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Abstract. Data stream is a newly emerging data model foliegtons like
environment monitoring, Web click stream, netwaidffic monitoring, etc. It
consists of an infinite sequence of data pointom@panied with timestamp
coming from external data source. Typically datarses are located onsite and
very vulnerable to external attacks and naturarodles, thus outliers are very
common in the datasets. Existing techniques fdiesiudetection are inadequate
for data streams because of its metamorphic datahdition and uncertainty.
In this paper we propose an outlier detection tieghe) called Distance-Based
Outline Detection for Data Streams (DBOD-DS) based movel continuously
adaptive probability density function that addresak the new issues of data
streams. Extensive experiments on a real datasehdteorology applications
show the supremacy of DBOD-DS over existing techeqyin terms of
accuracy.
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1 I ntroduction

Applications like environment monitoring, Web clickream, and network traffic
monitoring use a new data model to represent tieier ending series of data called
data streams. Data stream has received a greatoflesttention in the research
community in recent years due to its novel charasties. On the other hand every
real life dataset has outliers in it [6]; therefaratlier detection is a very important
part of data acquisition. In most of the caseswitbek done on outlier detection for
data streams [1], [3], [8] is adopted from outlitatection techniques for regular data
with ad-hoc modifications and do not address &l tlovel characteristics of data
streams. In this paper we propose a novel outk¢edadion technique to fill the gap.
Before going further we briefly discuss the noviehmacteristics of data streams and
data stream processing requirements.

Applications for data streams are significantlyfeliént from those for regular data
in many facets. In data stream applications, datee the essence of time, are mostly
append only and, in many cases, are transient[$2],therefore offline store and
process approaches are not very suitable for omlata stream; consequently data
processing has to be online and incremental [2&8}alare continuously coming in a
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streaming environment in a very fast rate with gfiag data distribution [17], and

thus any fixed data distribution is not adequateugh to capture the knowledge. On
top of this, in many cases uncertainty in dataast® makes processing more
complicated. The novel characteristics of dataastie bring the outlier detection
problem out on the open again. The next paragnajpbduces the problem of outlier
detection in a real life dataset.

An outlier refers to a data point which does natfoom well to the pattern of the
other data points or normal behaviors or confornfi veethe outlying behavior [4],
[6]. Pragmatically, normal behaviors are easy tnidy and every possible outlying
behavior are difficult to compile; nonetheless thelying behaviors are changing
over time. Almost all real datasets have outli&ks The major reasons behind the
outliers are malicious activity or intrusion, ingtmental error or setup error, change in
environment, human error, etc. Evidently, outlietettion is not a new topic at all. It
has been in the literature since the eighteenttuceifd]. Even though the problem
has been in the literature for so many years ftiis very popular; this is because
nobody knows the real outliers and the detectionudfiers is very subjective to the
application. The outlier detection with perfect fidance in regular data is still not an
easy problem. This is because of the inherent vaggsein the definition of outlier,
like how to define regular behavior, to what exteswd outlier needs to be not
conforming to the regular behavior, etc. The problef outlier detection becomes
more complicated when considering new charactesistif data streams, such as
unbounded data, varying data distribution, dateettamty, and temporal dimension.
None of the existing outlier detection techniquedrasses all of these characteristics.
In this paper, we present a novel outlier detect@mmnique for data streams based on
the concept of probability density function, callbtstance-Based Outlier Detection
for Data Streams (DBOD-DS), that addresses allctteracteristics of data streams.
We then present the results of the experiments wleathave conducted on a real
dataset obtained from a meteorological data strappiication [7] to compare the
accuracy and execution time of DBOD-DS with the twdlier detection techniques
existing in the literature: ART [8] and ODTS [3].

The rest of the paper is organized as follows:i8e@ discusses the work related
to outlier detection in data stream; Section 3 dess our approach and its
implementation; Section 4 presents the experimartsllts we have obtained, and
finally Section 5 provides our conclusions and fattesearch.

2 Related Work

Most of the outlier detection techniques for dat@ams use a sliding window to
capture the recent data values and detect theersuttiside the window [1], [3], [26]
with multi-pass algorithms. Data streams changer dvee and an outlier for a
particular window may appear as an inlier in anothendow; hence the notion of
outlier in a data stream window is not very coneréevertheless, an inlier can be
shown as an outlier by changing the window size {Blis the outlier detection
techniques that use a sliding window work well lifetwindow size is chosen
carefully. However, different techniques interpwahdow size differently; in most
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situations, it is difficult for the domain exped thoose the window size correctly
without knowing the interpretation of a particutachnique.

