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Abstract. Data stream is a newly emerging data model for applications like 
environment monitoring, Web click stream, network traffic monitoring, etc. It 
consists of an infinite sequence of data points accompanied with timestamp 
coming from external data source. Typically data sources are located onsite and 
very vulnerable to external attacks and natural calamities, thus outliers are very 
common in the datasets. Existing techniques for outlier detection are inadequate 
for data streams because of its metamorphic data distribution and uncertainty. 
In this paper we propose an outlier detection technique, called Distance-Based 
Outline Detection for Data Streams (DBOD-DS) based on a novel continuously 
adaptive probability density function that addresses all the new issues of data 
streams. Extensive experiments on a real dataset for meteorology applications 
show the supremacy of DBOD-DS over existing techniques in terms of 
accuracy. 
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1 Introduction 

Applications like environment monitoring, Web click stream, and network traffic 
monitoring use a new data model to represent their never ending series of data called 
data streams. Data stream has received a great deal of attention in the research 
community in recent years due to its novel characteristics. On the other hand every 
real life dataset has outliers in it [6]; therefore outlier detection is a very important 
part of data acquisition. In most of the cases the work done on outlier detection for 
data streams [1], [3], [8] is adopted from outlier detection techniques for regular data 
with ad-hoc modifications and do not address all the novel characteristics of data 
streams. In this paper we propose a novel outlier detection technique to fill the gap. 
Before going further we briefly discuss the novel characteristics of data streams and 
data stream processing requirements.  

Applications for data streams are significantly different from those for regular data 
in many facets. In data stream applications, data have the essence of time, are mostly 
append only and, in many cases, are transient [2], [5]; therefore offline store and 
process approaches are not very suitable for online data stream; consequently data 
processing has to be online and incremental [25]. Data are continuously coming in a 
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streaming environment in a very fast rate with changing data distribution [17], and 
thus any fixed data distribution is not adequate enough to capture the knowledge.  On 
top of this, in many cases uncertainty in data streams makes processing more 
complicated. The novel characteristics of data streams bring the outlier detection 
problem out on the open again. The next paragraph introduces the problem of outlier 
detection in a real life dataset. 

An outlier refers to a data point which does not conform well to the pattern of the 
other data points or normal behaviors or conform well to the outlying behavior [4], 
[6]. Pragmatically, normal behaviors are easy to identify and every possible outlying 
behavior are difficult to compile; nonetheless the outlying behaviors are changing 
over time. Almost all real datasets have outliers [6]. The major reasons behind the 
outliers are malicious activity or intrusion, instrumental error or setup error, change in 
environment, human error, etc. Evidently, outlier detection is not a new topic at all. It 
has been in the literature since the eighteenth century [4]. Even though the problem 
has been in the literature for so many years it is still very popular; this is because 
nobody knows the real outliers and the detection of outliers is very subjective to the 
application. The outlier detection with perfect confidence in regular data is still not an 
easy problem. This is because of the inherent vagueness in the definition of outlier, 
like how to define regular behavior, to what extend an outlier needs to be not 
conforming to the regular behavior, etc. The problem of outlier detection becomes 
more complicated when considering new characteristics of data streams, such as 
unbounded data, varying data distribution, data uncertainty, and temporal dimension.  
None of the existing outlier detection techniques addresses all of these characteristics.  
In this paper, we present a novel outlier detection technique for data streams based on 
the concept of probability density function, called Distance-Based Outlier Detection 
for Data Streams (DBOD-DS), that addresses all the characteristics of data streams.  
We then present the results of the experiments that we have conducted on a real 
dataset obtained from a meteorological data stream application [7] to compare the 
accuracy and execution time of DBOD-DS with the two outlier detection techniques 
existing in the literature: ART [8] and ODTS [3].  

The rest of the paper is organized as follows: Section 2 discusses the work related 
to outlier detection in data stream; Section 3 describes our approach and its 
implementation; Section 4 presents the experimental results we have obtained, and 
finally Section 5 provides our conclusions and future research. 

