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Abstract

A Framework for Quality-Adaptive Media Streaming:

Encode Once — Stream Anywhere

Charles Krasic

Supervising Professor: Jonathan Walpole

This dissertation presents a general design strategy for streaming media applications in best

effort computing and networking environments. Our target application scenario is video streaming

using commodity computers and the Internet. In this scenario, where resource reservations and

admission control mechanisms are generally not available, effective streaming should be able to

adapt to variations in bandwidth in a responsive and graceful manner. The design strategy we

propose is based on a single simple idea, adaptation by priority data dropping, or priority drop for

short. We evaluate the efficacy of priority drop in the video and networking domains.

For video, we show how common compression formats can be extended to support priority

drop, thereby becoming streaming friendly. In particular, we demonstrate that priority-drop video

allows adaptation over a wide range of rates and with fine granularity, and that the adaptation is tai-

lorable through declarative adaptation-policy specifications. Our main technical contribution is to

show how to express adaptation policies and how to do priority-mapping, an automatic translation

from adaptation policies to priority assignments on the basic units of video.

In the networking component of this thesis, we present two versions of Priority-Progress

Streaming, a real-time best-effort streaming protocol. The basic version does classic unicast

streaming for video on demand style streaming applications. The extended version supports effi-

cient broadcast style streaming, through a multi-rate multicast overlay.

xiv



We have implemented a prototype video streaming system that combines priority-drop video,

priority mapping, and the Priority-Progress Streaming proctocols. The system demonstrates the

following advantages of our approach: a) it maintains timeliness of the stream in the face of rate

fluctuations in the network, b) it utilizes available bandwidth fully thereby maximizing the average

video quality, c) it starts video display quickly after the user initiates the stream, and d) it limits

the number of quality changes that occur. In summary, we will show that priority-drop is very

effective: a single video source can be streamed across a wide range of network bandwidths, and

on networks saturated with competing traffic, all the while maintaining real-time performance and

gracefully adapting quality.
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Chapter 1

Introduction

Audio and video are increasingly important on the Internet. In fact, with the sustained trends to

lower costs of computing and storage, greater deployment of broadband access, and development

of file sharing applications such as Napster and its successors, there has been a significant surge in

interest and usage of the Internet for transport of audio and video [77]. An eventual convergence

toward Internet distribution of audio and video seems likely, although a number of serious tech-

nical and social challenges remain. Streaming is one technology component that is sure to play a

significant role as this convergence unfolds.

The motivation for streaming is to provide the same instant access to continuous media that

the web gives to text and images. However, there are a number of technical problems that must be

addressed for streaming to reach its full potential in applications for communication and entertain-

ment. In this chapter, we describe the basic technical problems and briefly overview the common

approaches used to address them.

1.1 A basic overview of the streaming problem

The elementary problems for continuous media applications in general are the resource limitations

of the fundamental resources: processors, storage, and network. For streaming applications, the

network resource is perhaps the primary concern because of all the resource types, wide-area

bandwidth costs are the most expensive and the slowest to improve. Hence, one of the primary

research challenges in video delivery is reducing the bandwidth costs. At a very high level, there

are two general ways to reduce the resource costs of video delivery over networks: one is to

improve the representation of video data, through compression, the other is to make the network

1
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distribution mechanism more efficient, both through basic improvements in network technology

and through video specific distribution techniques.

There has been a great deal of research into video compression, and video compression is now

commonly available. Most notably, current techniques can achieve very high compression, with

ratios as high as two orders of magnitude being quite typical. On the distribution side, there have

been steady improvements in the speed and cost of basic networking technologies, such as link

types, switches, routers, etc. At a higher level, techniques such as caching and multicasting have

been explored to exploit various forms of locality of access to video content.

