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Abstract1 

A serious problem limiting the applicability of the 
fuzzy neural networks is the “curse of dimensional-
ity”, especially for general continuous functions. A 
way to deal with this problem is to construct a dy-
namic hierarchical fuzzy neural network. In this pa-
per, we propose a two-stage genetic algorithm to in-
telligently construct the dynamic hierarchical fuzzy 
neural network (HFNN) based on the merged-FNN 
for general continuous functions. First, we use a ge-
netic algorithm which is popular for flowshop sched-
uling problems (GA_FSP) to construct the HFNN. 
Then, a reduced-form genetic algorithm (RGA) op-
timizes the HFNN constructed by GA_FSP. For a 
real-world application, the presented method is used 
to approximate the Taiwanese stock market. 

Keywords: hierarchical structures, genetic algorithms, 
Fuzzy neural networks. 
 

1. Introduction 
 

Recently, using fuzzy systems for system identifica-
tion has become a popular topic [1-7]. In nonlinear sys-
tem identification, fuzzy systems can effectively fit the 
nonlinear system by calculating the optimized coeffi-
cients of the learning mechanism. The traditional fuzzy 
systems cannot directly be used when there are a large 
number of input variables, because there will be too 
many free parameters to be trained, and hence high 
computational and memory demands. Bellman [13] 
called this phenomenon “the curse of dimensionality”. 
To overcome this difficulty, [8]-[10] proposed hierar-
chical fuzzy systems, which decompose a single large 
fuzzy system into subsystems. Decomposition leads to a 
multi-staged structure of several simple, interacting 
subsystems, each having a reduced number of input 
variables. Each subsystem thus has a reduced complexity 

compared to a single fuzzy neural network, measured by 
the number of rules and of parameters which have to be 
stored and processed.  

Some studies [5,6] combining fuzzy logic with neural 
networks have been done to improve the efficiency of 
function approximation. In [7], we proposed a hierarchi-
cal fuzzy neural network, called the merged fuzzy neural 
network (merged-FNN), to build a universal approxima-
tor for a battery state-of-charge (BSOC) problem.  Be-
cause the BSOC problem can be modeled as a continu-
ous function with natural hierarchical structure, there 
was a natural fit between the problem structure and the 
merged-FNN constructed in [7]. However, in practice, it 
is often the case that a system to be modeled has an un-
known hierarchical structure. We call this case a general 
continuous function in this paper. For general continuous 
functions, although universal representation methods, 
such as FNNs [4-7] or neural networks [11-12], can be 
used to approximate such systems, this is often less ef-
fective and efficient, as such FNNs or neural network 
models are less accurate, more complicated, and are 
unlikely to match physical meaning and mechanism. 
Therefore, an approximator with the ability to 
self-construct a hierarchical structure is needed for 
learning general continuous functions. 

In this paper, we propose a two-stage genetic algo-
rithm to intelligently construct the hierarchical fuzzy 
neural networks (HFNNs) based on the merged-FNN [7] 
for general continuous functions with training data pairs 

, where )](),([ kykX pk ,...,1= . First, to construct an 
HFNN which matches the hierarchical structure of the 
problem, we use a genetic algorithm, GA_FSP, which is 
popular in the flowshop problem. In a flowshop sched-
uling problem (FSP) [14, 15] we have  independent 
jobs 

n

1{ ,..., }nJ J  that have to be processed on  differ-
ent machines 

m

1{ ,..., }mM M . Every job is composed of  
operations, and every operation requires a different ma-
chine. We consider the input variables 

m

1{ ,..., }nx x  as n  
independent jobs and the neurons of the first layer of the 
merged-FNN as m  different machines. Therefore, we 
can extend the GA_FSP to construct a dynamic hierar-
chical structure. In the second stage, a reduced-form ge-
netic algorithm (RGA) [4] optimizes the HFNN con-
structed by the GA_FSP. After the two-stage genetic al-
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gorithm, a recursive learning strategy is used to find the 
simplest structure of the HFNN for general continuous 
functions. Finally, the simulation results of estimating 
the Taiwanese stock market is used to demonstrate the 
effectiveness of the present method. 
 
