
Proactive Process-Level Live Migration in HPC Environments
Chao Wang1, Frank Mueller1, Christian Engelmann2, Stephen L. Scott2

1 Department of Computer Science, North Carolina State University, Raleigh, NC
2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN

mueller@cs.ncsu.edu, phone: +1.919.515.7889, fax: +1.919.515.7896

Abstract
As the number of nodes in high-performance comput-

ing environments keeps increasing, faults are becoming
common place. Reactive fault tolerance (FT) often does
not scale due to massive I/O requirements and relies on
manual job resubmission.

This work complements reactive with proactive FT at
the process level. Through health monitoring, a subset
of node failures can be anticipated when one’s health
deteriorates. A novel process-level live migration mecha-
nism supports continued execution of applications during
much of processes migration. This scheme is integrated
into an MPI execution environment to transparently sustain
health-inflicted node failures, which eradicates the need to
restart and requeue MPI jobs. Experiments indicate that
1-6.5 seconds of prior warning are required to successfully
trigger live process migration while similar operating
system virtualization mechanisms require 13-24 seconds.
This self-healing approach complements reactive FT by
nearly cutting the number of checkpoints in half when 70%
of the faults are handled proactively.

I. Introduction
The current trend in high-performance computing

(HPC) is to continually increase the system scale through
ever larger number of nodes, each of them consisting of
multi-core processors, exceeding the 100,000 processor
mark. This substantial system growth poses a challenge
in terms of the failure probability for large-scale jobs.

Reliability data of contemporary systems, depicted in
Table I, illustrates that the mean time between failures
(MTBF) / interrupts (MTBI) is in the range of 6.5-40
hours, depending on the maturity / age of the installation
[22]. The most common causes of failure are processor,
memory and storage errors / failures. When extrapolat-
ing for current systems, the mean-time between failures
(MTBF) for peta-scale systems is predicted to be as short
as 1.25 hours [35] and could be accompanied by one
radiation-induced soft error once every 1.5 hours [38].
With current checkpoint/restart (C/R) technology, the wall-
clock time of a 100-hour job could well extend to 251

This work was supported in part by NSF grants CCR-0237570 (CA-
REER), CNS-0410203, CCF-0429653 and DOE DE-FG02-05ER25664.
The research at ORNL was supported by Office of Advanced Scientific
Computing Research and DOE DE-AC05-00OR22725 with UT-Battelle,
LLC.

hours due to C/R overhead implying that 60% of cycles
are spent on C/R alone [35].

System # CPUs MTBF/I
ASCI Q 8,192 6.5 hrs

ASCI White 8,192 5/40 hrs (’01/’03)
PSC Lemieux 3,016 9.7 hrs

Google 15,000 20 reboots/day

TABLE I: Reliability of HPC Clusters
Yet, when fault-tolerant middleware hides such failures

and user services remain unaffected, the interpolated fault
rate is just over one hour for equivalent number of nodes
(c.f. Google in Table I) [18]. In this spirit, our work
focuses on fault-tolerant middleware for HPC systems.
More specifically, this paper promotes process-level live
migration combined with health monitoring for a proactive
FT approach that complements existing C/R schemes with
self healing whose fault model is based on the work by
Tikotekar et al. [48].

Health monitoring has recently become a wide-spread
feature in commodity and, even more so, in server and
HPC components. Such monitors range from simple pro-
cessor temperature sensors to baseboard management cards
(BMCs) with a variety of sensing capabilities, including
fan speeds, voltage levels and chassis temperatures. Sim-
ilarly, the SMART disk standard provides the means to
trigger events upon disk errors indicating disk problems,
which can be saved in log files or which can trigger ex-
ception handling mechanisms. Aided by such capabilities,
node failures may be anticipated when the health status of
a node deteriorates, i.e., when abnormal sensor readings or
log entries are observed.

Health monitoring has been used to model failure rates
and, in a reactive manner, to determine checkpoint intervals
[42], [39]. In this work, we venture beyond reactive
schemes by promoting a proactive approach that migrates
processes away from “unhealthy” nodes to healthy ones.
Such a self-healing approach has the advantage that check-
point frequencies can be reduced as sudden, unexpected
faults should become the exception. This requires the
availability of spare nodes, which is becoming common
place in recent cluster acquisitions. We expect such spare
nodes to become a commodity provided by job schedulers
upon request. Our experiments assume availability of 1-2

spare nodes.1

The feasibility of health monitoring at various levels has
recently been demonstrated for temperature-aware mon-
itoring, e.g., by using ACPI [1], and, more generically,
by critical-event prediction [40]. Particularly in systems
with thousands of processors, fault handling becomes
imperative, yet approaches range from application-level
and runtime-level to the level of OS schedulers [8], [7],
[9], [34]. These and other approaches differ from our work
in that we promote live migration combined with health
monitoring.

We have designed an automatic and transparent mech-
anism for proactive FT of arbitrary MPI applications. The
implementation, while realized over LAM (Local Area
Multicomputer)/MPI’s C/R support [43] through Berkeley
Labs C/R (BLCR) [15], is in its mechanisms applicable
to any process-migration solution, e.g., the Open MPI FT
mechanisms [24], [25]. BLCR is an open source, system-
level C/R implementation integrated with LAM/MPI via
a callback function. The original LAM/MPI+BLCR com-
bination [41] only provides reactive FT and requires a
complete job restart from the last checkpoint including
job resubmission in case of a node failure. Recent work
enhances this capability with a job pause/continue mech-
anism that keeps an MPI job alive while a failed node
is replaced by a spare node [51]. Paused, healthy tasks
are rolled back to and spare nodes proceed from the last
checkpoint in a coordinated manner transparent to the
application.

The contribution of this paper is to avoid roll-backs to
prior checkpoints whenever possible. By monitoring the
health of each node, a process is migrated as a precaution
to potentially imminent failure. To reduce the impact
of migration on application performance, we contribute
a novel process-level live migration mechanism as an
enhancement to the Linux BLCR module. Thus, execution
proceeds while a process image is incrementally and
asynchronously transferred to a spare node. This reduces
the time during which the process is unresponsive to only
a short freeze phase when final changes are transferred
to the spare node before re-activating execution on the
target node. Hence, MPI applications execute during much
of process migration. In experiments, we assessed the
trade-off between lower end-to-end wall-clock times of
jobs subject to live migration vs. the slightly prolonged
duration for migration as opposed to a traditional process-
freeze approach. Depending on the estimated remaining
up-time of a node with deteriorating health, one can choose

1Our techniques also generalize to task sharing on a node should not
enough spare nodes be available, yet the cost is reduced performance
for tasks on such shared nodes. This may result in imbalance between
all tasks system-wide resulting in decreased overall performance. Such
imbalance might be tolerable when faulty nodes can be brought back
online quickly so that processes can migrate back to their original nodes.

between live and frozen migration schemes.
Our results further demonstrate that proactive FT com-

plements reactive schemes for long-running MPI jobs.
Specifically, should a node fail without prior health in-
dication or while proactive migration is in progress, our
scheme reverts to reactive FT by restarting from the
last checkpoint. Yet, as proactive FT has the potential
to prolong the mean-time-to-failure, reactive schemes can
lower their checkpoint frequency in response, which im-
plies that proactive FT can lower the cost of reactive
FT. More specifically, experimental results indicate that 1-
6.5 seconds of prior warning are required to successfully
trigger live process migration while similar operating sys-
tem (OS) virtualization mechanisms require 13-24 seconds.
The approach further complements reactive FT by nearly
twice as long a checkpointing interval due to proactive
migration when 70% of the failures are predicted only a
few seconds prior (derived from [40]).