Apart from the basic desire to reduce overall transmission cost, there is a very important

secondary problem for streaming, which is dealing with the consequences of variable video and

network rates. Intuitively, the basic job of any streaming mechanism is to deliver video across the

network with the proper timing, so that it is displayed at the receiver at the proper rate and without

interruption. For these timing requirements to be met, it follows that the volume of video data

transmitted—as determined by the video’s bitrate requirements—must not exceed the available

bandwidth in the network. As it turns out, both the video and the network rates are highly variable

over time. The question of how variable, and whether variations can be accurately predicted, is

in fact the subject of considerable research. However, the reasons for variation in the video and

networks rates are quite straightforward.

Video bitrates are bursty due to the use of video compression, which as we mentioned above

is motivated by the desire to reduce cost. As with any data compression, the goal of video com-

pression is to identify and eliminate redundancy. Video content is variable virtually by definition,

because from one video to the next, there are random choices of camera angle, patterns of move-

ment, changes of scene, etc. Predictive coding methods, where compression encodes some frames

(predictive frames) as the difference relative to others (reference frames) leads to variation too. For

example, as the similarity between a predictive frame and its reference increases, the compression

ratio improves, but the variation increases since a larger percentage of the information is carried

in the reference frame. In the limit, all the information comes from the reference frame and the

predictive frame encodes zero changes. Thus, it follows that more efficient video compression

naturally leads to bitrate profiles that more closely track the inherent variabilities (the entropy) of

the source content.
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Network rates are volatile because of the elementary properties of the Internet architecture.

On the Internet, the available bandwidth varies over time because of the best effort sharing model

on which the Internet service model is based. The Internet protocols in general do not perform any

kind of admission control or attempt to provide service guarantees. The success of the Internet is

evidence of its cost effectiveness in providing wide area connectivity, which, it could be argued,

has a fairly direct connection to its best effort model. We take the position in this dissertation that

the best effort nature of the Internet will not change fundamentally in the foreseeable future, so

that variable bandwidth must be assumed to be part of the streaming problem.

Given that video and network rates are fickle, the simple observation made earlier that the

video rate should be kept below the available bandwidth is non trivial to achieve. To address

this problem, quality-adaptive approaches to streaming have been developed. The basic idea of

all of these approaches is to adjust the compression ratio of the video adaptively, so that the

timeliness of video playout is maintained. Adjusting the compression ratio is possible because

of the lossy nature of the common video compression formats. Unlike other data types (such as

normal text), lossy compression methods are preferable for video because they yield major gains

in compression efficiency, in exchange for a minor reduction in video fidelity. The amount of

fidelity lost, the distortion, is generally a tradeoff against the amount of compression. In quality-

adaptive streaming, this rate-distortion tradeoff is manipulated for the purpose of rate-matching

the video to the network bandwidth.

The overall goals for quality-adaptive streaming are to make quality-rate adjustments so that

streaming is effective, yet efficient and scalable. Achieving these goals requires addressing a

number of sub-problems, which we describe in the following section.

1.2 Quality-adaptive streaming requirements

The description above included the essential properties of quality-adaptive streaming. We now

expand upon the sub-components of the problem, and on how they relate to the overall goals

of effectiveness, efficiency, and scalability. As a group, these problems constitute an interesting

systems challenge, because they span boundaries of several distinct research domains, such as

video compression, networking, and real-time computing.
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1.2.1 Scalable video compression

Video representation plays a central role in the set of problems for adaptive streaming. As men-

tioned earlier, the resource requirements for representing video necessitate the use of video com-

pression. The basic goal of compression is to reduce the number of bits required to represent a

given video, or equivalently to reduce the bitrate of the video over time. The conventional com-

pression problem might be framed in terms of maximizing video quality for a target bitrate (or

minimizing the bitrate for a target quality). In practice, the quality-rate goals must be tempered

against the computational requirements of compression and decompression, so that real-time dis-

play is feasible. As CPUs have generally improved, so too has the raw rate-distortion efficiency

of video compression technology.