2. A Merged Fuzzy Neural Network for General 

Continuous Functions 
 
A. Hierarchical structure of general continuous func-
tions 

A general continuous function is given as follows: 
),...,,()( 21 nxxxGXGy ==            (1) 

where  is the input variable vector, and 
 is the output variable. According to Kolmogorov’s  

theorem [9, 10], a general continuous function 

),...,,( 21 nxxxX =

y
)(XG  

can be represented as 1+M  continuous functions with 
a natural hierarchical structure [9]: 

1 2 3 1( ) ( ( ), ( ),..., ( ))My G X G G X G X G X+= =    (2) 
where the qth continuous function  , 
each of which has a natural hierarchical structure, is 

( 1, 2,..., 1)qG q M= +

1 2 1 2,1 2,2( ) ( , ,..., )l
q q q q q q qy G Y g y y y= = 2,

l

       (3) 
and  

,2,

2, 2, 2, 2, ,2, ,2, ,2,
1 2( ) ( , ,..., ), 1, 2,...,

q j

j j j j q j q j q j
q q q q my g X g x x x j= = =  (4) 

In equations (3) and (4), 1
qg  and 2, 1,2,..., )j

qg j l=（  are 
lower dimensional functions (i.e.,  and nl < ,2, )q jm n< . 

A natural approach to approximating a hierarchical 
function  is to use a matching hierarchical struc-
ture, that is, to design a function  with the same 
hierarchical structure as . In the next section, we 
will explain the structure of the hierarchical fuzzy neural 
networks used to approximate the hierarchical function 

. 
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Fig. 1. the configuration of the qth merged-FNN. 

 
B. Constructing a hierarchical fuzzy neural network 
(HFNN) from the merged fuzzy neural networks 
(Merged-FNNs) 

Let  be the hierarchical 

fuzzy neural network (HFNN) matching the hierarchical 
function , where  consists of several 
merged-FNNs [7]. Each merged-FNN of the HFNN (i.e 

) is used to approximate one of the hierarchical 
functions , where . Figure 1 is the 
configuration of the merged-FNN, which is a two level 
fuzzy neural network with a hierarchical structure. Each 
subsystem of the merged-FNN is a typical fuzzy-neural 
network. 

))(),...,(()( 121 XHXHHXH M +=
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)(XH q
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For the qth merged-FNN, the ith fuzzy IF-THEN rule 
is given by equation (5) as follows: 
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where  ,j
q
2FNN ),...,2,1;,...1( ljMq ==  represents an FNN 

in Level 2,  is the FNN in Level 1, 
 and  are fuzzy sets 

and  and are singleton fuzzy sets. In the rest of 

this paper, we adopt 

1FNNq
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,2,

jq
jq
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k =

jqw ,2, 1,qw
A  to represent and , 

which neglects the number of levels and subsystems. 
That is, 

jq
kA ,2, 1,q

kA

A  stands for the entire antecedent fuzzy set no 
matter what the level and subsystem are. By using prod-
uct inference, center-averaging and singleton fuzzifica-
tion, the output of FNN1 at Level-1 is 
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1=  is the weighting vector 

for the merged-FNN in Level 1 and Tl
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The outputs of , at Level-2,  
which are the inputs of  at Level-1, can be ex-
pressed as 
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where Tjq
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q
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)2(
,2,

)1(
,2,

,2=  is the weighting vec-

tor for the merged-FNN in Level 2, 1
qh  and j

qh ,2 are the 
number of fuzzy rules in Level-1 and Level-2, respec-
tively,  represents the number of input variables 
for the jth FNN at Level-2, 

 is an adjustable parame-

jqm ,2,
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ter vector for the qth merged-FNN, and  and 
 are fuzzy basis functions. 

