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Abstract—Multicast-based network tomography enables infer- [4] of network links, and even the network topology itself [5].

ence of average loss rates and delay distributions of internal More recently, [6] showed that tomographic methods can also
network links from end-to-end measurements of multicast probes. be used to MonitowPNS

Recent work showed that this method, based on correlating Thi ims t dth biliti f delav t
observations of multicast receivers, also supports the inference IS paper aims to expand the capabiliies ot delay tomogra-

of temporal loss characteristics of network links. In this paper, Phy, which currently only provides a means of estimating delay
we show that temporal characteristics can, in fact, be estimated distributions of network links. Up until now, the literature is
even for link delay processes. Knowledge of temporal delay centered around a key assumption on the link delay process:
characteristics has applications for_ (;Ielay sensitive services S.UChtemporaI independendee., independence of packet queueing
as volP as well as for characterizing the queueing behavior : . .

of bottleneck links. By assuming mutually independent, but delays over t'me_" Th's assumptlon on_ly supportg the mea-
arbitrary link delay processes, we develop estimators which Surement of statistics concerning the link delay distribution.
can infer, in addition to delay distributions, the probabilites It is well known however that packet traffic is bursty and
of arbitrary patterns of delay, means and full distributions of  exhibits temporal dependence, and performance of network
delay-run periods at chosen delay levels, for each link in the 5 5jications depends on the durations of congestion events.

multicast tree. By applying the recently proposed principle of - . . . .
subtree-partitioning, the estimator is made scalable to multicast H1ENCe such statistics cannot provide a finer grained view of

trees of large degree. Estimation error and convergence rates are link delays, in particular, temporal characteristics such as the

evaluated using simulations. probability of two consecutive packets encountering delays
above a given level, or mean durations of packet runs at
I. INTRODUCTION or above a given delay level. In this paper, we remove the

Multicast-based services form an increasingly importa@SSUmption of temporal independence and show how it is
part of Internet Service Providers’ offerings; see [1], [2] foPossible to recover, for.each logical link in a multicast tree,
example. Generally, multicast Virtual Private Networks malgmporal properties of link delay processes based on end-to-
be used for distribution of time-sensitive financial data, ¢"d delay observations made at receivers.

corporate video broadcasts; IP-based video distribution to the Delay
home may involve multicast groups with large and geograph- - -

T L--
ically distributed membership. Recent growth in the use of
such applications has renewed interest in scalable methods | ‘
for multicast performance measurement. However, direct mea- bad good

surement of all network links of interest remains a challenge of _. . -

) Fig. 1. Link delay process transitioning between good and bad states.
scale. Whereas ISPs do conduct active measurements between ) ) )
hosts located in major (regional or city-level) router centers, ON€ ©f the outcomes of our work is being able to infer
pushing these measurements out to the customer edge Oftﬂt;‘eaveragg duration of high delay pursts on internal netyvork
network would involve instrumenting a far larger number olfnk_s' Consider a sample p_a_th _Of a link delay process (Fig 1)
access points. which we regard as transitioning between two states, good

The challenge of scale motivates the use of tomograptﬂ@d bad. During the good state, the packet queueing delays

methods to infer performance of internal network links. Ne emain below a certain acceptable level When t_he link
comes congested and the delays exceed this level, the

work performance tomography rests on the principle th £ ¢ i into the bad state. In thi ti K
performance measurements on intersecting paths can be C&ﬁgpess ransitions into the bad state. In this Setling, our wor

lated to infer performance of the common path portion. EngrnoWs how one can infer, in addition to the delay distribution
to-end measurements over multicast trees are well suited 619" th_e prop(;mon hOf galckets n d_the_bbe_ld St?te)%teg] poral
this, due the inherent correlation between different receiver%r’Opert!es such as the elay-run Istribution (or- e
experience of the same packet. A body of work on Multica8fPOrtion of packet runs in the bad state exceeding lekjth
Inference of Network Characteristicsiic) has shown how and its mean (average length of such bad delay runs).

to infer average packet loss rates [3] and delay distributionsor?e of the main appllcanon areas for temporal information
of this nature is real-time services such\asp. End-to-end

1ARC Special Research Centre on Ultra-Broadband Information NetworkR§O!P performange IS sensmve to changes '_n delay _and there-
CUBIN is an affiliated program of NICTA. fore to the duration of periods where delay is at a given level.
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Knowing typical durations of high delay bursts on internaémulating multicast packets, in the same manner as [14], [15]
links enables intelligent path selection. Another application extend [3] for inferring average loss rates. Furthermore, they
in the detection and characterization of links causing servican be used to infer temporal properties of jitter based on
degradation. This is a more general concept and probleneasurements of inter-packet times.

than traditional ‘bottleneck’ detection. For example, average

loss rates and delays may be relatively high, yet this could Ill. M oDEL

be acceptable to applications provided loss runs and runs ofy, this section we justify and describe how we model the

high delay are short. The estimation of temporal parametgf§iay process over a tree, and derive key consequences.

is essential to make these deeper distinctions and thereby to Model LetT d he logical .
localize and quantify the root causes of service degradatioﬁ?e_ ode ¢ et :f(V’dL) engttla_ tke ogical multicast tree
This is of particular interest to network operators but end us gnsisting of a set of no e and linksL. Let 0 € V denote

application can also benefit, for example in distributed gamin; e root node an_d le_R C V be the set of Igaf “Ode$- A I_ink
iS an ordered paifk,j) € {V x V} representing a logical link

