
Rule-Based Transformation of SQL Relational

Databases to OWL Ontologies

Irina Astrova1, Nahum Korda2, and Ahto Kalja1

1 Institute of Cybernetics, Tallinn University of Technology,

Akadeemia tee 21, 12618 Tallinn, Estonia

irinaastrova@yahoo.com
2 Straight Technology Ltd,

London, UK

nahum.korda@straighttech.com

Abstract. This paper proposes a novel approach to automatic transformation of

relational databases to ontologies, where the quality of transformation is also

considered. A relational database is written in SQL, and an ontology is written

in OWL. The proposed approach can be used for upgrading today’s Web to the

Semantic Web. The high cost of manual building ontologies from scratch is one

of the main obstacles for the development of the Semantic Web. On the other

hand, the Semantic Web can benefit from reuse of the vast amount of relational

database information available on the Web today.

Keywords: Ontologies, relational databases, OWL, and SQL.

1 Introduction

“One of the main driving forces for the Semantic Web has always been the

expression, on the Web, of the vast amount of relational database information in a

way that can be processed by machines” [1]. Indeed, most information on the Web is

not machine-processable, because it is often represented in HTML. This language

describes how the information looks like and not what it is. In order for machines to

process the information, it must be represented in an ontology language (e.g. OWL)

and linked to ontologies. An ontology can be used for annotating HTML pages with

semantics.

Manual or semi-automatic semantic annotation [2] is time-consuming, subjective

and error-prone. It is even impossible on scale of the Web that contains billions of

pages. Most pages even do not exist until they are dynamically generated from

relational databases at the time of submitting HTML forms. Moreover, the high cost

of building ontologies from scratch is another obstacle for the semantic annotation.

An alternative to the semantic annotation is automatic or semi-automatic

transformation of relational databases to ontologies, which is the purpose of this

paper.

1.1 Transformation Problems

Transformation of relational databases to ontologies should handle the following

problems:

• Loss of data: The result of the transformation should adequately describe

the original data.

• Loss of semantics: In some cases, the transformation is not really lossless in

the sense that not all constructs in a relational database can be mapped to an

ontology. Therefore, the quality of the transformation should be analyzed.

• Focus on structures: Besides the mapping of structures (i.e. tables,

columns, etc.), mechanisms should be provided for the mapping of data (i.e.

instances).

• Focus on data: Data should be mapped, with incorporation of data types.

• Applicability: In some cases, the transformation is not really general in the

sense that its application is rather restricted. E.g. if the transformation allows

only for exotic relational databases, not being used in practical situations,

then the transformation suffers from the applicability problem.

• Correctness: The transformation should have provable correctness.

1.2 State of the Art

While there are several tools available for transforming relational databases to

ontologies, many situations are too complex or require more flexibility than the

existing tools enable. E.g. DataGenie [3] is a Protégé’s plug-in that is capable of

importing legacy data from a relational database (namely, Oracle) to an ontology.

This import is simple: each table maps to a class, each column maps to a data type

property and each row maps to an instance. In addition, foreign keys can be replaced

with Protégé’s instance pointers. The backside of this simplicity is that DataGenie

fails to discover inheritance, object properties and restrictions. Moreover, DataGenie

imposes a strict policy on the direction of import. In particular, users can move data

from a relational database to an ontology, but not in a reverse direction (i.e. from an

ontology to a relational database).

In the rest of the paper, we assume that a relational database is written in SQL [4],

the standard relational database language, and that an ontology is written in OWL [5],

the standard ontology language.

2 Related Work

A majority of the related work has been done on mapping between relational

databases and ontologies; e.g. [6], [7], [8], and [9]. However, this mapping is quite

different from transformation of relational databases to ontologies, as Fig. 1 shows.

The difference is that the mapping assumes the existence of both a relational database

and an ontology, and produces a set of correspondences between the two. That is, the

inputs to the mapping are both a relational database and an ontology, and the output is

a set of correspondences that relate constructs of the relational database to those of the

ontology. A construct in the relational database unrelated to any construct in the

ontology is considered to be out of scope of the mapping. By contrast, the

transformation assumes that only a relational database exists, while an ontology is

produced from the relational database. That is, the input to the transformation is a

relational database and the output is an ontology.

