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Adaptive Fuzzy Strong Tracking Extended Kalman
Filtering for GPS Navigation

Dah-Jing Jwo and Sheng-Hung Wang

Abstract—The well-known extended Kalman filter (EKF) has
been widely applied to the Global Positioning System (GPS) nav-
igation processing. The adaptive algorithm has been one of the
approaches to prevent the divergence problem of the EKF when
precise knowledge on the system models are not available. One of
the adaptive methods is called the strong tracking Kalman filter
(STKF), which is essentially a nonlinear smoother algorithm that
employs suboptimal multiple fading factors, in which the softening
factors are involved. Traditional approach for selecting the soft-
ening factors heavily relies on personal experience or computer
simulation. In order to resolve this shortcoming, a novel scheme
called the adaptive fuzzy strong tracking Kalman filter (AFSTKF)
is carried out. In the AFSTKF, the fuzzy logic reasoning system
based on the Takagi–Sugeno (T-S) model is incorporated into the
STKF. By monitoring the degree of divergence (DOD) parame-
ters based on the innovation information, the fuzzy logic adaptive
system (FLAS) is designed for dynamically adjusting the softening
factor according to the change in vehicle dynamics. GPS naviga-
tion processing using the AFSTKF will be simulated to validate
the effectiveness of the proposed strategy. The performance of the
proposed scheme will be assessed and compared with those of con-
ventional EKF and STKF.

Index Terms—Adaptive extended Kalman filtering, fuzzy logic
adaptive system (FLAS), global positioning system (GPS), strong
tracking Kalman filter (STKF).

I. INTRODUCTION

THE Global Positioning System (GPS) is a satellite-based
navigation system that provides a user with the proper

equipment access to useful and accurate positioning informa-
tion anywhere on the globe. The well-known Kalman filter
[1]–[3], which provides optimal (minimum mean-square error)
estimate of the system state vector, has been widely applied to
the fields of navigation such as GPS receiver position/velocity
determination.

While employed in the GPS receiver [3] as the navigational
state estimator, the extended Kalman filter (EKF) has been
one of the promising approaches. To obtain good estimation
solutions using the EKF approach, the designers are required
to have good knowledge on both dynamic process (plant dy-
namics, using an estimated internal model of the dynamics of
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the system) and measurement models, in addition to the as-
sumption that both the process and measurement are corrupted
by zero-mean white noises. The divergence due to modeling
errors is a critical problem in Kalman filter applications. If the
theoretical behavior of a filter and its actual behavior do not
agree, divergence may occur. A conventional Kalman filter
fails to ensure error convergence due to limited knowledge of
the system’s dynamic model and measurement noise. If the
Kalman filter is provided with information that the process
behaves a certain way, whereas, in fact, it behaves a different
way, the filter will continually intend to fit an incorrect process
signal.

In the Kalman filter, the system model, system initial con-
ditions, and noise characteristics have to be specified a priori.
In various circumstances, there are uncertainties in the system
models and noise description, and the assumptions on the
statistics of disturbances are violated since in a number of
practical situations, the availability of a precisely known model
is unrealistic. The facts discussed above results in filtering
performance degradation. In actual navigation filter designs,
there exist model uncertainties which cannot be expressed
by the linear state-space model. The linear model increases
modeling errors since the actual vehicle motions are nonlinear
process. Very often, it is the case that little a priori knowledge
is available concerning the maneuver. Hence, compensation
of the uncertainties is an important task in the navigation
filter design. In the modeling strategy, some phenomena are
disregarded and a way to take them into account is to consider
a nominal model affected by uncertainty.