2 Related Work 

Most of the outlier detection techniques for data streams use a sliding window to 
capture the recent data values and detect the outliers inside the window [1], [3], [26] 
with multi-pass algorithms. Data streams change over time and an outlier for a 
particular window may appear as an inlier in another window; hence the notion of 
outlier in a data stream window is not very concrete. Nevertheless, an inlier can be 
shown as an outlier by changing the window size [3]; thus the outlier detection 
techniques that use a sliding window work well if the window size is chosen 
carefully.  However, different techniques interpret window size differently; in most 
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situations, it is difficult for the domain expert to choose the window size correctly 
without knowing the interpretation of a particular technique. 

Auto-regression based techniques for outlier detection are very popular for time 
series outlier detection [4]. Some outlier detection techniques for data streams adopt 
auto-regression [8], [22]. Most of the auto-regression based techniques work similarly 
in which a data point is compared with an estimated model and a metric is computed 
based on the comparison. If the metric is beyond a certain limit (called cut-off limit), 
the data point is identified as an outlier. The advantages of auto-regression based 
models are that they are computationally inexpensive and they provide an estimated 
value for the outlier.  However, the success of this method depends on the quality of 
the auto-regression model and the efficacy of the cut-off limit. Different data streams 
show different natures in their changing patterns; therefore it is very difficult to select 
an appropriate auto-regression model for data streams [8]. The selection of a magic 
cut-off point not only depends upon the data but also the auto-regression model 
chosen.  

Outlier detection techniques for multiple data streams have been proposed in the 
literature [16], [10], [11], [26]. The underlying assumptions are the availability of 
multiple homogeneous data streams and their synchronous behavior. These may not 
be the case as multiple homogeneous data streams may not be available or one data 
stream may behave very differently from the others. In the later case comparing two 
heterogeneous data streams does not help to point out the outliers.  

Statistical [4] and machine learning [9] based techniques assume a fixed 
distribution for the data and if the probability of a data point is very low it is identified 
as an outlier by statistical and machine learning based techniques. Data streams are 
highly dynamic in nature and their distribution changes over time. No fixed data 
distribution is good enough for the entire data stream; hence summarizing a dynamic 
data stream with a static data distribution produces questionable results.  

Data clustering algorithms produce outliers as a bi-product [21], [24]; but as outlier 
detection is not the focus of clustering algorithms, they are not optimized for outlier 
detection. Keogh et al argued that most of the clustering algorithms for time 
series/data stream produce meaningless results [18]; hence their efficacy and 
correctness are still in question.  

However none of the existing outlier detection technique considers the uncertainty, 
concept drift and the transient property of the data stream. Moreover, not all the 
outlier detection algorithms are truly incremental rather they store a subset of the data 
points and use multi-pass algorithms to detect the outliers in the subset. While 
designing a technique of outlier detection for data streams, one needs to consider the 
uncertainty, the drift of concepts, the transient property, the temporal characteristic of 
the data points, etc. On top of this, every computation has to be online and 
incremental. To fill the gap, we have designed our technique addressing the fact that 
data points in a data stream are very uncertain. We also address temporal 
characteristics of the data points. Moreover we do not assume any type of fixed data 
distribution to address the fact that the concept drift occurs in data stream. Next 
section (3) portrays the details of our algorithm with the implementation issues. 
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3 Proposed technique: Distance-Based Outlier Detection for 
Data Streams (DBOD-DS) 

In this section, we first provide an overall description of our proposed technique, 
DBOD-DS.  We then discuss our novel probability density function, which is the 
basis of our technique, and algorithms to implement it. 

