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Abstract—Multicast-based network tomography enables infer-
ence of average loss rates and delay distributions of internal
network links from end-to-end measurements of multicast probes.
Recent work showed that this method, based on correlating
observations of multicast receivers, also supports the inference
of temporal loss characteristics of network links. In this paper,
we show that temporal characteristics can, in fact, be estimated
even for link delay processes. Knowledge of temporal delay
characteristics has applications for delay sensitive services such
as VoIP as well as for characterizing the queueing behavior
of bottleneck links. By assuming mutually independent, but
arbitrary link delay processes, we develop estimators which
can infer, in addition to delay distributions, the probabilities
of arbitrary patterns of delay, means and full distributions of
delay-run periods at chosen delay levels, for each link in the
multicast tree. By applying the recently proposed principle of
subtree-partitioning, the estimator is made scalable to multicast
trees of large degree. Estimation error and convergence rates are
evaluated using simulations.

I. I NTRODUCTION

Multicast-based services form an increasingly important
part of Internet Service Providers’ offerings; see [1], [2] for
example. Generally, multicast Virtual Private Networks may
be used for distribution of time-sensitive financial data, or
corporate video broadcasts; IP-based video distribution to the
home may involve multicast groups with large and geograph-
ically distributed membership. Recent growth in the use of
such applications has renewed interest in scalable methods
for multicast performance measurement. However, direct mea-
surement of all network links of interest remains a challenge of
scale. Whereas ISPs do conduct active measurements between
hosts located in major (regional or city-level) router centers,
pushing these measurements out to the customer edge of the
network would involve instrumenting a far larger number of
access points.

The challenge of scale motivates the use of tomographic
methods to infer performance of internal network links. Net-
work performance tomography rests on the principle that
performance measurements on intersecting paths can be corre-
lated to infer performance of the common path portion. End-
to-end measurements over multicast trees are well suited for
this, due the inherent correlation between different receivers’
experience of the same packet. A body of work on Multicast
I1nference of Network Characteristics (MINC) has shown how
to infer average packet loss rates [3] and delay distributions
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[4] of network links, and even the network topology itself [5].
More recently, [6] showed that tomographic methods can also
be used to monitorVPNs.

This paper aims to expand the capabilities of delay tomogra-
phy, which currently only provides a means of estimating delay
distributions of network links. Up until now, the literature is
centered around a key assumption on the link delay process:
temporal independencei.e., independence of packet queueing
delays over time. This assumption only supports the mea-
surement of statistics concerning the link delay distribution.
It is well known however that packet traffic is bursty and
exhibits temporal dependence, and performance of network
applications depends on the durations of congestion events.
Hence such statistics cannot provide a finer grained view of
link delays, in particular, temporal characteristics such as the
probability of two consecutive packets encountering delays
above a given level, or mean durations of packet runs at
or above a given delay level. In this paper, we remove the
assumption of temporal independence and show how it is
possible to recover, for each logical link in a multicast tree,
temporal properties of link delay processes based on end-to-
end delay observations made at receivers.
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τ

Fig. 1. Link delay process transitioning between good and bad states.

One of the outcomes of our work is being able to infer
the average duration of high delay bursts on internal network
links. Consider a sample path of a link delay process (Fig 1)
which we regard as transitioning between two states, good
and bad. During the good state, the packet queueing delays
remain below a certain acceptable levelτ. When the link
becomes congested and the delays exceed this level, the
process transitions into the bad state. In this setting, our work
shows how one can infer, in addition to the delay distribution
(e.g. the proportion of packets in the bad state), temporal
properties such as the delay-run distribution (for anyk, the
proportion of packet runs in the bad state exceeding lengthk)
and its mean (average length of such bad delay runs).

One of the main application areas for temporal information
of this nature is real-time services such asVoIP. End-to-end
VoIP performance is sensitive to changes in delay and there-
fore to the duration of periods where delay is at a given level.



Knowing typical durations of high delay bursts on internal
links enables intelligent path selection. Another application is
in the detection and characterization of links causing service
degradation. This is a more general concept and problem
than traditional ‘bottleneck’ detection. For example, average
loss rates and delays may be relatively high, yet this could
be acceptable to applications provided loss runs and runs of
high delay are short. The estimation of temporal parameters
is essential to make these deeper distinctions and thereby to
localize and quantify the root causes of service degradation.
This is of particular interest to network operators but end user
application can also benefit, for example in distributed gaming.

II. RELATED WORK

A body of work on network delay tomography [4], [7]–[11]
allows the inference of delay distribution and delay variance
of internal network links based on end-to-end multicast and
unicast packet-pair measurements. See [12] for a survey. All
of the above work is based on the assumption of temporal
independence.

We know of no prior work concerned with estimation of
temporal delay characteristics of network links. Recently, our
work [13] showed how temporal loss characteristics (such as
mean duration of loss-runs on internal links) can be estimated
using end-to-end multicast measurements. In this work, we
achieve the same for delay. We also employ another technique
described in that paper,subtree partitioning. This is a tech-
nique to reduce the computational complexity ofMINC based
estimation, by transforming any multicast tree into a virtual
binary tree for estimation purposes. Technically it results in
estimators which only require the solution of either linear or
quadratic equations to recover the probabilities of shared paths,
avoiding the need for root finding of higher order polynomials.

