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Abstract 

The sheer volume of new malware found each day is growing at an exponential pace. 

Centralized systems that collect all malware samples to central severs can cause problems of 

single point of failure as well as processing bottlenecks. Previous works on distributed and 

scalable malware analysis are mainly applied for specific or simple malware. This paper 

presents CCS, a collaborative online malware analysis system which is applied for various 

malware and well scalable. Each sensors in CCS analysis their own malware samples 

accurately in-situ and then CCS aggregates those analyses among sensors in a load-balance 

way. We implemented a proof-of-concept version of CCS and performed experiments with 

917 real-world malware samples; preliminary results from our evaluation confirm that CCS 

has comparable performance with centralized system, but much better scalability, and is 

approximately consistent with the result of AV scanners. 
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1. Introduction 

The battle against malicious software (a.k.a. malware) is becoming more difficult. The 

volume of new malware, fueled by easy-to-use malware morphing engines, is growing at an 

exponential pace [1]. In 2010, Symantec detected more than 286 mil-lion unique by hash 

malware samples, average 783,562 unique malware samples per day [1]. At the same time, 

security organizations usually deploy numerous wide-spread sensors to monitor the 

comprehensive malware samples. How to organize those large number of sensors and 

analysis such many malware samples is a challenge.  

Centralized systems that collect all malware samples to central severs [2, 4, 6] can cause 

problems of single point of failure as well as processing bottlenecks. Previous works [18] on 

distributed and scalable malware analysis are initial works aiming at specific or simple 

malware. This paper presents CCS, a collaborative malware clustering and signature 

generation framework which is applied for various malware and well scalable. Sensors in 

CCS share their local view of malware behaviors through an information-driven accumulation 

structure (INFOACC) to gain global view. Based on the global view, each sensor analyzes its 

own malware samples locally and accurately. Finally, CCS aggregates those analyses in a 

load-balance way. Each sensor in CCS undertakes only a small part of computation and 

communication, therefore, CCS has well scalability. 

The remainder of this paper is organized as follows. In Section 2, we firstly describe the 

system overview of CCS, and then present its main components. In Section 3, we validate our 

method through experiment on real malware samples and conclude the paper in Section 4. 
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2. Overview of CCS Malware Analysis Framework 

2.1 Architecture of CCS 

Figure 1 shows the architecture of our CCS, which consists of sensors and an infor-mation 

sharing structure INFOACC (as Figure 1(a) describes). Each sensor contains two phases: 

local analysis stage and global aggregation stage (as Figure 1(b) describes). 
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Figure 1. Architecture of our CCS 
 

The INFOACC receives malware behaviors from all sensors and returns global statistics of 

those behaviors to source sensors.  INFOACC is a concept component, and each sensor in 

CCS undertakes part of its work. In local analysis stage, the monitor module is responsible for 

logging suspicious malware behaviors; the local filter module selects representative behavior 

set among those logged behavoirs; then it sends the set to INFOACC, and in return gains 

global statistics; the clustering module clusters local malware samples based on those global 

statistics; at last, each sensor extracts profiles for each cluster, and sends the profiles (cluster-

profiles) to INFOACC. After receiving global statistics of cluster-profiles from INFOACC, 

sensor enters into the global aggregation stage, each sensor computes neighbor sensors for 

each of its cluster-profiles; then sends the cluster-profile to its neighbor sensors. The neighbor 

finds the most similar cluster-profile as the cluster-profile’s neighbor-cluster and returns their 

similarity weight; CCS builds HDHTs (Heuristic Distributed Hierarchical aggregation Trees) 

for each kind of malware; finally, sensors aggregate their local cluster-profiles along those 

HDHTs; and global cluster-profiles will be generated at the root of each HDHTs, and the root 

sent global cluster-profiles to signature server. In ideal situation, sensors should be distributed 

on the Internet and monitor module runs in real-time while other components run 

periodically. 

2.2 INFOACC (information-driven accumulation structure) 

Definition 1: routing attribute. The attribute used by INFOACC mapping a malware 

behavior to a key to route the malware behavior to the sensor responsible for it is called 

routing attribute. 

Definition 2: accumulating attributes. The attributes whose values are accumulated by 

INFOACC among the malware behaviors with the same value of routing attribute are called 

accumulating attributes, e.g. the number of occurrences, and the source sensor set. 