3.1 Overall Approach 

Our approach is motivated by distance-based outlier [26], [19] and based on a 
probability density function �(�) which resembles data distribution where � is a 
random variable. As each data point � with the value � comes in we compute the 
probability of occurrence of the values �(�, 	) within user defined radius 	 from the 
data value � (�(�, 	)) by integrating the probability density function �(�) from � − 	 

to � + 	, �(�, 	) = 
 �(�)�����
��� . The probability of occurrence resembles the 

neighbor density around the data value [19]; if the neighbor density is very low the 
data point is more likely to be an outlier. According to our approach, if the probability 
of occurrence �(�, 	) is less than the user defined minimum probability of occurrence 
(�) i.e., �(�, 	)  <  � the data point � is identified as an outlier. 

As we receive each data point �, we update the probability density function �(�) 
by increasing the probability of occurrence of data value �. To address the data 
uncertainty characteristic of data stream, when we receive the data point � we not 
only increase the probability of the data value (�) by �� but also increase the 
probability of other values by a fraction of (1 − ��) where �� is the probability of 
occurring the data value � while there is a data uncertainty. 

To address the temporal characteristic of the data streams, when we compute the 
probability density function �(�) the data points (��, ��, … , ��) are  weighted based 
on their freshness. The most recent one receives the highest weight and the oldest one 
receives the lowest weight. If the respective values are (��, ��, … , ��) where the �� is 
the most recent one and �� is the oldest one, we weight them by (����, ����, … , 1), 
respectively; therefore for the value (��) we update the probability density function 
�(�) by increasing the probability of occurrence of �� by ������� and the probability 
of others values by a fraction of (1 − ���) ����. 

To address the varying data distribution characteristic of data streams, our 
probability density function �(�) does not assume any particular fixed data 
distribution; rather we adjust our probability density function on-the-fly; therefore our 
probability density function (�(�)) never becomes obsolete due to a change in data 
distribution (concept drift [17]), rather our probability density function (�(�)) always 
provide the most recent data distribution.  

Now at any particular time if we integrate our probability density function from 
� − 	 to � + 	 we obtain the probability of occurrence �(�, 	) of a data value � 
within � − 	 to � + 	. If �(�, 	) is large, then the data value � has a very high 
probability of occurrence or neighbor density in recent time. Therefore our approach 
requires two user defined parameters, radius 	 and minimum probability of 
occurrence �. However if the probability function density function �(�) is 
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continuous, the same result can be produced by a different set of (	, �), thus by fixing 
the value of � and changing the value of 	 we can obtain  the optimal result, which 
reduces the curse of having two parameters to one. We fix the value of � and change 
the value of  	 to receive the optimal performance. The next section (3.2) presents the 
detail of our proposed probability density function. 

3.2 Proposed Probability Density Function 

Our proposed probability density function is based on a kernel probability density 
estimator. Several techniques exist in literature to estimate probability density 
function like histogram [15], wavelet [14], kernel estimation [26], etc. Among those 
techniques we choose kernel probability density estimator (in short kernel estimator) 
for our approach. We will justify our choice in the next paragraph. 

The kernel estimator estimates the probability density function based on the data 
values. For each data value � the kernel estimator increases the probability of 
occurrence of � by �� and increases the probability of occurrence of other values by a 
fraction of 1 − �� which fits our requirements excellently. Due to data uncertainty 
when we receive a data point � with value �,  we cannot assert the data value with 
full confidence; therefore we cannot increase the probability of occurrence of � by 1. 
Since the value � is uncertain, it might be induced by other data values other than �. 
Thus to address the uncertainty of data streams, we do not increase the probability of 
occurrence of � by 1. Kernel estimator increases the probability of occurrence of �  
by �� and distributes the rest of the probability of occurrence (1 − ��) into the other 
data values which are close to the value �. Formally, if (��, ��, … , ��) are � sample 
data points, their respective values are (��, ��, … , ��) and the probability density 
function �(�) is defined by equation (1) where �(�) is called the kernel function. �� 
can be a scalar or vector. 

