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Abstract. This paper proposes a novel approach to automatic transformation of 

relational databases to ontologies, where the quality of transformation is also 

considered. A relational database is written in SQL, and an ontology is written 

in OWL. The proposed approach can be used for upgrading today’s Web to the 

Semantic Web. The high cost of manual building ontologies from scratch is one 

of the main obstacles for the development of the Semantic Web. On the other 

hand, the Semantic Web can benefit from reuse of the vast amount of relational 

database information available on the Web today.  
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1   Introduction 

“One of the main driving forces for the Semantic Web has always been the 

expression, on the Web, of the vast amount of relational database information in a 

way that can be processed by machines” [1]. Indeed, most information on the Web is 

not machine-processable, because it is often represented in HTML. This language 

describes how the information looks like and not what it is. In order for machines to 

process the information, it must be represented in an ontology language (e.g. OWL) 

and linked to ontologies. An ontology can be used for annotating HTML pages with 

semantics. 

Manual or semi-automatic semantic annotation [2] is time-consuming, subjective 

and error-prone. It is even impossible on scale of the Web that contains billions of 

pages. Most pages even do not exist until they are dynamically generated from 

relational databases at the time of submitting HTML forms. Moreover, the high cost 

of building ontologies from scratch is another obstacle for the semantic annotation. 

An alternative to the semantic annotation is automatic or semi-automatic 

transformation of relational databases to ontologies, which is the purpose of this 

paper. 



1.1   Transformation Problems 

Transformation of relational databases to ontologies should handle the following 

problems: 

• Loss of data: The result of the transformation should adequately describe 

the original data. 

• Loss of semantics: In some cases, the transformation is not really lossless in 

the sense that not all constructs in a relational database can be mapped to an 

ontology. Therefore, the quality of the transformation should be analyzed. 

• Focus on structures: Besides the mapping of structures (i.e. tables, 

columns, etc.), mechanisms should be provided for the mapping of data (i.e. 

instances). 

• Focus on data: Data should be mapped, with incorporation of data types. 

• Applicability: In some cases, the transformation is not really general in the 

sense that its application is rather restricted. E.g. if the transformation allows 

only for exotic relational databases, not being used in practical situations, 

then the transformation suffers from the applicability problem. 

• Correctness: The transformation should have provable correctness. 

1.2   State of the Art 

While there are several tools available for transforming relational databases to 

ontologies, many situations are too complex or require more flexibility than the 

existing tools enable. E.g. DataGenie [3] is a Protégé’s plug-in that is capable of 

importing legacy data from a relational database (namely, Oracle) to an ontology. 

This import is simple: each table maps to a class, each column maps to a data type 

property and each row maps to an instance. In addition, foreign keys can be replaced 

with Protégé’s instance pointers. The backside of this simplicity is that DataGenie 

fails to discover inheritance, object properties and restrictions. Moreover, DataGenie 

imposes a strict policy on the direction of import. In particular, users can move data 

from a relational database to an ontology, but not in a reverse direction (i.e. from an 

ontology to a relational database). 

In the rest of the paper, we assume that a relational database is written in SQL [4], 

the standard relational database language, and that an ontology is written in OWL [5], 

the standard ontology language. 

2   Related Work 

A majority of the related work has been done on mapping between relational 

databases and ontologies; e.g. [6], [7], [8], and [9]. However, this mapping is quite 

different from transformation of relational databases to ontologies, as Fig. 1 shows. 

The difference is that the mapping assumes the existence of both a relational database 

and an ontology, and produces a set of correspondences between the two. That is, the 

inputs to the mapping are both a relational database and an ontology, and the output is 



a set of correspondences that relate constructs of the relational database to those of the 

ontology. A construct in the relational database unrelated to any construct in the 

ontology is considered to be out of scope of the mapping. By contrast, the 

transformation assumes that only a relational database exists, while an ontology is 

produced from the relational database. That is, the input to the transformation is a 

relational database and the output is an ontology. 

 

 
(a): Mapping between relational database and ontology. 

