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Necessity Analysis of Fuzzy Regression Equations Using a Fuzzy Goal 

Programming Model 
 

Ruey-Chyn Tsaur and Hsiao-Fan Wang 
 
 

Abstract   change points. In addition, setting the change points to 
derive a piecewise fuzzy regression model does not lead 
to a useful model, because we still do not know where to 
set the next change point. In other words, it is more 
important to obtain a trend from the collected data to 
determine where the change point will be.  

 
In this study, using necessity analysis, we located a 

fuzzy regression interval that is possibly included in 
collected interval data by reducing the effect of 
fluctuating points. First, we developed a fuzzy 
regression model with a regression interval that is 
close to the sum of the radius values of collected 
interval data. Next, we enlarged the feasible region so 
that the fuzzy regression interval may be possibly 
included in the collected data by fuzzifying the 
constraints of the fuzzy regression model within a 
given tolerance value. Finally, we derived a 
satisfactory fuzzy regression equation with maximum 
possibility. The application of the proposed model is 
illustrated by means of an example. 

In our present study, to determine trends from 
variable collected data using the maximum possible 
amount of information, we propose a linear fuzzy 
regression model with a fuzzy interval by using a fuzzy 
goal programming model to reduce the effect of 
fluctuating points. First, we determine an interval of the 
fuzzy linear regression model that is as close as possible 
to the sum of the radius values of the collected interval 
data. Next, in order to obtain the optimal solution for the 
fuzzy regression model, we ensure that the fuzzy 
regression interval can possibly be included in the 
collected data so as to fuzzify the constraints of the 
fuzzy regression model within a given tolerance value. 

 
Keywords: Fuzzy regression model, fuzzy data, 
necessity analysis, fuzzy goal programming, tolerance 
value. The remainder of this paper is organized as follows. 

In Section 2, we provide reviews of (1) the fuzzy 
regression model using necessity analysis and (2) 
non-preemptive fuzzy goal programming. In Section 3, 
we propose an extension to the fuzzy regression model 
using the fuzzy goal programming model. In Section 4, 
we provide an example to illustrate our approach. 
Finally, in Section 5, we draw our conclusions.  

 
1. Introduction 

 
The process of fuzzy regression through possibility 

analysis was first studied by Tanaka et al. [12] in 1982 
to propose an alternative approach to evaluate the fuzzy 
relationship between independent and dependent 
variables; subsequently, necessity analysis was also 
clearly defined [7]. A considerable amount of research 
in various fields has focused on using possibility 
analysis of a fuzzy regression model, including model 
extensions [3] [6] [8-9] [11] [14] [18-23], business 
forecasting [15-16], and engineering [1][4]. However, 
necessity analysis in a fuzzy regression model usually 
leads to an infeasible solution owing to large variability 
in the collected data or large fluctuations in the given 
data. Yu et al. [22-23] proposed a piecewise model to 
cope with such problems, but it is still difficult to set the 

 
2. Review of Fuzzy Regression Model and Fuzzy 

Goal Programming Model 
 

In this section, we introduce the fuzzy regression 
model and the fuzzy goal programming model in order 
to derive our proposed fuzzy regression model under 
necessity analysis. 
 
2.1. Fuzzy Regression Using Necessity Analysis 

The fuzzy regression model assumes that a linear 
interval regression equation is represented as given 
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where  is the predicted interval corresponding to 
theinput vector  of independent 
variables for the ith data point; 
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of interval parameter Aj, which is given by 
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where acj is the center and awj is the radius of Aj,       
j=0, 1,…, N. Then, addition and multiplication operations 
involving intervals A and B are carried out as follows: 
 

A + B = (ac, aw) + (bc, bw) = (ac + bc, aw + bw)    (3) 
 
AB = (ac, aw) (bc, bw) = [ac – aw, ac + aw] [bc – bw, bc + bw]   

= (acbc + awbw, acbw + awbc)                   (4) 
 

rA = r(ac, aw) = (rac, raw)         (5) 
 
where , , and r is a real number. 
By interval arithmetic, the basic linear interval 
regression (1) can be represented as follows: 
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where , and 
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 Then, necessity analysis of the interval regression 
equation is satisfied by ensuring that the predicted 
intervals are included in the collected interval values as 
follows: 
 

MiyY ii  ,....,2 ,1      ,* =⊆ �             (7) 
 
where  is the collected interval value with radius 
value ei; consequently, its lower bound 

iy�

iiiL eyy −=�  and 
upper bound iiiR eyy +=� .  Let predicted interval  
belong to collected interval values 