(1) 

 
The kernel function is responsible for distributing the probability of occurrence 

induced by the data value ��. Various researchers have proposed various kernel 
functions (e.g., Uniform kernel function, Triangle kernel function. Epanechnikov 
kernel function, Normal kernel function etc. [23]). Different kernel function 
distributes the probability of occurrence differently. Interestingly, the choice of a 
kernel function does not affect the probability density function very much [23], [26]. 
Typically the kernel function distributes the probability of occurrence into the 
neighbor data values which reside within a range called bandwidth (ℎ) (Normal kernel 
function distributes the probability of occurrence from −∞ to +∞ [23]). A kernel 
function along with the bandwith (ℎ) (is denoted by �!(�) where �(�)  =  ℎ�!(�). 
Although the choice of the kernel function is not very significant, the choice of the 
bandwidth is very important for probability density function estimation. A detailed 
discussion about the choice of kernel function and bandwidth selection can be found 
in [23]. In our approach we choose a data-based approach for bandwidth selection. 

Scott’s rule provides a data-based bandwidth selection where ℎ = √5$��� %&  where $ 

�(�) = 1
� ' �(�� − �)

�

�(�
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is the standard deviation and � is the number of data points used for density 
estimation [26]. 

In a kernel estimator the probability of occurrence is distributed into the equal 
number of neighbor values for each data point, but in a variable kernel estimator the 
probability of occurrence is distributed into different number of neighbor values for 
each data point. Hence at any specific point of time, if data values are close to each 
other (in terms of value) the bandwidth becomes small and if the data points are far 
(in terms of value) from each other the bandwidth becomes large. Let (��, ��, … , ��) 
be our data points with values (��, ��, … , ��) at times () − �, ) − � + 1, … , )), and 
our corresponding bandwidths be (ℎ�, ℎ� … , ℎ�). The probability density function 
(�(�)) at time ) becomes equation (2) where �*(�) is the probability distribution 
function at time ). In our approach we use variable kernel estimator. 

 
 

(2)  
 
 
The use of variable kernel estimator is twofold: the variable kernel estimator offers 

variable bandwidth for each data points, therefore the bandwidth can be computed on-
the-fly using Scott’s rule for each data point and the variable kernel selects the 
bandwidth based on recent data values only.  

We modify the variable kernel estimator to address the temporal characteristic of 
data streams. Recent data points are more interesting than old data points; therefore, 
when we estimate the probability density function we need to consider the freshness 
of data points. Heuristically, the recent data items should have more weight than the 
old data points [22], [20], [27]. Here weight is defined as how a data point contributes 
to the probability density function; thus, in our probability density function, instead of 
giving all data points the same weight we weight them according to their freshness. 
The most recent data point receives the highest weight while the oldest one receives 
the lowest weight. Exponential forgetting is a weight assigning scheme which gives 
more weight to the recent data points and less weight to the old data points and the 
weight is decreasing exponentially from present to past [28]. According to 
exponential forgetting the relative weight among two consecutive data points is 
constant, called forgetting factor (�) where 0 < � ≤ 1. Among the two consecutive 
data points, the recent data point receives weight 1 and the old one receives weight �. 
In case of a series of data points, at any particular time the most recent data point 
receives the weight 1 and all other data points receive the weights according to their 
relative positions to the most recent data point. If (��, ��, … , ��) are the data points 
with data values (��, ��, … , ��), at time () − �, ) − � + 1, … , )) respectively, the 
corresponding weights are (����, ����, … ,1). We weight the kernel function with an 
exponential forgetting factor. Adding the exponential forgetting factor � to the 
equation (2), the probability density function becomes equation (3) where ∑ ������(�  is 
the total weight. 

