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Abstract—In this paper, we present a new precoding technique
using rotation transformations for closed loop multiple-input
multiple-output (MIMO) wireless systems, which does not require
the singular value decomposition (SVD) operation of the channel
transfer matrix and allows a simple maximum-likelihood (ML)
decoding at the receiver. We divide the precoding process into two
steps: orthogonalization transformation which induces orthogo-
nality between transmitted signals and beamforming transfor-
mation which achieves diversity gain. In the proposed method,
we utilize a design criterion based on the minimum Euclidean
distance between the received signals and then the vector or-
thogonalization is connected to the vector-norm maximization. In
this paper, we focus on spatial multiplexing systems transmitting
two independent data streams. Compared with the SVD based
schemes, the proposed approach maintains a low complexity
by relying only on three different kinds of rotation matrices
for both the orthogonalization and beamforming transformation.
Simulation results confirm that the proposed two step precoding
achieves the better performance than the conventional SVD based
MIMO precodings with reduced complexity.

Index Terms—Closed-loop systems, maximum likelihood detec-
tion(MLD), MIMO systems, space division multiplexing (SDM).

I. INTRODUCTION

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) sys-
tems have recently emerged as one of the most signifi-

cant technical breakthroughs for next generation communica-
tion systems. The use of multiple antennas at both transmitter
and receiver in wireless communication links has been shown
to be capable of achieving extraordinary bit rates without
incurring any penalty in power or bandwidth [1] [2]. Expected
benefits include higher system capacity and improved quality
of service as a result of spatial multiplexing (SM) and diversity
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gain [3] [4]. The work in [5] highlights different classes of
techniques and algorithms which attempt to realize the various
benefits of MIMO systems such as space-time coding schemes.

In open loop systems where channel state information (CSI)
is known only at the receiver, the space-time coding techniques
exploit transmit diversity [6] [7] [8] while the SM schemes are
used to enhance spectral efficiency [9] [10] [11]. Meanwhile,
to meet an increasing demand of providing high-rate high-
quality multimedia services, we need to obtain a full array
gain by utilizing knowledge of the channel at both transmit
and receive sides simultaneously. The information theoretic
analysis suggests that an additional performance gain can
be extracted from multiple antennas in the presence of CSI
at the transmitter [12] [13]. In such closed-loop systems,
data streams can be transmitted through each eigen mode of
the MIMO channel by precoding the input streams prior to
transmission [14] [15]. The optimization of linear precoding
and decoding has been presented in [16], [17] and [18].

Most work on these closed-loop MIMO systems has been
carried out by performing singular value decomposition (SVD)
of the channel transfer matrix. It is well known that such
SVD-based transmission schemes attain optimality in terms
of channel capacity when combined with the water-filling
method which allocates the optimized amounts of transmit
power to spatial subchannels [2] [15]. Although the SVD-
based transmission with waterfilling may be optimal from an
information theoretic point of view, it is not necessarily the
best scheme in practice because the performance of actual
MIMO links is sensitive to other measures such as bit error
rate (BER) rather than the maximum mutual information [5].
Moreover, the SVD-based precoding methods may suffer from
high computational complexity, since the SVD computation is
inherently an iterative process [19]. Therefore, there exists a
need to more efficiently perform precoding in a closed-loop
MIMO system.

In this paper, we propose a new precoding approach by
dividing the precoding process into two steps: orthogonal-
ization transformation which induces orthogonality among
transmitted signals and beamforming transformation1 which
achieves diversity gain. We focus on the development of
precoding techniques based on three different rotation opera-
tions. We will start with a generalization of our earlier works
presented in [20] and [21], which introduced the concept of

1While the term "beamforming" is typically used for the case of single data
stream transmission, in this paper the concept of beamforming is extended to
general linear precoding.
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Fig. 1. Schematic diagram of the proposed two-step precoding in closed-loop
MIMO systems.

orthogonalized spatial multiplexing (OSM) based on a single
rotation transformation. In order to further exploit the diversity
gain, we extend the OSM technique in [21] by introducing
a new pair of rotation transformations and combining with
a beamforming technique presented in [22] and [27]. For
optimizing the performance, we use a design criterion based
on the minimum Euclidean distance between the received sig-
nals [23]. The proposed transmission scheme does not require
the SVD operation while a simple maximum-likelihood (ML)
decoding is possible at the receiver. Simulation results show
that the proposed scheme outperforms the SVD-based schemes
with reduced complexity.

For clarity, the following notations are used for the de-
scription throughout this paper. Normal letters represent scalar
quantities, boldface letters indicate vectors and boldface up-
percase letters designate matrices. Letters with a bar account
for complex variables. For any complex notation c, we denote
the real and imaginary part of c by �[c] and �[c], respectively.

The rest of the paper is organized as follows: In Section II,
we present a general description of the proposed two step
MIMO precoding algorithm. Section III reviews the OSM
algorithm and presents an orthogonalization transformation
based on three rotation operations. We also discuss on the
criterion for choosing one of the three rotation operations
for OSM transmission. Next in Section IV, we describe
beamforming transformation which increases the minimum
Euclidean distance between different received signal vectors.
In Section V, the simulation results are presented comparing
the proposed method with other closed-loop MIMO tech-
niques. Finally, the paper is terminated with conclusions in
Section VI.

II. SYSTEM DESCRIPTIONS

In this section, we present a general description of the
proposed two step MIMO precoding algorithm, as shown
in Fig. 1. Consider a MIMO wireless link for flat fading
channels with Mt transmit antennas and Mr receive antennas
where we transmit M independent data streams simultane-
ously (M ≤ min(Mt, Mr)). The receiver is assumed to have
perfect knowledge of the channel.

