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1Machine Vision Group
Department of Electrical Engineering

PO Box 4500, 90014 Univ. of Oulu, Finland
E-mail: erahtu@ee.oulu.fi, jth@ee.oulu.fi

2Rolf Nevanlinna Institute
Department of Mathematics

PO Box 4, 00014 Univ. of Helsinki, Finland
E-mail: msa@rni.helsinki.fi

Abstract

This paper introduces a novel measure for object con-
vexity using the recently introduced Multi-Scale Autoconvo-
lution transform. The proposed measure is computationally
efficient and recognizes even small errors in a convex do-
main. We also consider its implementation and give a com-
plete Matlab algorithm for computing this measure for dig-
ital images. Finally, we give examples to verify its applica-
bility and accuracy. The examples also consider convexity
as a measure for complexity.

1. Introduction

Object shape analysis is of great importance in many ar-
eas of computer vision and image analysis. One of the main
concepts in this field is object convexity, and for instance in
integral geometry and mathematical morphology it is one
of the very essential properties. When operating with real
digital images, convexity in a strict mathematical sense is
rarely encountered. However, in many applications a cer-
tain amount of nonconvexity is allowed and it is desirable to
find measures for the convexity of an object. Some methods,
like approximate convexity measures [2] and fuzzy convex-
ity measures [3], have been proposed for this kind of char-
acterization.

In this paper, we propose a novel measure for object con-
vexity, based on the Multi-Scale Autoconvolution (MSA)
transform introduced in [1]. This affine invariant transform
has many applications in object classification as discussed
in [4], and it can also be used in analyzing properties such
as convexity. It evolves, and we will give a mathematical
proof of this fact, that the value of the MSA transform at
a certain point distinguishes between convex and noncon-
vex sets. This value will be used as the convexity measure.

The rest of the paper considers the implementation of
the convexity measure and contains examples which illus-
trate its properties. The MSA convexity measure is simple

and efficient to compute, and we will give a complete Mat-
lab program for doing this. In the examples, we will find this
measure for several objects verifying that the measure be-
haves correctly. We will also consider the behaviour of the
measure in the presence of noise or holes in a convex re-
gion, and consider its applicability as a measure of object
complexity.

2. Multi-Scale Autoconvolution

Let f be an image intensity function in L1(R2)∩L2(R2)
with f ≥ 0, and let X0,X1 and X2 be independent ran-
dom variables with values in R2 so that P (Xj = xj) =

1
‖f‖L1

f(xj). For α, β ∈ R, define the random variable

Uα,β = X0 + α(X1 − X0) + β(X2 − X0).

Then one has Uα,β = αX1 + βX2 + γX0, where γ =
1−α−β. Now it can be easily shown that Uα,β has a prob-
ability density function

P (Uα,β = u) =
1

‖f‖3
L1

(fα ∗ fβ ∗ fγ)(u) (1)

where fa(x) = a−2f(x/a) for a �= 0 and fa = ‖f‖L1 δ0

for a = 0 (the Dirac delta). For α, β ∈ R, define the MSA
transform of f by

F (α, β) = E[f(Uα,β)]

Writing this out in terms of the probability density function
gives

F (α, β) =
∫

f(u)P (Uα,β = u)du

=
1

‖f‖3
L1

∫
f(u)(fα ∗ fβ ∗ fγ)(u)du

=
1

‖f‖3
L1

1
(αβγ)2

∫∫∫
f(u)f(

u − x − y

γ
)

f(
x

α
)f(

y

β
)dx dy du (2)



if α, β, γ �= 0, and straightforward modifications if one of
these numbers is zero. Taking the Fourier transform and us-
ing the convolution and correlation theorems, one has

F (α, β) =
1

(2π)2
1

f̂(0)3

∫
f̂(ξ)∗f̂(αξ)f̂ (βξ)f̂(γξ)dξ

which holds for all α, β.

3. MSA for Convex Sets

We first consider the MSA transform for binary images.
Such images are given by sets K ⊆ R2, and the image in-
tensity function is the characteristic function χK of K ,

χK(x) =

{
1 if x ∈ K,

0 otherwise.

It is natural to assume that K is a bounded Lebesgue mea-
surable set, for then χK ∈ L1∩L∞, and the MSA transform
is well defined. We will further assume that K is closed.
For nice sets K this results in no loss of generality since if
|K � K| = 0 (| · | is a Lebesgue measure and the K clo-
sure of K) then χK = χK as L1 functions, which means
that the MSA transform sees the sets K and K as identi-
cal.

Thus, let K be a compact subset of R2 and let f = χK .
Then the MSA transform of f may be written as

F (α, β) =
∫

f(u)P (Uα,β = u) du = P (Uα,β ∈ K).

This immediately implies that F (α, β) ≤ 1 for any α and
β. We also note that for f = χK the affine invariant mo-
ments E[f(Uα,β)k] for k ∈ Z+ are the same for all k, so in
the binary case the MSA transform (the first moment) car-
ries all information from all the moments.