)(1, ⋅qϕ
)(,2, ⋅jqϕ

In the merged-FNN for the continuous function 
, the subsystem  can be repre-

sented is 
)1,...,1()( += MqXGq

j
qh ,2

ljxxxhXhy jq
m

jqjqj
q

j
q

j
q

j
q jq

,...,1),,...,,()( ,2,,2,
2

,2,
1

,2,2,2,2
,2,

===   (8) 

where j
qy ,2  and  respectively represent the output 

and input of the jth subsystem at Level-2. The subsystem 
1  is 

j
qX ,2

qh

),...,,()( ,22,21,21211 l
qqqqqqq yyyhYhy ==          (9) 

where Tl
qqqq yyyY ],...,[ ,22,21,22 =  is the input vector at 

Level-1 and j
qy ,2  is the output variable of jth subsystem 

 at the Level-2. Finally, the mathematical formula of 
the merged-FNN is  

j
qh ,2

1 1 2 1 2,1 2,1 2,2 2,2 2, 2,

1 2,1 2,1 2,

( ) ( ( ), ( ),..., ( ))

( , ,..., )

l l
q q q q q q q q q q

l
q q q q

y h Y h h X h X h X

h y y y

= =

=
  (10) 

For a flowshop scheduling problem (FSP) one usu-
ally has  independent jobs n 1{ ,..., }nJ J  that have to be 
processed on  different machines m 1{ ,..., }mM M . Every 
job is at least composed of one operation, and different 
operations are done by different machines. The objective 
is to find an ordering of the jobs on the machines. In this 
paper, to construct the HFNN for unknown continuous 
functions with the sense of the flowshop scheduling 
problem, the following assumptions are needed: 1. the 
input variables 

1{ ,..., }nx x  are considered as n  inde-
pendent one-operation jobs; 2. each neuron of the first 
layer of the HFNN is viewed as  different machines. 
These machines only handle one job. Note that the 
number of machines is the same as the number of jobs in 
our case. Then we use the GA_FSP, which will be intro-
duced later to optimize the flowshop scheduling problem, 
to construct a dynamic hierarchical structure. In this sec-
tion, first we examine various genetic operators of the 
GA_FSP such as coding, crossover, mutation and ran-
dom grouping.  

n

From equations (2) and (10), it is easy to define the 
mathematical formula of the HFNN as 
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and the whole adjustable parameter vector is 
. The objective of the learning algo-

rithm is to minimize the error function:  
]......[ 121 += Mq wwwww

∑
=

−=
p

k
kykyE

1

21
1 ))()((            (12) 

Remark 1: Kolmogorov’s theorem [10] guarantees that 
the HFNN constructed by the present learning method 
can approximate the general continuous function  
to any desired arbitrary error 

)(XG
ε  if the number M  is 

finite. This HFNN is called the universal approximator 
for the general continuous function . )(XG
 

3. Constructing the HFNN for A General Con-
tinuous Function with Two-Stage GA 

 
In this section, we propose a two-stage genetic algo-

rithm to intelligently construct the HFNN for general 
continuous functions )(XG with training data pairs 

, where . First, to construct an 
HFNN which matches the hierarchical structure of the 
problem, we use a genetic algorithm, GA_FSP, which is 
popular in the flowshop problem. Subsequently, a re-
duced-form genetic algorithm RGA [4] optimizes the 
merged-FNN constructed by GA_FSP. In section III-C, a 
recursive learning strategy is proposed to find the mini-
mum 

)](),([ kykX pk ,...,1=

M  in (11) for the general continuous function (2) 
(i.e. the simplest structure of the HFNN that models the 
general continuous function). 
A. Constructing the HFNN using GA_FSP 

1) Coding 
A sequence of input variables is handled as a string in 

this paper. For example, the string  repre-
sents a sequence of the input variables of the qth 
merged-FNN. If the string  is generated 
by genetic operators (i.e. crossover and mutation), this 
string is not a feasible solution of the flowshop schedul-
ing problem because the gene  appear twice in the 
string and one of the genes  does not ap-
pear. In this paper, we denote the sequence of  input 
variables by an n-dimensional vector 
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where  is the number of chromosomes. 2κ
2) Selection 

