
 International Journal of Fuzzy Systems, Vol. 11, No. 2, June 2009 130

A Dynamic Hierarchical Fuzzy Neural Network for A General Continuous

Function

Wei-Yen Wang, I-Hsum Li, Shu-Chang Li, Men-Shen Tsai, and Shun-Feng Su

Abstract1

A serious problem limiting the applicability of the
fuzzy neural networks is the “curse of dimensional-
ity”, especially for general continuous functions. A
way to deal with this problem is to construct a dy-
namic hierarchical fuzzy neural network. In this pa-
per, we propose a two-stage genetic algorithm to in-
telligently construct the dynamic hierarchical fuzzy
neural network (HFNN) based on the merged-FNN
for general continuous functions. First, we use a ge-
netic algorithm which is popular for flowshop sched-
uling problems (GA_FSP) to construct the HFNN.
Then, a reduced-form genetic algorithm (RGA) op-
timizes the HFNN constructed by GA_FSP. For a
real-world application, the presented method is used
to approximate the Taiwanese stock market.

Keywords: hierarchical structures, genetic algorithms,
Fuzzy neural networks.

1. Introduction

Recently, using fuzzy systems for system identifica-
tion has become a popular topic [1-7]. In nonlinear sys-
tem identification, fuzzy systems can effectively fit the
nonlinear system by calculating the optimized coeffi-
cients of the learning mechanism. The traditional fuzzy
systems cannot directly be used when there are a large
number of input variables, because there will be too
many free parameters to be trained, and hence high
computational and memory demands. Bellman [13]
called this phenomenon “the curse of dimensionality”.
To overcome this difficulty, [8]-[10] proposed hierar-
chical fuzzy systems, which decompose a single large
fuzzy system into subsystems. Decomposition leads to a
multi-staged structure of several simple, interacting
subsystems, each having a reduced number of input
variables. Each subsystem thus has a reduced complexity

compared to a single fuzzy neural network, measured by
the number of rules and of parameters which have to be
stored and processed.

Some studies [5,6] combining fuzzy logic with neural
networks have been done to improve the efficiency of
function approximation. In [7], we proposed a hierarchi-
cal fuzzy neural network, called the merged fuzzy neural
network (merged-FNN), to build a universal approxima-
tor for a battery state-of-charge (BSOC) problem. Be-
cause the BSOC problem can be modeled as a continu-
ous function with natural hierarchical structure, there
was a natural fit between the problem structure and the
merged-FNN constructed in [7]. However, in practice, it
is often the case that a system to be modeled has an un-
known hierarchical structure. We call this case a general
continuous function in this paper. For general continuous
functions, although universal representation methods,
such as FNNs [4-7] or neural networks [11-12], can be
used to approximate such systems, this is often less ef-
fective and efficient, as such FNNs or neural network
models are less accurate, more complicated, and are
unlikely to match physical meaning and mechanism.
Therefore, an approximator with the ability to
self-construct a hierarchical structure is needed for
learning general continuous functions.

In this paper, we propose a two-stage genetic algo-
rithm to intelligently construct the hierarchical fuzzy
neural networks (HFNNs) based on the merged-FNN [7]
for general continuous functions with training data pairs

, where)](),([kykX pk ,...,1= . First, to construct an
HFNN which matches the hierarchical structure of the
problem, we use a genetic algorithm, GA_FSP, which is
popular in the flowshop problem. In a flowshop sched-
uling problem (FSP) [14, 15] we have independent
jobs

n

1{ ,..., }nJ J that have to be processed on differ-
ent machines

m

1{ ,..., }mM M . Every job is composed of
operations, and every operation requires a different ma-
chine. We consider the input variables

m

1{ ,..., }nx x as n
independent jobs and the neurons of the first layer of the
merged-FNN as m different machines. Therefore, we
can extend the GA_FSP to construct a dynamic hierar-
chical structure. In the second stage, a reduced-form ge-
netic algorithm (RGA) [4] optimizes the HFNN con-
structed by the GA_FSP. After the two-stage genetic al-

Corresponding Author: Wei-Yen Wang is with the Department of
Applied Electronics Technology, National Taiwan Normal University,
160, He-ping East Rd., Section 1, Taipei 106, Taiwan.
E-mail: wwang@ntnu.edu.tw
Manuscript received 28 Aug. 2008; revised 1 Dec. 2008; accepted 25
Dec. 2008.