 

 
(b): Transformation of relational database to ontology. 

 

Fig. 1. Mapping vs. transformation. 

There are several approaches to transformation of relational databases to 

ontologies; e.g. [10], [11], [12], and [13]. However, all these approaches suffer from 

at least one of the following problems:  

• They do not discover inheritance, thus producing an ontology that looks rather 

“relational”; i.e. the ontology has the same flat structure as the original 

relational database. 

• They do not discover restrictions, symmetric and transitive properties either. 

• They ignore constraints that capture additional semantics. 

• They are not implemented. 

• They are semi-automatic; i.e. they can require much user interaction. 

• They do not analyze loss of semantics caused by the transformation. Rather, 

they assume that a relational model is a subset of an ontological model and 

thus, all constructs of a relational database can map to an ontology. 

As an attempt to resolve these problems, we propose a novel approach to 

transformation of relational databases to ontologies. A relational database is written in 

SQL whereas an ontology is written in OWL. 

3   Transformation 

A relational database is an implementation of a relational model. This model includes 

constructs for specifying tables, domains, columns, data types, constraints, and other 

semantics, as Fig. 2 shows. However, the relational database does not need to include 



all constructs of the relational model (i.e. it can use only a portion of the relational 

model). 

 

 
 

Fig. 2. Simplified relational model. 

Similarly, an ontology is an implementation of an ontological model. This model 

includes constructs for specifying classes, properties, data types, inheritance, 

restrictions, and other semantics, as Fig. 3 shows. However, the ontology does not 

need to include all constructs of the ontological model (i.e. it can use only a portion of 

the ontological model). 

 

 

Fig. 3. Simplified ontological model. 

 

Fig. 4 illustrates the basic idea behind our approach. Transformation of relational 

databases to ontologies is based on a set of rules called mapping rules that specify 

how to map constructs of the relational model to the ontological model (see Section 



4). These rules are then applied to a relational database (source) to produce an 

ontology (target). Since the rules are specified on the model level, they are applicable 

to any relational database that conforms to the relational model. 

 

 

Fig. 4. Transformation of relational databases to ontologies. 

4   Mapping Rules 

Our approach maps constructs of a relational database to an ontology, using the 

names of constructs of the relational database as the names of constructs of the 

ontology. A prerequisite for this mapping is the mapping of constructs of a relational 

model to an ontological model. This mapping is defined by a set of rules for: 

• Mapping tables 

• Mapping columns 

• Mapping data types 

• Mapping constraints 

• Mapping rows. 

Next these rules will be illustrated by example. An example is the relational 

database for a company. 

4.1   Mapping Tables 

A table is mapped to a class unless all its columns are foreign keys to two other 

tables. Then it is mapped to two object properties (one is an inverse of another). 

The primary key of a table Involvement in Fig. 5 is composed of foreign keys 

to two other tables Project and Employee, indicating a binary relationship 

(many-to-many). Since the table Involvement consists entirely of the foreign keys 

that are part of the primary key, it is mapped to two object properties: EmployeeID 

(that uses classes Project and Employee as its domain and range, respectively) 

and ProjectID. The latter is an inverse of the former, meaning that the relationship 

is bidirectional (i.e. a project involves employees and an employee is involved in 

projects). 

 
CREATE TABLE Involvement( 

 EmployeeID INTEGER REFERENCES Employee, 



 ProjectID INTEGER REFERENCES Project, 

 PRIMARY KEY (EmployeeID, ProjectID)) 

↓ 

<owl:ObjectProperty rdf:ID=”EmployeeID”> 

 <rdfs:domain rdf:resource=”#Project”/> 

 <rdfs:range rdf:resource=”#Employee”/> 

</owl:ObjectProperty> 

<owl:ObjectProperty rdf:ID=”ProjectID”> 

 <owl:inverseOf rdf:resource=”#EmployeeID”/> 

</owl:ObjectProperty> 

Fig. 5. Table is mapped to two object properties. 
 

The primary key of a table Involvement in Fig. 6 is composed of foreign keys 

to two other tables Employee and Project, indicating a binary relationship, again. 

