this strategy includeFriedman & Silverman (1989), Koo (1997), Kooperberg, Bose & Stone (1997), Lee (2000), Pittman(1999) and Stone, Hansen, Kooperberg & Truong (1997). The second strategy is to use a relativelylarge number of knots, but do not use ordinary least squares to estimate �. In contrast to the�rst strategy, for this second strategy the importance of the choice of knots is relatively minor: thecrucial aspect is how � is estimated (e.g., by penalized least squares). Recent related referencesinclude Denison, Mallick & Smith (1998a), DiMatteo, Genovese & Kass (2001), Eilers & Marx(1996), Lindstrom (1999) and Ruppert & Carroll (2000) and Smith & Kohn (1996).This article focuses on the �rst strategy. Many regression spline smoothing procedures adoptingthis strategy are composed of two major components. The �rst component concerns the use of somesort of statistical model selection principle for de�ning a \theoretically best" set of knots. Quiteoften, such a \theoretically best" set of knots is de�ned implicitly as the optimizer of some objective2



function. The second component is hence a practical algorithm for performing the correspondingoptimization. Typically this optimization is a very hard problem, as (i) the search space is usuallyhuge and (ii) di�erent candidate solutions may have di�erent dimensions. The main purpose ofthis paper is to provide a study for the performances of some common algorithms that are designedfor carrying out such optimization problems. Both the univariate and bivariate settings will beconsidered (but the question of which is the most appropriate principle for de�ning a \theoreticallybest" set of knots will not be considered here). Our hope is that, by separating the two issues of\de�ning the best" and \locating the de�ned best", and that by performing a focused study on thelatter one, useful computational hints can be obtained for reference by future researchers.Due to the complicated nature of the regression spline optimization algorithms, theoreticalcomparison seems to be very di�cult. Therefore, the study to be presented is entirely based onempirical experiments. Of course it is impossible to exhaust all possible experimental settings, butwe shall follow Wand (2000) to use a family approach to alleviate this problem. The idea is tochange one experimental factor (e.g., signal{to{noise ratio) at a time so that patterns can be moreeasily detected.In (1) it is clear that f(x) is a linear combination of fxjgrj=0 and f(x� kj)r+gmj=1. This set offunctions is known as the truncated power basis of degree r. Other basis functions for regressionspline �tting also exist, such as those for B{splines, natural splines and radial basis functions(e.g., see Eilers & Marx 1996 and Green & Silverman 1994). However, as pointed out by Wand(2000), numerical experimental results should not be very sensitive to the choice of basis functions.Therefore for simplicity this article shall concentrate on the truncated power basis.The rest of this article is organized as follows. In Section 2 further background details on uni-variate regression spline smoothing and the use of generalized cross{validation (GCV) for de�ninga \best" estimate will be provided. Then Sections 3 and 4 describe six di�erent optimization algo-3



rithms. These six algorithms will be, in Section 5, compared through a simulation study. FinallySection 6 considers the bivariate setting. Conclusions and recommendations for the univariate andthe bivariate cases are reported in Sections 5.5 and 6.3 respectively.2 Regression Spline Smoothing Using GCVSuppose that n pairs of measurements fxi; yigni=1 satisfyingyi = f(xi) + �i; �i � iid N(0; �2);are observed. The goal is to estimate f which is assumed to satisfy (1). In this article it is assumedr = 3 and min(xi) < k1 < : : : < km < max(xi). Furthermore, following the work of previousauthors (e.g., see Friedman & Silverman 1989, Koo 1997 and Smith & Kohn 1996), fk1; : : : ; kmgis restricted to be a subset of fx1; : : : ; xng. Such a restriction should not have any serious adversee�ect on the quality of the �nal curve estimate. Since f can be completely speci�ed by � = fk;�g,where k = (k1; : : : ; km)T and � = (b0; : : : ; br; �1; : : : ; �m)T , the estimation of f can be achieved viaestimating �. Notice that di�erent estimates �̂s for � may have di�erent dimensions (i.e., di�erentnumber of parameters). Various methods have been proposed for choosing the dimension of a\best" �̂. One of the earliest proposals is the use of generalized cross{validation (GCV) (e.g., seeFriedman & Silverman 1989, Friedman 1991 and Pittman 1999), in which the \best" estimate of�, or equivalently, f , is de�ned as the one that minimizesGCV(�̂) = 1n nXi=1 nyi � f̂(xi)o2.�1� d(m)n �2 : (2)Here d(m) is an increasing function of the number of the knotsm. In order to penalize the additionalexibility inherited by the free choice of knot locations, Friedman & Silverman (1989) suggestedusing d(m) = 3m + 1 instead of the conventional GCV choice d(m) = m + 1. In the sequel this4



GCV choice of �̂, with d(m) = 3m+1, will be taken as the target that the optimization algorithmsshould aim at.Let x = (x1; : : : ; xn)T , y = (y1; : : : ; yn)T and k̂ = (k̂1; : : : ; k̂m̂)T be an estimate of k. Denotethe \design matrix" as X = (1;x; : : : ;xr; (x� k̂11)r+; : : : ; (x� k̂m̂1)r+), where 1 is a n � 1 vectorof ones. If r and k̂ are speci�ed beforehand, then the unique maximum likelihood estimate �̂ of� (conditional on r and k̂) can be obtained by applying ordinary least squares regression, andadmits the closed form expression �̂ = (XTX)�1XTy. This means that �̂ = fk̂; �̂g is completelydetermined by k̂. Therefore the only e�ective argument for the minimization of GCV(�̂) (or anyother similar criteria) is k; i.e., the knots. In the next two sections two classes of knot{basedoptimization algorithms will be described. Their e�ectiveness, in terms of minimizing GCV(�̂),will be studied in Section 5 via simulations.Besides GCV, other model selection principles that have also been applied to derive various\best" knot sets include Akaike's information criterion (AIC) (e.g., Koo 1997 and Kooperberg etal. 1997) and the minimum description length (MDL) principle (e.g., Lee 2000). Some preliminarynumerical experiments were also conducted for both AIC and MDL. Empirical conclusions obtainedfrom these experiments are similar to those for GCV. Due to space limitation, results of theseexperiments are not reported here.3 Stepwise Knot SelectionThe most popular method for searching the minimizer of GCV(�̂) (or any other similar criteria)seems to be stepwise knot selection (e.g., see Friedman 1991, Friedman & Silverman 1989, Hansen,Kooperberg & Sardy 1998, Koo 1997, Kooperberg et al. 1997, Lee 2000 and references giventherein). The idea is very similar to stepwise regression for the classical subset selection problem.It begins with an initial model as the current model. Then at each time step a new model is5