(a): Mapping between relational database and ontology.

(b): Transformation of relational database to ontology.

Fig. 1. Mapping vs. transformation.

There are several approaches to transformation of relational databases to

ontologies; e.g. [10], [11], [12], and [13]. However, all these approaches suffer from

at least one of the following problems:

• They do not discover inheritance, thus producing an ontology that looks rather

“relational”; i.e. the ontology has the same flat structure as the original

relational database.

• They do not discover restrictions, symmetric and transitive properties either.

• They ignore constraints that capture additional semantics.

• They are not implemented.

• They are semi-automatic; i.e. they can require much user interaction.

• They do not analyze loss of semantics caused by the transformation. Rather,

they assume that a relational model is a subset of an ontological model and

thus, all constructs of a relational database can map to an ontology.

As an attempt to resolve these problems, we propose a novel approach to

transformation of relational databases to ontologies. A relational database is written in

SQL whereas an ontology is written in OWL.

3 Transformation

A relational database is an implementation of a relational model. This model includes

constructs for specifying tables, domains, columns, data types, constraints, and other

semantics, as Fig. 2 shows. However, the relational database does not need to include

all constructs of the relational model (i.e. it can use only a portion of the relational

model).

Fig. 2. Simplified relational model.

Similarly, an ontology is an implementation of an ontological model. This model

includes constructs for specifying classes, properties, data types, inheritance,

restrictions, and other semantics, as Fig. 3 shows. However, the ontology does not

need to include all constructs of the ontological model (i.e. it can use only a portion of

the ontological model).

Fig. 3. Simplified ontological model.

Fig. 4 illustrates the basic idea behind our approach. Transformation of relational

databases to ontologies is based on a set of rules called mapping rules that specify

how to map constructs of the relational model to the ontological model (see Section

4). These rules are then applied to a relational database (source) to produce an

ontology (target). Since the rules are specified on the model level, they are applicable

to any relational database that conforms to the relational model.

Fig. 4. Transformation of relational databases to ontologies.

4 Mapping Rules

Our approach maps constructs of a relational database to an ontology, using the

names of constructs of the relational database as the names of constructs of the

ontology. A prerequisite for this mapping is the mapping of constructs of a relational

model to an ontological model. This mapping is defined by a set of rules for:

• Mapping tables

• Mapping columns

• Mapping data types

• Mapping constraints

• Mapping rows.

Next these rules will be illustrated by example. An example is the relational

database for a company.

4.1 Mapping Tables

A table is mapped to a class unless all its columns are foreign keys to two other

tables. Then it is mapped to two object properties (one is an inverse of another).

The primary key of a table Involvement in Fig. 5 is composed of foreign keys

to two other tables Project and Employee, indicating a binary relationship

(many-to-many). Since the table Involvement consists entirely of the foreign keys

that are part of the primary key, it is mapped to two object properties: EmployeeID

(that uses classes Project and Employee as its domain and range, respectively)

and ProjectID. The latter is an inverse of the former, meaning that the relationship

is bidirectional (i.e. a project involves employees and an employee is involved in

projects).

CREATE TABLE Involvement(

 EmployeeID INTEGER REFERENCES Employee,

 ProjectID INTEGER REFERENCES Project,

 PRIMARY KEY (EmployeeID, ProjectID))

↓

<owl:ObjectProperty rdf:ID=”EmployeeID”>

 <rdfs:domain rdf:resource=”#Project”/>

 <rdfs:range rdf:resource=”#Employee”/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=”ProjectID”>

 <owl:inverseOf rdf:resource=”#EmployeeID”/>

</owl:ObjectProperty>

Fig. 5. Table is mapped to two object properties.

The primary key of a table Involvement in Fig. 6 is composed of foreign keys

to two other tables Employee and Project, indicating a binary relationship, again.

However, since this table now has an additional column hours, it is mapped to a

class Involvement.

CREATE TABLE Involvement(

 EmployeeID INTEGER REFERENCES Employee,

 ProjectID INTEGER REFERENCES Project,

 hours INTEGER,

 PRIMARY KEY (EmployeeID, ProjectID))

↓

<owl:Class rdf:ID=”Involvement”/>

Fig. 6. Table is mapped to class.