W.-Y. Wang et al.: A Dynamic Hierarchical Fuzzy Neural Network for A General Continuous Function 131

gorithm, a recursive learning strategy is used to find the
simplest structure of the HFNN for general continuous
functions. Finally, the simulation results of estimating
the Taiwanese stock market is used to demonstrate the
effectiveness of the present method.

2. A Merged Fuzzy Neural Network for General

Continuous Functions

A. Hierarchical structure of general continuous func-
tions

A general continuous function is given as follows:
),...,,()(21 nxxxGXGy == (1)

where is the input variable vector, and
 is the output variable. According to Kolmogorov’s

theorem [9, 10], a general continuous function

),...,,(21 nxxxX =

y
)(XG

can be represented as 1+M continuous functions with
a natural hierarchical structure [9]:

1 2 3 1() ((), (),..., ())My G X G G X G X G X+= = (2)
where the qth continuous function ,
each of which has a natural hierarchical structure, is

(1, 2,..., 1)qG q M= +

1 2 1 2,1 2,2() (, ,...,)l
q q q q q q qy G Y g y y y= = 2,

l

 (3)
and

,2,

2, 2, 2, 2, ,2, ,2, ,2,
1 2() (, ,...,), 1, 2,...,

q j

j j j j q j q j q j
q q q q my g X g x x x j= = = (4)

In equations (3) and (4), 1
qg and 2, 1,2,...,)j

qg j l=（ are
lower dimensional functions (i.e., and nl < ,2,)q jm n< .

A natural approach to approximating a hierarchical
function is to use a matching hierarchical struc-
ture, that is, to design a function with the same
hierarchical structure as . In the next section, we
will explain the structure of the hierarchical fuzzy neural
networks used to approximate the hierarchical function

.

)(XG
)(XH

)(XG

)(XG

Subsystem()

Subsystem()

Subsystem()

1,2
qh

2,2
qh

j
qh ,2

1,2
qX

2,2
qX

j
qX ,2

… 1
qh

…

Subsystem()l
qh ,2l

qX ,2

Subsystem()

1,2
qy

2,2
qy

j
qy ,2

l
qy ,2

1
qy

Subsystem()

Subsystem()

Subsystem()

1,2
qh

2,2
qh

j
qh ,2

1,2
qX

2,2
qX

j
qX ,2

… 1
qh

…

Subsystem()l
qh ,2l

qX ,2

Subsystem()

1,2
qy

2,2
qy

j
qy ,2

l
qy ,2

1
qy

Fig. 1. the configuration of the qth merged-FNN.

B. Constructing a hierarchical fuzzy neural network
(HFNN) from the merged fuzzy neural networks
(Merged-FNNs)

Let be the hierarchical

fuzzy neural network (HFNN) matching the hierarchical
function , where consists of several
merged-FNNs [7]. Each merged-FNN of the HFNN (i.e

) is used to approximate one of the hierarchical
functions , where . Figure 1 is the
configuration of the merged-FNN, which is a two level
fuzzy neural network with a hierarchical structure. Each
subsystem of the merged-FNN is a typical fuzzy-neural
network.

))(),...,(()(121 XHXHHXH M +=

)(XG)(XH

)(XH q

)(XGq 1,...,1 += Mq

For the qth merged-FNN, the ith fuzzy IF-THEN rule
is given by equation (5) as follows:

() ()

,2, ,2,

() ()

,2, ,2, ,2, ,2,
1 1

2, ,2, 2
()()

2,1 ,1 2, ,1
1

1 ,1 1
()

 IF is and ... and is

then is , for FNN
:

 IF is and ... and is

then is , for FNN

i i

q j q j

i i

q j q j q j q j
m m

j q j , j
q i qi

q q l q
q q

q
q i q

x A x A

y w
R

y A y A

y w

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

l

 (5)

where ,j
q
2FNN),...,2,1;,...1(ljMq == represents an FNN

in Level 2, is the FNN in Level 1,
 and are fuzzy sets

and and are singleton fuzzy sets. In the rest of

this paper, we adopt

1FNNq

),...,1(,2,
,2,

jq
jq

k mkA =),...,1(1, lkAq
k =

jqw ,2, 1,qw
A to represent and ,

which neglects the number of levels and subsystems.
That is,

jq
kA ,2, 1,q

kA

A stands for the entire antecedent fuzzy set no
matter what the level and subsystem are. By using prod-
uct inference, center-averaging and singleton fuzzifica-
tion, the output of FNN1 at Level-1 is