obtained by either adding a new knot to or removing an existing knot from the current model.This process continues until a certain stopping criterion is met. Amongst all the candidate modelsthat have been visited by the algorithm, the one that gives the smallest value of GCV(�̂) is chosenas the �nal model. In this article the following four versions of this stepwise method are considered.A comparison of the relative computational speeds amongst these versions is given in Section 5.5.1. Forward Addition (ForAdd): Set the initial model as the model with no knots and computeits GCV(�̂) value. Add a new knot to the current model at each time step. The knot is chosenin such a way that, when it is added, it produces the largest reduction (or smallest increase)in the current value of GCV(�̂). Continue this knot addition process until the number ofknots added hits a pre{selected limit. Throughout our simulation study reported below, thispre{selected limit was set to n=3. Finally, when the knot{adding process �nishes, a nestedsequence of candidate models are produced and the one that minimizes GCV(�̂) is selectedas the �nal model.2. Backward Elimination (BackElim): This version begins with placing a relatively large num-ber of knots in the initial model. One typical strategy for placing these knots is to place aknot at every s (usually 3 � s � 5) sorted values of the design points xi's. In our simulationstudy we used s = 3. Then the algorithm proceeds to remove one knot at a time, until thereis no more knots to be removed. At each time step the knot to be removed is chosen in sucha way that, when it is removed, it provides the largest reduction (or smallest increase) in thecurrent value of GCV(�̂). Similar to ForAdd, at the end of the process a nested sequence ofcandidate models are obtained. Select the one that gives the smallest GCV(�̂) as the �nalmodel.3. Addition followed by Elimination (AddElim): This version uses the �nal model selected6



by a �rst application of ForAdd as the initial model for the execution of BackElim. Theresulting model obtained from such an execution of BackElim is taken as the �nal model.4. Elimination followed by Addition (ElimAdd): This version uses the �nal model selectedby a �rst application of BackElim as the initial model for the execution of ForAdd. Theresulting model obtained from such an execution of ForAdd is taken as the �nal model.4 Genetic AlgorithmsAnother class of optimization algorithms that have been applied to regression spline smoothing isgenetic algorithms; e.g., see Lee (2002), Pittman (1999), Pittman & Murthy (2000) and referencesgiven therein. In below we begin with a brief description of genetic algorithms. As we shall see,an important issue in applying genetic algorithms is how to represent a candidate model as achromosome. Two di�erent chromosome representation methods will be described and compared.For general introductions to genetic algorithms, see for examples Davis (1991), Fogel (2000) andMichalewicz (1996).4.1 General DescriptionThe use of genetic algorithms for solving optimization problems can be briey described as follows.An initial set, or population, of possible solutions to an optimization problem is obtained andrepresented in vector form. Typically these vectors are of the same length and are often calledchromosomes. They are free to \evolve" in the following way. Firstly parent chromosomes arerandomly chosen from the initial population: chromosomes having lower or higher values of theobjective criterion to be minimized or maximized, respectively, would have a higher chance of beingchosen. O�spring are then reproduced from either applying a crossover or a mutation operation tothese chosen parents. Once a su�cient number of such second generation o�spring are produced,7



third generation o�spring are further produced from these second generation o�spring in a similarmanner as before. This reproduction process continues for a number of generations. If one believesin Darwin's Natural Selection, the expectation is that the objective criterion values of the o�springshould gradually improve over generations; i.e., approaching the optimal value. For the currentproblem, the objective function is GCV(�̂) and one chromosome represents one �̂.In a crossover operation one child chromosome is reproduced from \mixing" two parent chro-mosomes. The aim is to allow the possibility that the child would receive di�erent best parts fromits parents. A typical \mixing" strategy is that every child gene location would have equal chancesof either receiving the corresponding father gene or the corresponding mother gene. This crossoveroperation is the distinct feature that makes genetic algorithms di�erent from other optimizationmethods.In a mutation operation one child chromosome is reproduced from one parent chromosome.The child would essentially be the same as its parent except for a small number of genes whererandomness is introduced to alter the types of these genes. Such a mutation operation preventsthe algorithm being trapped in local optima.For the reason of preserving the best chromosome of a current generation, an additional stepthat one may perform is the elitist step: replace the worst chromosome of the next generation withthe best chromosome of the current generation. Inclusion of this elitist step would guarantee themonotonicity of the algorithm.4.2 Chromosome RepresentationsThis section describes two methods for representing a �̂ in a chromosome form: the �rst methodis described in Lee (2002), while the second method can be found in Pittman (1999). First recallthat for the current curve �tting problem a possible solution �̂ can be uniquely speci�ed by k̂, and8