The primary key of a table Involvement in Fig. 7 is composed of foreign keys

to three other tables Employee, Project and Skill, indicating a ternary

relationship. Since only binary relationships can be represented through object

properties, this table is mapped to a class Involvement.

CREATE TABLE Involvement(

 EmployeeID INTEGER REFERENCES Employee,

 ProjectID INTEGER REFERENCES Project,

 SkillID INTEGER REFERENCES Skill,

 PRIMARY KEY (EmployeeID, ProjectID, SkillID))

↓

<owl:Class rdf:ID=”Involvement”/>

Fig. 7. Table is mapped to class (contd.).

4.2 Mapping Columns

A column is mapped to a data type property accompanied by a maximum cardinality

of 1 unless it is a foreign key. (For mapping foreign keys, see Section 4.4.4.)

A column ssn in a table Employee in Fig. 8 is not a foreign key. Therefore, this

column is mapped to a data type property ssn that uses a class Employee as its

domain. Since the column ssn may have only one value for each row in the table

Employee (atomicity), this property has a maximum cardinality of 1. Alternatively,

the property ssn could be defined as functional, which is the same as saying that the

maximum cardinality is 1.

CREATE TABLE Employee(

 ssn INTEGER)

↓

<owl:DatatypeProperty rdf:ID="ssn">

 <rdfs:domain rdf:resource=”#Employee”/>

 <rdfs:range rdf:resource=”&xsd;integer”/>

</owl:DatatypeProperty>

<owl:Class rdf:ID=”Employee”>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource=”#ssn”/>

<owl:maxCardinality rdf:datatype=

”&xsd;nonNegativeInteger”1/>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Fig. 8. Column is mapped to data type property with maximum cardinality of 1.

4.3 Mapping Data Types

Most of the mapping of columns has to do with mapping data types from SQL to

XSD. Unlike SQL, OWL does not have any built-in data types. Instead, it uses XML

Schema Data types (XSD). Table 1 shows how to map data types from SQL to XSD.

Table 1. Mapping data types.

SQL data type XML Schema data type

SMALLINT short

INTEGER integer

positiveInteger

negativeInteger

nonPositiveInteger

nonNegativeInteger

int

long

DECIMAL decimal

NUMERIC decimal

FLOAT float

REAL float

DOUBLE PRECISION double

CHARACTER string

CHARACTER VARYING string

TIME time

TIME WITH TIME ZONE time

DATE date

TIMESTAMP datetime

TIMESTAMP WITH TIME datetime

ZONE

INTERVAL duration

BIT boolean

BIT VARYING byte

A column ssn in Fig. 9 uses INTEGER as its data type. Therefore, a data type

property ssn uses integer as its range.

CREATE TABLE Employee(

 ssn INTEGER)

↓

<owl:DatatypeProperty rdf:ID=”ssn”>

 <rdfs:domain rdf:resource=”#Employee”/>

 <rdfs:range rdf:resource=”&xsd;integer”/>

</owl:DatatypeProperty>

Fig. 9. SQL data type INTEGER is mapped to XML Schema data type integer.

A column ssn in Fig. 10 uses INTEGER as its data type, again. However, there is

now a constraint CHECK on the column ssn. This constraint specifies a data range

for the column ssn to be all integers greater than 0 (i.e. all positive integers).

Therefore, a data type property ssn uses positiveInteger as its range.

CREATE TABLE Employee(

 ssn INTEGER CHECK (ssn > 0))

↓

<owl:DatatypeProperty rdf:ID=”ssn”>

 <rdfs:domain rdf:resource=”#Employee”/>

 <rdfs:range rdf:resource=”&xsd;positiveInteger”/>

</owl:DatatypeProperty>

Fig. 10. SQL data type INTEGER is mapped to XML Schema data type positiveInteger.

4.4 Mapping Constraints

4.4.1 Mapping Constraints UNIQUE

UNIQUE is a column constraint. It is mapped to an inverse functional property.