The proposed MIMO transmission technique applies the
two-step precoding process which comprises an orthogonaliza-
tion precoding, denoted by a matrix Fs of size M -by-M , and
a beamforming precoding, denoted by a matrix Fb of size Mt-
by-M . At the transmitter, the information bits are first demulti-
plexed into M parallel substreams and symbol-mapped, which

yields an M -dimensional symbol vector x = [x̄1, · · · , x̄M ]t

where (·)t denotes the transpose of a vector or matrix. Here
x̄i is given as x̄i = xi,I + jxi,Q where j =

√−1. The or-
thogonalization precoder Fs receives the symbol vector x and
generates an M -dimensional signal vector xs = Fsx. Then
the signal vector xs is further multiplexed by a beamforming
precoder Fb, which yields an Mt-dimensional symbol vector
xb = Fbxs. The resulting precoded symbol vector xb is then
transmitted from Mt transmit antennas via the MIMO channel
H to the receiver.

Let us define the Mr-dimensional complex received signal
vector y as

y = HFbFsx + n (1)

where n is a complex Gaussian noise vector with the covari-
ance matrix σ2

nIMr . Here Id indicates an identity matrix of
size d. In (1), the channel response matrix can be written as

H =
[
h1 h2 · · · hMt

]
=

⎡
⎢⎣

h11 · · · h1Mt

...
. . .

...
hMr1 · · · hMrMt

⎤
⎥⎦

where hi denotes the i-th column of H and hji represents
the channel response coefficient between the ith transmit and
the jth receive antenna. At the receiver, the ML receiver
provides the estimated symbol vector x̂ = [ˆ̄x1, · · · , ˆ̄xM ]t,
which is an ML estimate of the transmitted symbol vector
x = [x̄1, · · · , x̄M ]t.

In the following definition, we shall define three different
kinds of orthogonality between two complex-valued vectors
[22].

Definition 1: For two complex vectors v1 and v2, the
Hermitian product is defined by

〈v1,v2〉 = v1
†v2

= 〈v1,v2〉R + j 〈v1,v2〉I
where 〈v1,v2〉R and 〈v1,v2〉I indicate the real part and the
imaginary part of 〈v1,v2〉, respectively, and (·)† denotes the
complex conjugate transpose of a vector or matrix. Here v1

and v2 are said to be inner orthogonal if 〈v1,v2〉R = 0.
Similarly, outer orthogonal is defined if 〈v1,v2〉I = 0. Note
that in general we refer to two complex vectors v1 and v2 as
being complex orthogonal if and only if they are both inner
and outer orthogonal.

Now we briefly discuss the connection between the vector-
norm maximization and the vector orthogonalization process.
For example, given two Mr-dimensional complex vectors
v1 and v2, we consider a unitary transformation Po which
maximizes ||v′

1|| and minimizes ||v′
2|| as

[v′
1 v′

2] = [v1 v2]Po, (2)

where || · || denotes the Euclidean norm. Utilizing the SVD
of the Mr-by-two matrix [v1 v2] in (2), we can represent the
matrix [v1 v2] as

[v1 v2] = [u1 u2]
[

λmax 0
0 λmin

]
[w1 w2]

†

where {u1,u2} and {w1,w2} are the two left and right
singular vectors corresponding to non-zero singular values
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λmax and λmin, respectively. This trimmed-down version of
the SVD is referred to as the thin SVD [19]. Then, it is clear
from the definition of the SVD that if the right singular vectors
[w1 w2] are employed as Po in (2), the norm of v′

1 reaches
its maximum value of λmax [24] since

[v′
1 v′

2] = [u1 u2]
[

λmax 0
0 λmin

]
[w1 w2]

† [w1 w2]

= [λmaxu1 λminu2] .

Meanwhile, the norm of the other column v′
2 is minimized as

λmin. It should be noted that (v′
1)

† v′
2 = 0 even though v1

and v2 may not be orthogonal. This complex orthogonalization
of two column vectors v′

1 and v′
2 results from the first order

condition for the maximum of ||v′
1|| [25].

In this paper, we will utilize the connection of the vector or-
thogonalization with the vector-norm maximization to describe
our new precoding technique. In particular, in Section III we
will apply the orthogonality relation to the design of Fs while
exploiting the aspect of the norm maximization in the design
of Fb in Section IV.

III. ORTHOGONALIZATION TRANSFORMATION FOR OSM

In this section, we review the OSM scheme introduced in
[21] and present the orthogonality precoder Fs by introducing
new rotation matrices presented in [22] and [27]. These
rotation matrices will also be employed for development of
Fb in Section IV.

As shown in Fig. 1, we apply the beamforming transforma-
tion Fb on the original channel response matrix H to obtain
Hb, which is further transformed into the effective channel
matrix Hs by the orthogonalization transformation Fs (i.e.,
Hs = HbFs = HFbFs). The beamforming transformation
Fb will be described in detail in the following section. For
now, we assume that a beamforming matrix Fb is given. In
this section, we present an orthogonalization transformation
Fs based on three different kinds of rotation matrices for OSM
transmission and describe the corresponding ML decoding
method by converting the complex signal model into a real
lattice notation, which allows a simple ML decoding at the
receiver. Our interest is restricted to spatial multiplexing sys-
tems transmitting two independent data streams (i.e., M = 2),
which are important in practical wireless system designs.

Now we can write the transmitted signal vectors as x̄ =
[x̄1 x̄2]t. For an Mc-ary QAM modulation system, the real-
valued symbols xi,I and xi,Q are chosen from a PAM signal
set Sη = ±1,±3, · · · ,±(2

η
2 −1), where η = log2 Mc denotes

the number of bits per symbol (two dimensions).
By defining Hb =

[
h

b

1 h
b

2

]
= HFb and Hs =

[
h

s

1 h
s

2

]
=

Hb Fs, the original system model in (1) can be written as

y = HbFsx + n (3)

= Hsx + n

where the Mr-by-two matrix Hb accounts for the effective
channel matrix for xs = Fsx.