Auto-regression based techniques for outlier detecare very popular for time
series outlier detection [4]. Some outlier detattiechniques for data streams adopt
auto-regression [8], [22]. Most of the auto-regm@sdased techniques work similarly
in which a data point is compared with an estimatediel and a metric is computed
based on the comparison. If the metric is beyondrtain limit (called cut-off limit),
the data point is identified as an outlier. The aadages of auto-regression based
models are that they are computationally inexpensivd they provide an estimated
value for the outlier. However, the success of thethod depends on the quality of
the auto-regression model and the efficacy of titeoff limit. Different data streams
show different natures in their changing pattethsrefore it is very difficult to select
an appropriate auto-regression model for data resg@]. The selection of a magic
cut-off point not only depends upon the data bsbahe auto-regression model
chosen.

Outlier detection techniques for multiple data @tns have been proposed in the
literature [16], [10], [11], [26]. The underlyingssumptions are the availability of
multiple homogeneous data streams and their synosbehavior. These may not
be the case as multiple homogeneous data streamsiohde available or one data
stream may behave very differently from the othérghe later case comparing two
heterogeneous data streams does not help to pditheoutliers.

Statistical [4] and machine learning [9] based téghes assume a fixed
distribution for the data and if the probabilityafiata point is very low it is identified
as an outlier by statistical and machine learniageld techniques. Data streams are
highly dynamic in nature and their distribution nbas over time. No fixed data
distribution is good enough for the entire dateatn; hence summarizing a dynamic
data stream with a static data distribution produpgestionable results.

Data clustering algorithms produce outliers as-prbduct [21], [24]; but as outlier
detection is not the focus of clustering algorithtiey are not optimized for outlier
detection. Keoghet al argued that most of the clustering algorithms fione
series/data stream produce meaningless results He&tjce their efficacy and
correctness are still in question.

However none of the existing outlier detection téghe considers the uncertainty,
concept drift and the transient property of theadstream. Moreover, not all the
outlier detection algorithms are truly incrememtgther they store a subset of the data
points and use multi-pass algorithms to detect dh#iers in the subset. While
designing a technique of outlier detection for dstteams, one needs to consider the
uncertainty, the drift of concepts, the transiemiperty, the temporal characteristic of
the data points, etc. On top of this, every comptahas to be online and
incremental. To fill the gap, we have designed teahnique addressing the fact that
data points in a data stream are very uncertain. 8\® address temporal
characteristics of the data points. Moreover wendbassume any type of fixed data
distribution to address the fact that the concejit dccurs in data stream. Next
section (3) portrays the details of our algorithithvthe implementation issues.
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3 Proposed technique: Distance-Based Outlier Detection for
Data Streams (DBOD-DYS)

In this section, we first provide an overall degtian of our proposed technique,
DBOD-DS. We then discuss our novel probability gignfunction, which is the
basis of our technique, and algorithms to implenitent

3.1 Overall Approach

Our approach is motivated by distance-based ouffiéi, [19] and based on a
probability density functionf(x) which resembles data distribution whereis a
random variable. As each data poihtwith the valuev comes in we compute the
probability of occurrence of the valuggv, r) within user defined radius from the
data valuey (p(v,r)) by integrating the probability density functigiix) fromv — r

to v+r, plv,r) = fvvf:f(x)dx. The probability of occurrence resembles the
neighbor density around the data value [19]; if teégghbor density is very low the
data point is more likely to be an outlier. Accarglito our approach, if the probability
of occurrencen(v, r) is less than the user defined minimum probabidftgccurrence
(g)i.e.,p(v,r) < q the data poind is identified as an outlier.

As we receive each data pouit we update the probability density functifitx)
by increasing the probability of occurrence of datdue v. To address the data
uncertainty characteristic of data stream, whenreeeive the data point we not
only increase the probability of the data valud by p, but also increase the
probability of other values by a fraction ¢f — p,) wherep, is the probability of
occurring the data valuewhile there is a data uncertainty.