that k̂ is assumed to be a subset of the design points fx1; : : : ; xng. Thus for the present problema chromosome only needs to carry information about k̂.Fixed{Length Representation (GeneFix): In this representation method all chromosomes arebinary vectors with the same length n, the number of data points. A simple example willbe used to illustrate its idea. Suppose n = 15 and k̂ = fx3; x8; x14g; i.e., there are threeknots in this candidate model and they are located at x3, x8 and x14. If we use \0" to denotea normal gene and \1" to denote a knot gene, then the chromosome for this example is001000010000010. One advantage of this method is that, it can be easily extended to handlecases when outliers and/or discontinuities are allowed: simply introduces two additional typesof genes, outlier genes and discontinuity genes.Variable{Length Representation (GeneVar): For this method the chromosomes are not binarynor having the same length. Here the location of a knot is represented by one integer{valuedgene, and hence the length of a chromosome is equal to the number of knots in the candidatemodel. For the previous example, the corresponding chromosome is 3-8-14 (the hyphens weremerely used to separate the genes). Since the chromosomes are generally not of the samelength, the optimization is done in the following way. First pre{specify the minimum and themaximum number of knots that any candidate model can have. Denote them as Kmin andKmax respectively. Then for each K = Kmin; : : : ; Kmax, apply the algorithm to �nd the bestcandidate model amongst only those candidate models that have K knots. That is, for thisparticular run of the algorithm, all chromosomes are restricted to have the same length K.Then, after the execution of the algorithm for every value of K, a sequence of Kmax�Kmin+1models is obtained. The one that minimizes GCV(�̂) will be chosen as the �nal model.9



Please consult Lee (2002) and Pittman (1999) for further details on the implementations of thesealgorithms.5 Simulation StudyThis section presents results of a series of numerical experiments which were conducted to evaluatethe performances of the various optimization algorithms (four stepwise and two genetic) describedabove. These experiments were designed to study the e�ects of varying the (i) noise level, (ii)design density, (iii) noise variance function, and (iv) degree of spatial variation.The simulation was conducted in the following way. For each of the experimental setups de-scribed below, 100 arti�cial noisy data sets, each with 200 design points xi, were generated. Then,for each of these 100 data sets, the above six algorithms were applied to minimize GCV(�̂) and thecorresponding f̂ is obtained. For each obtained f̂ , both the GCV value and the mean{squared error(MSE) value, de�ned as 1nPiff(xi)� f̂(xi)g2, are computed and recorded. Paired Wilcoxon testswere then applied to test if the di�erence between the median GCV (and MSE) values of any twoalgorithms is signi�cant or not. The signi�cance level used was 56% = 0:83%. If the median GCV(or MSE) value of an algorithm is signi�cantly less than the remaining �ve, it will be assigned aGCV (or MSE) rank 1. If the median GCV (or MSE) value of an algorithm is signi�cantly largerthan one but less than four algorithm, it will be assigned a GCV (or MSE) rank 2, and similarlyfor ranks 3 to 6. Algorithms having non{signi�cantly di�erent median values will share the sameaveraged rank. Ranking the algorithms in this manner provides an indicator about the relativemerits of the methods (see Wand 2000). Since the main interest of this article is to compare thealgorithms in terms of their abilities for conducting numerical minimization, GCV seems to be amore appropriate performance measure here than MSE.10



Test Function 1

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

Test Function 2

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Test Function 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Test Function 4

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0Figure 1: Four Test Functions.5.1 Varying Noise LevelFor this �rst experiment four test functions were used. They are given in Table 1 and are alsoplotted in Figure 1. These test functions possess di�erent characteristics and were also used bymany previous authors.The data (xi; yi) were generated using yi = f(xi) + ei, where f is a test function, xi is drawnfrom Unif[0,1], and ei is a zero{mean Gaussian error with variance �2. Three signal{to{noise ratios(SNRs) were used: SNR=2, 4 and 6, where SNR is de�ned as kfk=�. Boxplots of the GCV andlog(MSE) values for the six algorithms, together with their Wilcoxon test rankings, are given inFigures 2 and 3.Test Function 1: f(x) = (4x� 2) + 2 expf�16(4x� 2)2g; x 2 [0; 1]Test Function 2: f(x) = sin3(2�x3); x 2 [0; 1]Test Function 3: f(x) = 8>>>>>>><>>>>>>>: 4x2(3� 4x); x 2 [0; 0:5)43x(4x2 � 10x+ 7)� 32 ; x 2 [0:5; 0:75)163 x(x� 1)2; x 2 [0:75; 1]Test Function 4: f(x) = sin(8�x); x 2 [0; 1]Table 1: Formulae for Test Functions.11



1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

6 4 5 3 1 2

Test Fn 1, SNR=2

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

6 5 3.5 3.5 1 2

Test Fn 2, SNR=2

1.
0

1.
1

1.
2

1.
3

6 4 5 3 1 2

Test Fn 3, SNR=2

1.
00

1.
05

1.
10

1.
15

1.
20

6 4 4 4 2 1

Test Fn 4, SNR=2

1.
00

1.
05

1.
10

1.
15

6 5 3.5 3.5 1.5 1.5

Test Fn 1, SNR=4

1.
00

1.
05

1.
10

1.
15

6 5 3 4 1 2

Test Fn 2, SNR=4

1.
0

1.
1

1.
2

1.
3

1.
4

6 4 5 3 1 2

Test Fn 3, SNR=4

1.
00

1.
05

1.
10

1.
15

1.
20

6 5 3 3 3 1

Test Fn 4, SNR=4

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

6 5 3.5 3.5 1.5 1.5

Test Fn 1, SNR=6

1.
00

1.
05

1.
10

1.
15

6 5 3 4 1.5 1.5

Test Fn 2, SNR=6
1.

0
1.

2
1.

4
1.

6
1.

8
2.

0
2.