To prevent divergence problems due to modeling errors using
the EKF approach, the adaptive filter algorithm has been one of
the strategies considered for estimating the state vector. Many
efforts have been made to improve the estimation of the co-
variance matrices. Mehra [4] classified the adaptive approaches
into four categories: Bayesian, maximum-likelihood, correla-
tion, and covariance matching. These methods can be applied
to the Kalman filtering algorithm for realizing the adaptive
Kalman filtering [4], [5]. However, the first two methods are
computationally demanding so that their practical applications
are limited. As for the correlation methods, a set of equations
is derived to relate the functions to the unknown parameter.
The covariance matching technique attempts to make the filter
residuals consistent with their theoretical covariances. One of
the methods proposed is called the strong tracking Kalman
filter (STKF) [6], [7]. The STKF is essentially a nonlinear
smoother algorithm that employs suboptimal multiple fading
factors, in which the softening factors are involved. STKF has
several merits, such as: 1) strong robustness against model
uncertainties and 2) good real-time state tracking ability even

1530-437X/$25.00 © 2007 IEEE



JWO AND WANG: ADAPTIVE FUZZY STRONG TRACKING EXTENDED KALMAN FILTERING FOR GPS NAVIGATION 779

when a state jump occurs, no matter whether the system has
reached steady state or not.

The application of fuzzy logic [8] to adaptive Kalman filtering
has been becoming popular, e.g., [9]–[12]. Sasiadek et al. intro-
duced the Fuzzy Logic Adaptive System (FLAS) for adapting
the process and measurement noise covariance matrices in nav-
igation data fusion design [9]. Abdelnour et al. used the expo-
nential-weighting algorithm for detecting and correcting the di-
vergence of the Kalman filter [10]. Kobayashi et al. proposed
a method for generating an accurate estimate of the absolute
speed of a vehicle from noisy acceleration and erroneous wheel
speed information [11]. The method employed the fuzzy logic
rule-based Kalman filter to handle abrupt wheel skid and slip,
and poor signal-to-noise sensor data. Mostov and Soloviev pro-
posed the method to increase the Kalman filter order, which
in turn enhances the accuracy of smoothing and thus location
finding for kinematic GPS [12].

In a STKF, the softening factor is introduced to provide
better state estimation smoothness. Traditional STKF approach
for determining the softening factors heavily relies on personal
experience or computer simulation using a heuristic searching
scheme. In order to resolve this shortcoming, a new approach
called the adaptive fuzzy strong tracking Kalman filter (AF-
STKF) is proposed. The fuzzy logic reasoning system based on
the Takagi–Sugeno (T-S) model is incorporated into the STKF
for real-time for tuning the softening factor. Instead of deter-
mining the fading factor directly, determining the softening
factor provides the alternative design strategy based on the
theory of STKF, for which the convergence has been ensured.
The fuzzy reasoning system is constructed for obtaining suit-
able softening factors according to the time-varying change in
dynamics. By monitoring the innovation information, the FLAS
is employed for dynamically adjusting the softening factors
based on the proposed fuzzy rule. Using the AFSTKF, the
FLAS, which is the filter’s internal mode, is used to continually
adjust the softening factor so as to improve the Kalman filter
performance.

This paper is organized as follows. In Section II, prelimi-
nary background on GPS navigation processing is reviewed.
The proposed strategy of the AFSTKF approach is introduced
in Section III. Several parameters for determining the degree of
divergence (DOD) are introduced for identifying the degree of
change in vehicle dynamics based on the innovation informa-
tion. In Section IV, simulation experiments on GPS navigation
processing are carried out to evaluate the performance of the ap-
proach in comparison to those by conventional EKF and STKF.
Conclusions are given in Section V.

II. GPS NAVIGATION PROCESSING

The most commonly used approaches for the GPS naviga-
tion solutions [2], [3] are the least squares [3] and the extended
Kalman filtering approaches [1], [2]. The Kalman filter is briefly
reviewed for convenience.