II. Design
Figure 1 depicts the system components and their

interaction, i.e., the chronological steps involved in process
migration of each MPI job and job dependencies with data
exchanges. In the following, we discuss system support
for live migration at two levels: (1) the synchronization
and coordination mechanisms within an MPI job and (2)
live migration with incremental update support at the
process/MPI task level. We further consider the tradeoff
between live and frozen migration options and develop ap-
proaches to manage “dirty” memory, i.e., memory written
since the last incremental update.

nodes

lamboot n0 n2n1 n3

job run

lamd
scheduler

lamd
scheduler

lamd
scheduler

lamd
scheduler

MPI app MPI app MPI app

scheduler
1. failure
predicted 2. dest. found

MPI app MPI app

3. iterative
pre-copyMPI app MPI app

4. drain in-flight data 5. stop©

MPI appMPI app MPI app
6.1 connect

migrate

resume

6.2 restore in-flight data,
resume normal operation

mpirun

BMC\IPMI BMC\IPMI BMC\IPMI BMC\IPMI

Fig. 1: Job Live Migration
A. Live Migration at the Job Level

Figure 1 depicts steps 1-6, each of which are described
in the following.

Step 1: Migration Trigger: In our system, the per-
node health monitoring mechanism is realized on top of a
Baseboard Management Controller (BMC). It is equipped
with sensors to monitor different properties, e.g., sensors
providing data on temperature, fan speed, and voltage. We

also employ the Intelligent Platform Management Interface
(IPMI), an increasingly common management/monitoring
component that provides a standardized message-based
interface to obtain sensors readings for health monitoring.
We further designed a decentralized scheduler, which can
be deployed as a stand-alone component or as an integral
process of an MPI daemon, such as the LAM daemon
(lamd). The scheduler will be notified upon deteriorating
health detected by BMC/IPMI, e.g., due to a sensor reading
exceeding a threshold value.

Step 2: Destination Node Determination: When the
scheduler component on the health-decaying node receives
the early warning issued in step 1, it first chooses a
spare node as a replacement for the unhealthy node.
Spare nodes are increasingly becoming a commodity in
clusters. We expect that job schedulers may soon simply
allocate a limited number of spares as a default or upon
request during job submission. As of now, we still have to
explicitly over-provision by setting a constant number of
nodes aside during job submission.

These spare nodes comprise the destination for process
migration. However, if no spare node was set aside during
job submission or if all nodes were already used, we
choose the most lightly loaded node as a migration desti-
nation, in which case the node doubles for two MPI tasks.
Sharing nodes may result in imbalance due to bearing
twice the load of regular nodes, which generally results
in lower overall application performance. Such imbalance
might be tolerable when faulty nodes can be brought back
online quickly so that processes can migrate back to their
original nodes. Nonetheless, higher sustained application
performance can be guaranteed when unloaded spares are
available as migration targets.

Step 3: Memory Precopy: Once a destination node
is determined, the scheduler initiates the migration of a
process on both destination and source nodes. The objec-
tive of the first stage of migration is to transfer a memory
snapshot of the process image to the spare node, yet to
allow the application to execute during this stage, hence
the name live migration. The transfer of the process image
occurs at page granularity and is repeated for pages written
to by the application between image scans. During the first
process image scan (first iteration), all non-zero pages are
transferred from the source node to the destination node.
On subsequent scans/iterations, only the pages updated
since the previous scan are transferred. When the number
of such “dirty” pages between scans does not change
significantly anymore, the scan loop terminates. System
support for tracking dirty pages is discussed later in the
context of memory management.

Step 4: In-flight Message Drainage: Before we stop
the process and migrate the remaining dirty pages with
the corresponding process state to the destination node, all

MPI tasks need to coordinate to reach a consistent global
state. Based on our LAM/MPI+BLCR design, message
passing is dealt with at the MPI level while the process-
level BLCR mechanism is not aware of messaging at
all. Hence, we employ LAM/MPI’s job-centric interaction
mechanism for the respective MPI tasks to clear in-flight
data in the MPI communication channels.

Step 5: Stop&Copy: Once all the MPI tasks (pro-
cesses) reach a consistent global state, the process on
the source node freezes (suspends) application execution
but still copies the remaining dirty pages (written to
since the last iteration in step 3) and the final process
state (registers, signal information, pid, files etc.) to the
destination node. All other MPI tasks are suspended at
their point of execution.

Step 6: Connection Recreation, Messages Restora-
tion and Job Continuation: When the process is ready on
the destination node, it sets up a communication channel
with all other MPI tasks. Subsequently, the drained in-
flight messages are restored, and all the processes resume
execution from the point of suspension.
B. Live Migration at the Process Level

The incremental precopy and stop© (steps 3 and 5
in Figure 1) are performed at the process level involving
only the destination and source nodes. Yet, there are trade-
offs between simply stopping an application to engage in
a frozen copy and the alternative of a live precopy with
continued application progress. The latter, while generally
resulting in shorter overall application wall-clock time,
comes at the expense of background network activity,
possibly even repeatedly transmitting dirtied pages. This
also raises the question when the iterative precopy loop
should terminate.

Figures 2 and 3 show migration with precopy (live) and
without (stop©-only). Compared to a traditional job
resubmission resuming execution from the last checkpoint
in a reactive FT scheme, both of these proactive migration
schemes lower the expected execution time of the MPI
application in the presence of failures. This is especially
the case for HPC environments where the MTBF is low,
which typically implies that the number of compute nodes
is high, the run-time of an application is long, and the
memory footprint is large.

One of our objectives is to reduce the aggregate down-
times over all nodes, i.e., the duration of the stop©
step should be small. Live migration with incremental
precopy results not only in shorter downtime on the local
node (to transfer dirty pages plus other process state) but
also in reduced suspension of all other nodes (once MPI
message queues are drained) since fewer pages remain
dirty after precopy. Another objective is to tolerate the
imminent fault. The shorter the migration duration, the
higher the probability that our proactive scheme makes

thread1 thread2

running normally transfer all

non-zero pages

transfer

dirty pages

transfer dirty pages,

registers/signals

transfer

registers/signals

precopy

thread

create athread

thread1 thread2

first iteration

of precopy

other iterations

of precopy

stop©

receives pages

and save to

corresponding

memory

restore

registers/signals

save dirty

pages

save dirty pages

restore

registers/signals

normal execution

source node destination node

stop

barrier

barrier

barrier

barrier

Fig. 2: Process Migration with Precopy (Kernel Mode in
Dotted Frame)

thread1 thread2

transfer all non-

zero pages,

registers/signals
transfer

registers/signals

thread1 thread2

stop©

receives pages and save to

corresponding memory,

restore registers/signals
restore

registers/signals

normal execution

source node destination node

stop

barrier

barrier

barrier

barrier

Fig. 3: Process Migration without Precopy (Kernel Mode in
Dotted Frame)

a reactive restart from a prior checkpoint unnecessary.
Frozen migration consisting only of the stop© step
takes less overall time during migration, thereby increasing
chances for successful migration. A compromise might
even be to stop the precopy step prematurely upon receipt
of another fault event indicating higher urgency of the
health problem.