Equivalently, the real-valued representation of the system
(3) is given as [26]

y = HbFsx + n = Hsx + n

where y =
[ �[yt] �[yt]

]t
, x =

[ �[xt] �[xt]
]t =

[ x1,I x2,I x1,Q x2,Q ]t, n =
[ �[nt] �[nt]

]t
,

Fs =
[ �[Fs] −�[Fs]

�[Fs] �[Fs]

]
, Hb =

[ �[Hb] −�[Hb]
�[Hb] �[Hb]

]
=

[ hb
1 hb

2 ḣ
b

1 ḣ
b

2 ],
and

Hs = HbFs =
[ �[Hs] −�[Hs]

�[Hs] �[Hs]

]
= [ hs

1 hs
2 ḣ

s

1 ḣ
s

2 ]. (4)

Here n is a real Gaussian noise vector with the covariance
matrix σ2

n

2 I2Mr .
We notice that from the definition of the real-valued repre-

sentation in (4), the column vectors hs
1 and hs

2 are orthogonal
to ḣ

s

1 and ḣ
s

2, respectively, regardless of Fs. Furthermore, it
is easy to show that ||hs

1|| = ||ḣs

1|| and ||hs
2|| = ||ḣs

2||.
Based on this lattice representation, the ML estimate of the

transmitted vector x is obtained by

x̂ = [x̂1,I , x̂2,I , x̂1,Q, x̂2,Q]t

= arg min
x1,I ,x2,I ,x1,Q,x2,Q∈Sη

||y − Hsx||2 . (5)

Note that the ML decoding complexity in this case is polyno-
mial in the number of constellation points.

In what follows, we present a precoding matrix Fs that
achieves orthogonality between columns of Hs in (4), which
allows a simple ML decoding in (5). From Definition 1 and
Equation (4), we obtain the following relations:〈

h
s

1,h
s

2

〉
R

= hs
1 · hs

2 = ḣ
s

1 · ḣ
s

2 (6)

and 〈
h

s

1,h
s

2

〉
I

= hs
1 · ḣ

s

2 = −hs
2 · ḣ

s

1 (7)

where · denotes the inner (dot) product between two real-
valued vectors. These properties are essential to the develop-
ment of the proposed scheme.

We first review the OSM scheme proposed in [21], where
the following rotation matrix S(θ) is employed for Fs as

S(θ) =
[

1 0
0 exp (jθ)

]
.

We will refer to this scheme as original mode. In the real-
valued representation, the corresponding rotation operation
can be written as

S(θ)=
[�[S(θ)] −�[S(θ)]
�[S(θ)] �[S(θ)]

]
=

⎡
⎢⎢⎣

1 0 0 0
0 cos(θ) 0 − sin(θ)
0 0 1 0
0 sin(θ) 0 cos(θ)

⎤
⎥⎥⎦.

It is shown in [21] that by applying the rotation angle

θS = tan−1

⎛
⎝
〈
h

b

1,h
b

2

〉
I〈

h
b

1,h
b

2

〉
R

⎞
⎠ ,

we can write the effective channel matrix in (4) for the original
mode as

Hs =
[
hs

1 hs
2 ḣ

s

1 ḣ
s

2

]

=
[
hb

1 hb
2 ḣ

b

1 ḣ
b

2

]⎡⎢⎢⎣
1 0 0 0
0 cos(θS) 0 − sin(θS)
0 0 1 0
0 sin(θS) 0 cos(θS)

⎤
⎥⎥⎦
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where now we have the relations hs
1 ⊥ ḣ

s

2 and hs
2 ⊥ ḣ

s

1 as
well as hs

1 ⊥ ḣ
s

1 and hs
2 ⊥ ḣ

s

2.
Therefore, for the original OSM with Fs = S(θS), the

resulting two vectors h
s

1 and h
s

2 become outer orthogonal since〈
h

s

1,h
s

2

〉
I

= hs
1 ·ḣ

s

2 = hs
2 ·ḣ

s

1 = 0, but
〈
h

s

1,h
s

2

〉
R
	= 0. What

is more important to note is that the subspace spanned by hs
1

and hs
2 is orthogonal to that spanned by ḣ

s

1 and ḣ
s

2. Utilizing
the established orthogonality between the columns of Hs, the
ML solution x̂ = [x̂1 x̂2]t in Equation (5) for the original
OSM can be individually given by [21]

[x̂1,I x̂2,I ] = arg min
x1,I ,x2,I∈Sη

∣∣∣∣
∣∣∣∣y − [ hs

1 hs
2]
[

x1,I

x2,I

]∣∣∣∣
∣∣∣∣
2

(8)

and

[x̂1,Q x̂2,Q] = arg min
x1,Q,x2,Q∈Sη

∣∣∣∣
∣∣∣∣y − [ḣ

s

1 ḣ
s

2 ]
[

x1,Q

x2,Q

]∣∣∣∣
∣∣∣∣
2

.

(9)

Note that the size of the search set for each metric reduces
from M2

c to Mc compared to (5). In other words, the complex-
ity of the ML decoding of the proposed system is the same
as symbol-by-symbol decoding.

Next, we introduce two other new rotation matrices for
OSM using the method in [22]. We first derive a precoding
matrix Fs which establishes the inner orthogonality between
h

s

1 and h
s

2

(〈
h

s

1,h
s

2

〉
R

= 0
)
. From Equation (6), it is obvious

that in order to establish the inner orthogonality, we need to
achieve the orthogonality hs

1 ⊥ hs
2 and ḣ

s

1 ⊥ ḣ
s

2. To this end,
we can apply the following transformation

Hs =
[
hs

1 hs
2 ḣ

s

1 ḣ
s

2

]
=
[
hb

1 hb
2 ḣ

b

1 ḣ
b

2

]
×⎡

⎢⎢⎣
cos(θ) sin(θ) 0 0
− sin(θ) cos(θ) 0 0

0 0 cos(θ) sin(θ)
0 0 − sin(θ) cos(θ)

⎤
⎥⎥⎦ (10)

which is equivalent to, in a complex domain,

[h
s

1 h
s

2] = [h
b

1 h
b

2]I(θ) (11)

where the inner rotation matrix I(θ) is given as (a.k.a., Givens
rotations [19])

I(θ) =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.