Il. RELATED WORK from nodek to nodej. The set of children of a nodk is

A body of work on network delay tomography [4], [7]_[11]denoted byk(k)={j e V: (k,_j) € L}. All nodes have at least
allows the inference of delay distribution and delay variand¥/© |€aves, except the root just one) and the leaves (none), see
of internal network links based on end-to-end multicast aerg 2(a). Letl = V'\ {0} denote the set of all non-root nodes

unicast packet-pair measurements. See [12] for a survey. &7 - For each node € U there is a unique node= f(k), the

of the above work is based on the assumption of tempotafner ofk, such that(k,j) € L. We definef‘(k) recursively

independence. by (k) = f(f*! _(k)), with ff’(k) = kk Now V.k € U, the set

We know of no prior work concerned with estimation of @ncestors ok is a(k) ={j € U: f'(k) =j,¢ > 0}. Note
temporal delay characteristics of network links. Recently, oErE a(k). We definea(0) = 0. For convenience, we refer to
work [13] showed how temporal loss characteristics (such 4&k (f(k), k) simply as linkk.
mean duration of loss-runs on internal links) can be estimatbtbdelling Link Delay In our model, an infinite stream of
using end-to-end multicast measurements. In this work, Wweobe packets indexed bye Z is dispatched from the root
achieve the same for delay. We also employ another techniquale0. Each probe that arrives at a nokeesults in a copy
described in that papesubtree partitioning This is a tech- being sent to each of its children. When a probe attempts to
nique to reduce the computational complexityvalic based traverse a linkk, it encounters a random delay on the link
estimation, by transforming any multicast tree into a virtu@ind may even be lost. The passage of probes down the tree
binary tree for estimation purposes. Technically it results i modeled by two stochastic process#s: = {Xi(i)} and
estimators which only require the solution of either linear ofx = {Z (i)} for each nodé. The procesZy is thediscrete
guadratic equations to recover the probabilities of shared pattigie delay proceswhich determines the delay encountered by
avoiding the need for root finding of higher order polynomialfarobes and also if probes are lost as they attempt to traverse

The problem of delay estimation is much more compldink k. The processX; acts as abookkeeping procesand
than that of loss. Whereas the link loss model is binary (packecords the cumulative delay encountered by each probe on
is either transmitted or lost), the (discretized) link delay mod#te path from the root to node.
is multi-state in which loss appears as a special case ofldeally, the state of links over the tree could be characterized
infinite delay. By assuming independence between links ahy a set of underlying continuous time random processes
packets, Lopresti et. al. [4] first showed how the discretizddi(t) : t € R}, k € U. If a packet is transmitted on link
link delay distributions can be estimated. Their estimatdr at time t, it encounters a delay determined by the value
uses a recursive computation or ‘deconvolution’, and buildz (t) € R4 U {co}, taken by the link process, whers
the delay distribution from the lowest delay bin upwardsiccommodates packet loss. We consider an abstracted form
Our work generalizes this work where we assume tempoxidl the problem, where the probe indéxnot only indexes
dependence and move from estimating probabilities abqupbes, but also plays the role of discrete time. In this setting,
single packets (probability that a packet encounters da)ay the delay sampling processes are well defined foii,alith
to a temporal case of estimating probabilities about arbitraftye interpretation thaZ (i) determines the delay thatould
group of packets (e.g. the probability that two consecutivee experienced by probig had it been present.
packets encounter delaysandv respectively). We discretize each link delay to the 4étb,2b,..., mb,

The delay distribution estimator found in [4] is not in geneo}, where b is the bin width andm is any predefined
eral the Maximum Likelihood Estimator (MLE), and indeedhreshold. The symbobo is interpreted as “packet lost or
direct calculation of the MLE appears infeasible in general. @éncountered delay exceedingb”. Thus for each linkk,
different approach was taken by Liang and Yu [8], in whickhe discrete-time discrete-state link delay procégéi) takes
a pseudo-likelihood function is maximized. Our work takes alues from the state spa@=1{0,1,2,..., m, oo}
different direction and is not obviously related to the MLE. The bookkeeping process at a nddis denoted by Xy (i) :

Note that all temporal estimation methods of this papére Z}, and takes valueXy(i) € {0,1,2,...,ml(k), oo}
may, in principle, be extended to groups of unicast packetherel(k) is the level or height of nodk (hencef®) (k) is



the root node). The link delay process acts deterministicalBtationary Ergodic Semi-Markov ProcessThis is a gener-
on the node bookkeeping process at each probe index alization of the well known On-Off process, wherely so-
follows: journs in delay statéfor a period whose duration is distributed
) . . according to independent copiés of a random variable. At
X)) = Zi(1) + X0 (1), (1) the end of the sojourn it jumps into stgteith probability p;
Fig 2(b) shows some examples. For the root node we hayferepii =0 and} ;py = 1. Jumps occur independently

simply Xo(i) = 0,Vi. We have the following probability of each.other and.of the sojourn durations. In general, the
. convolution of semi-Markov processes are not semi-Markov.
@) 0 (root node) (b) However, the class with geometrically distributed sojourn in
f(k) & X¢) =..0 1 00 O... the minimal delay state is closed under convolution. This is
/ because minimal path delay requires minimal delay on all
Zy=..0 2 1 oo.. constituent links, and once all links enter the minimal delay

state, all memory of previous states is lost. Such models are

k , \Xk =..0 3 o0 o0.. interesting in practice because measurements over wide area