)(
)(

)(
21,1,

1 1

,2

1 1

,21,
)(

1
1

1

q
qTq

h

i

l

k

k
qA

h

i

l

k

k
qA

q
i

q Yw
y

yw
y

q

i
j

q

i
k

ϕ

μ

μ
=

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

=

∑ ∏

∑ ∏

= =

= = (6)

where Tq
h

qqq

q
wwww]...[1,

)(
1,
)2(

1,
)1(

1,
1= is the weighting vector

for the merged-FNN in Level 1 and Tl
qqqq yyyY]...[,22,21,22 = .

The outputs of , at Level-2,
which are the inputs of at Level-1, can be ex-
pressed as

),...,2,1;,...1(FNN2 ljMq,j
q ==

1FNNq

)(
)(

)(
,2,2,,2,

1 1

,2

1 1

,2,2,
)(

,2
,2

,2,

,2
,2,

k
q

jqTjq
h

i

m

k

k
qA

h

i

m

k

k
qA

jq
i

j
q Xw

X

Xw
y j

q jq

i
k

j
q jq

i
k

ϕ

μ

μ
=

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

=

∑ ∏

∑ ∏

= =

= = (7)

where Tjq
h

jqjqjq
j

q
wwww]...[,2,

)(
,2,

)2(
,2,

)1(
,2,

,2= is the weighting vec-

tor for the merged-FNN in Level 2, 1
qh and j

qh ,2 are the
number of fuzzy rules in Level-1 and Level-2, respec-
tively, represents the number of input variables
for the jth FNN at Level-2,

 is an adjustable parame-

jqm ,2,

TTlqTqTqTqq wwwww]...[,,,, 2,2,22,11=

 International Journal of Fuzzy Systems, Vol. 11, No. 2, June 2009 132

ter vector for the qth merged-FNN, and and
 are fuzzy basis functions.

)(1, ⋅qϕ
)(,2, ⋅jqϕ

In the merged-FNN for the continuous function
, the subsystem can be repre-

sented is
)1,...,1()(+= MqXGq

j
qh ,2

ljxxxhXhy jq
m

jqjqj
q

j
q

j
q

j
q jq

,...,1),,...,,()(,2,,2,
2

,2,
1

,2,2,2,2
,2,

=== (8)

where j
qy ,2 and respectively represent the output

and input of the jth subsystem at Level-2. The subsystem
1 is

j
qX ,2

qh

),...,,()(,22,21,21211 l
qqqqqqq yyyhYhy == (9)

where Tl
qqqq yyyY],...,[,22,21,22 = is the input vector at

Level-1 and j
qy ,2 is the output variable of jth subsystem

 at the Level-2. Finally, the mathematical formula of
the merged-FNN is

j
qh ,2

1 1 2 1 2,1 2,1 2,2 2,2 2, 2,

1 2,1 2,1 2,

() ((), (),..., ())

(, ,...,)

l l
q q q q q q q q q q

l
q q q q

y h Y h h X h X h X

h y y y

= =

=
 (10)

For a flowshop scheduling problem (FSP) one usu-
ally has independent jobs n 1{ ,..., }nJ J that have to be
processed on different machines m 1{ ,..., }mM M . Every
job is at least composed of one operation, and different
operations are done by different machines. The objective
is to find an ordering of the jobs on the machines. In this
paper, to construct the HFNN for unknown continuous
functions with the sense of the flowshop scheduling
problem, the following assumptions are needed: 1. the
input variables

1{ ,..., }nx x are considered as n inde-
pendent one-operation jobs; 2. each neuron of the first
layer of the HFNN is viewed as different machines.
These machines only handle one job. Note that the
number of machines is the same as the number of jobs in
our case. Then we use the GA_FSP, which will be intro-
duced later to optimize the flowshop scheduling problem,
to construct a dynamic hierarchical structure. In this sec-
tion, first we examine various genetic operators of the
GA_FSP such as coding, crossover, mutation and ran-
dom grouping.

n

From equations (2) and (10), it is easy to define the
mathematical formula of the HFNN as