However, since this table now has an additional column hours, it is mapped to a 

class Involvement. 

 
CREATE TABLE Involvement( 

 EmployeeID INTEGER REFERENCES Employee, 

 ProjectID INTEGER REFERENCES Project, 

 hours INTEGER, 

 PRIMARY KEY (EmployeeID, ProjectID)) 

↓ 

<owl:Class rdf:ID=”Involvement”/> 

Fig. 6. Table is mapped to class. 
 

The primary key of a table Involvement in Fig. 7 is composed of foreign keys 

to three other tables Employee, Project and Skill, indicating a ternary 

relationship. Since only binary relationships can be represented through object 

properties, this table is mapped to a class Involvement. 

 
CREATE TABLE Involvement( 

 EmployeeID INTEGER REFERENCES Employee, 

 ProjectID INTEGER REFERENCES Project, 

 SkillID INTEGER REFERENCES Skill, 

 PRIMARY KEY (EmployeeID, ProjectID, SkillID)) 

↓ 

<owl:Class rdf:ID=”Involvement”/> 

Fig. 7. Table is mapped to class (contd.). 

4.2   Mapping Columns 

A column is mapped to a data type property accompanied by a maximum cardinality 

of 1 unless it is a foreign key. (For mapping foreign keys, see Section 4.4.4.) 

A column ssn in a table Employee in Fig. 8 is not a foreign key. Therefore, this 

column is mapped to a data type property ssn that uses a class Employee as its 

domain. Since the column ssn may have only one value for each row in the table 

Employee (atomicity), this property has a maximum cardinality of 1. Alternatively, 



the property ssn could be defined as functional, which is the same as saying that the 

maximum cardinality is 1. 

 
CREATE TABLE Employee( 

 ssn INTEGER) 

↓ 

<owl:DatatypeProperty rdf:ID="ssn"> 

 <rdfs:domain rdf:resource=”#Employee”/> 

 <rdfs:range rdf:resource=”&xsd;integer”/> 

</owl:DatatypeProperty> 

<owl:Class rdf:ID=”Employee”> 

 <rdfs:subClassOf> 

  <owl:Restriction> 

   <owl:onProperty rdf:resource=”#ssn”/> 

<owl:maxCardinality rdf:datatype= 

”&xsd;nonNegativeInteger”1/>    

  </owl:Restriction> 

 </rdfs:subClassOf> 

</owl:Class> 

Fig. 8. Column is mapped to data type property with maximum cardinality of 1. 

4.3   Mapping Data Types 

Most of the mapping of columns has to do with mapping data types from SQL to 

XSD. Unlike SQL, OWL does not have any built-in data types. Instead, it uses XML 

Schema Data types (XSD). Table 1 shows how to map data types from SQL to XSD. 

Table 1. Mapping data types. 

SQL data type XML Schema data type 

SMALLINT short 

INTEGER integer 

positiveInteger 

negativeInteger 

nonPositiveInteger 

nonNegativeInteger 

int 

long 

DECIMAL decimal 

NUMERIC decimal 

FLOAT float 

REAL float 

DOUBLE PRECISION double 

CHARACTER string 

CHARACTER VARYING string 

TIME time 

TIME WITH TIME ZONE time 

DATE date 

TIMESTAMP  datetime 

TIMESTAMP WITH TIME datetime 



ZONE 

INTERVAL duration 

BIT boolean 

BIT VARYING byte 

 

A column ssn in Fig. 9 uses INTEGER as its data type. Therefore, a data type 

property ssn uses integer as its range. 

 
CREATE TABLE Employee( 

 ssn INTEGER) 

↓ 

<owl:DatatypeProperty rdf:ID=”ssn”> 

 <rdfs:domain rdf:resource=”#Employee”/> 

 <rdfs:range rdf:resource=”&xsd;integer”/> 

</owl:DatatypeProperty> 

Fig. 9. SQL data type INTEGER is mapped to XML Schema data type integer. 
 