To address the temporal characteristic of the dgams, when we compute the
probability density functiorf (x) the data pointsdg, d,, ... ,d,,) are weighted based
on their freshness. The most recent one receieekitinest weight and the oldest one
receives the lowest weight. If the respective valae(v,, v, ..., v,) where they, is
the most recent one ang is the oldest one, we weight them =1, 1"72, ..., 1),
respectively; therefore for the value;X we update the probability density function
f(x) by increasing the probability of occurrencevpfby p,,ili‘l and the probability
of others values by a fraction ¢f — p,,) A1

To address the varying data distribution charestieriof data streams, our
probability density functionf(x) does not assume any particular fixed data
distribution; rather we adjust our probability digy$unction on-the-fly; therefore our
probability density functionf{(x)) never becomes obsolete due to a change in data
distribution (concept drift [17]), rather our prdiility density function f(x)) always
provide the most recent data distribution.

Now at any particular time if we integrate our pabbity density function from
v—r to v+r we obtain the probability of occurrenggv,r) of a data valuey
within v —r to v+ r. If p(v,r) is large, then the data value has a very high
probability of occurrence or neighbor density icenet time. Therefore our approach
requires two user defined parameters, radiusand minimum probability of
occurrence q. However if the probability function density fuit f(x) is
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continuous, the same result can be produced bffaadtit set of(r, q), thus by fixing
the value ofg and changing the value efwe can obtain the optimal result, which
reduces the curse of having two parameters to\deefix the value ofy and change
the value ofr to receive the optimal performance. The next eaqt8.2) presents the
detail of our proposed probability density function

3.2 Proposed Probability Density Function

Our proposed probability density function is baseda kernel probability density
estimator. Several techniques exist in literatupe estimate probability density
function like histogram [15], wavelet [14], kernettimation [26], etc. Among those
techniques we choose kernel probability densitymegbr (in short kernel estimator)
for our approach. We will justify our choice in thext paragraph.

The kernel estimator estimates the probability derfsnction based on the data
values. For each data value the kernel estimator increases the probability of
occurrence ob by p,, and increases the probability of occurrence oféottalues by a
fraction of 1 — p,, which fits our requirements excellently. Due tdadancertainty
when we receive a data poufitwith valuev, we cannot assert the data value with
full confidence; therefore we cannot increase ttabability of occurrence of by 1.
Since the valuer is uncertain, it might be induced by other dates other thamw.
Thus to address the uncertainty of data streamsloaot increase the probability of
occurrence o by 1. Kernel estimator increases the probabilitpeocurrence ofy
by p, and distributes the rest of the probability of urtence { — p,,) into the other
data values which are close to the valud-ormally, if (x;, x5, ..., x,,) aren sample
data points, their respective values &tg,v,,...,v,,) and the probability density
function f (x) is defined by equation (1) whekgx) is called thekernel functionv;
can be a scalar or vector.

£ =2 k(=) )

The kernel function is responsible for distributittge probability of occurrence
induced by the data value;. Various researchers have proposed various kernel
functions (e.g., Uniform kernel function, Triangkernel function. Epanechnikov
kernel function, Normal kernel function etc. [23]Pifferent kernel function
distributes the probability of occurrence diffetgntinterestingly, the choice of a
kernel function does not affect the probability signfunction very much [23], [26].
Typically the kernel function distributes the prbb#y of occurrence into the
neighbor data values which reside within a randied¢handwidth(k) (Normal kernel
function distributes the probability of occurrentem —co to 4+ [23]). A kernel
function along with the bandwitth) (is denoted byk,(x) wherek(x) = hk,(x).
Although the choice of the kernel function is netry significant, the choice of the
bandwidth is very important for probability densfiynction estimation. A detailed
discussion about the choice of kernel function baddwidth selection can be found
in [23]. In our approach we choose a data-basedoapp for bandwidth selection.

Scaott’s rule provides a data-based bandwidth seleethereh = VSon~/s wheres
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is the standard deviation and is the number of data points used for density
estimation [26].

In a kernel estimator the probability of occurrenselistributed into the equal
number of neighbor values for each data point,itat variable kernel estimator the
probability of occurrence is distributed into dié@t number of neighbor values for
each data point. Hence at any specific point o&tifhdata values are close to each
other (in terms of value) the bandwidth becomeslisamal if the data points are far
(in terms of value) from each other the bandwidthdmes large. Ldt,, x5, ..., x;,)
be our data points with valués;, v,, ...,v,) at times(T —n,T —n+1,..,T), and
our corresponding bandwidths l§&,, h, ..., h,). The probability density function
(f(x)) at timeT becomes equation (2) whefe(x) is the probability distribution
function at timeT. In our approach we use variable kernel estimator.