Two major factors affect the tradeoff between the
downtime and the migration duration. First, the network
bandwidth shared between the MPI job and the migra-
tion activity is limited. If an application utilizes less
network bandwidth, more bandwidth can be consumed
by the migration operation. Thus, the precopy step may
only have minimum impact on application progress. More
communication-intensive applications, however, may leave
less unused bandwidth for live migration (during precopy).
This could both slow down a local MPI task (with poten-
tially globally unbalanced progress due to communication)
and prolong precopy duration, ultimately requiring a pre-
mature termination of this step. High-end HPC installa-
tions may provide multiple network backbones to isolate
MPI communication from I/O traffic, the latter of which

covering checkpointing and migration traffic as well. In
such systems, bandwidth issues may not be as critical (but
cannot be fully discounted either).

Second, the page write rate (dirtying rate) affects the
trade-off between downtime and migration duration. The
dirtying rate is affected by the memory footprint (more
specifically, the rewrite working set) of the application.
A larger number of pages repeatedly written within a tight
loop will prolong the precopy duration, which might lower
the probability for successful migration (compared to non-
live migration). In fact, the page access patterns of the
studied benchmarks will be shown to differ significantly.
We further discuss this issue in the experimental section.

C. Memory Management

A prerequisite of live migration is the availability of a
mechanism to track modified pages during each iteration of
the precopy loop. Two fundamentally different approaches
may be employed, namely page protection mechanisms
or page-table dirty bits. Different implementation variants
build on these schemes, such as the bookkeeping and
saving scheme that, based on the dirty bit scheme, copies
pages into a buffer [19].

Under the page protection scheme, all writable pages of
a process are write-protected before each iteration occurs.
When a page is modified (written to for the first time),
a page fault exception is raised. The triggered exception
handler enables write access to the page and records the
page as dirty. Upon return from the handler, the write
access is repeated successfully, and subsequent writes to
the same page execute at full speed (without raising an
exception). At the next iteration, pages marked as dirty
are (1) write protected again before being (2) copied to
the destination node. This ordering of steps is essential to
avoid races between writes and page transfers.

Under the dirty bit scheme, the dirty bit of the page-
table entry (PTE) is duplicated. The dirty bit is set in
response to handling by the memory management unit
(MMU) whenever the first write to the page is encountered.
At each iteration, the duplicate bit is checked and, if set, is
first cleared before the page is transferred to the destination
node. To provide this shadow functionality, kernel-level
functions accessing the PTE dirty bit are extended to also
set the duplicate bit upon the first write access.

The page protection scheme has certain draw-backs.
Some address ranges, such as the stack, can only be
write protected if an alternate signal stack is employed,
which adds calling overhead and increases cache pres-
sure. Furthermore, the overhead of user-level exception
handlers is much higher than kernel-level dirty-bit shad-
owing. Thus, we selected the dirty bit scheme in our
design. Implementation-specific issues of this scheme are
discussed in detail in the next section.

III. Implementation
We next provide implementation details of our process-

level live migration under LAM/MPI+BLCR. The overall
design and the principle implementation methodology are
applicable to arbitrary MPI implementations, e.g., Open-
MPI and MPICH.
A. Failure Prediction and Decentralized Scheduler

As outlined in Section II, the capabilities of the BMC
hardware and IPMI software abstraction were utilized
by our framework to predict failures. In the following,
we focus on the system aspects of the live migration
mechanism to tolerate imminent faults and only to a lesser
extent on fault prediction, a topic mostly beyond the scope
of this paper.

The scheduler is implemented as a process of lamd
communicating through the out-of-band channel provided
by LAM/MPI. When the scheduler daemon is notified by
the BMC/IPMI health monitoring component, it consults
the database to retrieve information about the MPI jobs
and the nodes in the LAM universe. A spare node or,
alternatively, the most lightly loaded node is chosen as
the migration target. In our implementation, we also check
the BMC/IPMI sensor readings with preset thresholds to
determine if the degree of urgency allows accommodation
of a precopy step. For example, if the temperature is higher
than a high watermark (indicating that failure is almost in-
stantly imminent), the frozen migration (stop©-only)
is launched, which guarantees a shorter migration duration.
However, if the value is closer to the low watermark
(indicating that failure is likely approaching but some
time remains), the live migration (with its precopy step)
is launched, which reduces overall application downtime.
The design allows additional schemes, selected through
a combination of sensor and history information, to be
integrated as plug-ins in the future.

Next, we present implementation details of the process-
level mechanisms, including dirty page tracking and pro-
cess image restoration, as they were realized within BLCR.
This is followed by the MPI-level implementation details
based on the fundamental capabilities of BLCR, including
the maintenance of consistency of a global state for the
entire MPI job, as realized within LAM/MPI.
B. Process-Level Support for Live Migration

As part of our implementation, we integrated several
new BLCR features to extend its process-level task mi-
gration facilities and to coordinate LAM/MPI’s callback
mechanism amongst all MPI processes. The scheduler
discussed previously issues the cr save and cr restore
commands on the source and destination nodes, respec-
tively, when it deems live migration with precopy to
be beneficial. Subsequently, once the precopy step has
completed, LAM/MPI issues the cr stop and cr quiesce
commands on the source node and all other operational
nodes, respectively.

1) Precopy at the Source Node: cr save: The cr save
command implements a sequence of steps specific to our
live migration. It first sends a signal to the process on the
source node where it triggers the creation of a new thread.
This thread performs the precopy work at the user level.
We chose a solution at the user level since a kernel-level
precopy can block application threads, thereby hampering
overall computational progress. During the first iteration
of the precopy loop, all non-empty pages are transferred
to the destination node. Subsequent iterations, in contrast,
result in transfers of only those pages modified since the
last iteration. The top half of Figure 2 at the source node
depicts this procedure. Recall that the dirty bit approach
implemented in our system tracks if a page has been
written to since the last transfer (iteration).

The Linux kernel maintains a dirty bit in the PTE. It is
automatically set by the hardware (MMU) when the page
is modified. Yet, we cannot utilize this dirty bit for our
purposes since its state is tightly coupled with the Linux
memory management, specifically the swap subsystem. We
have to clear such a flag for each iteration of our page
sweep, yet clearing the PTE dirty bit would indicate that a
page need not be written on a subsequent swap-out, which
is violating consistency. Instead of modifying the dirty bit
semantics, we decided to shadow the dirty bit within the
reserved bits of PTE. Updates to this shadow dirty bit may
occur through system functions without much overhead
(compared to user-level page protection).

This shadow dirty bit still needs to be preserved across
swapping, which is a challenge since swapped PTEs are
partially invalidated. One solution would be to simply
disable swapping, which might be an option for HPC,
but a more general solution is preferable. Linux actually
preserves selected fields of a swapped out PTE, among
other things to associate with it the swap disk device and
the offset into the device where the page resides. This swap
information includes a set of bits that are preserved, one of
which we utilized as the shadow dirty bit. We implemented
this approach in x86 64 and i386 Linux kernels similar to
an orthogonal IA64 design by HP [2].

During live migration, a precopy thread iteratively trans-
fers dirty pages to the destination node until one of the
following conditions is satisfied:

• The aggregate size of dirty memory during the last it-
eration is less than a lower memory threshold (default:
1MB);

• the aggregate difference of transferred memory in
consecutive iterations is less than a small difference
threshold (indicating that a steady state of the rate in
which pages are written to is reached);

• the remaining time left before the expected failure is
below a lower overhead threshold.