 
 (3)  

 

�*(�) = 1
� ' �!�(�� − �)

�

�(�
 

�*(�) = ∑ �����!�(�� − �)��(�
∑ ������(�

 



DBOD-DS: Distance Based Outlier Detection for Data Streams  7 

One advantage of using exponential forgetting factor is that it can be computed 
incrementally, which eases one-the-fly implementation for data streams [28]. The λ is 
the parameter which decides how many data points contribute to the probability 
estimation; the value 0 implies no history, only the previous data point, while value 1 
implies all previous data points. Brailsford et al [28] proposed a � selection scheme 
based on a bootstrap method; we adopt this approach for � selection. The details 
about and λ selection are omitted due to page limitation, the detail can be found in 
[28]. The next section (3.2) discusses the online implementation of our proposed 
probability density function. 

3.3 Implementation of Proposed Probability Density Function 

The kernel estimator requires a large amount of computation. Binned implementation 
is a popular, fast implementation for the kernel estimator [13]. In this approach the 
entire range of data points is divided into some equally spaced bins and data are 
distributed into bins. Each bin has a representing value and all the data point in a bin 
are represented by the representing value. The key idea is that lots of values are 
practically close to each other and binned implementation reduces the number of 
evaluations; but this popular binned implementation still requires multiple passes and 
cannot be computed incrementally.  

 

Fig 1. Binned implementation of kernel estimator 

 
In our approach we also divide the entire range of data values into equally spaced 

bins. A representing value is selected for each bin (./, .�, .�, … in the Figure 1). 
Instead of binning the data points, for each bin, we store the value of probability 
density function of the representing value .�, �(.�) and the derivative of the 
probability density function �′(.�). �(.�) and �′(.�)  are stored for each representing 
value .�. �(.�) and �′(.�) are the sum of the value of the kernel function and the sum 
of the derivative of the kernel function at representing value .�, respectively. The 
kernel function and the derivative of the kernel function for each representing value 
are computed on-the-fly and added to the previous sum; hence this is an online 
incremental implementation. 
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Fig 1 shows the binned implementation of our proposed probability density 
function. By carefully selecting the bin width we can assume each bin is a trapezoid 
as shown in Figure 1 and we can approximate the probability of any value within a 
bin. The top of the trapezoid is a straight line (shown in Figure 1 as the dotted line 
touching the probability density function) and we store the passing point as well as 
the derivative; hence using the straight line equation of the line we can estimate the 
probability of occurrence of any data value within a bin. The bin width should be such 
that the average error is minimum. Fan and Marron [13] stated  that four hundred bins 
is often optimal, fewer than four hundred bins often deteriorates the quality of the 
results and more than four hundred bins offer very little improvement. In our 
approach we use the optimal four hundred bins. Due to page limitation we omit the 
detail discussion about bin width selection. 

The data structure for binned implementation of probability density function is 
composed of grid cells. As each time a data point comes in, we update the necessary 
grid cells on-the-fly. Each cell corresponds to a bin. Each cell contains the value of 
probability density function at .�, �(.�), derivative of the probability density function 
�′(.�) at .� and the timestamp (1) when the cell is last updated. The next section 
(3.3.1) describes the algorithms for updating the probability density function using 
our data structure and computing the probability of occurrence of a data value. 

3.3.1 Algorithms 

Figure 2 shows the online incremental update and probability of occurrence lookup 
algorithms for our proposed probability density function and outlier detection 
technique. The update algorithm updates the data structure as each data point comes 
in and the probability computation algorithm computes the probability of occurrence 
of a given value (�). The update algorithm takes a data point and its timestamp as 
input. It starts with the updating of the weighted summation (lines 2 & 3), where 2� is 
the weighted summation of the data values and 2� is the weighted summation of the 
square of the data values. The 3 in line 4 is the total weight of the data. 2� and 2� are 
required to calculate the current standard deviation ($) and hence the bandwidth (ℎ). 
In line 9 we calculate the number of cells we need to update. Some kernel function 
updates the values in the range from −∞ to  ∞ (e.g., Normal kernel function [23]); in 
that case we restrict it to 45�6789: and 47�6789:, which represent the minimum 
and maximum allowable values for a data point, respectively. Now for each bin we 
update the sum of the kernel function and the latest timestamp when the bin is 
updated. If the kernel function is continuous at the representing point (.�) then we 
store the derivative of the kernel function at .� else we store the gradient from the 
starting point (;�) to the end point (<�) of the bin. The probability lookup algorithm is 
fairly simple; it finds the appropriate bin which contains the sum of the kernel 
function values. Finally the probability is achieved by dividing the sum of the kernel 
function values by the total weights. 
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1 procedure update(dataItem d, timestamp t) 
2    2� ← �2�  +  �; // m1 is the sum of data value and λ is our forgetting 