A constraint UNIQUE in Fig. 11 specifies that a column ssn in a table Employee

is unique, meaning that no two rows in the table Employee have the same value for

the column ssn (i.e. social security numbers uniquely identify employees).

Therefore, this constraint is mapped to an inverse functional property.

CREATE TABLE Employee(

 ssn INTEGER UNIQUE)

↓

<owl:InverseFunctionalProperty rdf:ID=”ssn”/>

Fig. 11. Constraint UNIQUE is mapped to inverse functional property.

4.4.2 Mapping Constraints NOT NULL

NOT NULL is a column constraint. It is mapped to a minimum cardinality of 1.

A constraint NOT NULL in Fig. 12 specifies that a column ssn in a table

Employee is not null, meaning that all rows in the table Employee have values for

the column ssn (i.e. all employees are assigned social security numbers). Therefore,

this constraint is mapped to a minimum cardinality of 1.

CREATE TABLE Employee(

 ssn INTEGER NOT NULL)

↓

<owl:Class rdf:ID=”Employee”>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource=”#ssn”/>

 <owl:minCardinality rdf:datatype=

”&xsd;nonNegativeInteger”1/>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Fig. 12. Constraint NOT NULL is mapped to minimum cardinality of 1.

4.4.3 Mapping Constraints PRIMARY KEY

There are two forms of constraint PRIMARY KEY: using it as a column constraint (to

refer to a single column) and using it as a table constraint (to refer to multiple

columns). A column constraint PRIMARY KEY is mapped to both an inverse

functional property and a minimum cardinality of 1.

A constraint PRIMARY KEY in Fig. 13 specifies that a column ssn in a table

Employee is a primary key, which is the same as saying that the column ssn is both

unique and not null. Therefore, this constraint is mapped to both an inverse functional

property and a minimum cardinality of 1.

CREATE TABLE Employee(

 ssn INTEGER PRIMARY KEY)

↓

<owl:InverseFunctionalProperty rdf:ID=”ssn”/>

<owl:Class rdf:ID=”Employee”>

 <rdfs:subClassOf>

<owl:Restriction>

 <owl:onProperty rdf:resource=”#ssn”/>

 <owl:minCardinality rdf:datatype=

”&xsd;nonNegativeInteger”1/>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Fig. 13. Constraint PRIMARY KEY is mapped to both inverse functional property and

minimum cardinality of 1.

4.4.4 Mapping Constraints REFERENCES and FOREIGN KEY

REFERENCES is a column constraint, whereas FOREIGN KEY is a table constraint.

Both constraints are used for specifying foreign keys. A foreign key can be mapped to

four different constructs in the ontology: an object property, class inheritance, a

symmetric property and a transitive property.

A constraint REFERENCES in Fig. 14 specifies that a column ProjectID in a

table Task is a foreign key to another table Project, indicating a binary

relationship (one-to-one or many-to-one). Since the foreign key is not (part of) the

primary key, it is mapped to an object property ProjectID that uses classes Task

and Project as its domain and range, respectively.

CREATE TABLE TASK(

 TaskID INTEGER PRIMARY KEY,

 ProjectID INTEGER REFERENCES Project)

↓

<owl:ObjectProperty rdf:ID="ProjectID">

 <rdfs:domain rdf:resource=”#Task”/>

 <rdfs:range rdf:resource=”#Project”/>

</owl:ObjectProperty>

Fig. 14. Foreign key is mapped to object property.

A constraint REFERENCES in Fig. 15 specifies that a column ProjectID in a

table Task is a foreign key to another table Project, indicating a binary

relationship, again. However, since the foreign key is now part of the primary key,

this relationship is tighter than the previous one. Therefore, the foreign key is mapped

to an object property ProjectID accompanied by a cardinality of 1.

CREATE TABLE TASK(

 TaskID INTEGER,

 ProjectID INTEGER REFERENCES Project,

 PRIMARY KEY (TaskID, ProjectID))

↓

<owl:ObjectProperty rdf:ID=”ProjectID”>

 <rdfs:domain rdf:resource=”#Task”/>

 <rdfs:range rdf:resource=”#Project”/>

</owl:ObjectProperty>

<owl:Class rdf:ID=”Task”>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource=”#ProjectID”/>

 <owl:cardinality rdf:datatype= ”&xsd;nonNegativeInteger”1/>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Fig. 15. Foreign key is mapped to object property with cardinality of 1.