In adaptive streaming, we assume that the network is a best effort resource, hence there is

no way to select a unique target rate ahead of time. Instead, the strategy of adaptive streaming

is to adjust the video rate according to network conditions. Thus, the requirements for video

compression must be re-phrased, so that the goal is to support some range of possible rates, which

is commonly referred to as scalable compression. The aim of scalable compression can be viewed

as a direct generalization of the aim of conventional compression, where the more generalized

version is to maximize the quality across a range of target rates (or minimize the bitrates across a

range of quality levels). In practice, the range of adaptation will be both limited in its span and it

will be discrete rather than continuous. Hence, adaptive streaming has additional new goals, which

are to maximize the range of supported rates and quality levels, and to provide the finest granularity

of realizable points within that range. The greater the range and the finer the granularity, the more

freedom there will be in rate-matching the video with the network bandwidth.

1.2.2 Finding the best mix of video adaptations

Video quality is multi-dimensional and consequently, there are several ways to adapt the quality-

rate tradeoff. Smoothness of motion, spatial detail, spatial size, and accuracy of color, are just a

few of the aspects of video quality that can be adjusted to alter the rate requirements. However,

the best mix of adaptations will be content, task, and user specific. Finding the best mix possible

is important, but it is predicated on the capability to influence the mix in the first place. Therefore,
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given that there is no single best way to adapt video in general, or even a given video, it would

be preferable to support a range of adaptation mixes, and to make mixed adaption decisions in a

policy driven manner. On the one hand this has implications for the video representation, which

must provide some way to effect adaptations of various independent dimensions of video quality,

while still meeting the basic goals of compression efficiency. On the other, the network transport

needs to be able to interact with the video representation to effect the policies, without unduly

compromising modularity or efficiency.

1.2.3 Micro-level streaming problems: effectiveness

In this section, we turn from how video can facilitate adaptive streaming toward the actual prob-

lems of the delivery process itself. We have described the goals of quality-adaptive streaming to

be effective, efficient and scalable. In this section, we expand upon the notion of what it means

for adaptive streaming to be effective in the microscopic sense (from the perspective of an indi-

vidual user). We propose the following four criterea to categorize the sub-problems in adaptive

streaming: robustness, utilization, latency, and consistency.

Robustness

The overall goal of streaming is to deliver the video across the network such that the receiver sees

a continuous playout at the correct rate and without interruptions. Here we are concerned with the

timing implications of the rate-matching process: is the chosen video rate low enough that video

data arrives on time for proper display? Depending on the streaming approach, we also may be

concerned with what happens when some of the data is damaged or lost entirely in transmission.

We define the degree to which streaming can avoid interruptions in the face of network conditions

as its robustness. Due to the best-effort nature of the network, and the volatility of rates that result,

robustness is a principal aspect of the effectiveness of a streaming approach.

Utilization

Although avoiding streaming failures is important, the quality of the video also matters a great

deal. It is certainly possible to achieve a very robust solution if we ignore the resulting quality.

A higher bitrate generally translates to higher video quality, therefore we observe an opposite
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pressure to robustness, namely utilization: is the chosen video rate high enough to make full

use of available bandwidth, hence, is the user experiencing the highest quality video possible?

This aspect of streaming effectiveness is particularly relevant looking forward to the future, when

we can expect a general trend toward better infrastructure (processors, storage, and networking).

Rigid streaming approaches are in a sense forced to sacrifice utilization in the future, in favor of

robustness in the present (the time video is first made available). There’s a certain irony to the

situation, since infrastructure improvements may seem less desirable if they don’t yield noticeable

increases in the user experience.