As shown in Figures 4(i) and 4(j), the page dirty mod-

ification eventually stabilizes or its fluctuation is regular
(repeats periodically). We could support an empirical factor
in the algorithm to keep a profile history of the page
modification rate and its regularity. Such model parameters
could steer future application runs during live migration
/ precopy in choosing a more sensitive termination con-
dition. This could be especially beneficial for jobs with
long runtime (a large number of timesteps) or repeated
job invocations.

Once the precopy step terminates, the thread informs
the scheduler, who then enters the stop© step in a
coordinated manner across all processes of the MPI job.
This includes issuing the cr stop command on the source
node.

2) Freeze at the Source Node: cr stop: The redesigned
cr stop command signals the process on the source node to
freeze execution, i.e., to stop and copy the pages dirtied in
the last iteration of the precopy step to the destination node.
Threads of the process subsequently take turns copying
their own state information (registers, signal information,
etc.) to the destination node. This functionality is per-
formed inside the Linux kernel (as an extension to BLCR)
since process-internal information needs to be accessed
directly and in a coordinated fashion between threads. The
lower half of Figure 2 depicts these actions at the source
node.

Between the precopy and freeze steps, the processes
of an MPI job also need to be globally coordinated. The
objective is to reach a consistent global state by draining all
in-flight messages and delaying any new messages. This is
accomplished in two parts at the source node, implemented
by the cr save and cr stop commands. At the destination
node, a single command implements the equivalent restore
functionality.

3) Precopy and Freeze at the Destination Node:
cr restore: At the destination node, the cr restore com-
mand with our extensions is issued by the scheduler. This
results in the immediate creation of an equal number
of threads as were existent on the source node, which
then wait inside the Linux kernel for messages from the
source node. A parameter to the command, issued by the
scheduler, indicates whether or not a live/precopy step was
selected on the source node. In either case, one thread
receives pages from the source node and places them at
the corresponding location in local memory. All threads
subsequently restore their own state information received
from the corresponding source node threads, as depicted
in Figures 2 and 3 at the destination node. After the
process image is fully transferred and restored, the user
mode is entered. Next, the MPI-level callback function
is triggered, which creates the connections with the other
MPI processes of the compute job and restores the drained
in-flight messages discussed next.

4) Process Quiesce at Operational Nodes: cr quiesce:
In steps 4 and 6 of our design (cf. Section II), processes
on all other operational nodes drain the in-flight messages
before the stop© step. They then remain suspended
in this step, creating a connection with the new process on
the destination (spare) node and ultimately restoring in-
flight messages after. This sequence of actions is triggered
through the newly developed cr quiesce command. In
our implementation, issuing this command signals the
process (MPI task), which subsequently enters the MPI-
level callback function to drain the messages, waits for
the end of the stop© step of the faulty/spare nodes,
and then restores its communication state before resuming
normal execution.
C. Job Communication and Coordination Mecha-
nism for Live Migration

In our implementation, we extended LAM/MPI with
fundamentally new functionality provided through our
BLCR extension to support live migration of a process
(MPI task) within a job. Our approach can be divided into
four stages introduced in their respective temporal order:

Stage 1: Live/Precopy: The scheduler of the LAM dae-
mon, lamd, determines whether or not live/precopy should
be triggered. If sufficient time exists to accommodate this
stage, the cr save and cr restore commands are issued on
the source and destination nodes, respectively. During the
precopy step, the compute job continues to execute while
dirty pages are sent iteratively by a precopy thread on the
source node. If time does not suffice to engage in this
live/precopy stage, the next stage is entered immediately.

Stage 2: Pre-Stop&Copy: In this stage, the sched-
uler issues a stop© command for mpirun, the initial
LAM/MPI process at job invocation, which subsequently
invokes the cr stop and cr quiesce commands on the
source node and any other operational nodes, respectively.
Once signaled, any of these processes first enters the
callback function, which had been registered as part of the
LAM/MPI initialization at job start. The callback forces a
drain of the in-flight data to eventually meet a consistent
global state for all processes (MPI tasks).

Stage 3: Stop&Copy: Upon return from the callback
function, the process on the source node stops executing
and transfers the remaining dirty pages and its process
state. Meanwhile, the processes on other operational nodes
suspend in a waiting pattern, as discussed previously.

Stage 4: Post-Stop&Copy: Once all the state is trans-
ferred and restored at the destination (spare) node, the
process is activated at this node and invokes the LAM/MPI
callback function again from the signal handler. Within the
callback handler, the migrated process relays its addressing
information to mpirun, which broadcasts this information
to all other processes. These other processes update their
entry in the local process list before establishing a con-

nection with the migrated process on the spare. Finally,
all processes restore the drained in-flight data and resume
execution from the stopped state.
IV. Experimental Framework

Experiments were conducted on a dedicated Linux
cluster comprised of 17 compute nodes, each equipped
with two AMD Opteron-265 processors (each dual core)
and 2 GB of memory. The nodes are interconnected by two
networks, both 1 Gbps Ethernet. The OS used is Fedora
Core 5 Linux x86 64 with our dirty bit patch as described
in Sections II and III. One of the two networks was
reserved for LAM/MPI application communication while
the other supported process migration and other network
traffic. In the next section, we present results for these
two network configurations. As discussed in Section II-B,
the MPI job and the migration activity may compete for
network bandwidth if only a single network is available.
However, it is common for high-end HPC to install two
separate networks, one reserved for MPI communication
and the other for operations such as I/O, booting, system
setup and migration. In our experiments, we also assessed
the system performance with a single network responsible
for both MPI communication and migration activities. The
results are not significantly different from those with two
networks, which shows that for the applications evaluated
in our system communication and memory intensity do
not coincide. For the future work, we will create and
assess applications with varying communication rates and
memory pressure to measure the tradeoff between live and
frozen migrations and to provide heuristics accordingly, as
discussed in the next section.

We have conducted experiments with several MPI
benchmarks. Health deterioration on a node is simulated
by notifying the scheduler daemon, which immediately
initiates the migration process. To assess the performance
of our system, we measure the wall-clock time for a
benchmark with live migration, with stop©-only mi-
gration and without migration. The migration overheads
are introduced by transferring the state of the process,
including the dirty pages, and the coordination among the
MPI tasks. In addition, the actual live migration duration
can be attributed to two parts: (1) the overhead incurred by
the iterative precopy and (2) the actual downtime for which
the process on the source node is stopped. Accordingly,
precopy durations and downtimes are measured.
V. Experimental Results

Experiments were conducted to assess (a) overheads
associated with the migration, (b) frozen and live migration
durations, (c) scalability for task and problem scaling of
migration approaches, and (d) page access patterns and
migration times.