*
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iy�  as fit as possible; 
necessity analysis is then used to maximize the radius of 
the predicted interval as follows: 
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This linear programming problem can be rewritten as 

follows: 
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By solving (9), parameters   , , jwjc aa Nj ,....,2 ,1 ,0  =∀ , 
can be obtained; then, (1) can be rewritten as follows: 
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Each predicted value  of the dependent variable can 
be estimated as an interval number , 
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2.2.  Fuzzy Goal Programming Model 
  Goal programming (GP) is an appropriate alternative 
for modeling real-world decision problems, and it has 
been used extensively in previous studies that involve 
obtaining solutions to decision-making problems. 
However, a major limitation of GP is the imprecision of 
the goal. Therefore, in fuzzy goal programming (FGP), 
fuzzy goals are considered at imprecise levels [2][5]. 
The FGP approach was first introduced by Narasimhan 
[10] modeled FGP by solving the set of 2k linear 
programming problems with equal and unequal fuzzy 
weights under the assumption of linear membership 
functions, each of which contains 3k constraints, where 
k denotes the number of goals in the original problem. 
Later, Hannan [17] simplified the procedure to formulate 
a single LP problem with 2k goal-related constraints that 
can be preemptive or non-preemptive. Therefore, when 
fuzzy goals are presented as “essentially equal to b,” a 
FGP problem can be written in a general form as 
follows: 
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where x is an 1×n  alternative set, A is a nk ×  matrix 
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of coefficients of the objective function, C is a nk ×  
matrix of coefficients of the constraints, and d is 
right-hand side with a  matrix. The membership 
function for fuzzy goals is postulated in the triangular 
form as follows, i=1, 2,…, M: 

1×k
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When the decision is made by fulfilling all the fuzzy 
goals to the greatest degree, the max-min operator is 
used such that the optimal decision D is obtained by the 
following expression: 
 

( ) ( )AXuMinMaxxu iixD   =           (13) 

 
For a FGP problem, Hannan [5] proved that if iλ  is 

the optimal solution to subproblem i with ( ) ii AXu λ≥ , 
then there exists iMi
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(11) can be written as follows: 
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However, the membership function of Hannan’s 

model is computationally complicated, and 
Narasimhan’s model does not take into account the 
priorities of fuzzy goals. Therefore, Tiwari et al. [12] 
proposed an algorithm for solving a FGP problem using 
symmetrical triangular membership functions of fuzzy 
goals with priority structure. Still later, Chen [2] and 
Wang and Fu [17] proposed more efficient methods for 
determining the properties of the models. 
 
3. Fuzzy Regression Model Using FGP Approach 
 

As described in Section 2, in necessity analysis, the 
fuzzy regression model is derived by maximizing the 
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denote the tolerance value for fuzzy goal ; then, 

the fuzzy goal can be described by a triangular 
membership function as per (15). In order to obtain the 
maximum membership degree for the goal, (15) must be 
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Therefore, we rewrite (9) as (16) below: 
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equal to , the feasible region is still not enlarged; 

therefore, (16) is usually infeasible. We cannot obtain a 
fuzzy regression equation that is fully included in the 
collected interval data because of variability or large 
fluctuations among the given data. In order to derive a 
feasible solution based on these fluctuating data, we 
must modify the constraints in (16) so that constraints 
containing  are relaxed to obtain fuzzy 
constraints containing , respectively; then, a 

larger feasible region is available [24]. Now, (16) can be 
rewritten as follows:  
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In (18), the tolerance value p2 suggests that the 

predicted lower bound  is possibly less than the 
lower bound of the collected data ; a membership 
degree of 1 means that the lower bound  is 
absolutely larger than  and that the lower bound  
could be less than  with a membership degree of at 
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where fuzzy constraints  and  are shown, 

respectively, in Figure 1 and Figure 2 with membership 
functions defined by (18) and (19).  
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Figure 1. Membership function of . 
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Theorem 1. If (20) is infeasible, given a larger value 
,2,1, =∀ipi  then an optimal solution of (20) absolutely 

exists. 
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means that the derived fuzzy regression equation is 
absolutely in the collected interval data.
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(2)  (i) Without losing generality, given a suitable value 
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In addition, by introducing a slack variable  as a 
negative deviation variable, assuming  to 
be a positive deviation variable in the first constraint of  
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The meaning of the objective value λ is that a 

satisfactory level for the given tolerance values of 
predictive value  can possibly be included in the 
collected interval data  under the given tolerance 
values p1 and p2. A larger λ does not imply a better 
solution but merely allows for the possibility than an 
optimal solution can be obtained under the given 
tolerance values. Therefore, Peter [10] suggested that 
choosing larger tolerance values p1 and p2 can contribute 
to obtaining an optimal solution in (21). In contrast, if 

the selected tolerance values still make (21) infeasible, 
then larger tolerance values should be chosen in order to 
obtain the optimal solution for (21). 