The problem of delay estimation is much more complex
than that of loss. Whereas the link loss model is binary (packet
is either transmitted or lost), the (discretized) link delay model
is multi-state in which loss appears as a special case of
infinite delay. By assuming independence between links and
packets, Lopresti et. al. [4] first showed how the discretized
link delay distributions can be estimated. Their estimator
uses a recursive computation or ‘deconvolution’, and builds
the delay distribution from the lowest delay bin upwards.
Our work generalizes this work where we assume temporal
dependence and move from estimating probabilities about
single packets (probability that a packet encounters delayd)
to a temporal case of estimating probabilities about arbitrary
group of packets (e.g. the probability that two consecutive
packets encounter delaysd andv respectively).

The delay distribution estimator found in [4] is not in gen-
eral the Maximum Likelihood Estimator (MLE), and indeed
direct calculation of the MLE appears infeasible in general. A
different approach was taken by Liang and Yu [8], in which
a pseudo-likelihood function is maximized. Our work takes a
different direction and is not obviously related to the MLE.

Note that all temporal estimation methods of this paper
may, in principle, be extended to groups of unicast packets

emulating multicast packets, in the same manner as [14], [15]
extend [3] for inferring average loss rates. Furthermore, they
can be used to infer temporal properties of jitter based on
measurements of inter-packet times.

III. M ODEL

In this section we justify and describe how we model the
delay process over a tree, and derive key consequences.

Tree Model Let T = (V, L) denote the logical multicast tree
consisting of a set of nodesV and linksL. Let 0 ∈ V denote
the root node and letR ⊂ V be the set of leaf nodes. A link
is an ordered pair(k, j) ∈ {V × V} representing a logical link
from nodek to node j. The set of children of a nodek is
denoted byc(k) = {j ∈ V : (k, j) ∈ L}. All nodes have at least
two leaves, except the root (just one) and the leaves (none), see
Fig 2(a). LetU = V \ {0} denote the set of all non-root nodes
of T . For each nodek ∈ U there is a unique nodej = f(k), the
father ofk, such that(k, j) ∈ L. We definef`(k) recursively
by f`(k) = f(f`−1(k)), with f0(k) = k. Now ∀k ∈ U, the set
of ancestors ofk is a(k) = {j ∈ U : f`(k) = j, ` ≥ 0}. Note
k ∈ a(k). We definea(0) = 0. For convenience, we refer to
link (f(k), k) simply as linkk.

Modelling Link Delay In our model, an infinite stream of
probe packets indexed byi ∈ Z is dispatched from the root
node0. Each probe that arrives at a nodek results in a copy
being sent to each of its children. When a probe attempts to
traverse a linkk, it encounters a random delay on the link
and may even be lost. The passage of probes down the tree
is modeled by two stochastic processes:Xk = {Xk(i)} and
Zk = {Zk(i)} for each nodek. The processZk is thediscrete
time delay processwhich determines the delay encountered by
probes and also if probes are lost as they attempt to traverse
link k. The processXk acts as abookkeeping processand
records the cumulative delay encountered by each probe on
the path from the root to nodek.

Ideally, the state of links over the tree could be characterized
by a set of underlying continuous time random processes
{Zk(t) : t ∈ R}, k ∈ U. If a packet is transmitted on link
k at time t, it encounters a delay determined by the value
Zk(t) ∈ R+ ∪ {∞}, taken by the link process, where∞
accommodates packet loss. We consider an abstracted form
of the problem, where the probe indexi not only indexes
probes, but also plays the role of discrete time. In this setting,
the delay sampling processes are well defined for alli, with
the interpretation thatZk(i) determines the delay thatwould
be experienced by probei, had it been present.

We discretize each link delay to the set{0, b, 2b, . . . ,mb,
∞}, where b is the bin width andm is any predefined
threshold. The symbol∞ is interpreted as “packet lost or
encountered delay exceedingmb”. Thus for each linkk,
the discrete-time discrete-state link delay processZk(i) takes
values from the state spaceD = {0, 1, 2, . . . , m, ∞}.

The bookkeeping process at a nodek is denoted by{Xk(i) :
i ∈ Z}, and takes valuesXk(i) ∈ {0, 1, 2, . . . , m`(k), ∞}

where`(k) is the level or height of nodek (hencef`(k)(k) is



the root node). The link delay process acts deterministically
on the node bookkeeping process at each probe indexi as
follows:

Xk(i) = Zk(i) + Xf(k)(i). (1)

Fig 2(b) shows some examples. For the root node we have
simply X0(i) = 0, ∀i. We have the following probability
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Fig. 2. (a) Example of a logical tree, (b) Delay model: the Link delay
processZk(i) on link k acts deterministically on input processXf(k) to
produce processXk.

model ford, v ∈ D:

Pr[Xk(i)=d |Xf(k)(i)=v]=





0 if d < v

1 if d = v = ∞
Pr[Zk(i)=d − v] otherwise

(2)

We assume the following dependence structure:

SPATIAL : The processes{Zk, k∈U} are mutually independent.
TEMPORAL: For eachk ∈ U, Zk is stationary and ergodic.

Thus we assume that packets encounter delays independently
across links, but that within each link, delays encountered
by packets can be correlated, with parameters that in general
depend on the link. Although potential mechanisms for spatial
correlations have been identified (e.g. TCP synchronization
[16]), we believe that diversity of link losses and round-trip
times will prevent such mechanisms from operating in links
which carry large numbers of flows; see [3]. The assumption
of ergodicity means that empirical time averages of functions
of the process will converge to the true expected value almost
surely, ensuring our estimators have desirable properties.