Results were obtained for the NAS parallel benchmarks
(NPB) version 3.2.1 [52], a suite of programs widely used

to evaluate the performance of parallel systems. Out of
the NPB suite, the BT, CG, FT, LU and SP benchmarks
were exposed to class B and class C data inputs running
on 4, 8 or 9 and 16 nodes. Some NAS benchmarks
have 2D, others have 3D layouts for 23 or 32 nodes,
respectively. In addition to the 16 nodes, one spare node
is used, which is omitted (implicitly included) in later
node counts in this paper. The NAS benchmarks EP, IS
and MG were not suitable for our experiments since they
execute for too short a period to properly gauge the effect
of imminent node failures. (With class B data inputs,
completion times for EP, IS and MG are 11.7, 4.8 and
4.1 seconds, respectively, for 16-node configurations.)
A. Migration Overhead

The first set of experiments assesses the overhead
incurred due to one migration (equivalent to one immi-
nent node failure). Figure 4(a) depicts the job execution
time without any migration, with live migration and with
frozen (stop©-only) migration under class C inputs
on 16 nodes. The corresponding overheads per scheme are
depicted in Figure 4(b). The results indicate that the wall-
clock time for execution with live migration exceeds that of
the base run by 0.08-2.98% depending on the application.
The overhead of frozen migration is slightly higher at 0.09-
6%. The largest additional cost of 6.7% was observed for
FT under class B inputs for 16 nodes (not depicted here)
due to its comparatively large memory footprint (113 MB)
and relatively short execution time (37 seconds). Amongst
BT, CG, FT, LU and SP under classes B and C running
on 4, 8 or 9 and 16 nodes, the longest execution time is
20 minutes (for SP under class C inputs on 4 nodes, also
not depicted here). Projecting these results to even longer-
running applications, the overhead of migration becomes
less significant (if not even insignificant) considering the
equivalent checkpointing overhead under current mean-
time-to-failure (MTTF) rates.
B. Migration Duration

Besides overhead due to migration, we assessed the
actual migration duration including live migration (precopy
duration) and the downtime of other nodes during migra-
tion schemes. Figure 4(c) depicts (a) live migration with
the precopy and downtime fractions and (b) frozen mi-
gration with only its downtime during the stop© step,
both for NPB with class C inputs on 16 nodes. The precopy
duration was measured from the issuing of the cr save
command to its completion. The stop© downtime
was measured from issuing cr stop on the source node
/ cr quiesce on the operational nodes to the resumption of
the job execution. Live downtime ranged between 0.29-
3.87 seconds while stop© downtime was between
1.04-7.84 seconds. Live migration pays a penalty for the
shorter downtime in that its precopy duration is prolonged.
Precopy adds another 2.35-24.4 seconds. Nonetheless,

the precopy stage does not significantly affect execution
progress of the application as it proceeds asynchronously
in the background. Figure 4(d) illustrates this fact for
each scheme by comparing the downtime (from Figure
4(b)) with migration overhead for both frozen (stop©)
and live migration. Both schemes show a close match
between their respective downtime and overhead numbers.
(Some benchmarks show shorter overhead than the abso-
lute downtime due to larger variances in job execution
times subsuming the shorter overheads, see Section V-C.)

Figure 4(e) depicts the amount of memory transferred
during migration. With frozen (stop©-only) migration,
memory pages of a process cannot be modified while the
process remains inactive in this stage. In contrast, live
migration allows pages to be modified and consequently
requires repeated transfers of dirty pages. Hence, both
precopy duration and downtime are a function of the write
frequency to disjoint memory pages. Frozen (stop©-
only) migration results in larger memory transfers (50.7-
448.6MB) than just the stop© step of live migration
(1.7-251MB), yet the latter incurs additional transfers
(127.4-1565MB) during the precopy step. This result is
consistent with the downtime observations of the two
schemes discussed above. Our experiments also indicate an
approximate cost of 0.3 seconds for MPI-level coordination
and communication during live migration plus a cost of
less than 0.1 seconds transferring process state informa-
tion, e.g., registers and signal information. Hence, both the
precopy duration and the downtime are almost entirely due
to the overhead of transferring memory pages. Hence, the
overall trends and patterns of Figures 4(c) and 4(e) tend
to be similar.
C. Effect of Problem Scaling

Figure 4(f) depicts the effect of migration on scaling the
problem size with class B and C inputs on 16 nodes. For
BT, FT and SP, we observe an increase in overhead as the
task size increases from class B to class C. This behavior
is expected as problem scaling results in larger data per
node. However, the inverse behavior is observed for CG
and LU. Though the actual downtime becomes longer as
the task size increases from class B to class C, the absolute
downtime (0.27-1.19 seconds) is so small that its effect is
subsumed by the variance of overall job execution time
(up to 11 seconds for CG and up to 8 seconds for LU),
ultimately resulting in an overall decrease in overhead for
increasing task sizes.
D. Effect of Task Scaling

We next examined migration under strong scaling by
increasing the number of nodes. Figure 4(g) depicts the
overhead for NPB codes with class C inputs on varying
number of nodes (4, 8 or 9 and 16). In most cases,
overheads tend to decrease as the number of nodes in-
creases. Yet, BT(Stop&Copy), CG(Live), LU(Stop&Copy)

and SP(Live) show no obvious trends. As with problem
scaling, this can be attributed to the relatively minor
migration downtime, which is effectively subsumed by
variances in job execution times. Hence, no measurable
effect on task scaling is observed in these cases.

Figure 4(h) depicts the speedup on 4, 8 or 9 and 16
nodes normalized to the wall-clock time on 4 nodes. The
figure also shows the relative speedup of live migration, of
frozen migration (stop©-only) and without migration.
The lightly colored portion of the bars represents the
execution time of the benchmarks in the presence of one
migration. The aggregate value of light and dark stacked
bars presents the execution time without migration. Hence,
the dark portions of the bars show the loss in speedup due
to migration. The largest loss in speedup is 0.21 with FT
on 16 nodes. This can be attributed to FT’s relatively large
migration overhead (8.5 seconds) compared to its rather
short execution time (150 seconds). While the overhead
increases proportionately to the memory footprint, the
memory footprint is limited by system hardware (total
memory size), which also limits the migration overhead.
Hence, our results indicate an increasing potential for
strong scaling of the benchmarks.
E. Page Access Pattern & Iterative Live Migration

Next, page access patterns of the NPB application are
analyzed with respect to their effect on live migration,
specifically on precopy duration and downtime. Figures
4(i) and 4(j) depict the page access pattern of CG and FT
with class C inputs on 16 nodes. We sampled the number
of memory pages modified per 0.1 second interval. The
page size is 4KB on our experimental system. The write
frequency to memory pages of CG is lower (∼393/interval)
than that of FT (between 1000/interval and 5000/interval).
Both codes show a certain regularity in their write patterns,
albeit quite an individual one each.

To compare the iterative live migration with the page
access pattern, we further evaluated the aggregate amount
of the transferred memory and the duration of each itera-
tion of a full memory sweep, as depicted in Figures 4(k)
and 4(l). During the first iteration, all non-empty pages
are transferred (depicted as dark gray in the figures). In
subsequent iterations, only those pages modified since the
last iteration (light gray) are transferred. We observed that
the write patterns of Figures 4(i) and 4(j) are in accord with
those depicted in Figures 4(k) and 4(l). For CG, memory
pages written in the last two iterations account for 1.6MB
corresponding to a write frequency of 393 pages. However,
the dirtied memory in the second iteration is only 1.6MB
while that in the first iteration is 62.2MB overall, even
though the iteration durations are the same. This happens
because the first iteration occasionally coincides with the
initialization phase of the application. There, higher per-
page memory access frequencies (2000-8000 per 0.1 sec-

 100

 150

 200

 250

 300

 350

 400

 450

BT CG FT LU SP

Se
co

nd
s

No-migration
Live

Stop&Copy

(a) Job Execution Time for NPB C-16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

BT CG FT LU SP

Se
co

nd
s

Live
Stop&Copy

(b) Migration Overhead for NPB C-16

 0

 1

 2

 3

 4

 5

 6

 7

 8

BT CG FT LU SP

28.27

Se
co

nd
s

Live-downtime
Live-precopytime

S&C-downtime

(c) Migration Duration for NPB C-16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

B
T(Live)

B
T(S&

C
)

C
G

(Live)

C
G

(S&
C
)

FT(Live)

FT(S&
C
)

LU
(Live)