A. Linearization of GPS Pseudorange Equations

Consider the vectors relating the Earth’s center, satellites, and
user position. The vector represents the vector from the Earth’s
center to a satellite, represents the vector from the Earth’s

center to the user’s position, and represents the vector from
the user to satellite, we can write the vector relation

(1)

The distance is computed by measuring the propagation
time from the transmitting satellite to the user/receiver. The
pseudorange is defined for the th satellite by

(2)

where is the speed of light and is the receiver clock offset
from system time, and is the pseudorange measurement
noise. Consider the user position in three dimensions, denoted
by , the GPS pseudorange measurements made to
the satellites can then be written as

(3)

where denotes the th satellite’s position in three di-
mensions.

The states and the measurements are related nonlinearly; the
nonlinear ranges are linearized around an operating point using
Taylor’s series. Equation (3) can be linearized by expanding
Taylor’s series around the approximate (or nominal) user po-
sition and neglecting the higher terms. Defining
as at gives

(4)

where

(5)

The vector , denotes the
line-of-sight vector from the user to the satellites. Equation (4)
can be written in a matrix formulation

...
...

...
...

(6)

which can be represented as

(7)

The dimension of matrix is with , and is usually
referred to as the “geometry matrix” or “visibility matrix.” The
least squares solution to (7) is given by

(8)

B. GPS Navigation Processing Using the Extended Kalman
Filter (EKF)

Kalman filtering has been recognised as one of the most pow-
erful state estimation techniques. The purpose of the Kalman
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filter is to provide the estimation with minimum error variance.
The EKF is a nonlinear version of the Kalman filter and is
widely used for the position estimation in GPS receivers. A su-
perior way of solving the GPS equations is to use the EKF.

The process model and measurement model for the Kalman
filter are represented as

(9a)

(9b)

where the vectors and are both white noise sequences
with zero means and mutually independent

(10)

where is the Dirac delta function, represents expec-
tation, and superscript “T” denotes matrix transpose.

Expressing (9a) and (9b) in discrete-time equivalent form
leads to

(11a)

(11b)

where the state vector , process noise vector ,
measurement vector , and measurement noise vector

. In (11), both the vectors and are zero-mean
Gaussian white sequences having zero cross correlation with
each other

(12)

where is the process noise covariance matrix, is the mea-
surement noise covariance matrix, is the state tran-
sition matrix, and is the sampling interval.

The discrete-time Kalman filter algorithm is summarized as
follows.

Prediction steps/time update equations

(13)

(14)

Correction steps/measurement update equations

(15)

(16)

(17)

Equations (13)–(14) are the time update equations of the algo-
rithm from to step , and (15)–(17) are the measurement
update equations. These equations incorporate a measurement
value into a priori estimation to obtain an improved a posteriori
estimation. In the above equations, is the error covariance
matrix defined by , in which is an

estimation of the system state vector , and the weighting ma-
trix is generally referred to as the Kalman gain matrix. The
Kalman filter algorithm starts with an initial condition value,
and . When new measurement becomes available with
the progression of time, the estimation of states and the corre-
sponding error covariance would follow recursively ad infinity.

The extended Kalman filtering is a nonlinear version of
Kalman filtering, which deals with the case described by the
nonlinear stochastic differential equations

(18a)

(18b)

The algorithm for the extended Kalman filtering is essentially
similar to that of Kalman filtering, except that some modifica-
tions are made. First, the state update equation becomes

(19)

where

(20a)

and

(20b)

Second, the linear approximation equations for system and mea-
surement matrices are obtained through the relations

(21)

Further detailed discussion can be referred to Gelb [1] and
Brown and Hwang [2]. The flow chart for the GPS navigation
processing using EKF approach is shown in Fig. 1.

III. THE ADAPTIVE FUZZY STRONG TRACKING

KALMAN FILTER (AFSTKF)

The implementation of Kalman filter requires the a priori
knowledge of both the process and measurement models. Poor
knowledge of the models may seriously degrade the Kalman
filter performance, and even provoke the filter divergence. To
fulfil the requirement, an adaptive Kalman filter can be utilized
as the noise-adaptive filter to adjust the parameters.