6 71011 £ networks have shown that packets carrying delays which spike

/ \
Fig. 2. (a) Example of a logical tree, (b) Delay model: the Link delagphove ambient levels arrive approximately as a Poisson process
processZy (i) on link k acts deterministically on input procesé; (i, to [17]

produce proces¥X.
Stationary Ergodic Semi-Markov Process of Order For
model ford,v € D: each linkk, Z, (i) is Markov process of order as deter-
0 i mined by the transition probabilitieBr[Zy (i) = d|Zx (i —
if d<wv . L L
) . ) 1),...,Zy(i—r) = d’]. Similarly to above, as a projection of
PriX(i)=d|X¢ao (()=vl=q1 if d=v=0co the product process;eq(x)Zx, Xk is not Markov in general.
Pr{Zy(i)=d — V] otherwise The caser = 1 is a semi-Markov process with geometrically
(2) distributed sojourn timek;, and soX; also has geometrically
distributed times in the minimal delay state.

We assume the following dependence structure:

SPATIAL : The processe<y, k€ U} are mutually independent.
TEMPORAL: For eachk € U, Zy is stationary and ergodic. B. Delay Preprocessing

Thus we assume that packets encounter delays independentlyhe delay on a network link consists of a fixed propagation

across links, but that within each link, delays encounter%%mponem and a variable component due to queueing in
by packets can_be correlated, with .parameters. that in 9eNYYders and router processing. We are concerned with the
depend on the link. Although potential mechanisms for spat riable component only. Hence, following the approach of Lo

correlations have been' |dent|f|ed (e.g. TCP synchromzatﬂ;,_\;?esti et. al [4], we remove the fixed component by subtracting
[16]), we believe that diversity of link losses and round-trlprom each source-to-leaf delay measurement, the minimum
times will prevent such mechanisms from operating in lin

. _k&elay observed at that leaf. It is the resulting excess end-
which carry large numbers of flows; see [3]. The assumptiqp o g delays that are discretized with bin stkzemodeled

of ergodicity means that empirical time averages of functiorﬂ%ing theZ, as described above, and thereby used as input
of the process will converge to the true expected value aImqg; estimation

surely, ensuring our estimators have desirable properties.

A. Examples and Consequences of Delay Processes IV. TEMPORAL CHARACTERISTICS OFDELAY PROCESSES

Equation (1) implies thaKy(i) is the sum of delay pro-
cesses over its ancestor nodes, each also at index Before embarking on estimation, we need to establish which
S o temporal characteristics of the procesggsone would wish
Xic(i) = Z 210N 3) to estimate. We choose an ambitious objective, the joint
probability of a group of probes observing an arbitrary pattern
It follows that Xy inherits the stationarity and ergodicityof delay states on a link in a general, non-parametric setting.
properties of link delay processes. We now consider how monge show how to extract these in the next section. Here we
detailed properties oy follow from those of theZy in three show that such joint probabilities can be used to recover
classes of examples. temporal statistics of practical interest.
Bernoulli Scheme: For each linkk the Zy (i) are i.i.d., so the Delay-run distributions and Mean delay-run lengths:Let
delays encountered by packets are independent of each othebe any subset of the full state spaPe L' be a random
Such a process is simply characterized by the delay deleariable which indicates the lengths of runs &f in states
probabilitiesPr[Z (i) = pl,p € D. This is the model used in from subsetH. The distribution ofL}' and its meanu}! are
prior work on delay tomography [4]. related to the joint distribution of the proce&g as follows:

jea(k)



PriL! > j] We show the estimation of joint probabilities involving delay
= PriZe(G) €M, ..., Zr(1) EH | Zi(0) ¢ H, Zi (1) €H] values from partial state spa@ =D \ {co} and extend it to
PriZe(G)€H, ..., Zr(1) €H, Zx(0) & H] full spaceD in section V-E. LeD, Ve D""' be vectors of delay
PrIZe(0) € H, Ze (1) € H] values, for example we writ® =[d, ..., ds]. The notation
 PHZL()H, ..., Zr(eHI—PHZy()eH, . .., Zi(0)eH] D < Vs used to meand; < vj;,Vj. Let m = [m,..., m],

0=[0,...,0]. Observe tha¥ [DeD"I',(Dnggrm.
PriZ,c(1) € H] — PriZy(0) €H, Zi (1) € HJ We define thdink pattern probabilityoy (I, D) as

and hence:
o " " " o (I, D) = Pr(Zy(I) = D] = Pr{Xy (I) — X¢(x) (I) = D],
= = ] = ] = > ]
Hie ElL] ;’Pmk i ; Pribic 2l {Z«(1) = D} denotes the everiZy(ij)=ds, ..., Zy(is)=ds).
= = o (I, D) denotes the probability that a pattern of probes given
Pr(Zx(1)eH]

= (4) by index setl encounter a pattern of delays given By on

Pr{Zi (1) € H] = Pr{Zx(0) € H, Zx (1) € H] link k. By stationarity,a, (I, D) = o (i+ I, D), wherei+ 1=

The last sum is absolutely convergent becau$eis finite. {i+i1,...,1+1s}. For examplep ({1}, [d]) = o ({i}, [d]) (the

This formula makes intuitive sense as the ratio of the expecteipbability that a probe encounters deldyon link k), and

proportion of time spent in runs in the subgeét(per time ox({1,2},[d1,d2]) = o ({i,1 + 1}, [d1,d2]) (the probability

index) divided by the expected number of transitions ikto that two consecutive probes encounter deldysand d, on
(per time index). link k).