*
iY

iy�

 
4. Illustrated Example 

 
4.1.  Example Using Proposed Model 

Interval data are collected as follows: { }ii yx �,  = 
[ ]{ }iRiLi yyx �� ;,  = (3; [12; 17]); (6; [10; 13]); (9; [13; 18]); 

(12; [14; 18]); (15; [19; 24]); (18; [16; 19]). In this 
illustrated example, Tanaka and Ishibuchi [7] used this 
data set of the linear necessity model but were unable to 
obtain a feasible solution. In modeling a fuzzy regression 
model, we first apply our proposed (21), and we obtain 
the solutions for the variables in Table 1 under different 
tolerance values. In Table 1, it is obvious that variable 
a0w is affected by different fuzzy regression intervals, 
while the other variables remain constant, exhibiting 
near identical trends for different tolerance values. In 
addition, objective values for λ are listed in the final 
column of Table 1. Thus, by definition, λ provides a 
satisfactory level for given tolerance values. A larger λ 
does not imply a better solution but merely allows for 
the possibility that the optimal solution can be obtained 
with the given tolerance values. Therefore, choosing 
suitable tolerance values can contribute to obtaining a 
different optimal solution using (21).  
 

Table 1. Solutions for variables. 

Variables a0c a0w a1c a1w λ  
Solution with values  
p1 = 1, p2 = 3 10.75 1.9342 0.5 0 0.1053

Solution with values  
p1 = 1, p2 = 5 10.75 1.9919 0.5 0 0.4516

Solution with values  
p1 = 1, p2 = 7 10.75 2.0174 0.5 0 0.6047

Solution with values  
p1 = 1, p2 = 9 10.75 2.0318 0.5 0 0.6909

Solution with values  
p1 = 3, p2 = 3 10.75 1.6786 0.5 0 0.1905

Solution with values  
p1 = 9, p2 = 3 10.75 1.1389 0.5 0 0.3704

Solution with values  
p1 = 15, p2 = 3 10.75 0.7955 0.5 0 0.4848

Solution with values  
p1 = 20, p2 = 3 10.75 0.5921 0.5 0 0.5526

 
In order to determine the reliability and validity of the 

proposed model, we use suitable tolerance values 
 and  together with their necessity areas, 

as listed in Table 2 and Table 3. From Table 2, Figure 3,
21 pp < 21 pp ≥
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and Figure 4, it is evident that a larger p2 leads to a 
larger fuzzy regression interval. Thus, by maintaining a 
constant value of p1, a given tolerance value p2 leads to 
a predicted lower bound  in the fuzzy regression 
interval that is possibly less than the lower bound of the 
collected data  or to a predicted upper bound  
in the fuzzy regression interval that is possibly larger 
than the upper bound of the collected data . Finally, 
from Table 3, Figure 5, and Figure 6, it is evident that a 
larger p1 leads to a smaller regression interval. 
Therefore, if p2 is maintained at a constant value, then 
the tolerance value p1 is used to derive the tolerance 

difference between the radiuses 

*
iLY

iLy *
iRY

iRy

∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

M

i=
ij

N

j
jw Xa

1 0
 of the 

predicted values and the radiuses  of the collected 

data. In the illustrated example, Figures 3–6 show that 
when , the proposed model can be used to 
obtain a fuzzy regression equation in which the radiuses 
of the predicted values are as possibly fit as the radiuses 
of the collected data with a larger p2. In that case, the 
predicted lower bound or upper bound in the fuzzy 
regression interval is possibly lesser than or greater 
than the corresponding bounds of the collected data 
with a smaller p1. Therefore, in order to obtain a fuzzy 
regression interval that is as near as the radius values of 
the collected data, we must choose a smaller p1 value 
(e.g., p1 = 1) and a larger p2 value (e.g., p2 = 9) to obtain 
the optimal predictive fuzzy regression equation.  