Mehra [4] classified the adaptive approaches into four cate-
gories: Bayesian, maximum-likelihood, correlation, and covari-
ance matching. The innovation sequences have been utilized
by the correlation and covariance-matching techniques to esti-
mate the noise covariances. The basic idea behind the covari-
ance-matching approach is to make the actual value of the co-
variance of the residual consistent with its theoretical value.
From the incoming measurement and the optimal prediction

obtained in the previous step, the innovation sequence is de-
fined as

(22)

The innovation represents the additional information available
to the filter as a consequence of the new observation . The
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Fig. 1. Flow chart for the GPS Kalman filter.

weighted innovation, , acts as a correction to the
predicted estimate to form the estimation .

One of the approaches for adaptive processing is on the in-
corporation of fading factors. The idea of fading memory is to
apply a factor matrix to the predicted covariance matrix to de-
liberately increase the variance of the predicted state vector

(23)

where . The main difference be-
tween different fading memory algorithms is on the calculation
of scale factor matrix . One approach is to assign the scale
factors as constants. When , the fil-
tering is in a steady-state processing while , the filtering
may tend to be unstable. For the case , it deteriorates to
the standard Kalman filter. There are some drawbacks with con-
stant factors, e.g., as the filtering proceeds, the precision of the
filtering will decrease because the effects of old data tend to be-
come less and less. The ideal way is to use time-varying factors
that are determined according to the dynamic and observation
model accuracy.

A. Strong Tracking Kalman Filter (STKF)

It is well known that the process model is dependent on the
dynamical characteristics of the vehicle onto which the nav-
igation system is placed. In order to overcome the defect of
the conventional Kalman filtering, Zhou et al. [6] proposed a
concept of STKF and solved the state estimation problem of
a class of nonlinear systems with white noise. In the so-called
STKF algorithm, suboptimal fading factors are introduced into
the nonlinear smoother algorithm. The STKF has several im-
portant merits including: 1) strong robustness against model un-

certainties and 2) good real-time state tracking capability even
when a state jump occurs, no matter whether the system has
reached steady state or not. Zhou et al. proved that a filter is
called the STKF only if the filter satisfies the orthogonal prin-
ciple stated as follows.

Orthogonal Principle: The sufficient condition for a filter to
be called the STKF is only if the time-varying filter gain ma-
trix is selected online such that the state estimation mean-square
error is minimized and the innovations remain orthogonal [6]

(24)

Equation (24) is required for ensuring that the innovation se-
quence will be remained orthogonal. The time-varying subop-
timal scaling factor is incorporated, for online tuning the covari-
ance of the predicted state, which adjusts the filter gain, and ac-
cordingly the STKF is developed. The suboptimal scaling factor
in the time-varying filter gain matrix is given by

(25)

where

(26)

(27a)

(28)

(29)

The predicted covariance matrix is represented by (23):
, where the variables , and

are as defined in Section II-B. Equation (27a) can be modified
by multiplying an additional parameter , which can be a scalar
of a diagonal matrix

(27b)

This parameter is introduced for increasing the tracking ca-
pability through the increase of covariance matrix of the
innovation.

The key parameter in the STKF is the fading factor matrix
, which is dependent on three parameters including: 1) ;

2) the forgetting factor ; and 3) the softening factor .
These parameters are usually selected empirically.

, which are a priori selected. If from a priori knowl-
edge, we have the knowledge that will have a large change,
then a large should be used so as to improve the tracking
capability of the STKF. On the other hand, if no a priori knowl-
edge about the plant dynamic, it commonly selects

. In such a case, the STKF based on multiple
fading factors deteriorates to a STKF based on a single fading
factor. The range of the forgetting factor is , for
which 0.95 is commonly used. The softening factor is uti-
lized to improve the smoothness of state estimation. A larger

(with value no less than 1) leads to better estimation accu-
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Fig. 2. A fuzzy system.

racy, while a smaller provides stronger tracking capability.
The value is usually determined empirically through computer
simulation and is a commonly selected value.