factor 
3    2� ← �2�  +  ��; // m2 is the sum of the square of the data value  
4    3 ← �3 +  1; // ω is the total data weight 
5    µ� ← 2�/3; // µ1  the first moment 
6    µ� ← 2�/3; // µ2 the second moment 
7    $ ← @µ�  −  µ��; // σ is the standard deviation 
8    ℎ ← √5$3�� %& ; // h is the bandwidth 
9    A ← ℎ/.5�B5�1ℎ; // c is the cell count 

10    . ← 5��:�CDD�9�(�); // b is the middle cell 
11    for 5 =  . –  A to . +  A, // i is the index of the cell, where 5 ≥  0 and 

5 ≤  47�5494 5��:�. 
      // .� is the representing value of the bin/cell(A�) and αi and βi are the 

starting value and the end value of the bin. 
      // distance between two consecutive time stamp is 1. 

12       A�[�(.�)]  ←  �(I � J�[I�KLMINKO])A�[�(.�)]  + �!(� − .�);  
13       if (�!(� −  ��) is not discontinuous at �� 
14          A�[�P(.�)] ←  �QI – J�[I�KLMINKO]RA�[�P(.�)]  −  �′!(� − .�); 
15       else 
16           A�[�P(.�)] ←  �QI – J�[I�KLMINKO]RA�[�P(.�)] – (�!(� − <�) −

 �!(� − ;�))/.5�B5�1ℎ; 
17       A�[154:2174�]  ←  1; 
18    end for 
19 end procedure 
20 procedure indexLookup(dataItem d) 
21    return T(� –  45�6789:)/.5�B5�1ℎU; 
22 end procedure 
23 procedure probability(x) 
24    5 ← 5��:�CDD�9�(�); 
25    �(�) ← (A�[�(.�)] + A�[�P(.)](� − .�))/3; 
26     return �(�); 

Fig 2. Update and probability of occurrence lookup algorithm  

4 Performance Analysis 

We conducted experiments using a real dataset collected from California Irrigation 
Management to compare the performance of our algorithm in terms of detection 
accuracy and execution time with that of the two existing algorithms: We compare 
our algorithms (DBOD-DS) with two other algorithms ART [8] and ODTS [3] from 
the literature. ART is an auto-regression based outlier detection technique for wireless 
sensor network which estimates the value using an auto-regression model and 
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compare the estimated value with the data value received; if the distance is greater 
than a user defined threshold the data point is identified as outlier., The ODTS is an 
outlier detection technique for time series. It uses a sliding window to store the recent 
subset of the data and compare each data point with median value, if the distance is 
greater than user defined threshold the point is identified as outlier. Since ODTS uses 
a sliding window, we run the experiments with the window sizes 10, 15, 20, … , 100 
and report the average performances. In this section, we first describe the dataset and 
simulation model, and then present the experimental results.  