A. Examples and Consequences of Delay Processes

Equation (1) implies thatXk(i) is the sum of delay pro-
cesses over its ancestor nodes, each also at indexi:

Xk(i) =
∑

j∈a(k)

Zj(i) . (3)

It follows that Xk inherits the stationarity and ergodicity
properties of link delay processes. We now consider how more
detailed properties ofXk follow from those of theZk in three
classes of examples.

Bernoulli Scheme: For each linkk theZk(i) are i.i.d., so the
delays encountered by packets are independent of each other.
Such a process is simply characterized by the delay delay
probabilitiesPr[Zk(i) = p], p ∈ D. This is the model used in
prior work on delay tomography [4].

Stationary Ergodic Semi-Markov Process:This is a gener-
alization of the well known On-Off process, wherebyZk so-
journs in delay statei for a period whose duration is distributed
according to independent copiesLi of a random variable. At
the end of the sojourn it jumps into statej with probabilitypij

wherepii = 0 and
∑

j pij = 1. Jumps occur independently
of each other and of the sojourn durations. In general, the
convolution of semi-Markov processes are not semi-Markov.
However, the class with geometrically distributed sojourn in
the minimal delay state is closed under convolution. This is
because minimal path delay requires minimal delay on all
constituent links, and once all links enter the minimal delay
state, all memory of previous states is lost. Such models are
interesting in practice because measurements over wide area
networks have shown that packets carrying delays which spike
above ambient levels arrive approximately as a Poisson process
[17].

Stationary Ergodic Semi-Markov Process of Orderr: For
each link k, Zk(i) is Markov process of orderr as deter-
mined by the transition probabilitiesPr[Zk(i) = d|Zk(i −
1), . . . , Zk(i− r) = d ′]. Similarly to above, as a projection of
the product process⊗j∈a(k)Zk, Xk is not Markov in general.
The caser = 1 is a semi-Markov process with geometrically
distributed sojourn timesLi, and soXk also has geometrically
distributed times in the minimal delay state.

B. Delay Preprocessing

The delay on a network link consists of a fixed propagation
component, and a variable component due to queueing in
buffers and router processing. We are concerned with the
variable component only. Hence, following the approach of Lo
Presti et. al [4], we remove the fixed component by subtracting
from each source-to-leaf delay measurement, the minimum
delay observed at that leaf. It is the resulting excess end-
to-end delays that are discretized with bin sizeb, modeled
using theZk as described above, and thereby used as input
for estimation.

IV. T EMPORAL CHARACTERISTICS OFDELAY PROCESSES

Before embarking on estimation, we need to establish which
temporal characteristics of the processesZk one would wish
to estimate. We choose an ambitious objective, the joint
probability of a group of probes observing an arbitrary pattern
of delay states on a link in a general, non-parametric setting.
We show how to extract these in the next section. Here we
show that such joint probabilities can be used to recover
temporal statistics of practical interest.
Delay-run distributions and Mean delay-run lengths:Let
H be any subset of the full state spaceD. LH

k be a random
variable which indicates the lengths of runs ofZk in states
from subsetH. The distribution ofLH

k and its meanµH
k are

related to the joint distribution of the processZk as follows:



Pr[LH
k ≥ j]

= Pr[Zk(j)∈H, . . . , Zk(1)∈H | Zk(0) /∈ H,Zk(1)∈H]

=
Pr[Zk(j)∈H, . . . , Zk(1)∈H,Zk(0) /∈ H]

Pr[Zk(0) /∈ H, Zk(1) ∈ H]

=
Pr[Zk(j)∈H, . . . , Zk(1)∈H]−Pr[Zk(j)∈H, . . . , Zk(0)∈H]

Pr[Zk(1)∈H] − Pr[Zk(0)∈H,Zk(1)∈H]

and hence:

µH
k = E[LH

k ] =
∑

j≥1

jPr[LH
k = j] =

∑

j≥1

Pr[LH
k ≥ j]

=
Pr[Zk(1)∈H]

Pr[Zk(1)∈H] − Pr[Zk(0)∈H,Zk(1)∈H]
(4)

The last sum is absolutely convergent becauseµH
k is finite.

This formula makes intuitive sense as the ratio of the expected
proportion of time spent in runs in the subsetH (per time
index) divided by the expected number of transitions intoH

(per time index).
Thus, the mean delay-run length of any subsetH is acces-

sible even without parametric help, provided we can estimate
the simplest joint probabilities with respect to that subset,
those for a single:Pr[Zk(i) ∈ H] and a successive pair:
Pr[Zk(i) ∈ H,Zk(i + 1) ∈ H], of probes. The tail probability
of runs in subsetH, Pr[LH

k ≥ j] can be obtained from the joint
probabilities ofH for one, two,j, andj + 1 probes.

The prime application of Eq. (4) is to partition link states
into two classes, which we call good and bad. The bad class
could be the subset of states with delay greater than some
level τ (Fig. 3). The above formula yields the mean duration
of runs in good and bad classes in terms of respective single
and successive joint probabilities, i.e., we can recover the mean
duration of runs in which the delay exceedsτ (or remains at
leastτ).

delay
∞

τ

. . . m0 1

Fig. 3. Partition of delay states into good and bad classes, based on the
thresholdτ. In this example, good= {0, . . . , m}, bad= {∞}.

V. ESTIMATION OF TEMPORAL DELAY CHARACTERISTICS

Recall that the source at root node0 sends a stream of
n multicast probe packets. The outcome of thei-th probe is
the set of discretized source-to-receiver delays{Xr(i), r ∈ R},
whereXr(i) ∈ D. The goal is to infer temporal parameters of
processesZk, k ∈ U solely from then receiver outcomes.
In the previous section we discussed what these temporal
parameters could be, and highlighted the importance of joint
probabilities of delay patterns. In this section we show how
to estimate these joint probabilities from receiver data.