Latency

Video delivery can take on numerous forms, so it is worth emphasizing what distinguishes stream-

ing from other approaches, particularly downloading. We describe streaming as being fundamen-

tally about providing the same level of instant access to audio and video as the web does for text

and images. For the web, document downloads are largely sufficient. Documents can generally

broken down into pages which are small enough that their download times are acceptable to users,

which is to say that users still spend the majority their time reading the documents, rather than

waiting for downloads. If we take the same approach to continuous media, the wait time for

downloads will certainly exceed the tolerance threshold needed to maintain the illusion of instant

access. It might be argued that instant access is not important, and it would be difficult to formally

prove that it is. However, we can refer to the history of the Internet for anecdotal evidence. Before

the web, the Internet consisted mainly of download mechanisms, such as e-mail, ftp, and Usenet

news. Although these mechanisms still exist, it seems clear that the instant, interactive, access of

the web was a major boost to the utility of the Internet, and has generally increased our overall

access to information.

The main technical premise of streaming is to eliminate the wait of downloads by making the

transmission and display processes happen at the same time (as opposed to waiting for the entire

transmission to complete before display can commence). In practice, streaming mechanisms will

still be subject to delays due to bandwidth restrictions, propagation delays, buffers, etc. These

delays can vary considerably from one streaming approach to the next, so we view the latency of

a streaming mechanism as an important evaluation criteria. It is also important to point out that
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latency can be measured in different ways, some of which may or may not reflect what the user

experiences. Therefore, we define two user-centric notions of latency as the following:

Navigation latency: The delay between when a user initiates some navigation action and when

they see the corresponding result, for example the delay between when a user chooses to

start play and when the video starts to play.

Communication latency: The continuous measurement of the delay between when video enters

the streaming process at the sender to the time the corresponding video is displayed.

It may not be obvious, but these two definitions may have different values for the same system

(later chapters will explain fully). We make the distinction between them because their impor-

tance to the user will vary according to the type of video application. For instance, in video on

demand, the navigation latency will be apparent, but once playing, the communication time is not

perceptible. On the other hand, in a video phone application, the communication latency is critical

to maintaining the natural flow of human conversations.

Consistency

Our argument for a quality-adaptive approach rests on the assumptions that the video rates and

network rates are inescapably variable over time, and impractical to treat completely in advance.

Thus, we argue that quality adjustments are necessary as part of the streaming process in light

of the above robustness, utilization and latency criteria for effective streaming. However, we

also recognize that quality changes can be distracting to the user. We define the consistency of

adaptive streaming in relation to the frequency and magnitude of quality changes which the user

may perceive (fewer and smaller changes mean better consistency). In due consideration of the

other criteria, we also put forth that greater consistency will lead to a better user experience.

Summarizing Effectiveness

We have framed the effectiveness of streaming in relation to aspects that would be apparent to the

individual user, through a definition of four sub-components to streaming effectiveness: robust-

ness, utilization, latency, and consistency. On a number of levels, some obvious and some subtle,
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the metrics associated with these sub-components are in conflict with each other, so a high level

of overall effectiveness will be more about striking a good balance among the parts, rather finding

a perfect solution to any one. In the next section, we turn to the macroscopic goals (network wide)

for streaming: efficiency and scalability.

1.2.4 Macro-level streaming problems: efficiency and scalability

Video applications are potentially a major threat to the current stability of the Internet. The basic

fact that video has much higher bandwidth requirements per user than other types of traffic means

that it has greater potential to take an unfair share of bandwidth away from existing traffic, and

generally congest the network. This is a major concern in the Internet, where resource sharing is

largely a voluntary and co-operative activity.

Despite their greedy nature, video applications must behave as good network citizens. The

majority of current Internet traffic is TCP based, therefore streaming transports need to be TCP

friendly [80]. Intuitively, TCP friendly means that a flow consumes bandwidth in the same way

that TCP would. Since TCP includes congestion control, this means that the flow will back off its

transmission rate in times of congestion. Just as the current TCP applications, video must employ

congestion control to ensure that the network can avoid congestion collapse and that video traffic

shares fairly with other classes of traffic.