Thus, the mean delay-run length of any sullde acces- Because of temporal dependenag(I, D) is not in general
sible even without parametric help, provided we can estimdtte product] [;_, Pr(Zy(i;) =d;]. However, thanks to spatial
the simplest joint probabilities with respect to that subsdfidependenceyk eV the path pattern probabilityAy (I, D)
those for a singlePr[Z (i) € H] and a successive pair:can be expressed as a convolution of joint link and subpath
PriZx(i) € H, Zx(i+ 1) € H], of probes. The tail probability pProbabilities as follows:
of runs in subseH, PriLY! > ] can be‘obtained from the joint Ar(1,D) = Pri%y (1) = D]
probabilities ofH for one, two,j, andj + 1 probes.

The prime application of Eq. (4) is to partition link states = Y PrXk(I) = %¢( () =V] PrlXs(q (1) =D—V]
into two classes, which we call good and bad. The bad class 0<V=D
could be the subset of states with delay greater than some = Z“k(l’v) As)(D—V) (5)

level T (Fig. 3). The above formula yields the mean duration 0<V<D

of runs in good and bad classes in terms of respective sianﬁe goal is to estimate the link probabilities (I, D), 0 <D <

and successive joint probabilities, i.e., we can recover the mean, “oach linkk € U. From Eq. (5), these can be recursively

duration of runs in which the delay exceedgor remains at deconvolved if we know the path probabilitiés, (I, D), 0 <

leastr). o 1 D <m,Vk € V. We therefore proceed to derive expressions

—_ e delay for Ax(I,D) (deconvolution appears later in section V-E).

T 0 (root node) 0 (root node)
Fig. 3. Partition of delay states into good and bad classes, based on tlig) (b)
thresholdr. In this example, good- {0, ..., m}, bad={co}.
k
subtreeZ, R subtree7;! y k subtreeT;?
V. ESTIMATION OF TEMPORAL DELAY CHARACTERISTICS . child
' subtreeZ;

Recall that the source at root nodesends a stream of . J/
n multicast probe packets. The outcome of thih probe is
the set of discretized source-to-receiver delgygi), r € R}, N
whereX,. (i) € D. The goal is to infer temporal parameters of Re TR T RZ
processe,k € U solely from then receiver outcomes.

In the previous section we discussed what these tempm@lld4. IOThe subtregrk Wirt1h roﬁdat nodel]z. (a)é) nodebk has a number 01;
parareters could be. and nighlghted the importance of ég%“. The ohid sLbirces o ae partionea o o VLl e . 72
to estimate these joint probabilities from receiver data. hored ak, Wi receiversRy, R

L/
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B. Estimation of Path Pattern Probabilities

A. Link Probabilities to Path Probabilities Consider a branch node € U in the tree in figure 4(a).
To manipulate joint probabilities, we define the probe inddk is the root of the subtre@, of 7 which has receiver8y.

setl={i,12,...,1s} (not necessarily contiguous) and randorfror a probei sent from the source, we define the following
vectors random variables and corresponding random vectors:
K (D =[Xe(i1), ..., X (is)], Zx(D=[Zk(i1),..., Zk(is)] Yi(i) = min X (i), Yi(I) = [Yx(ir),..., Yk(is)]  (6)

TERK



N . o N <
Vili, ) = { =Xt = d
0if V(i) — Xf(k](l) >d
Yi(I,D) = [Yic(ir, di), .., Yie(is, d)] (7)
Let B € {0, 1}'!l. We definevk € U,
Yx(L,D) PriYy(I) < D]
6k(L|Da|B) = Pr[yk(lle) = lB] (8)
whereyy (I, D) is the probability that, for each probe indgx

I, the minimum delay on any path from soui®# receivers in
Ry, does not exceed; € D. On the other hand3 (I,D, B) is
the probability that, for each probe indéxc I, the minimum
delay on any path from nod&k) to receivers iRy is either
< d; or > d; €D, depending on whethér; cBis 1 or 0. The

yk(I D)’s are directly observable from receiver data and Wehere 5y

wish to use them to recoveky(I,D)'s. Let1 = [1,...,1].

The following convolution linksA, 3, andy:

Yic(I,D) = PrlYy(I) < D]

=Y Prle (1) = V] PrIYic(I) = X¢() (1) <D — V]
o<v<D

=) Aqn(LV) B(I,D—V,1) ©)

0<v<D

So far, the generalisation from single probes to probe patterns + 1j1>1 (
has been remarkably straightforward. This is not true for the

next two properties, which give expressions far(I, D, B) in
the case8=1 andB#1.

Property 1 (Parent-Child) The following relationship holds

betweenfy and the{p;,j € c(k)} of the children ofk . For

convenience we relabel the childrenjas- 1, 2--- ¢ where
cx = lc(k)|. We have
Br(l,D,1) = >  ou(L,V) mi(I,D—V) (10)
o<v<D

where

= Hrs B)=1-]](1—85(1,Q1)

B1,...,Bey }J=1 j=1
S t.\/,'[Bj:]l
Cr

(Y TIsmes)) (11)