A column ssn in Fig. 10 uses INTEGER as its data type, again. However, there is 

now a constraint CHECK on the column ssn. This constraint specifies a data range 

for the column ssn to be all integers greater than 0 (i.e. all positive integers). 

Therefore, a data type property ssn uses positiveInteger as its range. 

 
CREATE TABLE Employee( 

 ssn INTEGER CHECK (ssn > 0)) 

↓ 

<owl:DatatypeProperty rdf:ID=”ssn”> 

 <rdfs:domain rdf:resource=”#Employee”/> 

 <rdfs:range rdf:resource=”&xsd;positiveInteger”/> 

</owl:DatatypeProperty> 

Fig. 10. SQL data type INTEGER is mapped to XML Schema data type positiveInteger. 

4.4   Mapping Constraints 

4.4.1   Mapping Constraints UNIQUE 

UNIQUE is a column constraint. It is mapped to an inverse functional property. 

A constraint UNIQUE in Fig. 11 specifies that a column ssn in a table Employee 

is unique, meaning that no two rows in the table Employee have the same value for 

the column ssn (i.e. social security numbers uniquely identify employees). 

Therefore, this constraint is mapped to an inverse functional property. 

 
CREATE TABLE Employee( 

 ssn INTEGER UNIQUE) 

↓ 

<owl:InverseFunctionalProperty rdf:ID=”ssn”/> 

Fig. 11. Constraint UNIQUE is mapped to inverse functional property. 



4.4.2   Mapping Constraints NOT NULL 

NOT NULL is a column constraint. It is mapped to a minimum cardinality of 1. 

A constraint NOT NULL in Fig. 12 specifies that a column ssn in a table 

Employee is not null, meaning that all rows in the table Employee have values for 

the column ssn (i.e. all employees are assigned social security numbers). Therefore, 

this constraint is mapped to a minimum cardinality of 1. 

 
CREATE TABLE Employee( 

 ssn INTEGER NOT NULL) 

↓ 

<owl:Class rdf:ID=”Employee”> 

 <rdfs:subClassOf> 

  <owl:Restriction> 

 <owl:onProperty rdf:resource=”#ssn”/> 

   <owl:minCardinality rdf:datatype= 

”&xsd;nonNegativeInteger”1/>    

  </owl:Restriction> 

 </rdfs:subClassOf> 

</owl:Class> 

Fig. 12. Constraint NOT NULL is mapped to minimum cardinality of 1. 

4.4.3   Mapping Constraints PRIMARY KEY 

There are two forms of constraint PRIMARY KEY: using it as a column constraint (to 

refer to a single column) and using it as a table constraint (to refer to multiple 

columns). A column constraint PRIMARY KEY is mapped to both an inverse 

functional property and a minimum cardinality of 1. 

A constraint PRIMARY KEY in Fig. 13 specifies that a column ssn in a table 

Employee is a primary key, which is the same as saying that the column ssn is both 

unique and not null. Therefore, this constraint is mapped to both an inverse functional 

property and a minimum cardinality of 1. 

 
CREATE TABLE Employee( 

 ssn INTEGER PRIMARY KEY) 

↓ 

<owl:InverseFunctionalProperty rdf:ID=”ssn”/> 

<owl:Class rdf:ID=”Employee”> 

 <rdfs:subClassOf> 

<owl:Restriction> 

 <owl:onProperty rdf:resource=”#ssn”/> 

 <owl:minCardinality rdf:datatype= 

”&xsd;nonNegativeInteger”1/>    

  </owl:Restriction> 

 </rdfs:subClassOf> 

</owl:Class> 

Fig. 13. Constraint PRIMARY KEY is mapped to both inverse functional property and 

minimum cardinality of 1. 



4.4.4   Mapping Constraints REFERENCES and FOREIGN KEY 

REFERENCES is a column constraint, whereas FOREIGN KEY is a table constraint. 

Both constraints are used for specifying foreign keys. A foreign key can be mapped to 

four different constructs in the ontology: an object property, class inheritance, a 

symmetric property and a transitive property. 