This OSM mode will be referred to as inner mode.
From Equation (10), we can establish the inner orthogonal-

ity if〈
h

s

1,h
s

2

〉
R

= hs
1 · hs

2 =
(
||hb

1||2 − ||hb

2||2
)

cos θ sin θ

+ ((cos θ)2 − (sin θ)2)
〈
h

b

1,h
b

2

〉
R

= 0.

Then, after some manipulations, the optimal rotation angle
results in

θI = Atan
(
||hb

1||2 − ||hb

2||2,
〈
h

b

1,h
b

2

〉
R

)

where Atan(x, y) � tan−1

(
x−

√
x2+4y2

2y

)
.

With this inner orthogonality, we achieve hs
1 ⊥ hs

2 and
ḣ

s

1 ⊥ ḣ
s

2 as well as hs
1 ⊥ ḣ

s

1 and hs
2 ⊥ ḣ

s

2, which means
that the subspace spanned by hs

1 and ḣ
s

2 is orthogonal to that
spanned by ḣ

s

1 and hs
2. It follows that the ML solution x̂ in

Equation (5) for the inner OSM can be obtained by

[x̂1,I x̂2,Q] = arg min
x1,I ,x2,Q∈Sη

∣∣∣∣
∣∣∣∣y − [ hs

1 ḣ
s

2]
[

x1,I

x2,Q

]∣∣∣∣
∣∣∣∣
2

and

[x̂2,I x̂1,Q] = arg min
x2,I ,x1,Q∈Sη

∣∣∣∣
∣∣∣∣y − [hs

2 ḣ
s

1 ]
[

x2,I

x1,Q

]∣∣∣∣
∣∣∣∣
2

.

Finally, we consider a rotation matrix for the OSM based on
the outer orthogonality

(〈
h

s

1,h
s

2

〉
I

= 0
)
. From Equation (7),

in order to make the two column vectors h
s

1 and h
s

2 become
outer orthogonal, we need to apply a rotation transformation
onto a pair of columns {hb

1, ḣ
b

2} and {hb
2, ḣ

b

1} in (4) so that
hs

1 ⊥ ḣ
s

2 and hs
2 ⊥ ḣ

s

1. The corresponding rotation operation
can be written as[
hs

1 hs
2 ḣ

s

1 ḣ
s

2

]
=
[
hb

1 hb
2 ḣ

b

1 ḣ
b

2

]
×⎡

⎢⎢⎣
cos(θ) 0 0 − sin(θ)

0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0

sin(θ) 0 0 cos(θ)

⎤
⎥⎥⎦

which is equivalent to

[h
s

1 h
s

2] = [h
b

1 h
b

2]O(θ) (12)

where the outer rotation matrix O(θ) is defined as

O(θ) =
[

cos(θ) j sin(θ)
j sin(θ) cos(θ)

]
.

This OSM mode will be referred to as outer mode.
In this case, we can achieve the outer orthogonality between

h
s

1 and h
s

2 by applying the following rotation angle

θO = Atan
(
||hb

1||2 − ||hb

2||2,
〈
h

b

1,h
b

2

〉
I

)
.

In the outer mode, the outer orthogonality guarantees that we
can use the same ML decoding metric of (8) and (9) as in the
original mode.

Now we have three different OSM modes for Fs. Thus,
we need to select the best mode among the three modes
for each channel realization. We will present a selection
metric based on the minimum Euclidean distance since the
minimum Euclidean distance between the received signals for
two transmitted signals xc = [x1,c x2,c]t and xe = [x1,e x2,e]t

(xc 	= xe) accounts for the performance of the ML receiver
at high signal-to-noise ratio (SNR) [23].

Given the effective channel Hb =
[
h

b

1 h
b

2

]
, we can compute

the squared minimum distance d 2
min

(
Hb,Fs

)
as

d 2
min

(
Hb,Fs

)
= min

xc,xe∈Q2

∣∣∣∣Hs(xc − xe)
∣∣∣∣2

= min
xc,xe∈Q2

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
[ hs

1 hs
2 ḣ

s

1 ḣ
s

2 ]

⎡
⎢⎢⎣

�[x1,c − x1,e]
�[x2,c − x2,e]
�[x1,c − x1,e]
�[x2,c − x2,e]

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

2

(13)
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where Q denotes a QAM constellation of size Mc.
Note again that in the case of the OSM transmission with

original or outer mode the outer orthogonality makes the
subspace spanned by hs

1 and hs
2 orthogonal to that spanned

by ḣ
s

1 and ḣ
s

2. Furthermore, we notice that the geometrical
relationship between hs

1 and hs
2 remains the same as that

between ḣ
s

1 and ḣ
s

2 since the lengths of two vectors hs
1 and hs

2

and the angle between them are the same as ḣ
s

1 and ḣ
s

2’s (i.e.,
||hs

1|| = ||ḣs

1||, ||hs
2|| = ||ḣs

2||, and hs
1 · hs

2 = ḣ
s

1 · ḣs

2). This
property indicates that two pairs of real signals {x1,I , x2,I}
and {x1,Q, x2,Q} in (8) and (9) experience effective channels
with the same quality with respect to the minimum Euclidean
distance. In other words, when computing the minimum dis-
tance, we need to consider only one of the two subspaces. In
this case, assuming that two symbols x1 and x2 employ the
same constellation, for both the original and outer modes, i.e.,
Fs = O(θO) or S(θS), Equation (13) can be simplified as
[21]

d 2
min

(
Hb,Fs

)
=

min
xc
1,I ,xe

1,I ,xc
2,I ,xe

2,I∈Sη

∣∣∣∣
∣∣∣∣[ hs

1 hs
2 ]
[

xc
1,I − xe

1,I

xc
2,I − xe

2,I

]∣∣∣∣
∣∣∣∣
2

, (14)

where we define xc
1,I = �[x1,c], xe

1,I = �[x1,e], xc
2,I =

�[x2,c], and xe
2,I = �[x2,e].