B. The Fuzzy Logic Adaptive System (FLAS)

Fuzzy logic was first developed by Zadeh in the mid-1960s
for representing uncertain and imprecise knowledge. It provides
an approximate but effective means of describing the behavior
of systems that are too complex, ill-defined, or not easily ana-
lyzed mathematically. A typical fuzzy system consists of three
components, that is, fuzzification, fuzzy reasoning (fuzzy infer-
ence), and fuzzy defuzzification, as shown in Fig. 2. The fuzzi-
fication process converts a crisp input value to a fuzzy value, the
fuzzy inference is responsible for drawing calculations from the
knowledge base, and the fuzzy defuzzification process converts
the fuzzy actions into a crisp action.

The fuzzification modules: 1) transforms the error signal into
a normalized fuzzy subset consisting of a subset for the range
of the input values and a normalized membership function
describing the degree of confidence of the input belonging
to this range and 2) selects reasonable and good, ideally op-
timal, membership functions under certain convenient criteria
meaningful to the application. The characteristics of the fuzzy
adaptive system depend on the fuzzy rules and the effectiveness
of the rules directly influences its performance. To obtain the
best deterministic output from a fuzzy output subset, a proce-
dure for its interpretation, known as defuzzification should be
considered. The defuzzification is used to provide the deter-
ministic values of a membership function for the output. Using
fuzzy logic to infer the consequent of a set of fuzzy production
rules invariably leads to fuzzy output subsets.

Fuzzy modeling is the method of describing the characteris-
tics of a system using fuzzy inference rules. In this paper, a T-S
fuzzy system is used to detect the divergence of EKF and adapt
the filter. Takagi and Sugeno proposed a fuzzy modeling ap-
proach to model nonlinear systems. The T-S fuzzy system rep-
resents the conclusion by functions. The typical T-S system is
shown in Fig. 3.

A typical rule in the T-S model has the form:
IF Input is and Input is and Input is
THEN Output

.
where are constants in the th rule. For the
first-order model, we have the rule in the form:

IF Input is and Input is THEN Output
.

Fig. 3. T-S fuzzy system.

where and are fuzzy sets and , and are con-
stants. For a zero-order model, the output level is a constant:

IF Input is and Input is THEN Output
.

The output is the weighted average of the

(30)

where the weights are computer as

(31)

with , and the ’s represent the membership
functions.

C. Adaptive Fuzzy Strong Tracking Kalman Filter (AFSTKF)

As mentioned before, the process model of the KF is de-
pendent on the dynamical characteristics of the vehicle onto
which the navigation system is placed. The FLAS is employed
to make the necessary tradeoff between accuracy and computa-
tional burden due to the increased dimension of the state vector
and associated matrices. The FLAS was used to adapt the gain
and, therefore, prevent the Kalman filter from divergence. It is
widely known that a poorly designed mathematical model for
the EKF may lead to the divergence. Clearly, if the plant param-
eters are subject to perturbations and dynamics of the system
are too complex to be characterized by an explicit mathematical
model, an adaptive scheme is needed. When the FLAS is em-
ployed, the lower order state model can be used without signifi-
cantly compromising accuracy. In other words, for a given accu-
racy, the fuzzy adaptive Kalman filter is allowed to use a lower
order state model. When a designer lacks sufficient information
to develop a complete model or the parameters slowly change
with time, the fuzzy system can be used to adjust the perfor-
mance of EKF online, and it will remain sensitive to parameter
variations by “remembering” the most recent data samples.

The covariance matrix of the innovation is given by [4], [5]

(32)

The trace of innovation covariance matrix can be obtained
through the relation

(33)
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The DOD parameters for identifying the degree of change in ve-
hicle dynamics can be determined based on the idea of (32) and
(33). Examples for possible approaches are given as follows.