A. Link Probabilities to Path Probabilities

To manipulate joint probabilities, we define the probe index
setI= {i1, i2, . . . , is} (not necessarily contiguous) and random
vectors

Xk(I)=[Xk(i1), . . . , Xk(is)], Zk(I)=[Zk(i1), . . . , Zk(is)]

We show the estimation of joint probabilities involving delay
values from partial state spaceD ′=D \ {∞} and extend it to
full spaceD in section V-E. LetD,V∈D ′|I| be vectors of delay
values, for example we writeD= [d1, . . . , ds]. The notation
D ≤ V is used to meandj ≤ vj, ∀j. Let m = [m, . . . , m],
0=[0, . . . , 0]. Observe that∀ D∈D ′|I|

, 0≤D≤m.
We define thelink pattern probabilityαk(I,D) as

αk(I,D) = Pr[Zk(I) = D] = Pr[Xk(I) − Xf(k)(I) = D],

{Zk(I) =D} denotes the event{Zk(i1)=d1, . . . , Zk(is)=ds}.
αk(I,D) denotes the probability that a pattern of probes given
by index setI encounter a pattern of delays given byD, on
link k. By stationarity,αk(I,D)=αk(i + I,D), wherei + I≡
{i+i1, . . . , i+is}. For example,αk({1}, [d])=αk({i}, [d]) (the
probability that a probe encounters delayd on link k), and
αk({1, 2}, [d1, d2]) = αk({i, i + 1}, [d1, d2]) (the probability
that two consecutive probes encounter delaysd1 and d2 on
link k).

Because of temporal dependence,αk(I,D) is not in general
the product

∏s
j=1 Pr[Zk(ij)=dj]. However, thanks to spatial

independence,∀k∈V the path pattern probabilityAk(I,D)
can be expressed as a convolution of joint link and subpath
probabilities as follows:

Ak(I,D) = Pr[Xk(I) = D]

=
∑

0≤V≤D
Pr[Xk(I) − Xf(k)(I)=V] Pr[Xf(k)(I)=D−V]

=
∑

0≤V≤D
αk(I,V) Af(k)(D − V) (5)

The goal is to estimate the link probabilitiesαk(I,D),0≤D≤
m for each linkk ∈ U. From Eq. (5), these can be recursively
deconvolved if we know the path probabilitiesAk(I,D),0≤
D ≤ m,∀k ∈ V . We therefore proceed to derive expressions
for Ak(I,D) (deconvolution appears later in section V-E).

... ......
child

k

(b)

subtreeT 1
k subtreeT 2

k

R1
k R2

k

0 (root node)0 (root node)

Rk

k

(a)

subtreeTj

subtreeTk

j

Fig. 4. The subtreeTk with root at nodek. (a): nodek has a number of
child subtrees rooted at the child nodes{c(k)}. (b): subtree partitioning of
Tk. The child subtrees ofk are partitioned into two virtual subtreesT 1

k , T 2
k ,

anchored atk, with receiversR1
k, R2

k.

B. Estimation of Path Pattern Probabilities

Consider a branch nodek ∈ U in the tree in figure 4(a).
It is the root of the subtreeTk of T which has receiversRk.
For a probei sent from the source, we define the following
random variables and corresponding random vectors:

Yk(i) = min
r∈Rk

Xr(i), Yk(I) = [Yk(i1), . . . , Yk(is)] (6)



Ỹk(i, d) =

{
1 if Yk(i) − Xf(k)(i) ≤ d

0 if Yk(i) − Xf(k)(i) > d

Ỹk(I,D) = [Ỹk(i1, d1), . . . , Ỹk(is, ds)] (7)

Let B ∈ {0, 1}|I|. We define∀k ∈ U,

γk(I,D) = Pr[Yk(I) ≤ D]

βk(I,D,B) = Pr[Ỹk(I,D) = B] (8)

whereγk(I,D) is the probability that, for each probe indexij∈
I, the minimum delay on any path from sourceS to receivers in
Rk, does not exceeddj∈D. On the other hand,βk(I,D,B) is
the probability that, for each probe indexij∈I, the minimum
delay on any path from nodef(k) to receivers inRk is either
≤ dj or > dj∈D, depending on whetherbj∈B is 1 or 0. The
γk(I,D)’s are directly observable from receiver data and we
wish to use them to recoverAk(I,D)’s. Let 1 = [1, . . . , 1].
The following convolution linksA, β, andγ:

γk(I,D) = Pr[Yk(I) ≤ D]

=
∑

0≤V≤D
Pr[Xf(k)(I) = V] Pr[Yk(I) − Xf(k)(I) ≤ D − V]

=
∑

0≤V≤D
Af(k)(I,V) βk(I,D − V, 1) (9)

So far, the generalisation from single probes to probe patterns
has been remarkably straightforward. This is not true for the
next two properties, which give expressions forβk(I,D,B) in
the casesB=1 andB 6=1.