Selection is an operation to select parent chromosomes 
for generating a new chromosome (i.e. child). From the 
parent chromosomes, we select the fittest α  chromo-
somes to produce the next generation. 
3) Crossover 

Crossover is an operation to generate a new chromo-
some (i.e., child) from two parent chromosomes. The 
one-point crossover used in our paper is illustrated in Fig. 
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2. One point is randomly selected for dividing one parent. 
The set of genes on one side (each side is chosen with 
the same probability) is passed from one parent to the 
child, and the other genes are placed in the order of their 
appearance in the other parent. In Fig. 2, genes ,  
and  are inherited from Parent 1, and the other genes 
(i.e. genes ) are placed in the order of their 
appearance in Parent 2. 

1x 2x
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nxxx ,...,, 54
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…

 
Fig. 2. One-point crossover operator. 

 
4) Mutation 

Mutation is an operation to change the order of n 
genes in each chromosome generated by a crossover op-
erator. Such a mutation operation can be viewed as a 
transition from a current solution to a neighboring solu-
tion in the local search space. We adopt the adjacent 
two-gene change shown in Fig. 3. The adjacent three 
genes to be changed are randomly selected. 
 

 
 
5) Random grouping 

After mutating, a random process is used to construct 
the structure of the qth merged-FNN. As Fig. 4(a) shows, 
we randomly divide  groups form the l thγ chromosome, 
where the genes in group j means the input variables 

 for the jth subsystem in Level-2 of the qth 
merged-FNN. The corresponding merged-FNN is shown 
in Fig. 4(b). 

j
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The fitness function is defined as follows: 
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7) Sorting 

The newly generated population is sorted by ranking 
the fitness of chromosomes within the population, re-
sulting in )()()( 221 κsEsEsE ≤≤ . The first chromosome 
of the sorted population TsssS ][ 221 κ=  has the high-
est fitness value (or smallest error). 
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(b) 

Fig. 4. (a) the random grouping. (b) the corresponding struc-
ture of the merged-FNN. 

 
B. Optimizing the HFNN with RGA 

The reduced-form genetic algorithm (RGA) [4] was 
proposed to deal with a vast number of adjustable pa-
rameters in the fuzzy-neural networks. The key proper-
ties of the RGA are as follows: 1. It uses a sequen-
tial-search-based crossover point (SSCP) method to de-
termine a better crossover point is determined. 2. The 
population size is fixed and can be reduced to a mini-
mum size of 4. 3. The crossover operator is simplified to 
be a single gene crossover. After GA_FSP, the HFNN 
usually contents a vast number of adjustable parameters, 
so we adopt RGA to optimize the HFNN. However, we 
don’t use single gene crossover, because single gene 
crossover limits the speed of convergence during the 
learning process. Instead, we use one point crossover. 

Mutation point

C. Recursive learning method 
Unfortunately, a problem comes along with the hier-

archical structure (2). That is, the representation of the 
two-level hierarchical structure, which is composed of 

1+M  continuous functions , is so complicated 
that the function  matching  will tend to be 
non-useful. Hence, a recursive learning method (from 

)(XGq

)(XH )(XG

1=q  to 1+M ) is applied to solve this problem. We 
construct the 1st merged-FNN )(1 XH ( 1q )=  by the 
present two-stage GA for the hierarchical continuous 
function )(1 XG ( 1q )=  at first and then go on the next 
step to build the structure as ))(( 21 XHH ( 2q )=  for the 

Fig. 3. A mutation operator: Arbitrary three-gene 
change change.
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hierarchical continuous function ))(( 21 XGG ( 2q )= . We 
stop when the approximated error is desirable or 

.  Note that all continuous functions 
 are the hierarchical structure 

shown in (3). 