1) Category 1: The innovation information at the present
epoch is employed to reflect the timely change in vehicle
dynamics. The DOD parameter can be defined as the
trace of innovation covariance matrix at present epoch
(i.e., the window size is one) divided by the number of
satellites employed for navigation processing

(34)

where is the number of
measurements (number of satellites). Alternatively, the
averaged magnitude (absolute value) of innovation at the
present epoch can also be used

(35)

2) Category 2: The discrepancy for the trace of innovation co-
variance matrix between the present (actual) and theoret-
ical value is used. The DOD parameter can be of the form

(36a)

(36b)

The alternative form is the rate for the trace of innovation co-
variance matrix for the current and theoretical value, given by

(37a)

(37b)

For each of the proposed approaches, only one scalar value
needs to be determined and, therefore, the fuzzy rules can be
simplified resulting in the decrease of computational efficiency.

In the FLAS, the DOD parameters are employed as the in-
puts for the fuzzy inference engines. By monitoring the DOD
parameters, the FLAS is able to tune online the softening factor
according to the fuzzy rules. For this reason, this scheme can
adjust the fading factors adaptively and, therefore, improves es-
timation performance. When the softening factor is smaller, the
tracking capability of STKF is better; while the softening factor
is larger, the tracking accuracy of STKF is improved.

Fig. 4 provides the flow chart of the AFSTKF. The flow chart
essentially contains three portions. Two blocks are indicated by
the dashed line: the block on the left-hand side is the strong
tracking loop; the block on the right-hand side is the FLAS
for tuning the softening factor . The portion that excludes the
two blocks is essentially the standard EKF. The AFSTKF is
employed to tune the softening factor according to the inno-
vation information, and has the advantage over both EKF as
well as STKF, in terms of both tacking capability and estima-
tion accuracy.

Fig. 4. Flow chart of the AFSTKF.

IV. SIMULATION EXPERIMENTS

Simulation experiments have been carried out to evaluate the
performance of the AFSTKF approach in comparison with the
conventional methods for GPS navigation processing. Simula-
tion was conducted using a personal computer with Pentium 4
1.7 GHz CPU. The computer codes were developed by the au-
thors using the Matlab 6.5 version software. The commercial
software Satellite Navigation toolbox by GPSoft LLC was em-
ployed for generating the satellite positions and pseudoranges.
Block diagram of the GPS navigation processing using the AF-
STKF is shown in Fig. 5.

When selecting Kalman filtering as the navigation state esti-
mator in the GPS receiver [2], [3], using and to represent the
GPS receiver clock bias and drift, the differential equation for
the clock error is written as

(38)

where and are independent
Gaussianly distributed white sequences. The dynamic process
of the GPS receiver in a lower dynamic environment can be
represented by the PV (Position-Velocity) model [2]. In such
a case, we consider the GPS navigation filter with three position
states, three velocity states, and two clock states, so that the state
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Fig. 5. GPS navigation processing using the AFSTKF.

to be estimated is a 8 1 vector. The process model governed
by (9a) leads to

where represent the east, north, and vertical position;
represent the east, north, and vertical velocity; and

and represent the receiver clock offset and drift errors,
respectively. The state transition matrix for the model can be
found to be

(39)

The process noise covariance matrix is shown in (40) at the
bottom of the page. If only the pseudorange observables are

available, the linearized measurement equation based on ob-
servables can be written as given by

...
...

...
...

...
...

...
...

...
...

...

(41)

where the elements of the measurement model are the partial
derivatives of the predicted measurements with respect to each
state, which is an matrix. Assuming measurement errors
among satellites are uncorrelated, we have

. . .
(42)

Since we assumed that the differential GPS (DGPS) mode is
used and most of the errors can be corrected, but the multipath
and receiver measurement thermal noise cannot be eliminated.
The measurement noise variances value are assumed a priori
known, which is set as 9 m . Let each of the white noise spectral
amplitudes that drive the random walk position states be

. Also, let the clock model spectral am-
plitudes be and .
These spectral amplitudes can be used to find the parame-
ters in (40).