In a similar way, we can obtain the minimum Euclidean
distance for the inner OSM mode as

d 2
min

(
Hb, I(θI)

)
=

min
xc
1,I ,xe

1,I ,xc
2,Q,xe

2,Q∈Sη

∣∣∣∣
∣∣∣∣[ hs

1 ḣ
s

2 ]
[

xc
1,I − xe

1,I

xc
2,Q − xe

2,Q

]∣∣∣∣
∣∣∣∣
2

(15)

where xc
2,Q = �[x2,c] and xe

2,Q = �[x2,e].
Now we are ready to present a selection criterion based

on the minimum Euclidean distance. Let F
∗
s be an optimal

mode for a given channel realization selected from the set of
rotation matrices FU = {S(θS), I(θI),O(θO)}. Then, we can
determine the optimal mode by choosing Fs which has the
largest minimum Euclidean distance as

F
∗
s = arg max

Fs ∈ FU
d 2

min

(
Hb,Fs

)
. (16)

It follows from the equation above that the achievable min-
imum Euclidean distance for a given channel matrix Hb is
denoted by d 2

min

(
Hb,F

∗
s

)
. In the simulation section, we will

show that we can achieve a significant performance gain by
appropriately choosing the OSM mode based on the above se-
lection criterion for each channel realization. In the following
section, we will illustrate a beamforming transformation Fb

based on the maximization of d 2
min

(
Hb,F

∗
s

)
.

IV. BEAMFORMING TRANSFORMATION FOR INCREASING

THE EUCLIDEAN DISTANCE

In this section, we study a beamforming transformation Fb

to apply the OSM transmission to MIMO systems with more
than two transmit antennas (Mt > 2). In the two transmit
antenna case, Fs can be employed alone without Fb. While in
the previous section the rotation matrices are used to establish
the inner and outer orthogonality between two channel column

vectors, in this section we employ the inner and outer rotation
matrices in the design of Fb to exploit the aspect of the norm
maximization.

We first define two Mt-by-Mt rotation matrices: the in-
ner rotation matrix I(i, j,H) and the outer rotation matrix
O(i, j,H), as an extension of two-by-two matrices I(θI) and
O(θO). The inner rotation matrix I(i, j,H) with an index pair
(i, j) and the channel matrix H has the form of

I(i, j,H)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θij
I ) · · · sin(θij

I ) · · · 0
...

...
. . .

...
...

0 · · · − sin(θij
I ) · · · cos(θij

I ) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

θij
I = Atan

(||hi||2 − ||hj ||2,
〈
hi,hj

〉
R

)
.

Here I(i, j,H) is an identity matrix with the exception
of
[
I(i, j,H)

]
i,i

= cos(θij
I ),

[
I(i, j,H)

]
i,j

= sin(θij
I ),[

I(i, j,H)
]
j,i

= − sin(θij
I ) and

[
I(i, j,H)

]
j,j

= cos(θij
I ),

where [·]m,n denotes the (m, n)-th element of a matrix.
In a similar way, the outer rotation matrix O(i, j,H) is

given by the identity matrix of size Mt with the exception
of
[
O(i, j,H)

]
i,i

= cos(θij
o ),

[
O(i, j,H)

]
i,j

= j sin(θij
o ),[

O(i, j,H)
]
j,i

= j sin(θij
o ),

[
O(i, j,H)

]
j,j

= cos(θij
o ) where

θij
o = Atan

(||hi||2 − ||hj ||2,
〈
hi,hj

〉
I

)
.

It is straightforward to show that the above two ro-
tation matrices are unitary, i.e., I(i, j,H)†I(i, j,H) =
O(i, j,H)†O(i, j,H) = IMt . These two operations will affect
only two columns i and j while leaving the rest of the matrix
unchanged.

Our goal is to construct an Mt-by-two matrix Fb which
increases the minimum Euclidean distance d 2

min

(
Hb,F

∗
s

)
in

(16) for Hb = H · Fb =
[
h

b

1 h
b

2

]
. In this paper, instead

of directly constructing Fb, we first design an Mt-by-Mt

matrix FB which increases d 2
min

(
Hb,F

∗
s

)
in (16), and then

obtain Fb as the Mt-by-two submatrix by taking the first and
second columns from FB . Here Hb represents the Mr-by-two
submatrix obtained by taking the first two columns from the
matrix

HB = H · FB =
[
h

b

1 h
b

2 · · · h
b

Mt

]
. (17)

Note that adopting this approach allows us to build an Mt-by-
two matrix Fb based on Mt-by-Mt rotation matrices I(i, j,H)
and O(i, j,H).

We will increase the minimum Euclidean distance
d 2

min

(
Hb,F

∗
s

)
by increasing the norm of columns h

b

1 and h
b

2

in (17). As shown in Equation (2), the norm of one column is
maximized while the norm of the other column is minimized
when orthogonality between the two columns is established.
Using this observation, we can maximize the norm ||hb

1||
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and ||hb

2|| by trying to make the column vectors h
b

1 and h
b

2

orthogonal to the other columns h
b

k (k 	= 1 or 2). Although
such an optimal precoding matrix FB can be obtained by
utilizing the SVD of the channel matrix H, we employ the
orthogonalization process of two vectors based on I(i, j,H)
and O(i, j,H) as a constructive basis for the development of
FB to avoid high computational complexity associated with
the SVD operation.