1 n
fr(x) = ;Z kn,(vi — x) )

The use of variable kernel estimator is twofola: tariable kernel estimator offers
variable bandwidth for each data points, theretbeebandwidth can be computed on-
the-fly using Scott’s rule for each data point ahe variable kernel selects the
bandwidth based on recent data values only.

We modify the variable kernel estimator to addrbestemporal characteristic of
data streams. Recent data points are more integetstan old data points; therefore,
when we estimate the probability density functiom meed to consider the freshness
of data points. Heuristically, the recent data geshould have moreeightthan the
old data points [22], [20], [27]. Here weight isfided as how a data point contributes
to the probability density function; thus, in ouopability density function, instead of
giving all data points the same weight we weiglnthaccording to their freshness.
The most recent data point receives the highegghweihile the oldest one receives
the lowest weight. Exponential forgetting is a wetigssigning scheme which gives
more weight to the recent data points and lesshwedathe old data points and the
weight is decreasing exponentially from present gast [28]. According to
exponential forgetting the relative weight amongo teonsecutive data points is
constant, called forgetting factot)(where0 < 4 < 1. Among the two consecutive
data points, the recent data point receives wdigrid the old one receives weight
In case of a series of data points, at any paatictime the most recent data point
receives the weight 1 and all other data pointeivecthe weights according to their
relative positions to the most recent data pointx|, x,, ..., x,,) are the data points
with data valueq(vy,v,, ...,v,), at time (T —n,T —n+1,...,T) respectively, the
corresponding weights ax@™~%,A"~2, ...,1). We weight the kernel function with an
exponential forgetting factor. Adding the exponehtforgetting factord to the
equation (2), the probability density function bewes equation (3) whefgl, A"~ is
the total weight.

moA Ry (v —x
fr@) = " ;;f_; ) 3)
i=1
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One advantage of using exponential forgetting factahat it can be computed
incrementally, which eases one-the-fly implementafor data streams [28]. Theis
the parameter which decides how many data pointdgribate to the probability
estimation; the value 0 implies no history, onlg ffrevious data point, while value 1
implies all previous data points. Brailsfoetl al [28] proposed & selection scheme
based on a bootstrap method; we adopt this apprfmach selection. The details
about and\ selection are omitted due to page limitation, die¢ail can be found in
[28]. The next section (3.2) discusses the onlimglémentation of our proposed
probability density function.

3.3 Implementation of Proposed Probability Density Function

The kernel estimator requires a large amount ofpedation. Binned implementation

is a popular, fast implementation for the kerneinestor [13]. In this approach the

entire range of data points is divided into someadlyy spaced bins and data are
distributed into bins. Each bin has a representaige and all the data point in a bin
are represented by the representing value. Theidesy is that lots of values are
practically close to each other and binned impldaatéon reduces the number of
evaluations; but this popular binned implementastt requires multiple passes and
cannot be computed incrementally.

S

///

i
i
1
i
i
i
i
bO H‘] b.? b3 b4
|

Fig 1. Binned implementation of kernel estimator

In our approach we also divide the entire rangdaté values into equally spaced
bins. A representing value is selected for each (bjnb,, b,, ... in the Figure 1).
Instead of binning the data points, for each bie, store the value of probability
density function of the representing valbe f(b;) and the derivative of the
probability density functiorf’(b;). f(b;) andf’(b;) are stored for each representing
valueb;. f(b;) andf'(b;) are the sum of the value of the kernel functiod #re sum
of the derivative of the kernel function at repras®ey valueb;, respectively. The
kernel function and the derivative of the kerneidtion for each representing value
are computed on-the-fly and added to the previaus; shence this is an online
incremental implementation.
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Fig 1 shows the binned implementation of our pregoprobability density
function. By carefully selecting the bin width warcassume each bin is a trapezoid
as shown in Figure 1 and we can approximate thbaibty of any value within a
bin. The top of the trapezoid is a straight lineo{n in Figure 1 as the dotted line
touching the probability density function) and were the passing point as well as
the derivative; hence using the straight line eiguapf the line we can estimate the
probability of occurrence of any data value withibin. The bin width should be such
that the average error is minimum. Fan and Mari&j $tated that four hundred bins
is often optimal, fewer than four hundred bins oftieteriorates the quality of the
results and more than four hundred bins offer vitle improvement. In our
approach we use the optimal four hundred bins. Dugage limitation we omit the
detail discussion about bin width selection.