In this article, we show that the MSA transform be-
haves particularly well for convex sets. A set A ⊆ R2 is
by definition convex if for any x, y ∈ A the line segment
[x, y] = {(1 − α)x + αy ; 0 ≤ α ≤ 1} lies in A. If A is
closed, it is enough to assume that 1

2x + 1
2y ∈ A when-

ever x, y ∈ A, since then by iteration (1 − α)x + αy ∈ A
for any dyadic rational number α between 0 and 1, and the
whole segment [x, y] must lie in A, since A is closed. For
more information on convex sets see [5].

The first result states that for convex sets one knows
F (α, β) exactly for certain α and β.

Property 1. Let K be a compact subset of R2 and let f =
χK . If K is convex then F (α, β) = 1 whenever 0 ≤ α ≤ 1
and 0 ≤ β ≤ 1 − α.

Proof. If 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 − α, then one has
0 ≤ α, β, γ ≤ 1 and α + β + γ = 1. In this case, Uα,β =
αX1+βX2+γX0 is a convex combination of the Xj . Since

Xj ∈ K almost surely, and K is convex, we have Uα,β ∈ K
almost surely, so F (α, β) = P (Uα,β ∈ K) = 1.

In particular, if K is convex then F (1/2, 1/2) = 1. For
any set K one has

F (
1
2
,
1
2
) = P (

1
2
X1 +

1
2
X2 ∈ K)

which is the probability that the midpoint of two random
points from K lies in K . This value may be thought of as a
measure of convexity of the set K . Indeed, the following re-
sult shows that F (1/2, 1/2) = 1 characterizes convex sets
K assuming the mild condition K = int(K), where int(K)
is the interior of K .

Property 2. Let K be a compact subset of R2 which satis-
fies K = int(K). Then, if f = χK and F ( 1

2 , 1
2 ) = 1, K is

convex.

Proof. From the definition

F (
1
2
,
1
2
) =

16
|K|2

∫ ∫
f(u)f(2x)f(2(u − x)) dx du.

We make the change of variables x = 1
2s, u = 1

2s + 1
2 t.

The Jacobian is equal to 1/16, and we obtain

F (
1
2
,
1
2
) =

1
|K|2

∫
K

∫
K

χK(
1
2
s +

1
2
t) ds dt.

Since χK ≤ 1 the last expression is ≤ 1. But we had
F (1

2 , 1
2 ) = 1, which implies that there is a set E ⊆ K × K

so that |E| = 0 and 1
2s+ 1

2 t ∈ K for any (s, t) in K×K�E.
Let now (s, t) ∈ int(K) × int(K). Then there is a se-

quence (sj , tj) in K ×K � E with (sj , tj) → (s, t), for an
otherwise some small ball in int(K)× int(K) with its cen-
ter (s, t) would only contain points of E, contradicting the
fact that |E| = 0. Now, given such a sequence (sj , tj), we
know that 1

2sj + 1
2 tj ∈ K for any j. Since K is closed, we

get that 1
2s + 1

2 t = limj→∞(1
2sj + 1

2 tj) ∈ K .

Finally, since K = int(K) the points in K are limits
of sequences of points in int(K), and the midpoint of any
two points s, t in K must also lie in K since this holds for
int(K) and K is closed. Consequently K is convex.

4. Implementation

Using the results in Section 3, one can now build a clas-
sifier that distinguishes convex sets from nonconvex ones.
However this is somewhat difficult to perform with digital
images, as illustrated later in this section and it is better to
use a convexity measure. The reliability of this measure is
dependent on the MSA implementation, so we present a de-
scription and the Matlab code for the one which was used
in the experiments in Section 5.



1.0000 0.9999 0.9999 0.9998 0.9998 0.9998 0.9998 0.9996 0.9995 0.9993 0.9990

0.9972 0.9966 0.9963 0.9953 0.9946 0.9937 0.9913 0.9911 0.9797 0.9702 0.9677

0.9616 0.9169 0.9138 0.9035 0.9033 0.8909 0.8507 0.8032 0.7907 0.7028 0.5918

Figure 2. 33 objects arranged according to MSA based convexity measure.

The algorithm is a straightforward Matlab implementa-
tion of the Fourier transformed form of MSA. The program
contains only seven lines and will be given later. Before ap-
plying the MSA to the digital image f , the continuous pre-
sentation given in Section 2 must be converted to discrete
form. Taking into account that in our case α = β = 1/2
and γ = 0 we have:

F (
1
2
,
1
2
) =

1
N1N2

1
F(0)2

N1N2−1∑
i=0

F∗(wi)F(
1
2
wi)2, (3)

whereF is the discrete Fourier transform of f . If we assume
that f is an M1 × M2 matrix, the transformation length Ni

must be taken to be Ni ≥ (|α| + |β| + |γ|)Mi − 2 to avoid
the wrap-around error. In our case, where α = β = 1/2
and γ = 0, Ni was chosen to equal Mi. Calculating the val-
ues F(1/2 · wi) for i = 1, . . . , Nj requires a decimation of
the image function f to half of its original size. In our al-
gorithm, this is done so that the four closest pixels in f are
summed up to form one pixel in the decimated image f ′, for
example f ′(1, 1) = f(1, 1) + f(1, 2) + f(2, 1) + f(2, 2).