2

6 4 5 3 1 2

Test Fn 3, SNR=6

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

6 4 2.5 2.5 5 1

Test Fn 4, SNR=6

Figure 2: Boxplots of the GCV values for the \Varying Noise Level" experiment. In each panelthe boxplots correspond respectively to, from left to right, ForAdd, BackElim, AddElim, ElimAdd,GeneFix and GeneVar. The number below each boxplot is the Wilcoxon test ranking.5.2 Varying Design DensityThe same four test functions as in the Varying Noise Level experiment were used. The data (xi; yi)were also generated from yi = f(xi)+ei with � = kfk=4 (i.e., SNR=4), but now the xi's were drawnfrom three di�erent densities. The three densities are Beta(1.2, 1.8), Beta(1.5, 1.5) and Beta(1.8,1.2), and their probability density functions are plotted in Figure 4. Boxplots of the GCV andlog(MSE) values, and Wilcoxon test rankings of the algorithms are displayed in Figures 5 and 6 ina similar manner as before. 12



1
2

3
4

5

3 3 6 3 3 3

Test Fn 1, SNR=2

1
2

3
4

5

2.5 5.5 2.5 5.5 2.5 2.5

Test Fn 2, SNR=2

5
10

15
20

5.5 3.5 5.5 3.5 1 2

Test Fn 3, SNR=2

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

2.5 6 4.5 4.5 2.5 1

Test Fn 4, SNR=2
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

3.5 3.5 3.5 3.5 3.5 3.5

Test Fn 1, SNR=4

1
2

3
4

2.5 5.5 2.5 5.5 2.5 2.5

Test Fn 2, SNR=4

2
4

6
8

5.5 3.5 5.5 3.5 1 2

Test Fn 3, SNR=4

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

2.5 6 2.5 5 2.5 2.5

Test Fn 4, SNR=4

1
2

3
4

3 6 4.5 4.5 2 1

Test Fn 1, SNR=6

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

2.5 6 2.5 5 2.5 2.5

Test Fn 2, SNR=6

2
4

6
8

10

5 5 5 3 1.5 1.5

Test Fn 3, SNR=6

1.
0

1.
5

2.
0

2.
5

3.
0
2 6 4.5 4.5 2 2

Test Fn 4, SNR=6

Figure 3: Similar to Figure 2 but for log(MSE).
Design Density 1, Beta(1.2, 1.8)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Design Density 2, Beta(1.5, 1.5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Design Density 3, Beta(1.8, 1.2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Figure 4: Plots of the three di�erent design densities.13



1.
0

1.
1

1.
2

1.
3

6 4.5 4.5 3 1.5 1.5

Test Fn 1, Design Den=1
1.

00
1.

04
1.

08
1.

12

6 5 3 3 1 3

Test Fn 2, Design Den=1

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

6 4 5 2.5 1 2.5

Test Fn 3, Design Den=1

1.
00

1.
05

1.
10

1.
15

1.
20

6 5 3 3 3 1

Test Fn 4, Design Den=1

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

6 4 4 4 1.5 1.5

Test Fn 1, Design Den=2

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

5.5 5.5 2 4 2 2

Test Fn 2, Design Den=2

1.
0

1.
1

1.
2

1.
3

1.
4

6 4 5 2.5 1 2.5

Test Fn 3, Design Den=2

1.
00

1.
05

1.
10

1.
15

1.
20
6 5 2 3.5 3.5 1

Test Fn 4, Design Den=2

1.
00

1.
05

1.
10

1.
15

6 4.5 4.5 3 1 2

Test Fn 1, Design Den=3

1.
00

1.
05

1.
10

1.
15

6 5 3.5 3.5 2 1

Test Fn 2, Design Den=3

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

6 4 5 2.5 1 2.5

Test Fn 3, Design Den=3

1.
00

1.
05

1.
10

1.
15

6 4 2 4 4 1

Test Fn 4, Design Den=3

Figure 5: Similar to Figure 2 but for the Varying Design Density experiment.
14



1
2

3
4

3 6 3 3 3 3

Test Fn 1, Design Den=1
1

2
3

4

2.5 6 2.5 5 2.5 2.5

Test Fn 2, Design Den=1

2
4

6
8

10

5.5 3.5 5.5 3.5 1 2

Test Fn 3, Design Den=1

1.
0

1.
5

2.
0

2.
5

3.
0

2.5 6 2.5 5 2.5 2.5

Test Fn 4, Design Den=1

5
10

15
20

2.5 6 2.5 2.5 2.5 5

Test Fn 1, Design Den=2

1
2

3
4

5

1 5.5 2 5.5 3.5 3.5

Test Fn 2, Design Den=2

2
4

6
8

5.5 3 5.5 3 1 3

Test Fn 3, Design Den=2

1
2

3
4
2.5 6 2.5 5 2.5 2.5

Test Fn 4, Design Den=2

1
2

3
4

5

3.5 3.5 3.5 3.5 3.5 3.5

Test Fn 1, Design Den=3

1
2

3
4

5
6

2 6 4.5 4.5 2 2

Test Fn 2, Design Den=3

2
4

6
8

10

5.5 4 5.5 3 1 2

Test Fn 3, Design Den=3

1
2

3
4

2.5 6 2.5 5 2.5 2.5

Test Fn 4, Design Den=3

Figure 6: Similar to Figure 5 but for log(MSE).
15



5.3 Varying Noise Variance FunctionAgain, the same four test functions as in the Varying Noise Level experiment were used, but thevariance of the Gaussian noise was not the same for all values of xi. Rather, the variance wasspeci�ed by a variance function v(x), and the data (xi; yi) were generated from yi = f(xi)+v(xi)ei,where � = kfk=4 and the xi's were drawn from Unif[0,1]. The following three variance functionsv(x) were used: Variance Function 1 v(x) = 0:5 + x; x 2 [0; 1],Variance Function 2 v(x) = 8>>><>>>: 1:3� 1:2x x 2 [0; 0:5);0:2 + 1:2x x 2 [0:5; 1];Variance Function 3 v(x) = 1:5� x; x 2 [0; 1].These variance functions are plotted in Figure 7. Boxplots of the GCV and log(MSE) values,together with the Wilcoxon test rankings are given in Figures 8 and 9 in a similar manner asbefore.
Variance Function 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

Variance Function 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

Variance Function 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4Figure 7: Plots of the Noise Variance Functions.