∑
=

M

i
ie

1
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Figure 3. Forecasting results with p1 = 1 and  p2 = 3. 
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Figure 4. Forecasting results with p1 = 1 andp2 = 9. Table 2. Forecast intervals with tolerance values 21 pp < . 

 
data 

i 
Forecast for  

p1 = 1, p2 = 3 
Forecast for  

p1 = 1, p2 = 5 
Forecast for 

p1 = 1, p2 = 7 
Forecast for  

p1 = 1, p2 = 9 
1 [10.316, 14.184] [10.258, 14.242] [10.233, 14.267] [10.218, 14.282] 

2 [11.816, 15.684] [11.758, 15.742] [11.733, 15.767] [11.718, 15.782] 

3 [13.316, 17.184] [13.258, 17.242] [13.233, 17.267] [13.218, 17.282] 

4 [14.816, 18.684] [14.758, 18.742] [14.733, 18.767] [14.718, 18.782] 

5 [16.316, 20.184] [16.258, 20.242] [16.233, 20.267] [16.218, 20.282] 

6 [17.816, 21.684] [17.758, 21.742] [17.733, 21.767] [17.718, 21.782] 
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Table 3. Forecast intervals with tolerance values . 21 pp ≥

data 
i 

Forecast for   
p1 = 3, p2 = 3 

Forecast for  
p1 = 9, p2 = 3 

Forecast for p1 
= 15, p2 = 3 

Forecast for   
p1 = 20, p2 = 3 

1 [10.571, 13.929] [11.111, 13.389] [11.455, 13.046] [11.658, 12.842] 

2 [12.071, 15.429] [12.611, 14.889] [12.955, 14.546] [13.158, 14.342] 

3 [13.571, 16.929] [14.111, 16.389] [14.455, 16.046] [14.658, 15.842] 

4 [15.071, 18.429] [15.611, 17.889] [15.955, 17.546] [16.158, 17.342] 

5 [16.571, 19.929] [17.111, 19.389] [17.455, 19.046] [17.658, 18.842] 

6 [18.071, 21.429] [18.611, 20.889] [18.955, 20.546] [19.158, 20.342] 

Figure 5. Forecasting results with p1 = 3 and p2 = 3. 
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Figure 8. Comparison to the piecewise model with two 
change points. 

 
 Figure 6. Forecasting results with p1 = 20 and p2 = 3.

  
Table 4. Comparison of three methods. 4.2. Comparisons and Analysis 

For comparison to our proposed model, we use the 
model proposed by Yu et al [22]. to derive a piecewise 
fuzzy regression equation by setting five and two 
change points for modeling, as shown in Figure 7 and 
Figure 8, respectively. It is clear that different numbers 
of change points lead to different bands of fuzzy 
regression intervals, and we still do not know how to 
determine the optimal change points. In addition, we 
see that the greater the number of change points, the 
better the derived piecewise fuzzy regression equation 
fits the collected data. However, we cannot be 
absolutely certain that an equation fitted to training data 
will have improved extrapolative ability. In fact, we 
would need to determine the location of the next change 
point for forecasting every time. On the other hand, our 
proposed model derives most of the information from 
the collected data, and it suggests suitable tolerance 
values and a well-fitting linear trend by which to 
determine future values. A comparison of three 
different methods is shown in Table 4. 

Tanaka & 
Ishibuchi ’s 
Model 

Yu et al.’s Model Our Proposed Model 

Necessity 
analysis 

Necessity analysis 
using change points 
for modeling 
piecewise fuzzy 
regression equation. 

Necessity analysis using 
fuzzy goal programming 
model with fuzzy 
interval. 

Usually 
infeasible 

Do not know how to 
determine change 
points 

Tolerance values are 
required to be 
determined. 

 Piecewise model 
cannot easily be used 
for extrapolation. 

Linear model is feasible 
for forecasting with a 
possible forecasting 
interval. 

 
5. Conclusion 

 
In this study, based on the concept of necessity 

analysis, we proposed a fuzzy regression equation in 
which the fuzzy regression interval is included in the 
collected fuzzy data to a desired degree. Because the 
regression interval must be as near as possible to the 
sum of the radius values of the collected interval data, 
the developed fuzzy goal programming (FGP) model 
enlarges the feasible region by fuzzifying the 
constraints of the fuzzy regression model with a given 
tolerance value. Moreover, we derived a satisfactory 
fuzzy regression equation with maximum possibility. 
As a result, the fuzzy regression equation can be 
obtained by fitting the trend of the collected data 
absolutely from the general data, thereby reducing the 
effects of large variability in data or of large 
fluctuations in the given data. 0
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 Figure 7. Comparison results to the piecewise model with 5 

change points. 
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