The data structure for binned implementation ofbphulity density function is
composed of grid cells. As each time a data pantes in, we update the necessary
grid cells on-the-fly. Each cell corresponds toim lEach cell contains the value of
probability density function &i;, f(b;), derivative of the probability density function
f'(b;) at b; and the timestampt) when the cell is last updated. The next section
(3.3.1) describes the algorithms for updating thebpbility density function using
our data structure and computing the probabilitpafurrence of a data value.

3.3.1 Algorithms

Figure 2 shows the online incremental update awtahility of occurrence lookup
algorithms for our proposed probability density dtion and outlier detection
technique. The update algorithm updates the datatste as each data point comes
in and the probability computation algorithm cormgsuthe probability of occurrence
of a given value x). The update algorithm takes a data point andiritestamp as
input. It starts with the updating of the weighteodmmation (lines 2 & 3), wherg is
the weighted summation of the data values gni the weighted summation of the
square of the data values. Then line 4 is the total weight of the datg.ands, are
required to calculate the current standard deviai and hence the bandwidth)(

In line 9 we calculate the number of cells we needpdate. Some kernel function
updates the values in the range freiw to oo (e.g., Normal kernel function [23]); in
that case we restrict it tminValue andmaxValue, which represent the minimum
and maximum allowable values for a data point, eespely. Now for each bin we
update the sum of the kernel function and the tlatiesestamp when the bin is
updated. If the kernel function is continuous a tkpresenting point{) then we
store the derivative of the kernel functionbatelse we store the gradient from the
starting point ¢;) to the end pointd;) of the bin. The probability lookup algorithm is
fairly simple; it finds the appropriate bin whictorgains the sum of the kernel
function values. Finally the probability is achieviey dividing the sum of the kernel
function values by the total weights.
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1 procedure update(dataltem d, timestamp t)
2 s; « As; + d; /l myis the sum of data value ands our forgetting
factor
3 s, « As, + d?; Il my is the sum of the square of the data value
4 w < Aw + 1;// o is the total data weight
5 W < s;/w; Il Yy the first moment
6 U, « S, /w; Il U, the second moment
7 o </, — 1%/ ois the standard deviation
8 h «V5ow™/s; Il h is the bandwidth
9 ¢ « h/binWidth; /l c is the cell count
10 b < indexLookup(d); // b is the middle cell
11 fori = b- ctob + c, /liis the index of the cell, wheie> 0 and
i < maximum index.
I b; is the representing value of the bin/cgl(and«; andp; are the
starting value and the end value of the bin.
/Il distance between two consecutive timesiarh.
12 ci[f(b)] « AL ciltmestambDe, (£ (h)] + ky(d — by);
13 if (¢, (d — x;) is not discontinuous af;
14 cilf' (b)) < Ale-citmestameDe,[£/(h)] — k'y(d — by);
15 else
16 ailf'(b)] < Alt-ciltmestameD,[p! ()] - (e (d — By) =
k,(d — a;))/binWidth;
17 ci[timestamp] « ¢,
18 end for
19 end procedure
20 procedure indexLookup(dataltem d)
21 return|(d - minValue)/binWidth)|;
22 end procedure
23 procedure probability(x)
24 i « indexLookup(x);
25 fG) < (@lf (b)) + alf'(B)](x — b))/ w;
26 returnp(x);

Fig 2. Update and probability of occurrence lookup alton

4 Performance Analysis

We conducted experiments using a real datasetcteflefrom California Irrigation
Management to compare the performance of our dlgoriin terms of detection
accuracy and execution time with that of the twisting algorithms: We compare
our algorithms (DBOD-DS) with two other algorithmPART [8] and ODTS [3] from
the literature. ART is an auto-regression basetieoutetection technique for wireless
sensor network which estimates the value using ato-r@egression model and
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compare the estimated value with the data valueived; if the distance is greater
than a user defined threshold the data point istifiled as outlier., The ODTS is an
outlier detection technique for time series. Itauaesliding window to store the recent
subset of the data and compare each data pointmeéttian value, if the distance is
greater than user defined threshold the pointastifled as outlier. Since ODTS uses
a sliding window, we run the experiments with thimdeow sizesl10, 15, 20, ..., 100
and report the average performances. In this seotie first describe the dataset and
simulation model, and then present the experimeasailts.