))(),...,((2
1

1
1

2
2

1
2

1
1

1
1 ++= MM YhYhhy (11)

and the whole adjustable parameter vector is
. The objective of the learning algo-

rithm is to minimize the error function:
]......[121 += Mq wwwww

∑
=

−=
p

k
kykyE

1

21
1))()(((12)

Remark 1: Kolmogorov’s theorem [10] guarantees that
the HFNN constructed by the present learning method
can approximate the general continuous function
to any desired arbitrary error

)(XG
ε if the number M is

finite. This HFNN is called the universal approximator
for the general continuous function .)(XG

3. Constructing the HFNN for A General Con-
tinuous Function with Two-Stage GA

In this section, we propose a two-stage genetic algo-

rithm to intelligently construct the HFNN for general
continuous functions)(XG with training data pairs

, where . First, to construct an
HFNN which matches the hierarchical structure of the
problem, we use a genetic algorithm, GA_FSP, which is
popular in the flowshop problem. Subsequently, a re-
duced-form genetic algorithm RGA [4] optimizes the
merged-FNN constructed by GA_FSP. In section III-C, a
recursive learning strategy is proposed to find the mini-
mum

)](),([kykX pk ,...,1=

M in (11) for the general continuous function (2)
(i.e. the simplest structure of the HFNN that models the
general continuous function).
A. Constructing the HFNN using GA_FSP

1) Coding
A sequence of input variables is handled as a string in

this paper. For example, the string repre-
sents a sequence of the input variables of the qth
merged-FNN. If the string is generated
by genetic operators (i.e. crossover and mutation), this
string is not a feasible solution of the flowshop schedul-
ing problem because the gene appear twice in the
string and one of the genes does not ap-
pear. In this paper, we denote the sequence of input
variables by an n-dimensional vector

"..." 21 nxxx

"..." 121 nxxxx

"" 1x
),...3,2(nixi =

n

]......[21
γγγγγ
ni sssss = , where denote the ith input

variable in the

γ
is

ix thγ chromosome. The population can
be represented as

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2222
21

21

22
2

2
1

11
2

1
1

2

1

κκκ

γγγ

κ

γ

n

n

n

n

sss

sss

sss
sss

s

s

s
s

S
 (13)

where is the number of chromosomes. 2κ
2) Selection

Selection is an operation to select parent chromosomes
for generating a new chromosome (i.e. child). From the
parent chromosomes, we select the fittest α chromo-
somes to produce the next generation.
3) Crossover

Crossover is an operation to generate a new chromo-
some (i.e., child) from two parent chromosomes. The
one-point crossover used in our paper is illustrated in Fig.

W.-Y. Wang et al.: A Dynamic Hierarchical Fuzzy Neural Network for A General Continuous Function 133

2. One point is randomly selected for dividing one parent.
The set of genes on one side (each side is chosen with
the same probability) is passed from one parent to the
child, and the other genes are placed in the order of their
appearance in the other parent. In Fig. 2, genes ,
and are inherited from Parent 1, and the other genes
(i.e. genes) are placed in the order of their
appearance in Parent 2.

1x 2x

3x

nxxx ,...,, 54

…

Parent 1

Parent 2

Child

Crossover point

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x nx…

1x 2x 3x 4x 5x 7x 8x9x 11x12x10x 6x nx…

4x 5x 10x 2x 8x6x7x 1x 9x 3x 11x12x nx…
……

Parent 1

Parent 2

Child

Parent 1

Parent 2

Child

Crossover point

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x nx…

Crossover point

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x nx… nx…

1x 2x 3x 4x 5x 7x 8x9x 11x12x10x 6x nx…1x 2x 3x 4x 5x 7x 8x9x 11x12x10x 6x1x 2x 3x 4x 5x 7x 8x9x 11x12x10x 6x nx… nx…

4x 5x 10x 2x 8x6x7x 1x 9x 3x 11x12x nx…4x 5x 10x 2x 8x6x7x 1x 9x 3x 11x12x4x 5x 10x 2x 8x6x7x 1x 9x 3x 11x12x nx… nx…
…

Fig. 2. One-point crossover operator.

4) Mutation

Mutation is an operation to change the order of n
genes in each chromosome generated by a crossover op-
erator. Such a mutation operation can be viewed as a
transition from a current solution to a neighboring solu-
tion in the local search space. We adopt the adjacent
two-gene change shown in Fig. 3. The adjacent three
genes to be changed are randomly selected.