Figure 2 describes the principle of INFOACC structure. Each sensor has representative 

values of a routing attribute extracting from malware behaviors, as Figure 2(a) describes. In 

Figure 2(a), there are 16 sensors:
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INFOACC according to DHT. As DHT implied, the same values will be sent to the same 

sensor, as Figure 2(b) describes, 
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value . Then each sensor uses algorithm 1 to compute global statistics and 

returns the statistics to the source sensors. As a result, all sensors know the statistics of its 

own values, as Figure 2(c) describes, 
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Figure 2. Principle of INFOACC Structure 

 

2.3 Local Analysis Stage 

In local analysis stage, the monitor module logs the behaviors generated by malware 

samples; local filter module selects representative value set from value set of routing attribute 

of logged behaviors, and then sends the set to INFOACC, carrying with number of samples 

that the value occurs. After receiving the global numbers from INFOACC, the clustering 

module calculates a weight for each value using the TF*IDF weight [10, 14], and transforms 

each sample as a weighted vector composed of weights of values the sample contains, then 

clusters malware samples utilizing the agglomerative hierarchical clustering algorithm [3] and 

Davies-Bouldin index [13]. Finally, cluster-profile extraction module generates cluster-profile 

for each cluster, and sends the routing attributes of cluster-profiles to INFOACC.The TF*IDF 

value increases proportionally to the number of samples the value occurs, but is offset by the 

frequency of the value in benign software. The weight of value i is defined as: 

1
(1 log( ))log( )

i i

i

W cnt
frequency

                             (1) 

Where 
i

cnt  denotes the number of samples the value i occurs globally in CCS, and 

i
frequency denotes the frequency of the value i occurs in benign software. 
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Each sensor in CCS is agnostic to the number of clusters of its own malware samples. We 

use agglomerative hierarchical clustering algorithm to build a hierarchy of clusters; then 

utilize Davies-Bouldin index [13] to find an appropriate location to cut the hierarchy. 

 

 
 

2.4 Global Aggregation Stage 

Each sensor in INFOACC uses the similar edition of algorithm 1 to accumulate global 

statistics (source sensor set). After receiving statistics from INFOACC, sensor enters into 

global aggregation stage. Neighbor discovering module computes the similarity between local 

cluster-profile and remote sensors; calculates a threshold using interval estimation; selects the 

sensors within the threshold as the neighbor sensor set of the cluster-profile.  

Definition 3: neighbor_cluster. Given a cluster-profile cs in sensor ni, nj is cs’s neighbor 

and ct is the most similar cluster-profile in nj with cs, we call ct is cs’s neighbor_cluster. 

Definition 4: cluster_couple. Given cluster-profiles cs and ct, if ct is cs’s neighbor_cluster 

and cs is ct’s neighbor_cluster. We call cs and ct are cluster_couple. 

Neighbor discovering module of sensor si sends cluster-profile to the profile’s neighbor set. 

Then, each neighbor sj selects the most similar one
_ _

( )
j b i as c j s c

P s neighborSet , and returns 

the ID and their similarity. The module of sensor si knows which remote cluster-profiles treat 

the cluster-profile as neighbor_cluster, and can deduce out which are its couple_clusters. 

Assuming each cluster-profile as a vertex, and an edge connecting the cluster_couple, and 

then CCS turns into a graph. Each cluster-profile runs a revised distributed algorithm for 

spanning trees [5] daemon to generate a HDHT. As a result, each HDHT is composed of 

similar cluster-profiles. Ideally each malware correspond to a HDHT, and like a hierarchy, the 

most similar couples are at the bottom. Then, aggregation module sends its cluster-profile to 

its father which generalizes a new cluster-profile and sends the new one to its father again. 

Finally, a global cluster-profile is generated at root of each HDHT. 

 

3. Evaluation 

In this section we present an evaluation of the effectiveness of our CCS malware analysis 

system. In section 3.1, we describe the data source, a reference clustering generated based on 
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multi-AV scanning results, and the setup of CCS. Then, in Section 3.2, we compare our 

solution with centralized system and the reference clustering. 

3.1 Experimental Setup 

We implemented CCS system based on MIT- Chord, and used the n-gram as the routing 

attribute. Without live experiment environment for CCS, we deploy CCS in a virtual network 

based on CORE emulator [15] and dispatch the malware samples to machines randomly. We 

run CCS system in 10 machines and centralized in 1 machine with same parameters. 

We obtained a set of almost 400,000 malware samples from mwanalysis.org [16] in the 

period from January 16, 2011 to March 21, 2011. We selected only those samples for which 

three out of five of the AV scanners reported as the same malware family, the number of 

samples in the family must greater than 20, and the pcap file of sample greater than 1KB. 

This resulted in a total of 917 samples. Those families are used as a reference clustering. We 

turn the global cluster-profile to a cluster whose elements are samples that match it. 

3.2 Comparing with Centralized System and AV Scanners 

We setup three groups of comparison. Group 1: centralized system as reference, estimate 

the performance of CCS. Group 2: reference clustering as reference, estimate our CCS. Group 

3: reference clustering as reference, estimate the centralized system. Table 1 describes the 

performance of each group using precision, recall (higher the value, better the performance) 

as metrics. From the table 1, we can see that the performance of CCS is comparable to the 

performance of centralized system and approximately consistent with reference clustering. 

Table 1.  Malware Analysis Perfomance of CCS 

 precision recall 

group 1 0.98 0.83 

group 2 0.67 0.81 

group 3 0.54 0.93 

 

4. Conclusion 

We propose CCS, the first collaborative malware clustering and signature generation 

framework which is applied for various malware and scalable. Our experiment with 917 real-

world malware samples shows that CCS has comparable performance with centralized system, 

buts better scalability. CCS shows a very promising direction for scalable malware analysis. 
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