Property 1 (Parent-Child) The following relationship holds
betweenβk and the{βj, j ∈ c(k)} of the children ofk . For
convenience we relabel the children asj = 1, 2 · · · ck where
ck = |c(k)|. We have

βk(I,D,1) =
∑

0≤V≤D
αk(I,V) ηk(I,D − V) (10)

where

ηk(I,Q) =
∑

{B1,...,Bck
}

s.t. ∨jBj=1

ck∏

j=1

βj(I,Q,Bj) = 1 −

ck∏

j=1

(
1 − βj(I,Q,1)

)

+ 1|I|>1

( ∑

{B1 6=1,...,Bck
6=1}

s.t. ∨jBj=1

ck∏

j=1

βj(I,Q,Bj)
)

(11)

In Eq. (11), we have first used the fact thatOR over a subtree
can be decomposed as aOR over child subtrees, and then the
property that such child subtrees are mutually independent.
The ‘first’ (1 −

∏
j) term in Eq. (11) corresponds to all child

subtree receiver events{Bj} such thatBj = 1 for at least one
j. In the traditional case whereI = {i}, this is the only term,
since it is the same event as∨jBj = 1. In the temporal case
for arbitrary I this is not true, since which receivers see the
minimum delay can be different for eachi in I. As a result,
there are extra terms withβj(I,Q,Bj) factors withBj 6= 1.

Property 2 (Recursion over index sets withB = 1) One
can expressβk(I,D,B 6= 1) in terms ofβk(I ′,D ′, 1), where

I ′ ⊆ I. For instance, ifB = [b1 = 0, b2, . . . , bs], and I ′ =
{i2, . . . , is}, B ′=[b2, . . . , bs], D ′=[d2, . . . , ds], then we have

βk(I,D,B)=Pr[Ỹk(I,D)=B]

= Pr[Ỹk(i1, d1)=0, Ỹk(i2, d2)=b2, . . . , Ỹk(is, ds)=bs]

= Pr[Ỹk(i2, d2)=b2, . . . , Ỹk(is, ds)=bs]

− Pr[Ỹk(i1, d1)=1, Ỹk(i2, d2)=b2, . . . , Ỹk(is, ds)=bs]

= βk(I ′,D ′,B ′) − βk(I,D, [1, b2, . . . , bs])

which has eliminated0 at i1. The above can be applied
recursively to eliminate all zeroes, resulting in terms of the
form βk(I ′,D ′, 1), I ′ ⊆ I, |I| − z(B) ≤ |I ′| ≤ |I|, wherez(B)
denotes the number of zeroes inB. In general

βk(I,D,B 6= 1) = (−1)z(B)βk(I,D, 1) + δk(I,D,B) (12)

where δk(I,D,B) is the appropriate summation ofβk’s for
index setsI ′⊂I. For e.g., ifI= {1, 2}, B= {0, 1}, D=[d1, d2],
thenβk(I,D,B)=−βk(I,D, 1) +

(
βk({2}, [d2],1)

Eq. (12) can be used in (11) to remove allBj 6= 1 terms,
leaving only terms ofBj = 1 type, giving

ηk(I,Q) = 1 −

ck∏

j=1

(
1 − βj(I,Q,1)

)

+ 1|I|>1

( ∑

{B1 6=1,...,Bck
6=1}

s.t. ∨jBj=1

ck∏

j=1

{
(−1)z(B)βj(I,Q, 1)

+ δj(I,Q,B)
} )

(13)

By using (10) in (9) and simplifying the convolution, we get

γk(I,D) =
∑

0≤V≤D
Ak(I,V) ηk(D − V) (14)

Rewriting Eq. (9) for the{βj(I,D), j ∈ c(k)}, we get

γj(I,D) =
∑

0≤V≤D
Ak(I,V) βj(I,D − V, 1) (15)

Using the above three equations, the desired path pattern
probabilities for nodek, Ak(I,D), 0≤D≤m, can be computed
using the observablesγk(I,D) and {γj(I,D), j ∈ c(k)}, 0 ≤
D ≤ m. This is one of our main results. We have obtained
a complete generalization from the case of single probes
I = {i} and estimating only the distributionAk(i, [d]), d ∈ D ′,
to a temporal case for patterns of probesI, and estimating
Ak(I,D),D ∈ D ′|I|. For I = {i}, the above equations reduce
to the equations of Lopresti et.al. [4] for delay distribution
estimation.

Recovery ofAk(I,D) from the above equations involves
two levels of recursion: (i) over delay vectors, which arises
due to convolution, (ii ) over index sets which arises due to
summation term involvingδ in Eq. 13. Note thatδ(I, ., .) only
contains terms involvingI ′ ⊂ I and therefore does not contain
Ak(I, .). Thus estimation can be performed recursively starting
from I = {i} when the summation term withδ vanishes and
D = 0 when the convolution vanishes. Each step of recursion
involves solving polynomials of degreeck (due to the

∏
j

terms in (13)) in the unknownAk .



C. Example: Binary tree

We show the computation ofAk(I,D) in a binary tree for
pairs of consecutive probes i.e.I = {1, 2}. Consider a branch
nodek and its two childrenj = {1, 2}. Due to recursion over
index sets, we start with the case ofI = {1}.
Single probesI = {1}: The base case of recursion occurs for
I = {i} andD = [0]. To simplify notation, we drop the index
set I, B = 1, and vector notation for delays. For example,
βj(I, [d1], 1) = βj(d1). Writing out Eqs. (14) and (15),

γk(0) = Ak(0){1 − (1 − β1(0))(1 − β2(0))}

γj(0) = Aj(0)βj(0) (16)

from whichAk(0) is recovered by solving a linear equation as
Ak(0) = (γ1(0)γ2(0))/(γ1(0)+γ2(0)−γk(0)). Substituting
backAk(0) gives theβj(0) for use in the next step. Assuming
that Ak andβj’s have been computed∀ v1 < d1, Ak(d1) is
recovered using (14) and (15) which take the form