For illustrative purposes, let us establish the inner and outer
orthogonality between two complex vectors v′

1 and v′
2 in

(2) by means of the inner and outer rotation transformations,
respectively. Note that the inner rotation operation I(θI) in
(11) can be used to force 〈v′

1,v
′
2〉R to zero, while the outer

rotation O(θO) in (12) can be employed to annihilate the
value of 〈v′

1,v
′
2〉I . As a result, the established orthogonality

increases the norm of v′
1. Substituting Po = I(θI) in (2) yields

||v′
1||2 =

||v1||2 + ||v2||2
2

+

√√√√( ||v1||2 − ||v2||2
2

)2

+ 〈v1,v2〉2R. (18)

Similarly with Po = O(θO), we have

||v′
1||2 =

||v1||2 + ||v2||2
2

+

√√√√( ||v1||2 − ||v2||2
2

)2

+ 〈v1,v2〉2I . (19)

Therefore, comparing (18) and (19), it is obvious that
in order to maximize ||v′

1||2, we should choose I(θI) if
|〈v1,v2〉R| ≥ |〈v1,v2〉I | for the beamforming process be-
tween two complex columns. Similarly we choose O(θO) if
|〈v1,v2〉R| < |〈v1,v2〉I |. We notice that the inner rotation
operation does not affect the value of 〈v1,v2〉I (i.e., 〈v′

1,v
′
2〉I

= 〈v1,v2〉I), while the outer rotation leaves the value
of 〈v1,v2〉R unchanged (i.e., 〈v′

1,v
′
2〉R = 〈v1,v2〉R). This

means that inner orthogonality between columns pre-
established in (11) remains unaffected by subsequent outer
operations in (12). Considering this fact, we may achieve
the complex orthogonality 〈v′

1,v
′
2〉 = 0 with extra com-

plexity by employing the inner rotation I(θI) and then ap-
plying the subsequent outer rotation O(θO). We notice that
a compromise between complexity and performance needs
to be made in designing FB . Instead of pursuing complex
orthogonality, in this paper we describe the beamforming
transformation FB which can be realized with moderate
complexity while maintaining a sufficient performance gain.
Simulation results show that for the case of the complex
orthogonality the performance improvement is marginal in
spite of the increase in complexity. Thus, we consider the
beamforming transformation as FB =

∏Mt

k=3 FB,k where
each component transformation FB,k employs only one of
the rotation matrices I(i, j,H) and O(i, j,H). Specifically,

with the aim of maximizing d 2
min

(
Hb,F

∗
s

)
, we apply the

component transformation FB,k = F
1

B,k or F
2

B,k depending
on the current channel conditions, where F

m

B,k represents

the rotation transformation to establish orthogonality between
columns h

b

m and h
b

k (for m = 1 or 2 and k = 3, 4, · · · , Mt).
The algorithm for determining FB starts with an ini-

tialization process HB = H (see algorithm below). For
each step, we determine the rotation transformations F

1

B,k

and F
2

B,k on the pair of (h
b

1,h
b

k) and (h
b

2,h
b

k), respec-
tively, and select the one that maximizes the minimum
Euclidean distance. For the first step (k = 3), a rota-
tion transformation F

1

B,3 on the pair of (h
b

1,h
b

3) is made

as follows. We compute
∣∣∣〈hb

1,h
b

3

〉
R

∣∣∣ and
∣∣∣〈hb

1,h
b

3

〉
I

∣∣∣ and

choose F
1

B,3 = I(1, 3,HB) if
∣∣∣〈hb

1,h
b

3

〉
R

∣∣∣ ≥ ∣∣∣〈hb

1,h
b

3

〉
I

∣∣∣,
otherwise choose F

1

B,3 = O(1, 3,HB). Define the inter-
mediate channel matrix as H

m

B = HB F
m

B,3 (m = 1, 2)
and H

m

b is given as the Mr-by-two matrix with the first
two columns of H

m

B . Then, we determine the optimal mode

F
∗
s,1 from (16) as F

∗
s,1 = argmaxFs ∈ FU d 2

min

(
H

1

b ,Fs

)
(
for the intermediate channel matrix H

1

B = HB F
1

B,3

)
and

denote the corresponding minimum Euclidean distance as
D1

3 = d 2
min

(
H

1

b ,F
∗
s,1

)
.

In a similar way, we determine the rotation transformation
F

2

B,3 on the pair of (h
b

2,h
b

3) by comparing
∣∣∣〈hb

2,h
b

3

〉
R

∣∣∣
and

∣∣∣〈hb

2,h
b

3

〉
I

∣∣∣ and then evaluate D2
3 = d 2

min

(
H

2

b ,F
∗
s,2

)
by computing H

2

B = HBF
2

B,3. Finally, we obtain the
first component transformation FB,3 = F

m3

B,3 where m3 =
arg maxm∈1,2 Dm

3 and update as HB = H
m3

B .
At each subsequent step k = 4, · · · , Mt, we determine the

component transformation FB,k = F
mk

B,k at the same way. To
summarize, we perform Mt − 2 successive transformations
FB,k on the column pairs (h

b

mk
,h

b

k) (k = 3, 4, · · · , Mt)
where mk is either 1 or 2 depending on the minimum distance
Dm

k . The whole algorithm can be described as follows:
We note again that the beamforming transformation Fb

is obtained as the Mt-by-two submatrix by taking the first
two columns from FB =

∏Mt

k=3 FB,k. It is also important
to note that the orthogonalization transformation Fs is given
by the optimal mode for k = Mt (i.e., Fs = F

∗
s,mk

with
k = Mt). This approach can be applied for any number of
receive antennas greater than or equal to two.