I’ C I. For instance, ifB = [b; =0,by,...,bs], and I’ =
{iz,...,ish B'=[ba,...,bs],D'=[d;,...,ds], then we have
Br(I,D, B)=Pr[Yy(I,D)=B]
= Pr[Yi(i1,d;) =0, Yi(i2,d2) =bo, ..., Yi(is, ds) =bs]
= Pr[Yi(iz, d2) =bo, ..., Yi(is, ds) =bs]
— PrlYi(ir, d1) =1, Yi(i2, d2) =bg, ..., Yi(is, ds) =bs]
= B(I',D’,B") — B (L,D, [1,bz,...,bs])

which has eliminatedd at i;. The above can be applied
recursively to eliminate all zeroes, resulting in terms of the
form By (I’,D’,1), I’ C I, |I] — z(B) < |I’| < |1}, wherez(B)
denotes the number of zeroeskn In general

Br(I,D,B # 1) = (—1)*®By (I,D,1) + &« (I,D,B) (12)

(I,D,B) is the appropriate summation @'s for
index setsl’ C 1. For e.g., ifl={1,2}, B={0, 1}, D=Id;, d2],
then B (I, D, B) =—PR«(1,D,1) + (Br ({2}, [d2], 1)

Eqg. (12) can be used in (11) to remove Bll # 1 terms,
leaving only terms of8; = 1 type, giving

m(LQ =1-]]C

j=1

S I (-r@sme
{B1#1,...,Be, A1} j=1
S.t.\/ijill
+ 85(L0,B)}) (13)

By using (10) in (9) and simplifying the convolution, we get

Yi(LLD) =) Ar(LV) ne(D—V) (14)
o<v<D
Rewriting Eq. (9) for the(B;(I,D),j € c(k)}, we get
= ) Ac(LVY) B5(I,D—V,1) (15)

o<v<D
Using the above three equations, the desired path pattern
probabilities for nodé, Ay (I,D),0 <D <m, can be computed
using the observablegy (I,D) and {y;(I,D),j € c(k)},0 <
D < m. This is one of our main results. We have obtained
a complete generalization from the case of single probes
I = {i} and estimating only the distributiohy (i, [d]),d € D’,
to a temporal case for patterns of probesand estimating
Ax(I,D),D € D' Forl = {i}, the above equations reduce

In Eq. (11), we have first used the fact i@ over a subtree o the equations of Lopresti et.al. [4] for delay distribution
can be decomposed aso& over child subtrees, and then th&stimation.

property that such child subtrees are mutually independentRecovery of A (I,D) from the above equations involves
The first’ (1 — [ [;) term in Eg. (11) corresponds to all childtwo levels of recursion:if over delay vectors, which arises
subtree receiver event;} such thatB; = 1 for at least one due to convolution, i() over index sets which arises due to
j. In the traditional case where= {i}, this is the only term, summation term involving in Eq. 13. Note tha$(I, .,.) only
since it is the same event 8§B; = 1. In the temporal case contains terms involving’ c I and therefore does not contain
for arbitrary I this is not true, since which receivers see tha, (I, .). Thus estimation can be performed recursively starting

minimum delay can be different for eadhin 1. As a result,
there are extra terms witB; (I, Q, B;) factors withB; # 1.

Property 2 (Recursion over index sets with= 1) One
can expres® (I,D,B # 1) in terms of By (I’,D’,1), where

from I = {i} when the summation term with vanishes and

D = 0 when the convolution vanishes. Each step of recursion
involves solving polynomials of degree. (due to the]_[].
terms in (13)) in the unknowr .



C. Example: Binary tree D. Subtree Partitioning

We show the computation ok (I, D) in a binary tree for  In practice, solving polynomials arising from (13) implies
pairs of consecutive probes i.b= {1,2}. Consider a branch humerical root finding for each node, eathe I, and each
nodek and its two childrenj = {1,2}. Due to recursion over D € D", which can be computationally slow. We now
index sets, we start with the case Iof {1). present a computationally effective method of estimating the
Single probed = {1}: The base case of recursion occurs fopath pattern probabilities on trees of arbitrary order which only

I ={i} andD = [0]. To simplify notation, we drop the index "€€ds solutions of quadratic equations. o

B;(1,[d1],1) = Bj(d;). Writing out Egs. {4) and (5), proposed in [13] for loss inference. The idea is to combine
child subtrees of nodg into two sets, indexed by < {1, 2},
Yi(0) = Aw(OHT — (1= B1(0))(1 — B2(0))} corresponding to two virtual subtred§' and 7,? of 7 with

v;(0) = A;(0)B3;(0) (16) receiversR{< (see Fig. 4(b)) (details of the allocation do not

affect what follows). We therefore define additional quantities
from which A, (0) is recovered by solving a linear equation agorresponding to the two virtual subtrees
Aw(0) = (1(0)y2(0))/(y1(0) +v2(0) —vi(0)). Substituting == " o i
backAy (0) gives thep;(0) for use in the next step. Assuming Y (1) = min X: (1), Y /(I) = [Y', (i1),..., Y (is)] (19)

that Ay and 3;'s have been computed v < d;, Ax(dq) is TR
recovered using1¢) and (15) which take the form V’j G {] if Y’{;(i) —X (i) < d
Yir(d1) =Ax(0nk(d1)+Ax(di)nk(0) +ZAk(V1 Mk (dr—v1) b 0if YL (1) —Xe(i) >d
* * O<vi<d . . .
whereni (@) = (1— (1~ B1(a))(1 — Ba(a)) V(LD) = V(i i)y, Vi, do) (20)
vj(d1)=Ax(0)B5(d1)+Ax(d1)B;5(0) +ZAk(v1)(5j(d1 —v7) and the corresponding probabilities:
o o an Y (1,D) = Priv}i(1) < D