16



1.
0

1.
1

1.
2

1.
3

6 5 3.5 3.5 1.5 1.5

Test Fn 1, Var Fn=1
1.

00
1.

05
1.

10
1.

15
1.

20

6 5 3.5 3.5 1 2

Test Fn 2, Var Fn=1

1.
0

1.
1

1.
2

1.
3

1.
4

6 4 5 3 1 2

Test Fn 3, Var Fn=1

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

6 5 3 3 3 1

Test Fn 4, Var Fn=1

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

6 5 3.5 3.5 1.5 1.5

Test Fn 1, Var Fn=2

1.
00

1.
05

1.
10

1.
15

6 5 3 4 1.5 1.5

Test Fn 2, Var Fn=2

1.
0

1.
1

1.
2

1.
3

1.
4

6 4 5 2.5 1 2.5

Test Fn 3, Var Fn=2

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

6 4.5 2.5 2.5 4.5 1

Test Fn 4, Var Fn=2

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

6 4 4 4 1.5 1.5

Test Fn 1, Var Fn=3

1.
00

1.
05

1.
10

1.
15

6 5 3 4 1.5 1.5

Test Fn 2, Var Fn=3

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

6 4 5 3 1 2

Test Fn 3, Var Fn=3

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

6 3.5 3.5 3.5 3.5 1

Test Fn 4, Var Fn=3

Figure 8: Similar to Figure 2 but for the Varying Noise Variance Function experiment.
17



2
4

6
8

10
12

14

3 5.5 3 5.5 3 1

Test Fn 1, Var Fn=1
1

2
3

4

1.5 5 3 5 5 1.5

Test Fn 2, Var Fn=1

2
4

6
8

10

5.5 3.5 5.5 3.5 1 2

Test Fn 3, Var Fn=1

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

2.5 6 2.5 5 2.5 2.5

Test Fn 4, Var Fn=1

2
4

6
8

3 6 3 5 3 1

Test Fn 1, Var Fn=2

1
2

3
4

5
6

7

2.5 6 2.5 5 2.5 2.5

Test Fn 2, Var Fn=2

2
4

6
8

5 3 6 3 1 3

Test Fn 3, Var Fn=2

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

2 6 4.5 4.5 2 2

Test Fn 4, Var Fn=2

1
2

3
4

5

2 6 4.5 4.5 2 2

Test Fn 1, Var Fn=3

1
2

3
4

2 6 4 5 2 2

Test Fn 2, Var Fn=3

2
4

6
8

10
12

14

5.5 3.5 5.5 3.5 1 2

Test Fn 3, Var Fn=3

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

2.5 6 2.5 5 2.5 2.5

Test Fn 4, Var Fn=3

Figure 9: Similar to Figure 8 but for log(MSE).
18



5.4 Varying Spatial VariationIn this experiment the six test functions were taken from Wand (2000), all have di�erent degreesof spatial variation. They are indexed by a single integer parameter j, and have the formfj(x) = qx(1� x) sin 242� n1 + 2(9�4j)=5ox+ 2(9�4j)=5 35 ; j = 1; : : : ; 6:Note that it is of the same structural form of the Doppler function introduced by Donoho &Johnstone (1994).The data (xi; yi) were generated from yi = fj(xi)+ ei with � = kfjk=4 and the xi's drawn fromUnif[0,1]. The test functions, together with typical simulated data sets, are plotted in Figure 10.In a similar fashion as before, boxplots of GCV and log(MSE) values, and Wilcoxon test rankingsof the algorithms are displayed in Figures 11 and 12.
•
•
•
•••
•
•
•
••••
•••
••••