Now we will briefly address the computational complex-
ity issue. The main computational cost for each step k =
3, · · · , Mt can be assessed as follows:

1) When determining the rotation transformation F
1

B,k and

F
2

B,k, we need the computations of ||hb

1||, ||h
b

2||, ||h
b

k||,〈
h

b

1,h
b

k

〉
, and

〈
h

b

2,h
b

k

〉
. We notice that for k ≥ 4 the

norm values of ||hb

1|| and ||hb

2|| are given by Equations
(18) and (19) during the computation of F

∗
s,m at the

preceding step.
2) The computation complexity of H

m

B = HBF
m

B,k

is equivalent to that of the product of an Mr-
by-two complex matrix and a two-by-one real
vector since only the m-th column of H

m

B (for
m = 1 or 2) needs to be evaluated and F

m

B,k(
which is either I(m, k,HB) or O(m, k,HB)

)
has
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1: HB = H

2: for k = 3 : Mt

3: for m = 1 : 2

4: if
∣∣∣〈hb

m,h
b

k

〉
R

∣∣∣ ≥ ∣∣∣〈hb

m,h
b

k

〉
I

∣∣∣
5: F

m

B,k = I(m, k,HB)

6: else

7: F
m

B,k = O(m, k,HB)

8: end

9: H
m

B = HBF
m

B,k

10: F
∗
s,m = arg maxFs ∈ FU d 2

min

(
H

m

b ,Fs

)
11: Dm

k = d 2
min

(
H

m

b ,F
∗
s,m

)
12: end

13: mk = argmaxm∈1,2 Dm
k

14: FB,k = F
mk

B,k and HB = H
mk

B

15: end

16: FB =
∏Mt

k=3 FB,k

only four pure real and pure imaginary non-zero
elements plus ones on the diagonal.

3) When determining the matrix F
∗
s,m for H

m

b =[
h

b,m

1 h
b,m

2

]
, we need the values of ||hb,m

1 ||, ||hb,m

2 ||
and

〈
h

b,m

1 ,h
b,m

2

〉
in computing three rotation matrices

Fs of set FU . Note that ||hb,m

1 || and ||hb,m

2 || are given
by Equations (18) or (19) according to F

m

B,k in the
update H

m

B = HBF
m

B,k. The computation complexity

of d 2
min

(
H

m

b ,Fs

)
in Equations (14) and (15) for each

Fs consists of the product of an Mr-by-two complex
matrix and a two-by-two real matrix, S(Mc) products of
a 2Mr-by-two real matrix and a two-by-one real vector,
and S(Mc) inner products between 2Mr-dimensional
real vectors. Here S(Mc) denotes the size of the search
set in the computation of the minimum distance for Mc-
QAM constellation.

4) The computation complexity of FB =
∏Mt

k=3 FB,k is
negligible compared to the above three cases since
each transformation FB,k has only four pure real or
imaginary elements considered in matrix products and
only the first two columns of FB are to be evaluated.

In summary, for Mt > 2, the proposed scheme requires
(36Mt · S(Mc) + 74Mt − 72S(Mc) − 144)Mr real multipli-
cations for each channel realization. It is shown in [21] that
the size of the search set in (14) and (15) is only S(Mc) = 2
and 5 for Mc = 4 and 16, respectively, which indicates that
the complexity of the proposed method increases only linearly
with the number of transmit and receive antennas. We notice
that in the application of the proposed method, we can evaluate
rotation matrices without computing the angles. For example,
cos(θI) and sin(θI) for the inner rotation matrix I(θI) in (11)
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Fig. 2. Bit-error-rate performance comparison for the OSM transmission
with and without mode selection.

can be evaluated as follows: cos(θI) = 1√
t2+1

and sin(θI) =

t cos(θI) where t = x−
√

x2+4y2

2y with x = ||hb

1||2 − ||hb

2||2
and y =

〈
h

b

1,h
b

2

〉
R
.

In contrast, for the SVD-based transmission presented in
[16], [17] and [18] we need to compute M dominant right
singular vectors of the channel matrix. The iterative power
method is known to be particularly suited for computing the
dominant singular vectors of a matrix [19], which requires
(8MtMr + 4Mt + 4Mr)MNi + 4MtMr(M − 1) real mul-
tiplications in the SVD operation of an Mr × Mt matrix,
where Ni is the number of iterations in the power method.
In the simulation section, we will demonstrate that compared
to the SVD schemes based on the power method, the proposed
scheme achieves better performance with reduced complexity.

It is also worthy of note that other variations of this
algorithm are conceivable depending on a trade-off between
performance and complexity. For example, we can further
improve the performance of the proposed scheme by choosing
two columns of the channel matrix H as described in [20] and
constructing FB to maximize the distance criterion (16) for
the selected two columns.

V. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the efficacy of the proposed two step approach for closed-loop
MIMO systems in flat fading channels. We assume that the
elements of the MIMO channel matrix H are obtained from
an independent and identically distributed (i.i.d.) complex
Gaussian distribution. We also assume that the number of
transmitted spatial streams is two (M = 2) for all simulations.
Various closed-loop MIMO schemes are evaluated in terms of
the BER performance as a function of the average SNR in dB.

We first present the simulation results of the OSM mode
selection method based on the minimum Euclidean distance
described in (16) which determines the optimal OSM mode
for each channel realization. In Fig. 2, we compare the BER
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Fig. 3. Bit-error-rate performance comparison for the OSM transmission
with and without mode selection.

performance of various OSM modes for a MIMO system with
two transmit and two receive antennas using 4QAM. Our mode
selection offers 2.5 dB and 5 dB SNR gains over the original
mode OSM proposed in [21] and the fixed inner or outer mode
OSM, respectively, at a BER of 10−4.

Fig. 3 illustrates the performance comparison for the same
antenna configuration with 16QAM. The simulation results
exhibit the same trend as in Fig. 2 except that the performance
gap between the original mode OSM and the inner or outer
mode OSM decreases as the constellation size grows. The
proposed selection scheme still provides a 5 dB gain over the
fixed inner or outer mode. These simulation results show that
we can achieve a significant performance gain by properly
choosing the OSM mode based on the proposed selection
criterion for each channel realization.

For the simulation results in Figs. 4 and 5, we will compare
the following systems:

• Optimal Unitary Precoding (OUP): A unitary matrix
based on SVD of the MIMO channel is applied to
diagonalize the channel matrix [15].