/j _ >, _
The unknown terms are marked by a ™A, (d;) is recovered k (LD, B) = Priy"y (I, D) = Bl

by solving a quadratic equation and substituting bagKd ) Since sets of disjoint child subtrees are still mutually
gives B;(dq)’s. independentB, can be related t®;' and ;> (previously
Pairs of consecutive probek = {1,2}: Again, to simplify this was to{f3;,j € d(k)}). Then following the same sequence
the notation, we drop the index s& B = 1, and vector of steps as before, we get a simpler version of Eq. (13) and
notation for delays. For e.gf;(I,[d1,d2],1) = Bj(ds,d2). an equivalent of Eq. (15)

The estimation proceeds from delay ved@r0] until [m, m]. 2

Assuming thatAy, and 3;'s have been computed for the (L, Q) :1_H(1 _ Q(I’Q,ﬂ))

set{[vy,va] 1 vi < dy,v2 < d2}\{[d1,d:]}, Ax(dq,d2) is re- =1

covered as follows. We expand Eq$4) and (15)

(Y TT {=0®slnen

N

Yi(di,d2) = Ax(0,0) ﬂk(dl,dz) ‘|'Ak(d*1>d2) nk(0,0) 1By £1.B2 1) j=1
S.t.\/jBi:Il
+ Z Z Ax(vi,v2) nk(ds —vi,d2 —v2) -
vi<di,v2<da + 6{<(I’Q’[B)}) (21)
(vi,v2)#(0,0),(v1,v2)#(d1,d2) i 1j
D) = Ax(LY [[D—-V,1 22
vj(di,dz2) = Ax(0,0) Bj(di,dz2) + Ax(dy,d2) B(0,0) V(L D) ®<\/Z<D k(LY) Byl ) (22)
+ Z Z Ax(vi,v2) Bi(dy —vi,d2 —v2) Using these Egs. along with (14) leads to a quadratic expres-
vi<dy, va<ds sion in Ay (I,D) for all nodes irrespective of their degree,
(v1,v2)#(0,0),(v1,v2)#(d1,d2) which can be solved explicitly. By making arbitrary trees ap-
2 pear as binary in this way, numerical root finding is eliminated.

M(ar,a2) = 1= [(1—Bj(a1,42)

e E. Deconvolvingx’s : Path probabilities to link probabilities

2 2 After having obtainedA (I,D), for all k € U, for 0 <
+ 1 1(B;(a1) = Bj(ar,a2)) + | |(B;(az2) — Bj(ar,qa2)) D < m, o (I,D) for D > 0, are recursively deconvolved as
i =1 follows:
(18) (i) ForD = 0:
The unknown terms are marked by a ™" ad(dq, d>) is o (1,0) = AALI(,I%) (23)
(k)L

obtained by solving a quadratic equation.



(i) For0 <D < m: Gaussian with zero mean as— oo, with a covariance matrix

A _ A I,V)ou (I, D—V of the form Vg - hVg where Vg is the matrix of partial
o (I,D) = kl Lo<vzo Artio (1, Vo ) derivatives ofg with respect to the coordinateg andh is
() (1,0) (24) the asymptotic covariance matrix between the

(i) When D € D', D < m does not hold, i.e., at least one VIl SIMULATION EXPERIMENTS

element ofD could beco. In this casewx (I, D) is obtained In this section we illustrate the performance of the esti-
usingak (I, V)'s, ¥ < m wherel’ C I. For instance, consider mators using simulations. We conducted two classes of ex-

a vectorD = [dy = o0,d3,...,ds]. Then i (I,D) can be periments:i) Monte-Carlo simulations which obey the model
expressed as assumptions from Section I, and)(TcpP simulations using
LD) = ) 11 d ns-2. We use the estimators from Section V-B for single and
(I, D) = ouc(fiz, ..., 15} [d2, ..., ds]) two packet indices, and measure the following parameters
— Z ax(I, [v,da,...,ds]) (25) of link delay processes. For each statewe estimate three
v<m parametersuy (p), ax (p, p), and the mean run lengti. To
For e.g., for the case of a single protes {1}, o (I, _ assess.the accuracy _of estlmate_s, we compute their relative er-
1 Zg I gle p { (1, lool) rors (this combines bias and variance)ag0) = |(0—0)/60).
=2 vem k(L V). " ) .
In addition, we average respective relative errors over all states
F. Estimator Definitions of a link to obtain the “per link” errorsey (1) = Zm(ij‘r(p”
We now complete the definition of the estimatoys(I,D) ¢, (11) = M andey () = ZLH“N
can be estimated using the empirical requencies as Model Carlo SimulationdVe experiment with two different
Z’?*“M Ty (s families of discrete-time discrete-state link delay processes: (
= i=0 Yi (i+1)<D . .
Yx(L,D) = T (26)  Markov chains(1-st order) to provide an example of a gentle

departure from Bernoulli assumptions. In this family, the run
Next, theyi(I,D) and¥;(I,D),j € c(k) are used to ob- or purst length of each delay state is geometrically distributed,
tain the estimatorAy(I,D) for Ax(I,D). Finally, following and 0) semi-Markov processewith Zipf distributed run
equations (23-25)x(I,D) are recursively deconvolved. Injengths, to provide much stronger temporal dependence. We
practice, the estimators are modified to ensure that solutiapse a zipf with a finite support ovei, 1000], a distribution
make physical sense, for example that(I,D) < [0, 1]. which has a power-law shaped tail over a wide range of values,
The mean delay-run length of a subset of one or moggt which has all moments finite. The choice of distribution
statesH C D, ;! is estimated using the respective singlgamily for the marginal of the delay processes determines the
and successive joint link probabilities of states in the subsglrstiness of delay states. We consid&riiniform where the

Let o ({i1}, [d]) = o (d) and o ({1,2},[d,v]) = o (d,v), mass of the distribution is spread uniformly over all stati¥. (
then Mixture distributioninspired by queueing models, with a point
H Y den Ox(d) mass at zero state followed by a geometric decay (discretized

@7) exponential) over remaining states.