••••
•
•
••

•

•

•

•••••
••••
••
•
••

•
•

•

••

••
••

•
•
•
•

•••
•
•
•
•

••
•••

•

•
•

••
•

••
••

•••

•

•

•
••••••

•

•
•

•

•
•••
•

••
•
•
••
•
•

••
•••••••••••••

•
••
••
•
•
••
•
•••••

••
•
•
•
•
•
•

•••
••
•

••
•
••
•

•
•
•••
•
•
•
•••
••
•
••

•
•
•••
••
•
••
••
•

•

•
••
••
•
•••••

Spatial Variation, j=1

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

•
••
•
•
••

•

•
••
••

•

•

•

••

••
•
•
•

•

••
••••

•

•

•
•

••
•

•
•

•
•
•
•
•
•

•

••
•

•

•
•
•

•
••

•
•

•
•
•
•
••
•
•
•

•
•

••••
••

•

•
•
•
•
•••
•
•

••
••
••
•
••

•
••

••

••••
•
•
•
•

•

•
•
••

•
••

••••

•

••

••

•••••
•

••••

•
••••

•
•
•

•
•
•

•

••
•
•
•

•

•

••

•

•

•

•
•
•
••
•

•
•••

•
•••••

•

•

••

•
•
•

••••

••

•
•

•
•

•

•

•

••
•
••

•

Spatial Variation, j=2

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

•

••

••

••

•

•

•
••
•

•

••
•
•••
•
•••

•

•
•
•

•

•

•

•
•
•

•

••

•

•
•

•

•

•

•
•
•
•

•

•••
•
•

•

•

•

•

•
••
•

•
••
•

•
•
•

•

•

•

•

•

•

•

••
•
•
•

•
•
••
•
••
•
••
•

••

•

•
•••

•
•
•••
•
•
••
•

••
•

•
•••
••
•

•
•
••••
•

•

•

•

•
•

•••

•••

•
••

•

•

•

•
••
•

•
••
•
•••

•
•

•

•

•
••

•

•
•••••

•
•

••
•
••

••

•
•••
•
••
••
••
•

•

••••
••

•

•
•

•

•

Spatial Variation, j=3

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

•

•

•
•
•

•

•
•

•

•

••
•
•
•

•••

••
•••
••
••
•
•

•
•

•

•
•
•
•
•

•
•

•
•

•
•

•

•

•
•
•

•

•
•

•

•
••

•

•

•

•

•

•

••

•
•

•

••

•
•

•

••
•

•

•

•

••

•

•

•

••
••
•

•
•

•

•

•

•
•

•

•
•
•
••
•
••
•
•

••
•
•
••
•

•
•

•
•••
•
•

•

•
••

•

•
•
•
•

•

•
••••
•

•••

••

•

•

•

•••
••
•

•

•
••

••
••

•

•••
•

•
••
•

•
•
•
•
•
•

•••

•

•

•
•

•
•

•

•••••

•
••

•
•••

•

••
••

Spatial Variation, j=4

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

••
•
•••

•

•

•

•

•

••
•

•

••

•

••

••
••

••

•
•

•
•

•••

•
•

•

••

•
•
•

••

•

•

••

•
•••
•

•
•
•

•
•

•
•

•

•

•

••••

•

•

•

•
•
•

•

•
•

•
••
•

•

•

•

•
•

••
•

•

•

•
••
•
•
••
•
••••
•
•
•

••

•
•
••

•
•
•

••••

•

•

•
•

•

•

•
•••

•
•

••

••
••••
•

•
•

•

••

•

•

•
•

••

•
••
•

••
•

•

•

••

•

•
•
••

•
•
••
••

•
•

•
••

•

•

•

•
•

•
••

•

•

••
••
•••
•
•
••

•

•
•

Spatial Variation, j=5

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

•

••

•
•

•

•

••

•

••

•

•

•
•

•

•

•

•

•

••
•

•
•

•

••

•

••

•

••
•

••

•

•

•

•
•
•

•

•
•

•
••

•

••

•

•
•
•

•

••

•

•

•
•

•
•
•
•

•

•

•
•

•

•

•
•

•

•
•
•

••

••
•
••
••

•

•

•

•

•
•••
•
•

•
•••••••

••

••••

•

•

•

•

••
•

•

•

•
•

•
•

•
•
•

••
•

••
•

•

•
•

•

•

•
••
•
•

•

•

•

•
•••

•

•
•

•
•
•

••

•

•

••

••
•
•

••
•••
•

•
•
•
••
••••

•

•

•

•
••
•

•

•
•
•
•
•

•••
•

Spatial Variation, j=6

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Figure 10: Plots of the Test Functions, together with typical simulated data sets, for the VaryingSpatial Variation experiment. 19



1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

3.5 6 3.5 5 1.5 1.5

Spatial Variation, j=1

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

3 6 3 5 1 3

Spatial Variation, j=2

1.
00

1.
05

1.
10

1.
15

6 5 3.5 3.5 1.5 1.5

Spatial Variation, j=3

1.
00

1.
05

1.
10

1.
15

1.
20

4 6 3 5 1.5 1.5

Spatial Variation, j=4

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

6 4 2 2 2 5

Spatial Variation, j=5

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

5.5 4 2 3 1 5.5

Spatial Variation, j=6

Figure 11: Similar to Figure 2 but for the Varying Spatial Variation experiment.
1

2
3

4
5

6
7

3 6 3 3 3 3

Spatial Variation, j=1

2
4

6

2.5 6 2.5 5 2.5 2.5

Spatial Variation, j=2

1
2

3
4

5
6

7

4.5 4.5 4.5 4.5 1.5 1.5

Spatial Variation, j=3

1
2

3
4

5
6

1 6 2 5 3.5 3.5

Spatial Variation, j=4

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

2 5 2 5 2 5

Spatial Variation, j=5

1.
0

1.
5

2.
0

2.
5

3.
0

2 5.5 3.5 3.5 1 5.5

Spatial Variation, j=6

Figure 12: Similar to Figure 11 but for log(MSE).20



5.5 Empirical Conclusions and RecommendationsThe six algorithms gave fairly consistent performances for the above di�erent experimental settings.The averaged Wilcoxon GCV and MSE test rankings are given in Tables 2 and 3 respectively.Judging from the overall averaged rankings, it seems that the two genetic algorithms are superiorto the stepwise procedures, especially in terms of minimizing GCV(�̂).The computation times taken for the stepwise procedures to �nish one run under various settingswere reasonably constant. The typical running times on a Sun Ultra{60 Workstation for ForAdd,BackElim, AddElim and ElimAdd were respectively 15s, 38s, 15s and 53s. These timings are bestto be served as upper bounds, as we did not optimize the codes in our implementation. For thegenetic algorithms, the execution times were quite variable: for GeneFix it ranged from 50s to70s, while for GeneVar it ranged from 50s to 100s. Therefore, if computation time is not an issue,then one should perhaps use the genetic algorithms. However, if time is an important issue, thenAddElim seems to be a good compromise.One last interesting observation is that, for some settings the GCV and MSE values are notlinearly related; i.e., a �̂ that has a small GCV value does not guarantee to has a small MSE value,and vice versa. This may suggest that GCV(�̂) is not the best criterion if the goal is to obtain the�̂ that minimizes MSE.
21



Algorithm NoiseL DesignD VarFn SpaVar OverallForAdd 6.00 5.96 6.00 4.67 5.66BackElim 4.50 4.54 4.50 5.17 4.68AddElim 3.84 3.62 3.71 2.83 3.50ElimAdd 3.33 3.21 3.33 3.92 3.45GeneFix 1.71 1.88 1.88 1.42 1.72GeneVar 1.63 1.79 1.59 3.00 2.00Table 2: Average Wilcoxon GCV test rankings for the four univariate experimental settings:Noise Level (NoiseL), Design Density (DesignD), Variance Function (VarFn) and Spatial Varia-tion (SpaVar). Algorithm NoiseL DesignD VarFn SpaVar OverallForAdd 3.33 3.21 3.08 2.50 3.03BackElim 4.96 5.13 5.21 5.50 5.20AddElim 4.08 3.50 3.88 2.92 3.60ElimAdd 4.25 4.03 4.54 4.33 4.29GeneFix 2.21 2.29 2.29 2.25 2.26GeneVar 2.17 2.83 2.00 3.50 2.63Table 3: Similar to Table 2 but for the Wilcoxon MSE test rankings.22