4.1 Dataset 

The California Irrigation Management Information System (CIMIS) manages a 
network of over 120 automated weather stations in California [7]. Each weather 
station collects data in every minute and calculates hourly and daily values. The data 
are analyzed and stored in the CIMIS database and publicly available. The measured 
attributes are solar radiation, air temperature, relative humidity, wind speed, soil 
temperature, etc. For our experiments, we use the daily soil temperature data collected 
from 1998 to 2009, and implanted the random synthesized outliers in them along with 
inherent outliers. We use fifty stations in random and report the average results. On 
average each station has 4000 rounds of data (total 200,000 data rounds).The first 500 
data points are used for bootstrapping from each data stream. This dataset has 
consecutive rounds of inherent outliers. We use 7% outliers for all of our experiments, 
except for those experiments in which we vary the percentage of outliers to study its 
impacts on the algorithms’ performance.   

4.2 Simulation Model 

In our simulation model we mimic the typical data streams architecture. Each data 
source produces one data stream. We create the virtual data sources and the virtual 
base station. Each virtual data source obtains a data value at a fixed interval and sends 
it to the virtual base station. The virtual base station receives one data point from one 
data stream at a time and processes it. We execute DBOD-DS, ART and ODTS, one 
technique at a time, at the base virtual base station to detect the outliers. The entire 
simulation model is built on the Java platform and we ran the simulation using GNU 
Compiler for the Java version 1.4.2. The GNU was running on Red Hat Linux 
Enterprise 5 [29]. We use the Cluster Supercomputer at the University of Oklahoma 
to run our simulation experiments. The comparison is fair since each technique is run 
on the same machine. 

4.3 Accuracy 

We measure the accuracy in terms of Jaccard Coefficient (JC) and Area Under the 
receiver operator characteristic Curve (AUC). A good outlier detection technique is 
the one which maximizes true positive (TP) and minimizes false negative (FN) and 
false positive (FP). Basu and Meckesheimer [3] proposed the use of Jaccard 
Coefficient (JC) as a performance metric for outlier detection. Mathematically JC 
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defined as WX = *Y
ZY�Z[�*Y. The metric (JC) consider the true positive, false negative 

and false positive.  JC is inversely proportional to the wrong classification and 
directly proportional to the correct classification, and assigns equal weight to the 
correct classification and the wrong classification [3].  So, the better JC an outlier 
detection algorithm yields the more accurate results the algorithm provides. However, 
JC is not independent of the distribution of inliers and outliers. We use the receiver 
operator characteristic (ROC) curve to establish a distribution independent 
performance metric. On top of this, ROC curve has two other fascinating properties: 
1) the ROC curve is not sensitive to a particular choice of the cut-off value and 2) the 
Area Under the ROC curve (AUC) provides a single scalar value which represents the 
performance of the classifier [12]. The ROC curve is a two dimensional graph in 

which the true positive rate (TPR, )\] = *Y
*Y�Z[) goes along the y-axis and the false 

positive rate (FPR, ̂\] = ZY
ZY�*[, TN is true negative) goes along the x-axis. TPR is 

the rate of correct classification (called benefit) and FPR is the wrong classification 
(called cost); hence the ROC curve is the graph of cost vs. benefit [12]. The algorithm 
which has higher AUC is considered as a better algorithm. The optimal algorithm will 
increase the TPR without increasing the FPR; if we push it further it will increase the 
FPR only because there is no room for improvement of TPR; hence the graph will be 
two line segments joining (0, 0) to (0, 1) which is called conservative region and 
(0, 1) to (1, 1) which is called flexible region. So the better algorithm will follow the 
curve of the optimal algorithm.  The results for ART, ODTS and DBOD-DS are 
reported for the optimal cut-off value which maximizes the Jaccard Coefficient of the 
respective algorithms. The next two sections (4.3.1 and 4.3.2) compare the three 
algorithms in terms of JC and ROC, respectively. 

4.3.1 Jaccard Coefficient (JC) 

 
Fig 3. JC of each algorithm   

 
Figure 3 shows the Jaccard Coefficient with respect to different percentages of 
outliers for our dataset. DBOD-DS outperforms all other algorithms regardless of the 
percentage of outliers.  The JC for DBOD-DS is almost twice of the JC of the other 
two algorithms. DBOD-DS, ART and ODTS show constant JC with respect to change 
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of the percentage of outliers. If the percentage of outlier increases, the true positive 
increases along with false negative and false positive; hence the increment of the 
numerator and denumerator in the JC formula makes JC constant with respect to the 
percentage of outliers. 