1+= Mq
)1,...,1()( += MqXGq

D. Overall system 
In order to find a desirable HFNN (i.e. one with a less 

complexity of the structure or less computational and 
memory demands) for general continuous functions, a 
two-stage genetic algorithm with random grouping is 
proposed in this paper. The two-stage genetic algorithm 
includes GA_FSP and RGA. GA_FSP constructs the 
merged-FNN at first and RGA optimizes the 
merged-FNN constructed by GA_FSP. The flowcharts of 
the two-stage GA and the overall system are shown in 
Fig. 5(a) and Fig. 5(b), respectively. 
 

 
 

4. Simulation Results 
 

In this section, an example is given to show the effec-
tiveness of training of the present hierarchical fuzzy 
neural network (HFNN). In our example, we approxi-
mate the Taiwanese stock market. We choose 12 factors, 
selected from the fundamental analysis and technical 
analysis form January 1, 1998 to April 10, 1999, a period 

of 100 days, to be the input variables. The factors for the 
fundamental analysis include the leading indicator, the 
consumer price index, and the prime lending rate. The 
technical analysis factors are 6-day moving average, 
6-day BIAS , 6-day relative strength index, 9-day sto-
chastic index (K), 9-day stochastic index (D), 9-day 
MACD, 13-day psychological line, trading volume, 
closing price. The next day’s closing price is the output 
variable.  

Some information used for approximating the Tai-
wanese stock market are as follows: 1. The training data 
are normalized into the range [0, 1] for convenience; 2. 
Each input of the FNN (i.e.  or ) has 3 B-spline 
membership functions (BMFs) [3]; 3. The number of the 
chromosomes for GA_FSP is 6 and for RGA is 4; The 
number of learning iteration for GA_FSP is 30 and for 
RGA is 500; 5. The parameter 

j
qh ,2 1

qh

α  for selection is 2. Ta-
ble 1 shows the simulation results for which the numbers 
of training data pairs are 100, 90 and 80. Figures 7, 9 and 
11 show the simulation results of the present HFNN with 
two-stage GA when the number of training data pairs is 
100, 90 and 80, respectively. The error curves for the 
various number of training data pairs such as 100, 90 and 
80 are shown in Figs. 6, 8 and 10. 
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Fig. 6. Error curve of HFNN trained by two-stage GA when 

training data pair is 100. 
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1.5764e-006Training data (1-80 days)

Training data (1-90 days)

Training data (1-100 days)

learning structure

The number of 
training data 

1.1982e-004

2.5360e-004

HFNN with the two-
stage GA (MSE)

1.5764e-006Training data (1-80 days)

Training data (1-90 days)

Training data (1-100 days)

learning structure

The number of 
training data 

1.1982e-004

2.5360e-004

HFNN with the two-
stage GA (MSE)

Table 1. The simulation results for estimation Taiwanese 
stock market. 

pair

1+= qq
s

(b) 

(a) 

Fig. 5. (a) the flowchart of the two-stage genetic algo-
rithm; (b) the flowchart of the overall system.
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closing price 
the output of the 
HFNN

the next day’s 
closing price 
the output of the 
HFNN

 
Fig. 10. Error curve of HFNN trained by two-stage GA when 

training data pair is 80. 
Fig. 7. Output of the HFNN trained by two-stage GA whe  

 

n
training data pair is 100. 

 

 
 Fig. 11. Output of the HFNN trained by two-stage GA when 

training data pair is 80. Fig. 8. Error curve of HFNN trained by two-stage GA whe  

 

n
 training data pair is 90. 

5. Conclusion 
 

 

Compared to the tradition fuzzy neural network, the 
HFNN constructed by the present two-stage genetic al-
gorithm can effectively approximate a general continu-
ous function. In the two-stage genetic algorithm, first we 
bring the GA_FSP into a new topic of constructing a 
dynamic hierarchical structure. Second, the RGA is used 
to handle the vast number of adjustable parameter in the 
HFNN constructed by GA_FSP. From the simulation 
results, the present method of this paper provides a 
well-suited way of learning for Taiwanese stock market. 
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