6 Bivariate SmoothingThis section considers bivariate smoothing. Due to space limitation, the description will be keptminimal. Important references include Friedman (1991) and Kooperberg et al. (1997).6.1 BackgroundThe data fyi; x1i; x2igni=1 are now assumed to satisfyyi = f(x1i; x2i) + ei; ei � iidN(0; �2); (3)where f is the bivariate \true" surface to be recovered. It is assumed that f can be modeled byf(x1; x2) =X �jBj(x1; x2);where the basis functions Bj(x1; x2)'s are of the form 1, x1, x2, (x1 � k1u)+, (x2 � k2v)+, x1x2,x2(x1 � k1u)+, x1(x2 � k2v)+ and (x1 � k1u)+(x2 � k2v)+. Also, the knots are restricted to be asubset of the marginal values of the design points (x1i; x2i). In our simulation a bivariate versionof GCV(�) is used to de�ne a \best" f̂ .Driven by the univariate simulation results, two algorithms for minimizing the GCV functionare investigated: stepwise knot addition followed by elimination and genetic algorithms with �xed{length chromosomes. These two algorithms are simple straightforward extensions of their univariatecounterparts. In fact the stepwise procedure to be compared in our simulation below was takenfrom the POLYMARS package mainly developed by Charles Kooperberg (see the unpublishedmanuscript Kooperberg & O'Connor n.d.). Note that in POLYMARS a \no interactions if no maine�ects" constraint is placed on all the possible candidate models. The same constraint was alsoimposed for the genetic algorithm. 23



6.2 SimulationA simulation study was conducted. Although it was done at a smaller scale when comparing to theunivariate setting, we believe that useful empirical conclusions can still be drawn. Five bivariatetest functions were used. They are listed in Table 4 and are plotted in Figure 13. These functionshave been used by for examples by Denison, Mallick & Smith (1998b) and Hwang, Lay, Maechler,Martin & Schimert (1994), and were constructed to have a unit standard deviation and a non{negative range. The data were generated according to (3), with the design points drawn fromUnif[0; 1]2. The number of design points was 100, and three SNRs were used: 2, 4 and 6. Thenumber of replicates was 100.For each simulated data set, the two algorithms were applied to minimize the GCV functionand obtain the corresponding f̂ . As for the univariate case, both the GCV and MSE values werecomputed. The MSE values were computed over a grid of 25 � 25 grid points. Boxplots of theGCV and log(MSE) values, together with the Wilcoxon test rankings, are provided in Figures 14and 15. Typically it took less than 5s for the POLYMARS stepwise procedure to �nishes, while forthe genetic algorithm the computation times were ranged from 50s to 300s.6.3 Results and Some SuggestionsIn terms of minimizing the GCV function, the stepwise procedure performed better for Test Func-tion 1, while the genetic algorithm performed better for the remaining four test functions. However,both procedures gave similar performances in terms of MSE. It seems to suggest that, when the\true" surface is simple in structure (such as Test Function 1), the greedy nature of the stepwiseprocedure can reliably locate good intermediate search directions during the minimization of GCV.However, when the \true" surface is more complicated, the stepwise procedure may fail to do so,and one may need to switch to the computationally{very{expensive genetic algorithm.24



Test Function 1: f(x1; x2) = 10:391f(x1� 0:4)(x2 � 0:6) + 0:36gTest Function 2: f(x1; x2) = 24:234fr2(0:75� r2)g; r2 = (x1 � 0:5)2 + (x2 � 0:5)2Test Function 3: f(x1; x2) = 42:659f0:1+ ~x1(0:05 + ~x41 � 10~x21~x22 + 5~x42)g; ~x1 = x1 � 0:5; ~x2 = x2 � 0:5Test Function 4: f(x1; x2) = 1:3356[1:5(1� x1) + e2x1�1 sinf3�(x1 � 0:6)2g+ e3(x2�0:5) sinf4�(x2 � 0:9)2g]Test Function 5: f(x1; x2) = 1:9[1:35+ ex1 sinf13(x1 � 0:6)2ge�x2 sin(7x2)]Table 4: Five Test Functions for the bivariate setting.
Test Function 1 Test Function 2 Test Function 3

Test Function 4 Test Function 5

Figure 13: Perspective plots of bivariate Test Functions.25



0.
1

0.
2

0.
3

0.
4

stepwise (1) genetic (2)

Test Function 1, SNR=2

0.
3

0.
4

0.
5

0.
6

0.
7

stepwise (2) genetic (1)

Test Function 2, SNR=2

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

stepwise (2) genetic (1)

Test Function 3, SNR=2

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

stepwise (2) genetic (1)

Test Function 4, SNR=2

0.
6

0.
8

1.
0

1.
2

1.
4

stepwise (2) genetic (1)

Test Function 5, SNR=2

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

stepwise (1) genetic (2)

Test Function 1, SNR=4

0.
15

0.
20

0.
25

stepwise (2) genetic (1)

Test Function 2, SNR=4

0.
4

0.
6

0.
8

1.
0

1.
2

stepwise (2) genetic (1)

Test Function 3, SNR=4

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

stepwise (2) genetic (1)

Test Function 4, SNR=4

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

stepwise (2) genetic (1)

Test Function 5, SNR=4

0.
02

0.
03

0.
04

0.
05

stepwise (1) genetic (2)

Test Function 1, SNR=6

0.
08

0.
12

0.
16

0.
20

stepwise (2) genetic (1)