γk(d1)=Ak(0)ηk(d1)
∗

+Ak(d1)
∗

ηk(0) +
∑

0<v1<d1

Ak(v1)ηk(d1−v1)

whereηk(q) = {1 − (1 − β1(q))(1 − β2(q))}

γj(d1)=Ak(0)βj(d1)
∗

+Ak(d1)
∗

βj(0) +
∑

0<v1<d1

Ak(v1)βj(d1 − v1)

(17)

The unknown terms are marked by a ”*”.Ak(d1) is recovered
by solving a quadratic equation and substituting backAk(d1)
givesβj(d1)’s.
Pairs of consecutive probesI = {1, 2}: Again, to simplify
the notation, we drop the index setI, B = 1, and vector
notation for delays. For e.g.,βj(I, [d1, d2],1) = βj(d1, d2).
The estimation proceeds from delay vector[0, 0] until [m,m].
Assuming thatAk and βj’s have been computed for the
set{[v1, v2] : v1 ≤ d1, v2 ≤ d2} \ {[d1, d2]}, Ak(d1, d2) is re-
covered as follows. We expand Eqs. (14) and (15)

γk(d1, d2) = Ak(0, 0) ηk(d1, d2)
∗

+ Ak(d1, d2)
∗

ηk(0, 0)

+
∑

v1≤d1,

∑

v2≤d2

(v1,v2) 6=(0,0),(v1,v2) 6=(d1,d2)

Ak(v1, v2) ηk(d1 − v1, d2 − v2)

γj(d1, d2) = Ak(0, 0) βj(d1, d2)
∗

+ Ak(d1, d2)
∗

βj(0, 0)

+
∑

v1≤d1,

∑

v2≤d2

(v1,v2) 6=(0,0),(v1,v2) 6=(d1,d2)

Ak(v1, v2) βj(d1 − v1, d2 − v2)

ηk(q1, q2) = 1 −

2∏

j=1

(1 − βj(q1, q2))

+

2∏

j=1

(βj(q1) − βj(q1, q2)) +

2∏

j=1

(βj(q2) − βj(q1, q2))

(18)

The unknown terms are marked by a ”*” andAk(d1, d2) is
obtained by solving a quadratic equation.

D. Subtree Partitioning

In practice, solving polynomials arising from (13) implies
numerical root finding for each node, eachI ′ ∈ I, and each
D ∈ D ′|I|, which can be computationally slow. We now
present a computationally effective method of estimating the
path pattern probabilities on trees of arbitrary order which only
needs solutions of quadratic equations.

We use a technique called subtree-partitioning recently
proposed in [13] for loss inference. The idea is to combine
child subtrees of nodek into two sets, indexed byj ∈ {1, 2},
corresponding to two virtual subtreesT 1

k andT 2
k of Tk with

receiversRj
k (see Fig. 4(b)) (details of the allocation do not

affect what follows). We therefore define additional quantities
corresponding to the two virtual subtrees

Y ′jk(i) = min
r∈Rj

k

Xr(i), Y ′jk (I) = [Y ′jk(i1), . . . , Y ′jk(is)] (19)

Ỹ ′
j

k(i, d) =

{
1 if Y ′jk(i) − Xk(i) ≤ d

0 if Y ′jk(i) − Xk(i) > d

Ỹ ′
j

k(I,D) = [Ỹ ′
j

k(i1, d1), . . . , Ỹ ′
j

k(is, ds)] (20)

and the corresponding probabilities:

γ
′j
k (I,D) = Pr[Y ′jk (I) ≤ D]

β
′j
k (I,D,B) = Pr[Ỹ ′

j

k(I,D) = B]

Since sets of disjoint child subtrees are still mutually
independent,βk can be related toβ ′1k and β ′2k (previously
this was to{βj, j ∈ d(k)}). Then following the same sequence
of steps as before, we get a simpler version of Eq. (13) and
an equivalent of Eq. (15)

ηk(I,Q) = 1 −

2∏

j=1

(
1 − β

′j
k (I,Q,1)

)

+ 1|I|>1

( ∑

{B1 6=1,B2 6=1}

s.t. ∨jBj=1

2∏

j=1

{
(−1)z(B)β

′j
k (I,Q,1)

+ δ
j
k(I,Q,B)

} )
(21)

γ
′j
k (I,D) =

∑

0≤V≤D
Ak(I,V) β

′j
k (I,D − V,1) (22)

Using these Eqs. along with (14) leads to a quadratic expres-
sion in Ak(I,D) for all nodes irrespective of their degree,
which can be solved explicitly. By making arbitrary trees ap-
pear as binary in this way, numerical root finding is eliminated.

E. Deconvolvingα’s : Path probabilities to link probabilities

After having obtainedAk(I,D), for all k ∈ U, for 0 ≤
D ≤ m, αk(I,D) for D ≥ 0, are recursively deconvolved as
follows:
(i) For D = 0:

αk(I, 0) =
Ak(I, 0)

Af(k)(I,0)
(23)



(ii) For 0 < D ≤ m:

αk(I,D) =
Ak(I,D)−

∑
0<V≤D Af(k)(I,V)αk(I,D−V)

Af(k)(I,0)
(24)

(iii) When D ∈ D|I|, D ≤ m does not hold, i.e., at least one
element ofD could be∞. In this case,αk(I,D) is obtained
usingαk(I ′,V)’s, V ≤ m whereI ′ ⊆ I. For instance, consider
a vectorD = [d1 = ∞, d2, . . . , ds]. Then αk(I,D) can be
expressed as

αk(I,D) = αk({i2, . . . , is}, [d2, . . . , ds])

−
∑

v≤m

αk(I, [v, d2, . . . , ds]) (25)

For e.g., for the case of a single probesI = {1}, αk(I, [∞]) =
1 −

∑
v≤m αk(I, [v]).