A constraint REFERENCES in Fig. 14 specifies that a column ProjectID in a 

table Task is a foreign key to another table Project, indicating a binary 

relationship (one-to-one or many-to-one). Since the foreign key is not (part of) the 

primary key, it is mapped to an object property ProjectID that uses classes Task 

and Project as its domain and range, respectively. 

 
CREATE TABLE TASK( 

 TaskID INTEGER PRIMARY KEY, 

 ProjectID INTEGER REFERENCES Project) 

↓ 

<owl:ObjectProperty rdf:ID="ProjectID"> 

 <rdfs:domain rdf:resource=”#Task”/> 

 <rdfs:range rdf:resource=”#Project”/> 

</owl:ObjectProperty> 

Fig. 14. Foreign key is mapped to object property. 
 

A constraint REFERENCES in Fig. 15 specifies that a column ProjectID in a 

table Task is a foreign key to another table Project, indicating a binary 

relationship, again. However, since the foreign key is now part of the primary key, 

this relationship is tighter than the previous one. Therefore, the foreign key is mapped 

to an object property ProjectID accompanied by a cardinality of 1. 

 
CREATE TABLE TASK( 

 TaskID INTEGER, 

 ProjectID INTEGER REFERENCES Project, 

 PRIMARY KEY (TaskID, ProjectID)) 

↓ 

<owl:ObjectProperty rdf:ID=”ProjectID”> 

 <rdfs:domain rdf:resource=”#Task”/> 

 <rdfs:range rdf:resource=”#Project”/> 

</owl:ObjectProperty> 

<owl:Class rdf:ID=”Task”> 

 <rdfs:subClassOf> 

  <owl:Restriction> 

   <owl:onProperty rdf:resource=”#ProjectID”/> 

 <owl:cardinality rdf:datatype= ”&xsd;nonNegativeInteger”1/>    

  </owl:Restriction> 

 </rdfs:subClassOf> 

</owl:Class> 

Fig. 15. Foreign key is mapped to object property with cardinality of 1. 
 

A constraint FOREIGN KEY in Fig. 16 specifies that a column ProjectID in a 

table SoftwareProject is a foreign key to another table Project, indicating a 

binary relationship, again. However, since the foreign key is now the primary key, it 



is mapped to class inheritance: SoftwareProject is a subclass of Project (i.e. 

a software project is a project). 

 
CREATE TABLE SoftwareProject( 

 ProjectID INTEGER PRIMARY KEY, 

 FOREIGN KEY (ProjectID) REFERENCES Project) 

↓ 

<owl:Class rdf:ID=”SoftwareProject”>  

 <rdfs:subClassOf rdf:resource=”#Project”/> 

</owl:Class> 

Fig. 16. Foreign key is mapped to class inheritance. 
 

A constraint REFERENCES in Fig. 17 specifies that a column spouse in a table 

Employee is a foreign key to the same table, indicating a unary relationship. 

Therefore, the foreign key is mapped to a symmetric property spouse that uses a 

class Employee as both its domain and range (i.e. if one employee is a spouse of 

another employee, then the second employee is a spouse of the first employee). 

 
CREATE TABLE Employee( 

 EmployeeID INTEGER PRIMARY KEY, 

 spouse INTEGER REFERENCES Employee) 

↓ 

<owl:SymmetricProperty rdf:ID=”spouse”> 

 <rdfs:domain rdf:resource=”#Employee”/> 

 <rdfs:range rdf:resource=”#Employee”/> 

</owl:SymmetricProperty > 

Fig. 17. Foreign key is mapped to symmetric property. 
 

A constraint REFERENCES in Fig. 18 specifies that a column subtask in a table 

Task is a foreign key to the same table, indicating an unary relationship, again. 

However, since the foreign key is now accompanied by a trigger ON DELETE 

CASCADE, this relationship consists of a whole and a part, where the part cannot exist 

without the whole (i.e. if a task is deleted, then all its subtasks must also be deleted). 