LU
(S&

C
)

SP(Live)

SP(S&
C
)

Se
co

nd
s

Downtime
Overhead

(d) Downtime vs. Overhead for NPB C-16

 0

 100

 200

 300

 400

 500

BT CG FT LU SP

1.8GB

M
em

or
y

tr
an

sf
er

re
d

(M
B

)
Live-s&c

Live-precopy
Stop&Copy

(e) Memory Transferred for NPB C-16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

B
T(Live)

B
T(S&

C
)

C
G

(Live)

C
G

(S&
C
)

FT(Live)

FT(S&
C
)

LU
(Live)

LU
(S&

C
)

SP(Live)

SP(S&
C
)

Se
co

nd
s

Class-B
Class-C

(f) Problem Scaling: Overhead NPB 16

 0

 5

 10

 15

 20

 25

 30

B
T(Live)

B
T(S&

C
)

C
G

(Live)

C
G

(S&
C
)

FT(Live)

FT(S&
C
)

LU
(Live)

LU
(S&

C
)

SP(Live)

SP(S&
C
)

Se
co

nd
s

4-nodes
8/9-nodes
16-nodes

(g) Task Scaling: Overhead of NPB C

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

BT(Live)

BT(S&C)

CG(Live)

CG(S&C)

FT(Live)

FT(S&C)

LU(Live)

LU(S&C)

SP(Live)

SP(S&C)

4 9 16 4 9 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 9 16 4 9 16

Sp
ee

du
p

of nodes

Loss-in-speedup

(h) Speedup for NPB Class C

 0

 100

 200

 300

 400

 500

30 60 90

of

 u
pd

at
ed

 p
ag

es
 (

sa
m

pl
e

ov
er

 0
.1

 s
ec

on
d)

Elapsed time (seconds)

(i) Page Access Pattern of CG C-16

 0

 5000

 10000

 15000

 20000

 25000

30 60 90 120

of

 u
pd

at
ed

 p
ag

es
 (

sa
m

pl
e

ov
er

 0
.1

 s
ec

on
d)

Elapsed time (seconds)

(j) Page Access Pattern of FT C-16

0 1.07 2.15 2.23
Elapsed time (seconds)

117.9
115.9
114.8

59.4
57.9

0

Tr
an

sf
er

 /
di

rty
 ra

te
 (M

B
/s

ec
)

62MB 62.2MB

1.6MB
1.5MB
1.6MB

Memory dirtied during
this iteration

Memory transferred

(k) Iterative Live Migration of CG C-16

0 6.96
Elapsed time (seconds)

246.2

119.6

64.4

0

Tr
an

sf
er

 /
di

rty
 ra

te
 (M

B
/s

ec
)

448.6MB

Memory dirtied during
this iteration

Memory transferred

384.4MB

136.2MB

384.4MB384.4MB384.4MB

138.3MB 142.5MB

12.93 15.04 21.01 23.16 29.12 35.09 37.03

87.6

(l) Iterative Live Migration of FT C-16
Fig. 4: Evaluation with NPB (C-16: Class C on 16 Nodes)

ond) persist combined with more frequent cold misses in
cache. (This effect was experimentally confirmed but is
not explicitly reflected in Figure 4(k)). For FT, 138MB
and 384MB overall of dirtied memory was transferred in
an alternating pattern during consecutive iterations (Figure
4(l)) corresponding to the most significant clusters at 1200
and 4600 page updates in Figure 4(j).

These profile patterns of the page modification rate
could be archived and subsequently utilized as an empirical

factor for future application runs/precopy decisions to
choose a more sensitive termination condition (see Section
II). Besides the page access pattern, the communication
pattern also affects the precopy decision. For example, if
the application is both communication intensive and mem-
ory intensive, the opportunity for the precopy operation to
complete before an imminent failure is low for high mi-
gration overhead and significant network contention. Three
main criteria for trading off live and frozen migration and

for precopy termination conditions are:
• thresholds, e.g., temperature watermarks in Section

III-A, memory/difference/overhead thresholds in Sec-
tion III-B1;

• available network bandwidth determined by dynamic
monitoring; and

• size of the write set. (If the memory dirtying rate
is faster than the available network rate, the precopy
operation may be ineffective.)

Based on these conditions, a heuristics algorithm can be
designed. However, the applications we evaluated are not
sufficient to design such an algorithm. In future work,
we plan to create and assess applications with varying
communication rate and memory access pattern that are
more suitable.
F. Process-Level Live Migration vs. Xen Virtual-
ization Live Migration

We next provide the performance comparison of our
approach to another solution at the OS virtualization layer
in the context of proactive FT of MPI applications [33].
The common benchmarks measured with both solutions
on the same hardware were NPB BT, CG, LU and SP. For
these NPB codes with class C inputs on 16 nodes, the over-
head of migrating an entire guest OS ranged between 4-14
seconds under Xen virtualization while the process-level
solution caused only around 1 second overhead. The time
taken from initiating migration to actual completion on 16
nodes ranged between 14-24 seconds for live migration as
opposed to a near-constant cost of 13-14 seconds for frozen
migration (stop©), both under Xen virtualization. In
contrast, our process-level solution only requires 2.6-6.5
seconds for live migration and 1-1.9 seconds for frozen
(stop©-only) migration. The main difference between
the two solutions is that the Xen virtualization solution
induced a 13 second minimum overhead to transfer the
entire memory image of the inactive guest VM (with a
guest memory cap of 1GB) while the process-level solution
constrained migration to only the memory of the respective
process. Hence, our solution (with 1-6.5 seconds of prior
warning to successfully trigger live process migration)
significantly outperforms the Xen virtualization solution
(with 13-24 seconds of prior warning). One could argue
that only a subset of the OS image needs to be migrated,
yet the strength of virtualization lies in its transparency,
yet it comes at the cost of indiscriminate transfer of the
entire virtual memory range.
G. Proactive FT Complements Reactive FT

We claim that proactive FT complements its reactive
sister. This was already empirically shown in Figure 4(h)
where we noted that scalability of live migration depends
on the amount of transferred memory. Once local memory
is exhausted by an application, the overhead of a single
migration will remain constant irrespective of the number

of nodes. Of course, the rate of failures in larger systems
is bound to increase, but proactive FT supports larger
systems while reactive schemes result in increased I/O
bandwidth requirements, which can become a bottleneck.
This supports our argument that proactive schemes are
important since they can complement reactive schemes in
lowering checkpoint frequency requirements of the latter.

An analytical argument for the complementary nature
is given next. The objective here is to assess the ability
of proactive FT to successfully counter imminent faults,
which subsequently allows reactive schemes to engage
in less frequent checkpointing. Let the time interval be-
tween checkpoints be Tc, the time to save checkpoint
information be Ts, and the mean time between fail-
ures (MTBF) be Tf . Then, the optimal checkpoint rate
is Tc =

√
2× Ts × Tf [53]. We also observed that the

mean checkpoint time (Ts) for BT, CG, FT, LU and
SP with class C inputs on 4, 8 or 9 and 16 nodes
is 23 seconds on the same experimental cluster [51].
With a MTBF of 1.25 hours [35], the optimal check-
point rate Tc is Tc =

√
2× 23× (1.25× 60× 60) = 455

seconds. Let us further assume that 70% of failures
can be predicted [40] and can thus be avoided by our
proactive migration. (Sahoo et al. actually reported that
up to 70% of failures can be predicted without prior
warning; with a prior warning window, the number of
proactively tolerated failures could even exceed 70%.) Our
solution can then prolong reactive checkpoint intervals to
Tc =

√
2× 23× (1.25/(1− 0.7)× 60× 60) = 831 sec-

onds. The challenge with proactive FT then becomes (1) to
provide a sufficient number of spare nodes to avoid initial
failures by live or frozen migration and (2) to repair faulty
nodes in the background such that jobs running over the
course of days can reclaim failed nodes for future proactive
FT.