A constraint FOREIGN KEY in Fig. 16 specifies that a column ProjectID in a

table SoftwareProject is a foreign key to another table Project, indicating a

binary relationship, again. However, since the foreign key is now the primary key, it

is mapped to class inheritance: SoftwareProject is a subclass of Project (i.e.

a software project is a project).

CREATE TABLE SoftwareProject(

 ProjectID INTEGER PRIMARY KEY,

 FOREIGN KEY (ProjectID) REFERENCES Project)

↓

<owl:Class rdf:ID=”SoftwareProject”>

 <rdfs:subClassOf rdf:resource=”#Project”/>

</owl:Class>

Fig. 16. Foreign key is mapped to class inheritance.

A constraint REFERENCES in Fig. 17 specifies that a column spouse in a table

Employee is a foreign key to the same table, indicating a unary relationship.

Therefore, the foreign key is mapped to a symmetric property spouse that uses a

class Employee as both its domain and range (i.e. if one employee is a spouse of

another employee, then the second employee is a spouse of the first employee).

CREATE TABLE Employee(

 EmployeeID INTEGER PRIMARY KEY,

 spouse INTEGER REFERENCES Employee)

↓

<owl:SymmetricProperty rdf:ID=”spouse”>

 <rdfs:domain rdf:resource=”#Employee”/>

 <rdfs:range rdf:resource=”#Employee”/>

</owl:SymmetricProperty >

Fig. 17. Foreign key is mapped to symmetric property.

A constraint REFERENCES in Fig. 18 specifies that a column subtask in a table

Task is a foreign key to the same table, indicating an unary relationship, again.

However, since the foreign key is now accompanied by a trigger ON DELETE

CASCADE, this relationship consists of a whole and a part, where the part cannot exist

without the whole (i.e. if a task is deleted, then all its subtasks must also be deleted).

Therefore, the foreign key is mapped to a transitive property subtask that uses a

class Task as both its domain and range (i.e. if one task is a subtask of another task

and the other task is a subtask of yet another task, then the first task is a subtask of the

third task).

CREATE TABLE Task(

 TaskID INTEGER PRIMARY KEY,

 subtask INTEGER REFERENCES Task ON DELETE CASCADE)

↓

<owl:TransitiveProperty rdf:ID=”subtask”>

 <rdfs:domain rdf:resource=”#Task”/>

 <rdfs:range rdf:resource=”#Task”/>

</owl:TransitiveProperty >

Fig. 18. Foreign key is mapped to transitive property.

4.4.5 Mapping Constraints CHECK

There are two forms of constraint CHECK: using it as a column constraint (to refer to

a single column) and using it as a table constraint (to refer to multiple columns). A

column constraint CHECK is mapped to a value restriction unless it has an

enumeration. (For mapping enumerations, see Section 4.4.6).

A constraint CHECK in Fig. 19 specifies that all rows in a table Project have a

value Software for a column type. Therefore, a data type property type is

restricted to have the same value for all instances of a class Project.

CREATE TABLE Project(

 type VARCHAR CHECK (type=‘Software’))

↓

<owl:Class rdf:ID=”Project”>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource=”#type”/>

 <owl:hasValue rdf:datatype=”&xsd;string”>Software

 </owl:hasValue>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Fig. 19. Constraint CHECK is mapped to value restriction.

4.4.6 Mapping Constraints CHECK with enumeration

A constraint CHECK with enumeration is mapped to an enumerated data type.

A constraint CHECK in Fig. 20 specifies a data range for a column sex in a table

Employee through a list of possible values Male and Female. Therefore, this

constraint is mapped to an enumerated data type, with one element for each possible

value in the list.