41 Dataset

The California Irrigation Management Information sBgm (CIMIS) manages a
network of over 120 automated weather stations a@fif@nia [7]. Each weather
station collects data in every minute and calcslékeurly and daily values. The data
are analyzed and stored in the CIMIS database ablicly available. The measured
attributes are solar radiation, air temperaturéatiree humidity, wind speed, soll
temperature, etc. For our experiments, we usedfte sbil temperature data collected
from 1998 to 2009, and implanted the random syirkdsoutliers in them along with
inherent outliers. We use fifty stations in randand report the average results. On
average each station has 4000 rounds of data 00000 data rounds).The first 500
data points are used for bootstrapping from eada d&ream. This dataset has
consecutive rounds of inherent outliers. We useot®eers for all of our experiments,
except for those experiments in which we vary thecentage of outliers to study its
impacts on the algorithms’ performance.

4.2  Simulation Model

In our simulation model we mimic the typical dateeams architecture. Each data
source produces one data stream. We create thmlvitata sources and the virtual
base station. Each virtual data source obtainsaaddue at a fixed interval and sends
it to the virtual base station. The virtual basgieh receives one data point from one
data stream at a time and processes it. We exB&®D-DS, ART and ODTS, one
technique at a time, at the base virtual baseostati detect the outliers. The entire
simulation model is built on the Java platform awel ran the simulation using GNU
Compiler for the Java version 1.4.2. The GNU wasnimg on Red Hat Linux
Enterprise 5 [29]. We use the Cluster Supercompaiténe University of Oklahoma
to run our simulation experiments. The comparisofair since each technique is run
on the same machine.

43  Accuracy

We measure the accuracy in terms of Jaccard Cefti¢JC) and Area Under the
receiver operator characteristic Curve (AUC). A danitlier detection technique is
the one which maximizes true positive (TP) and mires false negative (FN) and
false positive (FP). Basu and Meckesheimer [3] psed the use of Jaccard
Coefficient (JC) as a performance metric for outlietection. Mathematically JC
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defined agC = — T __ The metric (JC) consider the true positive, falsgative
FP+FN+TP

and false positive. JC is inversely proportionalthe wrong classification and
directly proportional to the correct classificatioend assigns equal weight to the
correct classification and the wrong classificat[8h So, the better JC an outlier
detection algorithm yields the more accurate regtie algorithm provides. However,
JC is not independent of the distribution of irdi@nd outliers. We use the receiver
operator characteristic (ROC) curve to establishdiatribution independent
performance metric. On top of this, ROC curve hes dther fascinating properties:
1) the ROC curve is not sensitive to a particulasice of the cut-off value and 2) the
Area Under the ROC curve (AUC) provides a singlacvalue which represents the

performance of the classifier [12]. The ROC curseai two dimensional graph in

which the true positive rate (TPRPR = %) goes along the y-axis and the false

FN
positive rate (FPREPR = FPF+PTN' TN is true negative) goes along the x-axis. TBR i

the rate of correct classification (called bendditd FPR is the wrong classification
(called cost); hence the ROC curve is the grapdosf vs. benefit [12]. The algorithm
which has higher AUC is considered as a betterdgn. The optimal algorithm will
increase the TPR without increasing the FPR; ifowsh it further it will increase the
FPR only because there is no room for improvemémtdR; hence the graph will be
two line segments joining0, 0) to (0,1) which is called conservative region and
(0,1) to (1,1) which is called flexible region. So the betteralthm will follow the
curve of the optimal algorithm. The results for RRODTS and DBOD-DS are
reported for the optimal cut-off value which maxaes the Jaccard Coefficient of the
respective algorithms. The next two sections (4antl 4.3.2) compare the three
algorithms in terms of JC and ROC, respectively.

4.3.1 Jaccard Coefficient (JC)

% outlier v, JC

08F o F B ———— o . 5

061 .
O [ Y S SR L e
g4t O—8 — = B—a—*
—&—CDT3
02f —&— ART I
—%—DEOD-D3
O 1 1 1 1 T
4 5 6 7 g 9 10 11

% outlier

Fig 3. JC of each algorithm

Figure 3 shows the Jaccard Coefficient with resgectifferent percentages of
outliers for our dataset. DBOD-DS outperforms dlles algorithms regardless of the
percentage of outliers. The JC for DBOD-DS is attwice of the JC of the other
two algorithms. DBOD-DS, ART and ODTS show constibtwith respect to change
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of the percentage of outliers. If the percentageudfier increases, the true positive
increases along with false negative and false ipesihence the increment of the
numerator and denumerator in the JC formula ma&esahstant with respect to the
percentage of outliers.