F. Estimator Definitions

We now complete the definition of the estimators.γk(I,D)
can be estimated using the empirical frequencies as

γ̂k(I,D) =

∑n−|I|−1
i=0 1Yk(i+I)≤D

n − |I| − 1
(26)

Next, the γ̂k(I,D) and γ̂j(I,D), j ∈ c(k) are used to ob-
tain the estimator̂Ak(I,D) for Ak(I,D). Finally, following
equations (23-25),̂αk(I,D) are recursively deconvolved. In
practice, the estimators are modified to ensure that solutions
make physical sense, for example thatα̂k(I,D) ∈ [0, 1].

The mean delay-run length of a subset of one or more
statesH ⊂ D, µH

k is estimated using the respective single
and successive joint link probabilities of states in the subset.
Let αk({i1}, [d]) = αk(d) and αk({1, 2}, [d, v]) = αk(d, v),
then

µ̂H
k =

∑
d∈H α̂k(d)∑

d∈H α̂k(d) −
∑

d∈H

∑
v∈H α̂k(d, v)

(27)

VI. A NALYSIS OF DELAY ESTIMATOR PROPERTIES

In this Section we outline the statistical properties of the
estimators from Section V: consistency and the asymptotic
variance.

All the estimatorŝAk(I,D) are constructed as follows. The
true joint transmission probabilitiesAk(I,D) obey a relation
Ak(I,D) = g(γ) where γ is a set of probabilities of leaf
events, for some functiong. The form of g is relatively
involved, being a composition of expressions for quadratic
roots and iterations; however it is clearly a continuous func-
tion, in particular atγ. Âk(I,D) is then the plug-in estimator
Âk(I,D) = f(γ̂), where γ̂ are the empirical frequencies of
the events that defineγ. Now by virtue of the stationary and
ergodic assumption on theZk, γ̂ converges almost surely toγ
as the number of probes grows, i.e., the estimator is consistent,
as asserted.

For estimators of this type, a functiong of the empirical
averagesγ that, with g being also differentiable, one can
determine that

√
n · (Âk(I,D) − Ak(I,D)) is asymptotically

Gaussian with zero mean asn → ∞, with a covariance matrix
of the form ∇g · h∇g where∇g is the matrix of partial
derivatives ofg with respect to the coordinatesγ, and h is
the asymptotic covariance matrix between theγ.

VII. S IMULATION EXPERIMENTS

In this section we illustrate the performance of the esti-
mators using simulations. We conducted two classes of ex-
periments: (i) Monte-Carlo simulations which obey the model
assumptions from Section III, and (ii ) TCP simulations using
ns-2. We use the estimators from Section V-B for single and
two packet indices, and measure the following parameters
of link delay processes. For each statep, we estimate three
parameters:αk(p), αk(p, p), and the mean run lengthµp

k. To
assess the accuracy of estimates, we compute their relative er-
rors (this combines bias and variance) as:re(θ) = |(θ− θ̂)/θ|.
In addition, we average respective relative errors over all states
of a link to obtain the “per link” errors:ek(1) =

∑
p re(αk(p))

m+1 ,

ek(11) =
∑

p re(αk(p,p))

m+1 , andek(µ) =
∑

p re(µp
k)

m+1 .

Model Carlo SimulationsWe experiment with two different
families of discrete-time discrete-state link delay processes: (a)
Markov chains(1-st order) to provide an example of a gentle
departure from Bernoulli assumptions. In this family, the run
or burst length of each delay state is geometrically distributed,
and (b) semi-Markov processeswith Zipf distributed run
lengths, to provide much stronger temporal dependence. We
use a Zipf with a finite support over[1, 1000], a distribution
which has a power-law shaped tail over a wide range of values,
but which has all moments finite. The choice of distribution
family for the marginal of the delay processes determines the
burstiness of delay states. We consider: (i) Uniform where the
mass of the distribution is spread uniformly over all states. (ii )
Mixture distributioninspired by queueing models, with a point
mass at zero state followed by a geometric decay (discretized
exponential) over remaining states.

Rows 1 through 4 of Fig 5 shows the results for model
simulations. Rows 1 and 2 provide benchmark results for a
two-receiver tree, for Markovian and Zipf semi-Markov delay
processes respectively, with uniform delay distributions. The
delay processes on links are identically distributed and the
delay states on links have same mean run length. As results
for each of the three links are similar since the tree is small,
we show results for the shared linkk only, and drop the
subscriptk. Plots (a)-(c) show errorse(1), e(11), and e(µ)
respectively, plotted as a function of the mean run length for
a fixed number of probes (30k). Plots show the median errors
calculated over 256 independent repetitions of the experiments
(the grey confidence intervals show 5th and 95th percentiles
and give an idea of the variation over these). We see in general
that performance degrades both with increasing number of
states and the mean run length of states. Plot (a) reports error
in estimation of probabilities for a single packet index, and
(b) reports the error in estimation of joint probabilities for
two packet indices. The performance is satisfying, with errors
being only slightly larger than those for (a), despite the more
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Fig. 5. Simulation results: Model simulations Rows 1-4, ns-2 simulations Row 5.

challenging, temporal target. Plots (c) reports errors in the
estimation of mean run lengths of delay states. Because the
computation of run lengths involve a subtraction and a division
of estimated quantities(µp

k = αk(p)/(αk(p)− αk(p, p)), we
expect its variance to be greater that that of its components,
resulting in an increased error. This is indeed what we see.
Plot (d) shows relative errors for estimates of mean run length
as the number of probes grow (10k-50k) for a fixed mean run
length of3.5. Plots (e)-(h) tell a similar story for Zipf semi-
Markov processes, but as expected with an increased error due
to the high burstiness of the process.