VI. Related Work
Process-level migration has been studied extensively in

the past [32], [37], [46], [26], [4], [11], [15]. In the context
of HPC, many MPI implementations have been retrofitted
with or design for FT, ranging from automatic methods
(checkpoint-based or log-based) [44], [41], [5] to non-
automated approaches [3], [17].

System checkpoint-based methods commonly employ
a combination of OS support to checkpoint a process
image (e.g., via the BLCR Linux module [15]) combined
with a coordinated checkpoint negotiation using collective
communication among MPI tasks. User-level checkpoint-
ing, in contrast, relies on runtime library support and
may require source preprocessing of an application and
typically inflicts lower overhead, yet fails to capture critical
system resources, such as file descriptors [28], [36]. Log-
based methods exploit messages logging and optionally
their temporal ordering, where the latter is required for

asynchronous non-coordinated checkpointing. MPICH-V
[5] implements three such protocols. It uses Condor’s user-
level checkpoint library [29]. Non-automatic approaches
generally involve explicit invocation of checkpoint rou-
tines. In contrast to these methods, ghost process [49]
provides a global management service with process virtu-
alization mechanisms supporting process migration within
clusters within the Karrighed single-image system.

Recent studies focus on proactive FT. The feasibility of
proactive FT has been demonstrated at the job scheduling
level [34] and in Adaptive MPI [8], [7], [9] using a com-
bination of (a) object virtualization techniques to migrate
tasks and (b) causal message logging [16] within the MPI
runtime system of Charm++ applications. In contrast to
Charm++, our solution is coarser grained as FT is provided
at the process level, thereby encapsulating most of the
process context, including open file descriptors, which are
beyond the MPI runtime layer.

Two facets on proactive FT are intensively studied.
First, there are a number of research efforts on failure
prediction [40], [20], [21]. These papers report high failure
prediction accuracy with a prior warning window, which
is the premise for our process migration mechanism pro-
posed in this paper. Second, various migration mechanisms
are proposed as discussed previously. Furthermore, MPI-
Mitten [12], an MPI library between the MPI layer and
the application layer, provides proactive fault tolerance to
MPI applications. It uses HPCM [13] as a middleware
to support user-level heterogeneous process migration.
These two facets are integrated in approaches that combine
prediction and migration in proactive FT systems and
evaluate different FT policies. In [50], the authors provide
a generic framework based on a modular architecture
allowing the implementation of new proactive fault tol-
erance policies/mechanisms. An agent oriented framework
[23] was developed for grid computing environments with
separate agents to monitor individual classes or subclasses
of faults and proactively act to avoid or tolerate a fault.
Sun et al. provide fault-aware systems, such as FARS
[27] and FENCE [45], to increase the accuracy of fault
prediction and improve system resilience to failures with
different fault management mechanisms including process
migration. They also model the migration cost and intro-
duce a dynamic scheduling mechanism accordingly [14].
In their paper, Tikotekar et al. also present a simulation
framework that evaluates different FT mechanisms and
policies, including a combination of reactive FT and proac-
tive FT to decrease the number of checkpoints [48], which
obtained the best results among all the real and simulated
FT mechanisms and policies. These prior works with
their fault models, FT mechanisms for fault occurrences
and their evaluation simulations, confirm that the process
migration is a suitable approach for proactive FT with

lower cost than OS virtualization, which reinforces the
significance of our solution.

Our work enhances LAM/MPI and BLCR [43], [15],
[41], which previously was restricted to reactive FT, to a
proactive live migration scheme. LAM/MPI+BLCR origi-
nally required a complete system restart for roll-back to the
last checkpoint upon failure, but a number of approaches
have been designed to allow (a) selected checkpoint images
to be restarted on new nodes [6], (b) node and head-node
failure [47], and (c) a job-pause mechanism that supports
migration without restart [51]. Our solution orchestrates
the BMC/IPMI health monitoring, the new fundamental
utilities provided at BLCR and the extended communi-
cation mechanism at LAM/MPI through the decentralized
scheduler. The framework is simple and applicable to arbi-
trary MPI implementations in HPC environment. Further-
more, our approach provides a live migration mechanism,
which supports continued execution of MPI applications
during much of the migration time. This solution parallels
live migration at the OS virtualization layer [10], which
has been studied in the context of proactive FT of MPI
applications [33], an approach that supports integrated
health-based monitoring and proactive live migration over
Xen guests. We contribute process-level live migration and
demonstrate its superior efficiency to of OS-level virtual-
ization. In HPC, process-level solutions are more widely
accepted than OS virtualization, not the least because of
potential performance penalties of network virtualization
or additional driver development for virtualization-bypass
technologies [31], [30].
VII. Conclusion

We have contributed a novel process-level live migra-
tion mechanism with a concrete implementation as an
enhancement to the Linux BLCR module and an inte-
gration within LAM/MPI. By monitoring the health of
each node, a process can be migrated away from nodes
subject to imminent failure. We show live migrations to
be beneficial to frozen migration due to a lower overall
overhead on application wall-clock execution time. This
lower overhead is attributed to the asynchronous transfer
of a large portion of a migrated process image while the
application stays alive by proceeding with its execution.
Process-level migration is also shown to be significantly
less expensive than migrating entire OS images under Xen
virtualization. The resulting proactive approach comple-
ments reactive checkpoint/restart schemes by avoiding roll-
backs if failures are predicted only seconds before nodes
cease to operate. Thus, the optimal number of checkpoints
of applications can be nearly cut in half when 70% of
failures are addressed proactively.

References

[1] “Advanced configuration & power interface,” http://www.acpi.info.

[2] “Readable dirty-bits for IA64 linux,” https://www.gelato.unsw.
edu.au/archives/gelato-technical/2005-November/001080.html.

[3] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D.
Risinger, M. A. Taylor, T. Woodall, and M. Sukalski, “Architecture
of LA-MPI, a network-fault-tolerant MPI,” in IPDPS, 2004.

[4] A. Barak and R. Wheeler, “MOSIX: An integrated multiprocessor
UNIX,” in Proceedings of the Winter 1989 USENIX Conference.
Berkeley, CA, USA: USENIX, 1989, pp. 101–112.

[5] G. Bosilca, A. Boutellier, and F. Cappello, “MPICH-V: Toward a
scalable fault tolerant MPI for volatile nodes,” in Supercomputing,
Nov. 2002.

[6] J. Cao, Y. Li, and M. Guo, “Process migration for MPI applications
based on coordinated checkpoint,” in ICPADS, 2005, pp. 306–312.

[7] S. Chakravorty, C.Mendes, and L. Kale, “Proactive fault tolerance
in MPI applications via task migration,” in HiPC, 2006.

[8] S. Chakravorty, C. Mendes, and L. Kale, “Proactive fault tolerance
in large systems,” in HPCRI: 1st Workshop on High Performance
Computing Reliability Issues, in Proceedings of HPCA-11, 2005.

[9] S. Chakravorty, C. Mendes, and L.Kale, “A fault tolerance protocol
with fast fault recovery,” in IPDPS, 2007.