Scalable distribution

Another part of the macro-level streaming problem is finding ways to take advantage of locality

of reference among the users of video. We call this the scalable distribution part of the streaming

problem. Two major approaches to scalable distribution are content distribution networks (CDNs)

and multicast. At a very high level, their common goal is to eliminate redundant network traf-

fic due to the fact that different users are accessing the same content. CDNs and multicast are

distinguishable by the form of locality they treat. CDNs are more about spatial locality and Mul-

ticast is more about temporal locality. The basic idea in a CDN is to employ persistent storage

replication in the network to lighten the load on wide-area links. In CDNs, the emphasis is on

exploiting spatial locality through the use of this persistent storage, involving techniques such as

proxy caching. The locality is spatial in the sense that the CDN will try to service users from
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caches that are physically the closest (in network distance) to the users. In multicast, the emphasis

is more on temporal locality, in the sense of users accessing the same content at the same time (like

a broadcast). Multicast is lighter weight than a CDN, because it doesn’t require persistent storage

in the network. CDNs and multicast do have common elements: their goal is to increase the num-

ber of video users that the network can support, and they both require some form of in-network

assistance (e.g., caching and multicast forwarding).

Efficiency concerns

Scalable video distribution mechanisms transform the role of the network from a simple forwarder

toward a more active participant. Consequently, there is a need to ensure that quality-adaptation

mechanisms are efficient enough for in-network implementation. In particular, network nodes in

CDNs and multicast may need to implement quality-adaptations in the network, due to the fact

that they partition the end-to-end delivery path (in time or space) between the original source and

the receiver. To preserve network utilization, these in network devices will need to be able to

sustain their quality-adaptation duties at full line rates, which could easily reach Gigabit levels at

interior points of the network. To support scalable distribution, quality-adaptive video delivery

should strive for computationally simple adaptation mechanisms.

1.3 Overview of our approach: the Priority-Progress framework

In the previous section, we enumerated the main problems and some of the sub-problems for video

streaming in the Internet. In this section, we give an overview of our approach to streaming, and

the manner in which it addresses the above problems.

Our overall approach is named Priority-Progress, because of the connection between its cen-

tral theme of informed data dropping and the two essential data attributes necessary to implement

it in time-sensitive applications: a priority and a timestamp. This dissertation presents a complete

framework for quality-adaptive streaming through the Priority-Progress approach. The framework

treats the problems of video representation, adaptive streaming, and scalable distribution described

in the previous section.
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The key components of the Priority-Progress framework are outlined in the following subsec-

tions.

1.3.1 SPEG: Scalable MPEG

Although video coding is not the main subject of this dissertation, the availability of scalable

media-compression formats is a principal assumption of the Priority-Progress approach. This

dissertation describes one example of such a format that we have developed, called SPEG (Scal-

able MPEG). A single SPEG video file supports video adaptation in multiple quality dimensions.

Moreover, the space of adaptation is over a very wide range with fine granularity. SPEG demon-

strates the benefits of scalable compression in eliminating the “one target rate” constraint of con-

ventional compression.

1.3.2 Priority Mapping

Adaptive streaming needs a policy driven way to choose from the many possible ways to mix

video adapatations. The policy can reflect content, device, author and user requirements. The

policy specification should be as declarative as possible to avoid exposing unnecessarily the com-

plexities of the underlying streaming mechanisms. In our approach, policy specifications take the

form of utility functions. The utility functions express the prefered mix of adaptations across the

range of acceptable quality levels. We present a Mapper that accepts these utility functions and

automatically prioritizes the units of a video stream such that priority order dropping of the data

results in the specified mix of adaptations.

1.3.3 Priority-Progress Streaming

During transmission, we want to adapt video according to the rate decisions of a TCP-friendly

congestion control. In this way, TCP friendliness is assured. We present an algorithm for quality-

adaptive transmission called Priority-Progress Streaming (PPS). The basic idea in PPS is to send

high priority data before low, but to stream successfully we need to manage timing and priorities si-

multaneously. The PPS algorithm defines how this is done, in a manner that aims to maximize both

robustness and utilization. Furthermore, it has an important component called window-scaling that
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provides a way to balance two conflicting objectives of adaptive streaming: low navigation latency

and high consistency.