Rows 1 through 4 of Fig 5 shows the results for model
simulations. Rows 1 and 2 provide benchmark results for a
In this Section we outline the statistical properties of th&vo-receiver tree, for Markovian and Zipf semi-Markov delay
estimators from Section V: consistency and the asymptoficocesses respectively, with uniform delay distributions. The
variance. delay processes on links are identically distributed and the

All the es'umatorsAk(I D) are constructed as follows. Thedelay states on links have same mean run length. As results
true joint transmission probabilitied, (I, D) obey a relation for each of the three links are similar since the tree is small,
Ax(L,D) = g(y) wherey is a set of probabilities of leaf we show results for the shared lirk only, and drop the
events, for some functiong. The form of g is relatively subscriptk. Plots (a)-(c) show errors(1), e(11), and e(p)
involved, being a composition of expressions for quadratiespectively, plotted as a function of the mean run length for
roots and iterations; however it is clearly a continuous fune-fixed number of probes(k). Plots show the median errors
tion, in particular aty. Ak(I D) is then the plug-in estimator calculated over 256 independent repetitions of the experiments
A(1,D) = f(3), wherey are the empirical frequencies of(the grey confidence intervals show 5th and 95th percentiles
the events that defing. Now by virtue of the stationary and and give an idea of the variation over these). We see in general
ergodic assumption on th&,, ¥ converges almost surely o  that performance degrades both with increasing number of
as the number of probes grows, i.e., the estimator is consistatates and the mean run length of states. Plot (a) reports error
as asserted. in estimation of probabilities for a single packet index, and

For estimators of this type, a functian of the empirical (b) reports the error in estimation of joint probabilities for
averagesy that, with g being also differentiable, one cantwo packet indices. The performance is satisfying, with errors
determine that/n - (A (I,D) — Ax(I,D)) is asymptotically being only slightly larger than those for (a), despite the more

e = = =
ZdeH ax(d) — ngH ZVGH o (d,v)
VI. ANALYSIS OF DELAY ESTIMATOR PROPERTIES
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Fig. 5. Simulation results: Model simulations Rows 1-4, ns-2 simulations Row 5.

challenging, temporal target. Plots (c) reports errors in tlmeean run length in the bad state corresponds to the mean

estimation of mean run lengths of delay states. Because theation of runs in which the delay is at leastunits. The

computation of run lengths involve a subtraction and a divisigrerformance is satisfying because, in spite of aggregating

of estimated quantitiegt], = aw(p)/(ak(p) — o (p,p)), we states, the error in estimation compares well with the average

expect its variance to be greater that that of its component$,errors of mean run length of individual states.

resulting in an increased error. This is indeed what we seep|gig (), (I) focus on a finer grained view of per-link

Plot (d) shows relative errors for estimates of mean run 'en%Ehaviour, by showing the evolution of estimates with the

as the number of probes grow (10k-50K) for a fixed mean rymper of probes for each state, and each link, in the case

length of 3.5. Plots (e)-(h) tell a similar story for Zipf semi- of 4 two-receiver tree with different link parameters. In this

Markov processes, but as expected with an increased error @ygeriment, the link delay process had three stdted (co))

to the high burstiness of the process. and u? = 3.5 andu) = 2.5 for all p. We see that as the
Plots (i), (j) focus on good and bad states, reporting relati\%‘mber_Of probes grow, estimates converge to the true values.

errors in the estimation of their mean run lengtta$) and The estimates of the Zipf case are much slower to converge

e(uf) for Markov and semi-Markov processes, in experimentgan the Markov case.

with 4-state {0, 1, 2, co}) link delay processes. The good state Plots (m) and (n) focus on larger trees: tertiary trees with 3

comprises delay statg8, 1} and the bad stategg, co}. Thus levels, 9 receivers, and 4 delay states with mean run lengths



of 2.5. Here subtree-partitioning is used. Estimated run length temporal parameters of link delay processes, which is of
e(w) is shown for links averaged over successive levels interest to delay sensitive applications, and application aware
the tree. As we go down the tree the variance increases. link and path health monitoring.

Plots (0) and (p) examine the effect @fy;) of a non- We derived an estimator capable of estimating temporal
uniform delay distribution. Results for the shared link betwegrarameters such as the probability of arbitrary patterns of
two receivers are shown in the Markov case, for two diffedelays, and the mean run lengths of various delay states,
ent (see caption) 'mean of geometric decay(mass at zerfy¥ each link in the multicast tree. Run lengths can also be
combinations, for 20k probes. All states had the same meaeasured for sets of ‘bad’ and ‘good’ delay states.
run lengths and estimation was performed for delay states inThe methods are non parametric, working in a general
{0,1,2,3,00}. context where the true nature of delays is unknown. We