Test Function 2, SNR=6

0.
2

0.
4

0.
6

0.
8

1.
0

stepwise (2) genetic (1)

Test Function 3, SNR=6

0.
04

0.
06

0.
08

0.
10

0.
12

stepwise (2) genetic (1)

Test Function 4, SNR=6

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

stepwise (2) genetic (1)

Test Function 5, SNR=6

Figure 14: Boxplots of GCV values for the bivariate smoothing experiment. Numbers in parenthesesare Wilcoxon test rankings.
26



-6
-4

-2
0

2

stepwise (1) genetic (2)

Test Function 1, SNR=2

-2
0

2
4

stepwise (2) genetic (1)

Test Function 2, SNR=2

-2
-1

0
1

2

stepwise (1.5) genetic (1.5)

Test Function 3, SNR=2

-2
0

2
4

6

stepwise (2) genetic (1)

Test Function 4, SNR=2

-1
.0

-0
.5

0.
0

0.
5

stepwise (1.5) genetic (1.5)

Test Function 5, SNR=2

-9
-8

-7
-6

-5
-4

-3

stepwise (1) genetic (2)

Test Function 1, SNR=4

-4
-2

0
2

4
6

stepwise (1.5) genetic (1.5)

Test Function 2, SNR=4

-2
0

2
4

6

stepwise (1.5) genetic (1.5)

Test Function 3, SNR=4

-4
-2

0
2

4

stepwise (1.5) genetic (1.5)

Test Function 4, SNR=4

0
2

4
6

stepwise (2) genetic (1)

Test Function 5, SNR=4

-8
-6

-4
-2

stepwise (1) genetic (2)

Test Function 1, SNR=6

-3
-2

-1
0

1

stepwise (1.5) genetic (1.5)

Test Function 2, SNR=6

-2
0

2
4

6

stepwise (2) genetic (1)

Test Function 3, SNR=6

-4
-2

0
2

4

stepwise (1.5) genetic (1.5)

Test Function 4, SNR=6
-2

0
2

4
6

8

stepwise (2) genetic (1)

Test Function 5, SNR=6

Figure 15: Similar to Figure 14 but for log(MSE).
27



AcknowledgementThe author would like to thank one referee for his/her constructive comments.ReferencesDavis, L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.Denison, D. G. T., Mallick, B. K. & Smith, A. F. M. (1998a), `Automatic Bayesian curve �tting',Journal of the Royal Statistical Society Series B 60, 333{350.Denison, D. G. T., Mallick, B. K. & Smith, A. F. M. (1998b), `Bayesian MARS', Statistics andComputing 8, 337{346.DiMatteo, I., Genovese, C. R. & Kass, R. E. (2001), `Bayesian curve �tting with free-knot splines',Biometrika 88, 1055{1071.Donoho, D. L. & Johnstone, I. M. (1994), `Ideal spatial adaptation by wavelet shrinkage',Biometrika 81, 425{455.Eilers, P. H. C. & Marx, B. D. (1996), `Flexible parsimonious smoothing and additive modeling(with discussion)', Statistical Science 89, 89{121.Fogel, D. B. (2000), `Evolutionary computing', IEEE Spectrum pp. 26{32.Friedman, J. H. (1991), `Multivariate adaptive regression splines (with discussion)', The Annals ofStatistics 19, 1{141.Friedman, J. H. & Silverman, B. W. (1989), `Flexible parsimonious smoothing and additive mod-eling (with discussion)', Technometrics 31, 3{21.28



Green, P. J. & Silverman, B. W. (1994), Nonparametric Regression and Generalized Linear Models,Chapman and Hall, London.Hansen, M. H., Kooperberg, C. & Sardy, S. (1998), `Triogram models', Journal of the AmericanStatistical Association 93, 101{119.Hwang, J.-N., Lay, S.-R., Maechler, M., Martin, R. D. & Schimert, J. (1994), `Regression modelingin back{propagation and projection pursuit learning', IEEE Transactions on Neural Networks5, 342{353.Koo, J.-Y. (1997), `Spline estimation of discontinuous regression functions', Journal of Computa-tional and Graphical Statistics 6, 266{284.Kooperberg, C. & O'Connor, M. (n.d.), `POLYMARS'. Unpublished manuscript.Kooperberg, C., Bose, S. & Stone, C. J. (1997), `Polychotomous regression', Journal of the Amer-ican Statistical Association 92, 117{127.Lee, T. C. M. (2000), `Regression spline smoothing using the minimum description length principle',Statistics and Probability Letters 48, 71{82.Lee, T. C. M. (2002), `Automatic smoothing for discontinuous regression functions', StatisticaSinica. To appear.Lindstrom, M. J. (1999), `Penalized estimation of free{knot splines', Journal of Computational andGraphical Statistics 8, 333{352.Michalewicz, Z. (1996),Genetic Algorithms + Data Structures = Evolution Programs, third, revisedand extended edn, Springer-Verlag Berlin Heidelberg.29



Pittman, J. (1999), `Adaptive splines and genetic algorithms', Journal of Computational and Graph-ical Statistics. To appear.Pittman, J. & Murthy, C. (2000), `Fitting optimal piecewise linear functions using genetic algo-rithms', IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 701{718.Ruppert, D. & Carroll, R. J. (2000), `Spatially{adaptive penalties for spline �tting', Australian &New Zealand Journal of Statistics 42, 205{223.Smith, M. & Kohn, R. (1996), `Nonparametric regression using Bayesian variable selection', J.Econometrics 75, 317{344.Stone, C. J., Hansen, M., Kooperberg, C. & Truong, Y. K. (1997), `Polynomial splines and their ten-sor products in extended linear modeling (with discussion)', The Annals of Statistics 25, 1371{1470.Wand, M. P. (2000), `A comparison of regression spline smoothing procedures', ComputationalStatistics 15, 443{462.
30