Therefore, the foreign key is mapped to a transitive property subtask that uses a 

class Task as both its domain and range (i.e. if one task is a subtask of another task 

and the other task is a subtask of yet another task, then the first task is a subtask of the 

third task). 

 
CREATE TABLE Task( 

 TaskID INTEGER PRIMARY KEY, 

 subtask INTEGER REFERENCES Task ON DELETE CASCADE) 

↓ 

<owl:TransitiveProperty rdf:ID=”subtask”> 

 <rdfs:domain rdf:resource=”#Task”/> 

 <rdfs:range rdf:resource=”#Task”/> 

</owl:TransitiveProperty > 

Fig. 18. Foreign key is mapped to transitive property. 



4.4.5   Mapping Constraints CHECK 

There are two forms of constraint CHECK: using it as a column constraint (to refer to 

a single column) and using it as a table constraint (to refer to multiple columns). A 

column constraint CHECK is mapped to a value restriction unless it has an 

enumeration. (For mapping enumerations, see Section 4.4.6). 

A constraint CHECK in Fig. 19 specifies that all rows in a table Project have a 

value Software for a column type. Therefore, a data type property type is 

restricted to have the same value for all instances of a class Project. 

 
CREATE TABLE Project( 

 type VARCHAR CHECK (type=‘Software’)) 

↓ 

<owl:Class rdf:ID=”Project”> 

 <rdfs:subClassOf> 

  <owl:Restriction> 

   <owl:onProperty rdf:resource=”#type”/> 

    <owl:hasValue rdf:datatype=”&xsd;string”>Software  

    </owl:hasValue>  

  </owl:Restriction> 

 </rdfs:subClassOf> 

</owl:Class> 

Fig. 19. Constraint CHECK is mapped to value restriction. 

4.4.6   Mapping Constraints CHECK with enumeration 

A constraint CHECK with enumeration is mapped to an enumerated data type. 

A constraint CHECK in Fig. 20 specifies a data range for a column sex in a table 

Employee through a list of possible values Male and Female. Therefore, this 

constraint is mapped to an enumerated data type, with one element for each possible 

value in the list. 

 
CREATE TABLE Employee( 

 sex VARCHAR CHECK (sex IN (‘Male’, ‘Female’))) 

↓ 

<owl:DatatypeProperty rdf:ID=”sex”> 

 <rdfs:domain rdf:resource=”#Employee”/>   

 <rdfs:range> 

  <owl:DataRange> 

   <owl:oneOf> 

    <rdf:List> 

     <rdf:first rdf:datatype=”&xsd;string”>Male 

     </rdf:first>        

  <rdf:rest> 

   <rdf:List> 

    <rdf:first rdf:datatype=”&xsd;string”>Female  

    </rdf:first>         
    <rdf:rest rdf:resource=”&rdf;nil”/>        

   </rdf:List> 

  </rdf:rest> 

 </rdf:List> 

</owl:oneOf> 



  </owl:DataRange> 

 </rdfs:range> 

</owl:DatatypeProperty> 

Fig. 20. Constraint CHECK with enumeration is mapped to enumerated data type. 

4.5   Mapping Rows 

A row is mapped to an instance. 

A row in a table Project in Fig. 21 has a value Software for a column type. 

Therefore, this row is mapped to an (anonymous) instance of a class Project that 

has the same value for a data type property type. 

 
INSERT INTO Project (type) VALUE (‘Software’) 

↓ 

<Project> 

 <type rdf:datatype=”&xsd:string”>Software 

 </type> 

</Project> 

Fig. 21. Row in table is mapped to instance of class. 

5   Implementation 

Our approach is implemented in a tool called QUALEG DB 

(http://www.qualeg.eupm.net). This tool is capable of automatic transformation of a 

relational database (written in SQL) to an ontology (written in OWL). As its core, the 

tool is a transformation engine that parses an SQL script and generates an OWL file 

that contains an ontology, including definitions (classes, properties and restrictions) 

and instances (values and individuals). 

The tool requires minimum user interaction. The only thing users need to do is to 

select or specify the name for an SQL script and the name for an OWL file, as Fig. 22 

shows. 