We see that higher masses at zero state implies lower errgiew how subtree-partitioning can be applied to make delay
since estimation is performed recursively from the zero statstimation scalable to large degree trees. We show that the
Also, when the geometric decay has a low mean, massesatimators are consistent, and provide simulation illustrations
higher states is too low to be accurately estimated, resultinf their relative errors as a function of parameters, and the
in higher average erroe(u,) over delay states. When thenumber of probes, using Markovian and semi-Markovian delay
mean increases, some mass shifts to higher states, improyngcesses (with Zipf tails) and ns-2 simulations.
their estimates and reducing the average error. Plot (p) showén future work, the variance of the estimators presented here
the effect of increasing the mean run length. This decreasedl be investigated in more detail, including the impact larger
burstiness of higher delay states which reduces estimatamd less homogeneous trees, as well as real network traffic
error. conditions.
TcP SimulationsPlots (q)-(t) show the results afcp simula-
tions using a realistic tree topology (Fig 2(a)) with high band-

width interior links (bold ||nes7 10Mpbs7 propaga‘“on delay[l] “AT&T Business Service Guide: AT&T VPN Service,” February 2007,
See: http://new.serviceguide.att.com/avpn.pdf.

50ms) and low bandwidth eX.terlor links (_thm_ lines, 2._5MpS,2] AT&T, “U-verse,” June 2007, https://uversel.att.com/launchAMSS.do.
10ms). The background traffic on each link is comprised of3] R. Caceres, N. G. Duffield, J. Horowitz, D. Towsley, and T. Bu,

infinite sourceTcpP connections. Multicast probes of 40 bytes “Multicast-based infergnc% pf network-internal characteristics: Accuracy
t from the root nodé using a Poisson process of packet loss estimation,” ilEEEE INFOCOM 1999.
were sen g p [4] F. Lo Presti, N. G. Duffield, J. Horowitz, and D. Towsley, “Multicast-

with mean inter-packet time of 16ms. The end-to-end probe based inference of network-internal delay distribution&EE/ACM

delays were discretized using a bin size of 2ms into the state Transactions on Networkingyol. 10, no. 6, pp. 761-775, 2002.
5] N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley, “Multicast

spacg{o, ...,m = 4,00} {ind used for estimation. In these topology inference from measured end-to-end |oHSEE Transactions
experimentspo was considered as bad state. The mean run on Information Theory,vol. 48, no. 1, pp. 26-45, 2002.

length of state®)..m varied between 1.5-3.5. On an averagd®l Y. Gu. L. Breslau, N. G. Duffield, and S. Sen, “GRE Encapsulated
Multicast Probing: A Scalable Technique for Measuring One Way Loss,”

link delay distributions had a point mass of abdi% at in ACM SigmetricsJune 2007.
state 0 and the mass decayed approximately geometrically oyer N. Duffield and F. Lo Presti, “Multicast Inference of Packet Delay

higher states. Mean run lengths of states decreased as we moyeVariance at Interior Network Links,” inEEE INFOCOM March 2000.
| G. Liang and B. Yu, “Maximum pseudo likelihood estimation in network

. . 8
frpm state0 tf) m. In our e)fpe”.men.ts probes eXpe“en?ed tomography,”IEEE Trans. on Signal Processing (Special Issue on Data
higher queueing delays on interior links where buffer sizes Networks) vol. 51, no. 8, pp. 2043-2053, 2003.

were larger. Loss rates were low and remained belo%. [9] Y. Tsang, M. Yildiz, P. Barford, and R. Nowak, “Network Radar:
Tomography from round trip time measurements,'1MC, 2004.

Figures (Q)'(S) show true and_ estimated .mean run |engthsLﬂf] E. Lawrence, G. Michailidis, and V. Nair, “Flexicast Delay Tomogra-
selected states over selected links. Error increases both when phy,” Journal of Royal Statistical Society Series ®06 (To appear).

we move down the tree and towards higher delay states. Fig (fy A- Chen. J. Cao, and T. Bu, “Network tomography: Identifiability and
. : fourier domain estimation,” ItEEE INFOCOM 2007.
shows how the mean run length of state 0 on various links g " castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network

converge to the true values. In (r) and (s) we show the same Tomography: Recent DevelopmentStatistical Sciencevol. 19, no. 3,
for state 1 and the bad state. In our experiments links 2 pp. 499-517, 2004. _ _

do . d sianifi t del | th it a[l%%J V. Arya, N. Duffield, and D. Veitch, “Multicast Inference of Temporal
an experiencea signincant delays _arger an m units, Loss Characteristics,” itFIP Performance 200,70ct 2007.
hence have longer mean run lengths in the 'bad’ state. Lasthy] N. G. Duffield, F. Lo Presti, V. Paxson, and D. Towsley, “Inferring link
(t) shows average relative error to estimate mean run Ien?ig] loss using striped unicast probes,'IBEE INFOCOM 2001

. . . Coates an . Nowak, etwork loss Interence using unicast ena-

for state O (Im_ks 1, _8’ 9, 10) and S_tate 4 (Imks 1'_2’ 4)' I to-end measurement,” iIfC Seminar on IP Traffic, Measurement and
general, error irrcp simulations remains higher than in model  Modeling September 2000.

simulations due to the bias introduced by binning. [16] V. Jacobson, “Congestion avoidance and control, A@M SIGCOMM
August 1988.

[17] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the constancy
VIl CONCLUSION of internet path properties,” iIACM SIGCOMM Internet Measurement

Packet traffic is bursty, and the performance of network Workshop 2001San Francisco, CA, November 1-2 2001.
applications depends on temporal metrics such as the duration
of congestion events. In this paper we showed how tomog-
raphy techniques can be extended to include the estimation
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