5) Random grouping

After mutating, a random process is used to construct
the structure of the qth merged-FNN. As Fig. 4(a) shows,
we randomly divide groups form the l thγ chromosome,
where the genes in group j means the input variables

 for the jth subsystem in Level-2 of the qth
merged-FNN. The corresponding merged-FNN is shown
in Fig. 4(b).

j
qX ,2

6) Fitness function
The fitness function is defined as follows:

2,...,1,
)(1

1 κγγγ =
+

=
sE

fitness (14)

∑
=

−=
p

k
kykysE

1

21
1))()(()(γ is the thγ error function, where

 is the number of training data pairs. p
7) Sorting

The newly generated population is sorted by ranking
the fitness of chromosomes within the population, re-
sulting in)()()(221 κsEsEsE ≤≤ . The first chromosome
of the sorted population TsssS][221 κ= has the high-
est fitness value (or smallest error).

3x 4x 5x 6x 7x 8x 9x10x 11x 12x1x 2x
Group 1 … Group l

Group j

…
nx…

Group 2

3x 4x 5x 6x 7x 8x 9x10x 11x 12x1x 2x
Group 1 … Group l

Group jGroup j

…
nx… nx…

Group 2

(a)

Subsystem()

Subsystem()

Subsystem()

1,2
qh

2,2
qh

j
qh ,2

T
q xxxX][321

1,2 =

T
q xxX][104

2,2 =

7
,2 xX j

q =

… 1
qh

…

Subsystem()l
qh ,2T

n
l

q xxX]...[12
,2 =

Subsystem()

1,2
qy

2,2
qy

j
qy ,2

l
qy ,2

1
qy

Subsystem()

Subsystem()

Subsystem()

1,2
qh

2,2
qh

j
qh ,2

T
q xxxX][321

1,2 =

T
q xxX][104

2,2 =

7
,2 xX j

q =

… 1
qh

…

Subsystem()l
qh ,2T

n
l

q xxX]...[12
,2 =

Subsystem()

1,2
qy

2,2
qy

j
qy ,2

l
qy ,2

1
qy

(b)

Fig. 4. (a) the random grouping. (b) the corresponding struc-
ture of the merged-FNN.

B. Optimizing the HFNN with RGA

The reduced-form genetic algorithm (RGA) [4] was
proposed to deal with a vast number of adjustable pa-
rameters in the fuzzy-neural networks. The key proper-
ties of the RGA are as follows: 1. It uses a sequen-
tial-search-based crossover point (SSCP) method to de-
termine a better crossover point is determined. 2. The
population size is fixed and can be reduced to a mini-
mum size of 4. 3. The crossover operator is simplified to
be a single gene crossover. After GA_FSP, the HFNN
usually contents a vast number of adjustable parameters,
so we adopt RGA to optimize the HFNN. However, we
don’t use single gene crossover, because single gene
crossover limits the speed of convergence during the
learning process. Instead, we use one point crossover.

Mutation point

C. Recursive learning method
Unfortunately, a problem comes along with the hier-

archical structure (2). That is, the representation of the
two-level hierarchical structure, which is composed of

1+M continuous functions , is so complicated
that the function matching will tend to be
non-useful. Hence, a recursive learning method (from

)(XGq

)(XH)(XG

1=q to 1+M) is applied to solve this problem. We
construct the 1st merged-FNN)(1 XH (1q)= by the
present two-stage GA for the hierarchical continuous
function)(1 XG (1q)= at first and then go on the next
step to build the structure as))((21 XHH (2q)= for the

Fig. 3. A mutation operator: Arbitrary three-gene
change change.

Mutation point

3x 4x 5x 6x 7x 8x 9x 10x 11x 12x1x 2x

1x 2x 3x 4x5x 6x7x 8x9x 10x 11x 12x

nx…

nx…

Mutation pointMutation point Mutation point

3x 4x 5x 6x 7x 8x 9x 10x 11x 12x1x 2x

1x 2x 3x 4x5x 6x7x 8x9x 10x 11x 12x

Mutation point

3x 4x 5x 6x 7x 8x 9x 10x 11x 12x1x 2x

1x 2x 3x 4x5x 6x7x 8x9x 10x 11x 12x

nx… nx…

nx… nx…

 International Journal of Fuzzy Systems, Vol. 11, No. 2, June 2009 134

hierarchical continuous function))((21 XGG (2q)= . We
stop when the approximated error is desirable or

. Note that all continuous functions
 are the hierarchical structure

shown in (3).