As an example, here is the Matlab implementation which
was used for computing F (1/2, 1/2) in Section 5:

function F=convexity(f)
[m,n]=size(f);
f0=sum(f(:));
G0=conj(fft2(f,m,n));
f1=f(1:2:m,1:2:n)+f(2:2:m,1:2:n) ...
+f(1:2:m,2:2:n)+f(2:2:m,2:2:n);
G1=fft2(f1,m,n);
F=real(sum(sum(G0.*(G1.ˆ2)))) ...
/(n*m*f0ˆ2);

Now one can use the value F (1/2, 1/2) as a convexity
measure and classify all sets with this value above a given
threshold as convex. However digital images, like the ones
in Figure 1, are usually not convex in the strict sense, so
instead of a strict classification one can use the convexity
measure and interpret this information depending on the ap-
plication. This convexity value can also be used as a certain
kind of measure of object complexity. This is comparable to

the usual perimeter squared per area measure, but due to the
affine invariance property of the MSA transform, see [1],
our measure is also invariant under any spatial affine trans-
formations.

5. Experiments

In this section, we present some experiments to illustrate
the properties introduced in Section 3, using the MSA algo-
rithm specified in Section 4.

As a first illustration, we organized 33 128 × 128 bi-
nary images based on convexity and complexity. The con-
vexity was measured using the F (1/2, 1/2) value and the
complexity using the perimeter squared per area measure.
Figure 2 shows the images organized based on F (1/2, 1/2)
values so that the image having the highest value is on the
top left. One can also see the F (1/2, 1/2) values above each
image. Looking at the figure, one can see that objects which
look convex to the human eye are placed at the top of the
list and have MSA values higher than 0.999.

Figure 3 contains the same images as Figure 2 organized
now according to the perimeter squared per area values.
Again, the values are given above each image. One can now
compare how the two methods measure object complexity.
By first looking at Figure 2 one can observe that, at least

Figure 1. Samples of digital convex objects
which are nonconvex in the strict sense.

Figure 4. Samples of objects with Gaussian
noise with variances 0.0001 and 0.01.



0.0356 0.0391 0.0392 0.0400 0.0417 0.0440 0.0440 0.0450 0.0461 0.0480 0.0483

0.0488 0.0502 0.0517 0.0519 0.0519 0.0535 0.0546 0.0555 0.0578 0.0597 0.0675

0.0687 0.0699 0.0702 0.0711 0.0751 0.0771 0.0794 0.0862 0.0975 0.1048 0.3622

Figure 3. 33 objects arranged according to perimeter squared per area measure.

subjectively, convexity seems to work quite well as a com-
plexity measure. The same thing can been seen when com-
paring the orders in Figures 2 and 3. Moreover the convex-
ity measure is insensitive to spatial affine transforms, which
can be a desirable property in computer vision applications.

The second experiment measures how the F (1/2, 1/2)
value reacts if some interior pixels of a convex re-
gion are changed to zero. We started with an image
containing only ones, and randomly chose certain pix-
els that were then changed to zero. The original image
will have F (1/2, 1/2) = 1.0000 and Table 1 contains the
F (1/2, 1/2) values with different relative amounts of error
pixels. In every case, we ran 1000 tests and computed the
mean of the obtained F (1/2, 1/2) values. As one can ob-
serve, the MSA value is effective in finding holes in a con-
vex region. Our test image was 100 × 100, so the method
already recognized one error pixel. It seems that the val-
ues follow the equation F (1/2, 1/2) = 1 − Pe, where Pe

Relative amount of error pixels F (1/2, 1/2) value
20 % 0.7999
10 % 0.9000
5 % 0.9499
1 % 0.9900

0.1 % 0.9990
0.0 % 1.0000

Table 1. The F (1/2, 1/2) values of convex re-
gions with error pixels.

Noise variance The first image The last image
0 1.0000 0.5918

0.0001 0.9949 0.5129
0.0005 0.9893 0.4416
0.001 0.9846 0.3996
0.005 0.9652 0.2877
0.01 0.9499 0.2437

Table 2. The F (1/2, 1/2) values for the first
and last object from Figure 2 with Gaussian
noise

is the relative amount of error pixels.
As a final illustration, we tested how the F (1/2, 1/2)

values change if the binary image is disturbed with Gaus-
sian noise. As a test set, we took the first and last images
in Figure 2 and added zero mean independently distributed
Gaussian noise. Samples of these are shown in Figure 4.
In Table 2, one can see the results and observe that the
MSA value reacts quite quickly. As expected, the value de-
creases as noise power increases, so in the sense that the
disturbed image is less convex than the original binary im-
age, the measure works correctly.

6. Conclusions

In this paper, we have presented a novel affine invariant
method and algorithm for measuring object convexity. As
shown by the experiments, this measure is easy to compute
and can recognize even small errors in a convex domain.
When using such a measure with digital images, one has to
interpret the results depending on the application. However,
our experiments indicate that MSA is applicable to convex
shape analysis for these images.
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