• Optimal Linear Precoding (OLP): Jointly optimized lin-
ear precoder and decoder are applied based on the min-
imum mean square error (MMSE) criterion [16] which
minimizes the sum of the mean square errors (MSEs) of
all subchannels.

For comparison purposes, we also consider the performance
of ML detection algorithm in (open-loop) MIMO systems with
Mt transmit and Mr receive antennas (denoted by "Mt ×Mr

MIMO with MLD"), where the number of the search candi-
dates for the ML detection is MMt

c without any precoding.
In Figs. 4 and 5, we depict the BER comparison of the

proposed precoding and two SVD-based precodings with
Mr = 2 and 4QAM. We remark that for the two receive
antenna case the SVD solution of a MIMO channel can be
obtained in a closed form without numerical problems. For
the Mt = 3 case presented in Fig. 4, we can see that at a
BER of 10−4 the proposed precoding provides a 7.5 dB gain
over the 2 × 2 MIMO with MLD scheme. More importantly,

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

3 Tx and 2 Rx antennas in 4bps/Hz over flat-fadings

2x2 MIMO with MLD
OUP
OLP
Proposed precoding

Fig. 4. Bit-error-rate performance comparison between the proposed scheme,
OUP and OLP.
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Fig. 5. Bit-error-rate performance comparison between the proposed scheme,
OUP and OLP.

Fig. 4 shows that the performance of the proposed precoding
is 7 dB and 4.5 dB better than the OUP and OLP, respectively.
As the number of transmit antennas increases to 4 in Fig. 5,
the performance gain over the 2x2 ML case grows up to 10
dB at a BER of 10−4. This figure also shows that the proposed
two step precoding outperforms both the OUP and OLP by
3.5 dB and 1.5 dB, respectively. In the case of these SVD-
based methods, data streams assigned to weaker eigen modes
dominate the overall system performance since the weaker
subchannels are more prone to errors. This causes the OUP
and OLP methods to perform worse than the proposed two
step precoding.

In order to improve the BER performance of the OLP
method, we can further apply the rotation matrix to the OLP
so that the MSEs become identical as suggested by [18], and
this will be denoted by "ARITH-BER". As the rotation matrix
is applied to the OLP, the orthogonality among MIMO spatial
subchannels is lost. Thus, to mitigate intersymbol interference
and to allow for a simple receiver structure we use the optimal
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Fig. 6. Bit-error-rate performance comparison for two/three transmit and
two receive antenna.

MSE receive matrix presented in [18]. While not included in
this paper due to space limitation, we have witnessed that
when combined with the symbol rotation method in [18] the
proposed scheme can also achieve up to 1 dB gain without
additional complexity.

Fig. 6 compares the performance of the proposed method
and ARITH-BER with 4QAM. In this figure, the number of
receive antennas is fixed to 2, while the number of transmit
antennas is set to 2 and 3. Fig. 6 shows that the proposed
method outperforms the ARITH-BER method by more than
6 dB at a BER of 10−3 for Mt = 2. This result can be
explained as follows. The ARITH-BER algorithm assumes
a symbol-by-symbol detection, whereas, as can be seen in
(5), we perform joint detection of the two transmitted signals.
Remember that the actual detection is still done at the same
computational complexity as symbol-by-symbol detection due
to the decoupling between real and imaginary parts. The
performance gap between the proposed and ARITH-BER
methods reduces to approximately 2 dB at a BER of 10−4

as Mt increases to 3. The benefit of the increased number
of antennas is more pronounced for the ARITH-BER method
than our scheme since the ARITH-BER better exploits the
increased available diversity by performing the full SVD
decomposition of a transfer matrix, allocating the total transmit
power to spatial subchannels and applying a pre-rotation of
the data symbols at the transmitter. Meanwhile, the proposed
precoding algorithm becomes more attractive than ARITH-
BER in terms of computational complexity.

Finally, in Fig. 7, the BER performance of the SVD scheme
based on the iterative power method is simulated for 3 × 3
MIMO systems. Note that with a finite number of iterations
the SVD-based schemes cannot completely decompose the
MIMO channel into parallel independent subchannels. In this
case, there exist no simple analytical solutions for power
allocation and thus only the OUP scheme is considered in
the simulation. We have used an MMSE receiver in order to
handle the subchannel interference due to incomplete channel
decomposition. Through computer simulations, we found that
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Fig. 7. Comparison between the proposed scheme and the SVD scheme
based on the power method.

Ni = 3 iterations are required for the power method to achieve
the BER performance of the case with perfect right singular
vectors for this antenna configuration. Fig. 7 shows that the
proposed scheme outperforms the conventional SVD-based
scheme with reduced complexity as the proposed scheme
requires 450 multiplications, while the power method needs
612 multiplications.

VI. CONCLUSION

In this paper, we have proposed a new MIMO trans-
mission technique which divides the precoding process into
two steps: orthogonalization transformation and beamforming
transformation. The orthogonalization and beamforming trans-
formations are developed to increase the minimum Euclidean
distance between two different received signal vectors. Mean-
while, we have used three rotation matrices to induce inner
and outer orthogonality between two column vectors. The
established orthogonality provides two important properties.
First, a simple ML decoder is made possible at the receiver to
decode two transmitted signals. Second, the search complexity
of the minimum Euclidean distance between received signal
vectors is substantially reduced. Because of the intractable
nature of finding closed-form expressions for the average BER
for the proposed system, numerical Monte-Carlo simulation
results are provided to evaluate the proposed method. Sim-
ulation results show that the proposed precoding achieves
a performance gain over the SVD-based precodings while
requiring lower complexity.

Due to practical limitations on the number of antennas for
MIMO systems, we have considered spatial multiplexing sys-
tems transmitting two independent data streams in this paper.
The concept of the proposed two-step precoding strategy can
be extended to more than two data streams (M > 2). The
analysis of the diversity and array gains achievable with the
proposed system is also an interesting topic for future work.
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