The simulation scenario is as follows. The experiment
was conducted on a simulated vehicle trajectory orig-
inating from the position of North 25.1492 and East
121.7775 at an altitude of 100 m. This is equivalent to

m in the WGS-84
ECEF coordinate system. The location of the origin is defined

(40)
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Fig. 6. Three-dimensional vehicle trajectory.

TABLE I
DESCRIPTION OF VEHICLE MOTION

as the m location in the local tangent East-North-Up
(ENU) frame. The three-dimensional plot of trajectory is
shown in Fig. 6. The description of the vehicle motion is listed
in Table I. In addition, vehicle velocity in the east, north, and
vertical components are also provided in Fig. 7 for providing
better insight into vehicle dynamic information in each time
interval. The related setting of parameters for the EKF, STKF,
and AFSTKF is listed in Table II.

The parameter in STKF is a constant and does not change
subject to the change in dynamics. When the vehicle is in high
dynamic environments, a smaller softening factor will be re-
quired for better tracking capability; when the vehicle is in lower
dynamic environments, a larger will be needed for better es-
timation precision. Therefore, the improved version of STKF,
which incorporates the FLAS, can be introduced for automati-
cally adjust the value of . For the vehicle in a very low dynamic
environment, should be increased to a very large value, which
leads to 1 and results in the standard Kalman filter.

The philosophy for defining the rules is straightforward:
1) for the case that the DOD parameter is small, our objective
is to obtain results with better estimation accuracy, and a larger
softening factor should be applied and 2) for the case that
the DOD parameter is increased, our objective is to increase

Fig. 7. Vehicle velocity in the east, north, and vertical components.

TABLE II
SETTING OF PARAMETERS FOR EKF, STKF, AND AFSTKF

the tracking capability, and a smaller softening factor should
be applied. The membership functions (MFs) of input fuzzy
variable DOD parameters as shown in Figs. 8–11 are triangle
MFs, obtained by the function

The first-order T-S model is suggested. The zero-order model
needs more complicated MFs and rule base and is, therefore,
more difficult to determine. The presented FLAS is the If-Then
form and consists of three rules. Four methods corresponding to
four DOD parameters are presented.

1) Method 1—use in (34) as the DOD parameter
a) IF is zero THEN is
b) IF is small THEN is
c) IF is large THEN is 1

The membership functions of input fuzzy variable are
provided in Fig. 8.

2) Method 2—use in (35) as the DOD parameter
a) IF is zero THEN is
b) IF is small THEN is
c) IF is large THEN is 1

The membership functions of input fuzzy variable are
provided in Fig. 9.



786 IEEE SENSORS JOURNAL, VOL. 7, NO. 5, MAY 2007

Fig. 8. Membership functions of input fuzzy variable �.

Fig. 9. Membership functions of input fuzzy variable � .

Fig. 10. Membership functions of input fuzzy variable �.

Fig. 11. Membership functions of input fuzzy variable �.

3) Method 3—use in (36b) as the DOD parameter
a) IF is zero THEN is
b) IF is small THEN is
c) IF is large THEN is 1

The membership functions of input fuzzy variable are
provided in Fig. 10.

Fig. 12. Comparison of GPS positioning errors. (1) STKF (o). (2) AFSTKF (x).

Fig. 13. East, north, and up components of the navigation results and the
corresponding 1-� bound based on the STKF method and AFSTKF method.
(a) STKF. (b) AFSTKF.

4) Method 4—use in (37b) as the DOD parameter
a) IF is zero THEN is
b) IF is small THEN is
c) IF is large THEN is 2
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Fig. 14. Navigation accuracy comparison for STKF and EKF.
(a) East. (b) North. (c) Altitude.

The membership functions of input fuzzy variable are
provided in Fig. 11.