4.3.2 Receiver operator characteristic curve  

 
Fig 4. Receiver operator characteristic curve. 

Mostly the performance of the ART, ODTS and DBOD-DS depends on the 
correctness of their respective thresholds. Hence, we compare DBOD-DS with those 
two algorithms to establish a parameter less comparison metric. Figure 4 shows the 
ROC curve for DBOD-DS, ART and ODTS for the dataset.  DBOD-DS performs 
very well in the conservative region [12]; it correctly identifies the outliers without 
increasing the false positive ratio after the true positive ratio reaches 0.8, which is 
very close to the optimal performance. The optimal performance in the conservative 
region resembles the fact that DBOD-DS is capable of identifying true positives 
without increasing false positives (the sharp transition from the conservative region to 
the flexible region in Figure 4 confirms this fact). The most important plus point for 
the ROC curve is that the area under the curve (AUC) resembles a single metric for 
performance comparison among two classifiers. The AUC for DBOD-DS is 0.94 and 
the AUC for ART and ODTS are 0.82 and 0.88, respectively.. Interestingly, the 
performance of ODTS is better than that of ART in terms of AUC. This is because 
ODTS produces fewer false negatives than ART. The most appealing characteristic of 
AUC is that it resembles the probability of correct classification regardless of the 
percentage of outliers; therefore, in terms of AUC, DBOD-DS is much more superior 
to ART and ODTS.  

4.4 Execution Time 

The DBOD-DS performs much better than the other two algorithms in terms of JC 
and AUC, but this performance benefit does not come without cost. The DBOD-DS 
takes more execution time compared to ART and ODTS. Figure 5 shows the 
execution time for the algorithms with respect to the change of the percentage of 
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outliers. The time is recorded for each round from receiving a data point to identifying 
its outlier-ness. On an average DBOD-DS takes twice more time than ART and 20 
times more time than ODTS but the execution time for DBOD-DS is less than 1.5 
milliseconds. The outlier detection takes place within two rounds and this time is 
practically enough for any type of data stream. In a typical data stream application the 
data source is kept onsite and the data values travel from the data source to the base 
station. Sending frequency lower than 1 millisecond is impractical for most of the 
current data stream applications. The execution time increases a little bit with the 
increase of the percentage of outlier; this is because if the percentage of outliers 
increases, the dispersion of the probability density function increases, hence more bin 
needs update for each data point. In our opinion the extra time is worthy for DBOD-
DS because it offers a significant performance improvement over ART and ODTS in 
terms accuracy.  

 
Fig 5. Execution time for each algorithm with respect to percentage of outliers  

5 Conclusions and Future Research 

We have developed an outlier detection algorithm for data stream applications based 
on our novel probability density estimation function. The performance of our 
algorithm compared with that of the existing algorithms in the literature is shown by 
extensive empirical studies on a real dataset. Our algorithm outperforms the existing 
algorithms in terms of accuracy, but requires more time to execute.  However, the 
time our algorithm needs is less than 1.5 milliseconds, which is much smaller than the 
time required sending and receiving data in many data stream applications.  From our 
empirical studies it is clear that our algorithm can perform excellently for a reasonable 
percentage of outliers. Even though we designed the algorithm considering both 
single dimensional data and multi dimensional data, our experiments so far have 
focused on the former case. In our future experiments we want to cover multi 
dimensional data. In addition, we want to extend our novel probability density 
function to estimate the data values and to detect concept drifts. In our technique we 
require user-defined parameters to identify outliers; it would be interesting to make 
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our approach completely intelligent so that it would not expect any parameter from 
the user. 
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