[10] C. Clark, K. Fraser, S. Hand, J. Hansem, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in NSDI,
May 2005.

[11] F. Douglis and J. K. Ousterhout, “Transparent process migration:
Design alternatives and the sprite implementation.” Softw., Pract.
Exper., vol. 21, no. 8, pp. 757–785, 1991.

[12] C. Du and X.-H. Sun, “MPI-Mitten: Enabling migration technology
in MPI,” in IEEE CCGrid, 2006.

[13] C. Du, X.-H. Sun, and K. Chanchio, “HPCM: A pre-compiler aided
middleware for the mobility of legacy code,” in IEEE Cluster, 2003.

[14] C. Du, X.-H. Sun, and M. Wu, “Dynamic scheduling with process
migration,” in IEEE CCGrid, May 2007.

[15] J. Duell, “The design and implementation of berkeley lab’s linux
checkpoint/restart,” Lawrence Berkeley National Laboratory, TR,
2000.

[16] E. N. Elnozahy and W. Zwaenepoel, “Manetho: Transparent roll
back-recovery with low overhead, limited rollback, and fast output
commit,” IEEE Trans. Comput., vol. 41, no. 5, pp. 526–531, 1992.

[17] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault Tolerant MPI,
supporting dynamic applications in a dynamic world,” in Euro
PVM/MPI User’s Group Meeting, vol. 1908, 2000, pp. 346–353.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file
system,” in SOSP ’03, 2003, pp. 29–43.

[19] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini, “Transparent,
incremental checkpointing at kernel level: a foundation for fault
tolerance for parallel computers,” in Supercomputing, 2005.

[20] X. Gu, S. Papadimitriou, P. S. Yu, and S.-P. Chang, “Toward
predictive failure management for distributed stream processing
systems,” in IEEE ICDCS, 2008.

[21] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A meta-learning
failure predictor for BlueGene/L systems,” in ICPP, Sep. 2007.

[22] C.-H. Hsu and W.-C. Feng, “A power-aware run-time system for
high-performance computing,” in Supercomputing, 2005.

[23] M. T. Huda, H. W. Schmidt, and I. D. Peake, “An agent oriented
proactive fault-tolerant framework for grid computing,” in Interna-
tional Conference on e-Science and Grid Computing, 2005.

[24] J. Hursey, J. M. Squyres, and A. Lumsdaine, “A checkpoint and
restart service specification for Open MPI,” Indiana University,
Computer Science Department, Technical Report, 2006.

[25] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine, “The
design and implementation of checkpoint/restart process fault tol-
erance for Open MPI,” in DPDNS, Mar. 2007.

[26] E. Jul, H. M. Levy, N. C. Hutchinson, and A. P. Black, “Fine-
grained mobility in the emerald system.” ACM Trans. Comput. Syst.,
vol. 6, no. 1, pp. 109–133, 1988.

[27] Y. Li, P. Gujrati, Z. Lan, and X.-H. Sun, “Fault-driven re-scheduling
for improving system-level fault resilience,” in ICPP, 2007.

[28] M. Litzkow, “Remote unix - turning idle workstations into cycle
servers,” in Usenix Summer Conference, 1987, pp. 381–384.

[29] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpoint

and migration of UNIX processes in the Condor distributed process-
ing system,” University of Wisconsin - Madison Computer Sciences
Department, Tech. Rep. UW-CS-TR-1346, April 1997.

[30] J. Liu, W. Huang, B. Abali, and D. Panda, “High performance vmm-
bypass I/O in virtual machines,” in USENIX Conference, Jun. 2006.

[31] A. Menon, A. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in Xen,” in USENIX Conference, Jun. 2006.

[32] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and
S. Zhou, “Process migration,” ACM Computing Surveys (CSUR),
vol. 32, no. 3, pp. 241–299, 2000.

[33] A. B. Nagarajan and F. Mueller, “Proactive fault tolerance for HPC
with Xen virtualization,” in ICS, Jun. 2007.

[34] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Sivasubrama-
niam, “Fault-aware job scheduling for BlueGene/L systems,” in
IPDPS, 2004.

[35] I. Philp, “Software failures and the road to a petaflop machine,” in
HPCRI: 1st Workshop on High Performance Computing Reliability
Issues, in Proceedings of HPCA-11. IEEE Computer Society, 2005.

[36] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
checkpointing under Unix,” in Usenix Winter Technical Conference,
January 1995, pp. 213–223.

[37] M. L. Powell and B. P. Miller, “Process migration in DEMOS/MP,”
in Symposium on Operating Systems Principles, Oct. 1983.

[38] H. Quinn and P. Graham, “Terrestrial-based radiation upsets: A
cautionary tale,” in FCCM 05, Apr. 18-20, 2005.

[39] S. Rani, C. Leangsuksun, A. Tikotekar, V. Rampure, and S. Scott,
“Toward efficient failre detection and recovery in HPC,” in High
Availability and Performance Computing Workshop, 2006.

[40] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma, R. Vilalta,
and A. Sivasubramaniam, “Critical event prediction for proactive
management in large-scale computer clusters,” in KDD ’03, 2003.

[41] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell,
P. Hargrove, and E. Roman, “The LAM/MPI checkpoint/restart
framework: System-initiated checkpointing,” in LACSI, Oct. 2003.

[42] H. Song, C. Leangsuksun, and R. Nassar, “Availability modeling
and analysis on high performance cluster computing systems.” in
ARES, 2006, pp. 305–313.

[43] J. M. Squyres and A. Lumsdaine, “A Component Architecture for
LAM/MPI,” in European PVM/MPI Users’ Group Meeting, ser.
Lecture Notes in Computer Science, no. 2840. Venice, Italy:
Springer-Verlag, September / October 2003, pp. 379–387.

[44] G. Stellner, “CoCheck: checkpointing and process migration for
MPI,” in Proceedings of IPPS ’96, 1996.

[45] X.-H. Sun, Z. Lan, Y. Li, H. Jin, and Z. Zheng, “Towards a fault-
aware computing environment,” in HAPCW, Mar. 2008.

[46] M. Theimer, K. A. Lantz, and D. R. Cheriton, “Preemptable remote
execution facilities for the V-System.” in SOSP, 1985, pp. 2–12.

[47] A. Tikotekar, C. Leangsuksun, and S. L. Scott, “On the survivability
of standard MPI applications,” in LCI International Conference on
Linux Clusters: The HPC Revolution, May 2006.

[48] A. Tikotekar, G. Vallée, T. Naughton, S. L. Scott, and C. Leang-
suksun, “Evaluation of fault-tolerant policies using simulation,” in
IEEE Cluster, Sep. 17-20, 2007.

[49] G. Vallee, R. Lottiaux, D. Margery, C. Morin, and J.-Y. Berthou,
“Ghost process: a sound basis to implement process duplication,
migration and checkpoint/restart in linux clusters,” ISPDC, 2005.

[50] G. Vallée, K. Charoenpornwattana, C. Engelmann, A. Tikotekar,
C. B. Leangsuksun, T. Naughton, and S. L. Scott, “A framework
for proactive fault tolerance,” in ARES, 2007, pp. 659–664.

[51] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “A job pause
service under LAM/MPI+BLCR for transparent fault tolerance,” in
IPDPS, Apr. 2007.

[52] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Culler, “Architec-
tural requirements and scalability of the NAS parallel benchmarks,”
in Supercomputing, 1999.

[53] J. W. Young, “A first order approximation to the optimum check-
point interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, 1974.