1+= Mq
)1,...,1()(+= MqXGq

D. Overall system
In order to find a desirable HFNN (i.e. one with a less

complexity of the structure or less computational and
memory demands) for general continuous functions, a
two-stage genetic algorithm with random grouping is
proposed in this paper. The two-stage genetic algorithm
includes GA_FSP and RGA. GA_FSP constructs the
merged-FNN at first and RGA optimizes the
merged-FNN constructed by GA_FSP. The flowcharts of
the two-stage GA and the overall system are shown in
Fig. 5(a) and Fig. 5(b), respectively.

4. Simulation Results

In this section, an example is given to show the effec-
tiveness of training of the present hierarchical fuzzy
neural network (HFNN). In our example, we approxi-
mate the Taiwanese stock market. We choose 12 factors,
selected from the fundamental analysis and technical
analysis form January 1, 1998 to April 10, 1999, a period

of 100 days, to be the input variables. The factors for the
fundamental analysis include the leading indicator, the
consumer price index, and the prime lending rate. The
technical analysis factors are 6-day moving average,
6-day BIAS , 6-day relative strength index, 9-day sto-
chastic index (K), 9-day stochastic index (D), 9-day
MACD, 13-day psychological line, trading volume,
closing price. The next day’s closing price is the output
variable.

Some information used for approximating the Tai-
wanese stock market are as follows: 1. The training data
are normalized into the range [0, 1] for convenience; 2.
Each input of the FNN (i.e. or) has 3 B-spline
membership functions (BMFs) [3]; 3. The number of the
chromosomes for GA_FSP is 6 and for RGA is 4; The
number of learning iteration for GA_FSP is 30 and for
RGA is 500; 5. The parameter

j
qh ,2 1

qh

α for selection is 2. Ta-
ble 1 shows the simulation results for which the numbers
of training data pairs are 100, 90 and 80. Figures 7, 9 and
11 show the simulation results of the present HFNN with
two-stage GA when the number of training data pairs is
100, 90 and 80, respectively. The error curves for the
various number of training data pairs such as 100, 90 and
80 are shown in Figs. 6, 8 and 10.

Start

Fig. 6. Error curve of HFNN trained by two-stage GA when

training data pair is 100.

CrossoverGA_FSP

MutationGA_FSP

Randomly
grouping

1Error Ε>

yes

no

End

RGA

Tw
o-

st
ag

e
G

A

Coding and
Producing

initial population

SortGA_FSP /
SelectGA_FSP

Start

CrossoverGA_FSP

MutationGA_FSP

Randomly
grouping

1Error Ε>

yes

no

End

RGA

Coding and
Producing

initial population

Tw
o-

st
ag

e
G

A

SortGA_FSP /
SelectGA_FSP

Start

Two-stage GA

1Error Ε>

yes

no

End

1=q

or 1+= Mq 1+= qq

Start

Two-stage GA

1Error Ε>

yes

no

End

1=q

or 1+= Mq

1.5764e-006Training data (1-80 days)

Training data (1-90 days)

Training data (1-100 days)

learning structure

The number of
training data

1.1982e-004

2.5360e-004

HFNN with the two-
stage GA (MSE)

1.5764e-006Training data (1-80 days)

Training data (1-90 days)

Training data (1-100 days)

learning structure

The number of
training data

1.1982e-004

2.5360e-004

HFNN with the two-
stage GA (MSE)

Table 1. The simulation results for estimation Taiwanese
stock market.

pair

1+= qq
s

(b)

(a)

Fig. 5. (a) the flowchart of the two-stage genetic algo-
rithm; (b) the flowchart of the overall system.

W.-Y. Wang et al.: A Dynamic Hierarchical Fuzzy Neural Network for A General Continuous Function 135

the next day’s
closing price
the output of the
HFNN

the next day’s
closing price
the output of the
HFNN

Fig. 10. Error curve of HFNN trained by two-stage GA when

training data pair is 80.
Fig. 7. Output of the HFNN trained by two-stage GA whe

n
training data pair is 100.

 Fig. 11. Output of the HFNN trained by two-stage GA when

training data pair is 80. Fig. 8. Error curve of HFNN trained by two-stage GA whe

n
 training data pair is 90.