4.3.2 Receiver operator characteristic curve

Receiver operator characterisitc curve

- ——DBOD-DE (ATUC = 0.942048)
0.2 —5— ODTS (AUC = 0.885949) i
—&— ART (ATUC = 0.825104)

0 0.2 0.4 0.6 0.8 1
False positive ratio

True positive ratio

Fig 4. Receiver operator characteristic curve.

Mostly the performance of the ART, ODTS and DBOD-Di&pends on the
correctness of their respective thresholds. Heweecompare DBOD-DS with those
two algorithms to establish a parameter less coisgrametric. Figure 4 shows the
ROC curve for DBOD-DS, ART and ODTS for the datas&@BOD-DS performs
very well in the conservative region [12]; it cartly identifies the outliers without
increasing the false positive ratio after the tpasitive ratio reaches 0.8, which is
very close to the optimal performance. The optipeformance in the conservative
region resembles the fact that DBOD-DS is capalblédentifying true positives
without increasing false positives (the sharp titeorsfrom the conservative region to
the flexible region in Figure 4 confirms this facthe most important plus point for
the ROC curve is that the area under the curve (Atg€embles a single metric for
performance comparison among two classifiers. TO€ Aor DBOD-DS is 0.94 and
the AUC for ART and ODTS are 0.82 and 0.88, respelgt. Interestingly, the
performance of ODTS is better than that of ARTeams of AUC. This is because
ODTS produces fewer false negatives than ART. Tbstmppealing characteristic of
AUC is that it resembles the probability of corretassification regardless of the
percentage of outliers; therefore, in terms of ADBOD-DS is much more superior
to ART and ODTS.

4.4  Execution Time

The DBOD-DS performs much better than the other algwmrithms in terms of JC
and AUC, but this performance benefit does not cavitkout cost. The DBOD-DS
takes more execution time compared to ART and ODFKi8ure 5 shows the
execution time for the algorithms with respect bhe thange of the percentage of



DBOD-DS: Distance Based Outlier Detection for Data Streams 3 1

outliers. The time is recorded for each round fregeiving a data point to identifying
its outlier-ness. On an average DBOD-DS takes twicge time than ART and 20
times more time than ODTS but the execution timeO80D-DS is less than 1.5
milliseconds. The outlier detection takes placehimittwo rounds and this time is
practically enough for any type of data streanma typical data stream application the
data source is kept onsite and the data valuesltfeom the data source to the base
station. Sending frequency lower than 1 millisecasmdmpractical for most of the
current data stream applications. The executior tintreases a little bit with the
increase of the percentage of outlier; this is beeaif the percentage of outliers
increases, the dispersion of the probability dgrsihction increases, hence more bin
needs update for each data point. In our opinienetktra time is worthy for DBOD-
DS because it offers a significant performance oupment over ART and ODTS in
terms accuracy.

% outlier vs. Time
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4 5 & 7 g 9 10 11
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Fig 5. Execution time for each algorithm with respecpévscentage of outliers

5 Conclusions and Future Resear ch

We have developed an outlier detection algorithmdfata stream applications based
on our novel probability density estimation funatioThe performance of our
algorithm compared with that of the existing altfuris in the literature is shown by
extensive empirical studies on a real dataset.aorithm outperforms the existing
algorithms in terms of accuracy, but requires mioree to execute. However, the
time our algorithm needs is less than 1.5 millisetsy which is much smaller than the
time required sending and receiving data in marg daxeam applications. From our
empirical studies it is clear that our algorithnm geerform excellently for a reasonable
percentage of outliers. Even though we designedatgerithm considering both
single dimensional data and multi dimensional data, experiments so far have
focused on the former case. In our future experimeme want to cover multi
dimensional data. In addition, we want to extend oavel probability density
function to estimate the data values and to deteetept drifts. In our technique we
require user-defined parameters to identify owtliér would be interesting to make
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our approach completely intelligent so that it webulot expect any parameter from
the user.
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