 

 
Fig. 22. Graphical user interface of QUALEG DB. 

 

When parsing the SQL script, the tool performs consistency and error checks. 

These checks are important because they prevent certain kinds of errors in the 

resulting ontology. Violation of any of the checks will lead to errors. If the tool 

encounters any error, it will display this error to the user (as Fig. 23 shows) and 

continues the transformation unless the error is terminal. However, an incorrect 

construct that has caused the error will be excluded from the transformation. 



 

 
Fig. 23. Consistency and error checks in QUALEG DB. 

6   Quality of Transformation 

Since an ontological model does not support all constructs of a relational model (e.g. 

a constraint DEFAULT has no correspondence in the ontological model), some of the 

semantics captured in a relational database will necessarily be lost when transforming 

the relational database to an ontology. Therefore, we need to analyze loss of 

semantics caused by this transformation. One way to do this is to retransform the 

resulting ontology to a relational database and see if the transformation is reversible. 

By reversible, we mean that transformation of a relational database to an ontology 

followed by reverse transformation of the resulting ontology to a relational database 

will yield the original relational database. 

More formally, let T1 be transformation of a relational database R1 to an ontology 

O. Let T2 be reverse transformation of the ontology O to a relational database R2. The 

transformation T1 is said to be reversible if the relational database R2 is equivalent to 

the relational database R1. That is, T1(R1) = O ∧ T2(O) = R2 ⇒ R2 ≡ R1. 

The relational database R2 is said to be equivalent to the relational database R1 if a 

lexical overlap measure [14] denoted as L(R1, R2) takes a value of 1. That is, L(R1, 

R2) = 1 ⇒ R2 ≡ R1. The lexical overlap measure is calculated as follows: 

 

L(R1, R2) = |L1 ∩ L2| / |L1|  

 

where L1 is a set of all constructs in the relational database R1 and L2 is a set of all 

constructs in the relational database R2. 



7   Conclusion 

We have proposed a novel approach to automatic transformation of relational 

databases to ontologies, where the quality of transformation is also considered. Our 

approach has been implemented in the tool QUALEG DB. This tool can be applied to 

any relational database management system that supports SQL, because the tool does 

not rely on any SQL dialect. The tool can map all constructs of a relational database 

to an ontology, with the exception of those constructs that have no correspondences in 

the ontology (e.g. a constraint DEFAULT). 

The tool has been used in a European project called QUALEG (Quality of Service 

and Legitimacy in e-Government) (http://www.qualeg.eupm.net) and proven in 

practice. The tool can be used for upgrading the Web to the Semantic Web. This 

upgrade goes through two basic steps: (1) transforming a relational database to an 

ontology; and (2) linking HTML pages (that are dynamically generated from the 

relational database) to the ontology. Not only does the upgrade save efforts in 

developing the Semantic Web from scratch, but it also makes the vast amount of 

relational database information on the Web machine-processable. 

By contrast to the semantic annotation, the transformation requires the original 

HTML pages to be changed minimally. The only change is a link to the ontology. 

Furthermore, the transformation requires less user interaction, thus giving more 

opportunity for automation. 

8   Future Work 

In the future, we’ll prove the correctness of transformation using theoretical 

mappings; e.g. [15]. A general process of proving the correctness of transformation 

will consist of three basic steps. First, we’ll describe the required properties of 

ontology explicitly. We’ll prefer to have (independent) well-formedness conditions 

here, as this facilitates the systematic treatment in the next two steps. Second, we’ll 

describe transformation of a relational database to an ontology. This transformation is 

defined by mapping rules that can be enhanced using guidance parameters. These 

parameters are interpreted as producing the ontology having certain desirable 

qualities. Third, we’ll prove that the result of the transformation meets the well-

formedness conditions. As a consequence, the resulting ontology is correct in the 

sense that all the well-formedness conditions are met. In addition, when the guidance 

parameters are used, we’ll prove that the resulting ontology has the desirable qualities 

(defined by the guidance parameters) as well. 
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