Plots (i), (j) focus on good and bad states, reporting relative
errors in the estimation of their mean run lengthse(µG

k ) and
e(µB

k ) for Markov and semi-Markov processes, in experiments
with 4-state ({0, 1, 2, ∞}) link delay processes. The good state
comprises delay states{0, 1} and the bad states{2, ∞}. Thus

mean run length in the bad state corresponds to the mean
duration of runs in which the delay is at least2 units. The
performance is satisfying because, in spite of aggregating
states, the error in estimation compares well with the average
of errors of mean run length of individual states.

Plots (k), (l) focus on a finer grained view of per-link
behaviour, by showing the evolution ofµ

p
k estimates with the

number of probes for each state, and each link, in the case
of a two-receiver tree with different link parameters. In this
experiment, the link delay process had three states ({0, 1, ∞})
and µ

p
1 = 3.5 and µ

p
2 = 2.5 for all p. We see that as the

number of probes grow, estimates converge to the true values.
The estimates of the Zipf case are much slower to converge
than the Markov case.

Plots (m) and (n) focus on larger trees: tertiary trees with 3
levels, 9 receivers, and 4 delay states with mean run lengths



of 2.5. Here subtree-partitioning is used. Estimated run length
e(µk) is shown for links averaged over successive levels in
the tree. As we go down the tree the variance increases.

Plots (o) and (p) examine the effect one(µk) of a non-
uniform delay distribution. Results for the shared link between
two receivers are shown in the Markov case, for two differ-
ent (see caption) ’mean of geometric decay(mass at zero)’
combinations, for 20k probes. All states had the same mean
run lengths and estimation was performed for delay states in
{0, 1, 2, 3, ∞}.

We see that higher masses at zero state implies lower errors
since estimation is performed recursively from the zero state.
Also, when the geometric decay has a low mean, mass at
higher states is too low to be accurately estimated, resulting
in higher average errore(µk) over delay states. When the
mean increases, some mass shifts to higher states, improving
their estimates and reducing the average error. Plot (p) shows
the effect of increasing the mean run length. This decreases
burstiness of higher delay states which reduces estimation
error.
TCP SimulationsPlots (q)-(t) show the results ofTCP simula-
tions using a realistic tree topology (Fig 2(a)) with high band-
width interior links (bold lines, 10Mpbs, propagation delay
50ms) and low bandwidth exterior links (thin lines, 2.5Mps,
10ms). The background traffic on each link is comprised of
infinite sourceTCP connections. Multicast probes of 40 bytes
were sent from the root node0 using a Poisson process
with mean inter-packet time of 16ms. The end-to-end probe
delays were discretized using a bin size of 2ms into the state
space{0, . . . , m = 4, ∞} and used for estimation. In these
experiments,∞ was considered as bad state. The mean run
length of states0..m varied between 1.5-3.5. On an average
link delay distributions had a point mass of about35% at
state 0 and the mass decayed approximately geometrically over
higher states. Mean run lengths of states decreased as we move
from state0 to m. In our experiments probes experienced
higher queueing delays on interior links where buffer sizes
were larger. Loss rates were low and remained below10%.

Figures (q)-(s) show true and estimated mean run lengths of
selected states over selected links. Error increases both when
we move down the tree and towards higher delay states. Fig (q)
shows how the mean run length of state 0 on various links
converge to the true values. In (r) and (s) we show the same
for state 1 and the bad state∞. In our experiments links 2
and 9 experienced significant delays larger than m units, and
hence have longer mean run lengths in the ’bad’ state. Lastly,
(t) shows average relative error to estimate mean run length
for state 0 (links 1, 8, 9, 10) and state 4 (links 1, 2, 4). In
general, error inTCP simulations remains higher than in model
simulations due to the bias introduced by binning.

VIII. C ONCLUSION

Packet traffic is bursty, and the performance of network
applications depends on temporal metrics such as the duration
of congestion events. In this paper we showed how tomog-
raphy techniques can be extended to include the estimation

of temporal parameters of link delay processes, which is of
interest to delay sensitive applications, and application aware
link and path health monitoring.

We derived an estimator capable of estimating temporal
parameters such as the probability of arbitrary patterns of
delays, and the mean run lengths of various delay states,
for each link in the multicast tree. Run lengths can also be
measured for sets of ‘bad’ and ‘good’ delay states.

The methods are non parametric, working in a general
context where the true nature of delays is unknown. We
show how subtree-partitioning can be applied to make delay
estimation scalable to large degree trees. We show that the
estimators are consistent, and provide simulation illustrations
of their relative errors as a function of parameters, and the
number of probes, using Markovian and semi-Markovian delay
processes (with Zipf tails) and ns-2 simulations.

In future work, the variance of the estimators presented here
will be investigated in more detail, including the impact larger
and less homogeneous trees, as well as real network traffic
conditions.
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