CREATE TABLE Employee(

 sex VARCHAR CHECK (sex IN (‘Male’, ‘Female’)))

↓

<owl:DatatypeProperty rdf:ID=”sex”>

 <rdfs:domain rdf:resource=”#Employee”/>

 <rdfs:range>

 <owl:DataRange>

 <owl:oneOf>

 <rdf:List>

 <rdf:first rdf:datatype=”&xsd;string”>Male

 </rdf:first>

 <rdf:rest>

 <rdf:List>

 <rdf:first rdf:datatype=”&xsd;string”>Female

 </rdf:first>
 <rdf:rest rdf:resource=”&rdf;nil”/>

 </rdf:List>

 </rdf:rest>

 </rdf:List>

</owl:oneOf>

 </owl:DataRange>

 </rdfs:range>

</owl:DatatypeProperty>

Fig. 20. Constraint CHECK with enumeration is mapped to enumerated data type.

4.5 Mapping Rows

A row is mapped to an instance.

A row in a table Project in Fig. 21 has a value Software for a column type.

Therefore, this row is mapped to an (anonymous) instance of a class Project that

has the same value for a data type property type.

INSERT INTO Project (type) VALUE (‘Software’)

↓

<Project>

 <type rdf:datatype=”&xsd:string”>Software

 </type>

</Project>

Fig. 21. Row in table is mapped to instance of class.

5 Implementation

Our approach is implemented in a tool called QUALEG DB

(http://www.qualeg.eupm.net). This tool is capable of automatic transformation of a

relational database (written in SQL) to an ontology (written in OWL). As its core, the

tool is a transformation engine that parses an SQL script and generates an OWL file

that contains an ontology, including definitions (classes, properties and restrictions)

and instances (values and individuals).

The tool requires minimum user interaction. The only thing users need to do is to

select or specify the name for an SQL script and the name for an OWL file, as Fig. 22

shows.

Fig. 22. Graphical user interface of QUALEG DB.

When parsing the SQL script, the tool performs consistency and error checks.

These checks are important because they prevent certain kinds of errors in the

resulting ontology. Violation of any of the checks will lead to errors. If the tool

encounters any error, it will display this error to the user (as Fig. 23 shows) and

continues the transformation unless the error is terminal. However, an incorrect

construct that has caused the error will be excluded from the transformation.

Fig. 23. Consistency and error checks in QUALEG DB.

6 Quality of Transformation

Since an ontological model does not support all constructs of a relational model (e.g.

a constraint DEFAULT has no correspondence in the ontological model), some of the

semantics captured in a relational database will necessarily be lost when transforming

the relational database to an ontology. Therefore, we need to analyze loss of

semantics caused by this transformation. One way to do this is to retransform the

resulting ontology to a relational database and see if the transformation is reversible.

By reversible, we mean that transformation of a relational database to an ontology

followed by reverse transformation of the resulting ontology to a relational database

will yield the original relational database.

More formally, let T1 be transformation of a relational database R1 to an ontology

O. Let T2 be reverse transformation of the ontology O to a relational database R2. The

transformation T1 is said to be reversible if the relational database R2 is equivalent to

the relational database R1. That is, T1(R1) = O ∧ T2(O) = R2 ⇒ R2 ≡ R1.

The relational database R2 is said to be equivalent to the relational database R1 if a

lexical overlap measure [14] denoted as L(R1, R2) takes a value of 1. That is, L(R1,

R2) = 1 ⇒ R2 ≡ R1. The lexical overlap measure is calculated as follows:

L(R1, R2) = |L1 ∩ L2| / |L1|

where L1 is a set of all constructs in the relational database R1 and L2 is a set of all

constructs in the relational database R2.

7 Conclusion

We have proposed a novel approach to automatic transformation of relational

databases to ontologies, where the quality of transformation is also considered. Our

approach has been implemented in the tool QUALEG DB. This tool can be applied to

any relational database management system that supports SQL, because the tool does

not rely on any SQL dialect. The tool can map all constructs of a relational database

to an ontology, with the exception of those constructs that have no correspondences in

the ontology (e.g. a constraint DEFAULT).

The tool has been used in a European project called QUALEG (Quality of Service

and Legitimacy in e-Government) (http://www.qualeg.eupm.net) and proven in

practice. The tool can be used for upgrading the Web to the Semantic Web. This

upgrade goes through two basic steps: (1) transforming a relational database to an

ontology; and (2) linking HTML pages (that are dynamically generated from the

relational database) to the ontology. Not only does the upgrade save efforts in

developing the Semantic Web from scratch, but it also makes the vast amount of

relational database information on the Web machine-processable.