5. Conclusion

Compared to the tradition fuzzy neural network, the
HFNN constructed by the present two-stage genetic al-
gorithm can effectively approximate a general continu-
ous function. In the two-stage genetic algorithm, first we
bring the GA_FSP into a new topic of constructing a
dynamic hierarchical structure. Second, the RGA is used
to handle the vast number of adjustable parameter in the
HFNN constructed by GA_FSP. From the simulation
results, the present method of this paper provides a
well-suited way of learning for Taiwanese stock market.

References

Fig. 9. Output of the HFNN trained by two-stage GA whe [1] L.X. Wang, Adaptive Fuzzy Systems and Control:
Design and Stability Analysis, Prentice Hall Interna-
tional, 1994.

n
training data pair is 90.

 International Journal of Fuzzy Systems, Vol. 11, No. 2, June 2009 136

[2] A. Boubakir, F. Boudjema, C. Boubakir, and S.
Labiod, “A fuzzy sliding mode controller using
nonlinear sliding surface applied to the coupled
tanks system,” International Journal of Fuzzy Sys-
tems, vol. 10, no. 2, pp. 112-118, June 2008.

[3] C.H. Wang, W.Y. Wang, T.T. Lee, and P.S. Tseng,
“Fuzzy B-spline membership function (BMF) and its
applications in fuzzy-neural control,” IEEE Transac-
tions on Systems Man and Cybernetics, vol. 25, no.
5, pp. 841-851, May 1995.

[4] W. Y. Wang and Y. H. Li, “Evolutionary learning of
BMF fuzzy-neural networks using a reduced-form
genetic algorithm,” IEEE Transactions on Systems,
Man, And Cybernetics-Part B, vol. 33, no. 6, pp.
966-976, Dec. 2003.

[5] W. Y. Wang, Y. H. Chien, Y. G. Leu, and T. T. Lee,
“On-line adaptive T-S fuzzy-neural control for a
class of general multi-link robot manipulators,” In-
ternational Journal of Fuzzy Systems, vol. 10, no. 4,
pp. 240-249, December 2008.

[6] X. F. Wang, “Fuzzy number intuitionistic fuzzy
arithmetic aggregation operators,” International
Journal of Fuzzy systems, vol. 10, no. 2, pp. 104-111,
2008.

[7] I.H. Li, W.Y. Wang, S.F. Su and Y.S. Lee, “A merged
fuzzy neural network and its applications in battery
state-of-charge estimation,” IEEE Transactions on
Energy Conversion, vol. 22, no.3, pp. 697-708,
2007.

[8] M.G. Joo and J.S. Lee, “Universal approximation by
hierarchical fuzzy systems with constrains on the
fuzzy rules,” Fuzzy Sets Systems, vol. 130, pp.
175-188, 2002.

[9] X.J. Zeng and J.A. Keane, “Approximation capabili-
ties of hierarchical fuzzy systems,” IEEE Transac-
tions on Fuzzy Systems, vol. 13, no. 5, October,
2005.

[10] L.X. Wang, “Universal approximation by hierar-
chical fuzzy systems,” Fuzzy sets and system, vol.
93, pp. 223-230, 1998.

[11] Z.G. Hou, M.M. Gupta, P.N. Nikiforuk, and M. Tan,
and L. Cheng, “A recurrent neural network for hier-
archical control of interconnected dynamic systems,”
IEEE Transactions on Neural Networks, vol. 18, no.
2, pp.466-481, 2007.

[12] R.J. Leduce, B.A. Brandin, M. Lawford, and W.M.
Wonham, “Hierarchical interface-based supervisory
control-part I: serial case,” IEEE Transactions on
Automatic Control, vol. 50, no. 9, September 2005.

[13] R. Bellman, Adaptive control processes, Princeton
University Press, Princeton, 1966.

[14] R. Ruiz, c. Maroto, and J. Alcaraz, “Solving the
flowshop scheduling problem with sequence de-
pendent setup times using advanced metaheuristics,”

European Journal of Operational Research, vol. 165,
pp. 34-54, 2005.

[15] Z. Lian, X. Gu, and b. Jiao, “A similar particle
swarm optimization algorithm for permutation
flowshop scheduling to minimize makespan,” Ap-
plied Mathematics and Computation, vol. 175, pp.
773-785, 2006.