Figs. 12–17 provide the GPS navigation results for the stan-
dard EKF, STKF, and AFSTKF approaches. For comparison
purposes, various types of illustrations are provided and dis-
cussed as follows. The navigational errors in the East–North
plane for the AFSTKF method and the STKF method is given
in Fig. 12. Subplot (a) and (b), respectively, of Fig. 13 show the
East, North, and Vertical components of navigational errors and
the corresponding 1- bounds for the STKF and the AFSTKF,
respectively. Performance comparison between STKF and EKF
is shown in Fig. 14; performance comparison between AFSTKF

Fig. 15. Navigation accuracy comparison for AFSTKF and STKF. (a) East.
(b) North. (c) Altitude.

and STKF is shown in Fig. 15. Figs. 16 and 17 provide the error
standard deviation traces of east-component position errors for
STKF versus EKF, and for AFSTKF versus STKF, respectively.

It can be seen that substantial estimation accuracy improve-
ment is obtained by using the proposed technique, discussed as
follows.

1) In the time interval of 0–50 s, the vehicle is stationary. For
this case, EKF, STKF, and AFSTKF all provide good re-
sults. At this time interval, the DOD is small. At this mo-
ment, the FLAS gives a larger softening factor resulting
in better smoothness.
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Fig. 16. Comparison of error standard deviation traces for STKF and EKF.

Fig. 17. Comparison of error standard deviation traces for AFSTKF and STKF.

2) In the three time intervals, 101–150, 201–250, and
351–450 s, the vehicle is not maneuvering and is con-
ducting constant-velocity straight-line motion for all the
three components. By using T-S fuzzy logic, the FLAS
senses smaller values of DOD parameters, and gives a
larger softening factor resulting in more precise results.
It is clearly seen that the AFSTKF demonstrates very
good adaptation property. With large softening factors,
the fading factor is approaching 1, and both the AFSTKF
and STKF deteriorate to the standard EKF. As a result,
the navigation accuracies based on the EKF, STKF, and
AFSTKF are equivalent.

3) In the three time intervals, 51–100, 151–200, and
251–350 s, the vehicle is maneuvering. The mismatch
of the model leads the conventional EKF to a large navi-
gation error, while the FLAS timely detects the increase of
DOD parameter, and then reduces the softening factor so
as to maintain good tracking capability. It is verified that,
by monitoring the innovation information, the AFSTKF
has the good capability to detect the change in vehicle
dynamics and adjust the softening factor for preventing
the divergence and having better navigation accuracy.

In addition, the FLAS in the AFSTKF automatically adjust
the softening factor based on the timely innovation infor-
mation. The softening factors determined by the FLAS, and the
corresponding fading factors are given in Fig. 18. It can be seen
that when the vehicle is in high dynamic environment, will be

Fig. 18. The softening factors (top) and fading factors (bottom).

tuned to a smaller value; in a low dynamic case, will be tuned
to a very larger value. The case that is very large will lead the
fading factor to 1, and the AFSTKF becomes the standard
EKF. The fact, as was predicted, can be seen in the time inter-
vals 0–50, 101–150, 201–250, and 351–405 s.

V. CONCLUSION

The conventional EKF requires more states for better naviga-
tion accuracy and does not present the capability to monitor the
change of parameters due to changes in vehicle dynamics. Tra-
ditional STKF approach for determining the softening factors
heavily relies on personal experience or computer simulation
using a heuristic searching scheme. This paper has presented an
AFSTKF for GPS navigation processing to prevent the diver-
gence problem in high dynamic environments.

Through the use of fuzzy logic, the FLAS in the AFSTKF
has been employed as a mechanism for timely detecting the dy-
namical changes and implementing the online tuning of the soft-
ening factor by monitoring the innovation information to main-
tain good tracking capability. When a designer does not have
sufficient information to develop the complete filter models or
when the filter parameters are slowly changing with time, the
fuzzy system can be employed to enhance the STKF perfor-
mance. By using FLAS, the lower order of the filter model can
be utilized and, therefore, less computational effort will be suf-
ficient without compromising estimation accuracy significantly.
The navigation accuracy based on the proposed method has been
compared with the STKF and EKF and has demonstrated sub-
stantial improvement in both navigational accuracy and tracking
capability.
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