By contrast to the semantic annotation, the transformation requires the original

HTML pages to be changed minimally. The only change is a link to the ontology.

Furthermore, the transformation requires less user interaction, thus giving more

opportunity for automation.

8 Future Work

In the future, we’ll prove the correctness of transformation using theoretical

mappings; e.g. [15]. A general process of proving the correctness of transformation

will consist of three basic steps. First, we’ll describe the required properties of

ontology explicitly. We’ll prefer to have (independent) well-formedness conditions

here, as this facilitates the systematic treatment in the next two steps. Second, we’ll

describe transformation of a relational database to an ontology. This transformation is

defined by mapping rules that can be enhanced using guidance parameters. These

parameters are interpreted as producing the ontology having certain desirable

qualities. Third, we’ll prove that the result of the transformation meets the well-

formedness conditions. As a consequence, the resulting ontology is correct in the

sense that all the well-formedness conditions are met. In addition, when the guidance

parameters are used, we’ll prove that the resulting ontology has the desirable qualities

(defined by the guidance parameters) as well.

Acknowledgments. This research is partly sponsored by ESF (Estonian Science

Foundation) under the grant nr. 5766.

References

1. Berners-Lee, T.: Relational Databases on the Semantic Web. (2002)

http://www.w3.org/DesignIssues/RDB-RDF.html

2. Erdmann, M., Maedche, A., Schnurr, H., Staab, S.: From Manual to Semi-automatic

Semantic Annotation: About Ontology-based Text Annotation Tools. In: Linköping

Electronic Articles in Computer and Information Science Journal. Vol. 6, No. 2 (2001)

3. DataGenie: (2007) DataGenie. http://protege.cim3.net/cgi-bin/wiki.pl?DataGenie

4. SQL: (2002) Database language SQL. ANSI X3.135.

www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

5. OWL: (2004) OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref

6. An, Y., Borgida, A., Mylopoulos, J.: Inferring complex semantic mappings between

relational tables and ontologies from simple correspondences. In: OTM’05, On The Move

Federated Conference (2005)

7. Barrasa, J., Corcho, O., Shen, G., Gomez-Perez, A.: R2O: An extensible and semantically

based database-to-ontology mapping language. In: SWDB’04, 2nd Workshop on Semantic

Web and Databases (2004)

8. Konstantinou, N., Spanos, D., Chalas, M., Solidakis, E., Mitrou, N.: VisAVis: An approach

to an intermediate layer between ontologies and relational database contents. In: WISM'06,

International Workshop on Web Information Systems Modeling (2006)

9. Xu, Z., Zhang, S., Dong, Y.: Mapping between relational database schema and OWL

ontology for deep annotation. In WI'06, IEEE/WIC/ACM International Conference on Web

Intelligence (2006)

10. Li, M., Du, X., Wang, S.: Learning Ontology from Relational Database. In: Proceedings of

the 4th International Conference on Machine Learning and Cybernetics. Vol. 6 (2005) 3410–

3415

11. Shen, G., Huang, Z., Zhu, X., Zhao, X.: Research on the Rules of Mapping from Relational

Model to OWL. In: Proceedings of the Workshop on OWL: Experiences and Directions.

Vol. 216 (2006)

12. Astrova, I., Kalja, A.: Towards the Semantic Web: Extracting OWL Ontologies from SQL

Relational Schemata. In: Proceedings of IADIS International Conference WWW/Internet

(2006) 62–66

13. Buccella, A., Penabad, M., Rodriguez, F., Farina, A., Cechich, A.: From Relational

Databases to OWL Ontologies. In: Proceedings of the 6th National Russian Research

Conference (2004)

14. Sabou, M.: “Extracting ontologies from software documentation: A semi-automatic method

and its evaluation,” in Proc. Workshop on Ontology Learning and Population, Valencia,

Spain (2004)

15. Motik, B., Horrocks, I., Sattler, U.: Integrating Description Logics and Relational

Databases, Manchester, UK (2006)