1.3.4 Priority-Progress Multicast

We extend Priority-Progress beyond unicast Video on Demand (VoD) to broadcast. By restricting

the service model to synchronized viewing of a finite number of channels, a distribution network

can scale to a potentially unlimited number of viewers. Individual link and node stress is bounded

by the number of channels, not the number of viewers. We simulate broadcast via multicast,

in our case Priority-Progress Multicast (PPM). In PPM, we construct a multicast overlay from

a tree whose edges are independent PPS unicasts. PPM is a TCP-friendly multi-rate multicast.

PPM nodes in the interior of the tree perform a very simple dropping algorithm, which can be

implemented very efficiently in commodity hardware. TCP friendliness and multi-rate adaptation

greatly simplify the problems of scalable distribution. In addition to multicast style broadcasts,

PPM could also be a building block for video CDNs and Peer to Peer (P2P) VoD in a way that is

resilient to problems of “flash” crowds.

1.4 Software Prototype

We have developed a software prototype to support the claims of this dissertation. Our software

prototype is called QStream (short for the Quasar Streaming System). QStream is a complete

video streaming system that includes a streaming video server, a streaming player, a multicast

proxy, and a remote monitor1 . The QStream prototype includes implementations of the SPEG, the

Priority-Mapper, and the PPS and PPM algorithms. We have made the source code for QStream

publicly available under the terms of the GNU Public License (GPL). The QStream prototype

serves as the basis for qualitative and quantitative experimental evaluation of the thesis ideas.

1The remote monitor provides real-time visualization of an extensive set of streaming statistics through a software
oscilloscope.
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1.5 Thesis Statement

This dissertation presents a software framework for media streaming over the Internet based

around novel adaptation techniques. The distinguishing characteristics of our framework are re-

lated by an overall goal of supporting an “encode once, stream anywhere” model of media stream-

ing. The specific hypotheses of this dissertation are as follows: a) streaming video can be made

scalable with fine granularity over a wide range of rates; b) tailorable adaptation policies can be

used to control the mixture of adaptations to best meet content, task, and user specific require-

ments; c) this kind of video leads to an enhanced user experience when streaming takes place over

typical Internet links; d) the video can be streamed over networks in a TCP-friendly way making it

easier to deploy in the real world; and e) TCP-friendly video streaming can be applied efficiently

to multicast delivery, enabling large scale video broadcast distribution.

Today’s streaming systems are not adaptive enough to cope with the unpredictable quality of

service in the Internet. The basic best-effort architecture of the Internet is unlikely to change,

so streaming systems must adopt adaptation that can address the volatility of Internet quality of

service (QoS). In this dissertation we will argue the reasons for inadequacy of current approaches.

We summarize the state of the art as follows.

Today’s streaming techniques are unreliable and the quality is generally poor. In practice,

streaming is usually restricted to small video clips, on the order of a minute or less. Of course,

the advantages of streaming for this scenario are small, since the additional startup delay for a

download may not be very large. For longer duration content, where the benefits of streaming over

download should manifest, the current systems show their fragility with respect to transient surges

in network activity. In order to reduce the occurrence of failures with longer duration content,

the typical approach is to set a very conservative target rate for the video, significantly lower than

the average available network bandwidth. This under-utilization of the network resource is highly

ironic given the vast amount of research effort spent on improving the compression efficiency of

video codecs.

We argue that Internet video streaming must employ better adaptation to provide acceptable

quality and robustness. In this dissertation, we present a uniform approach to adaptation called

Priority-Progress that has the goal of supporting an “encode once, stream anywhere” level of
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simplicity in Internet streaming systems. The central idea is to employ data dropping, uniformly

and in a fashion informed by priority and timing information in the data, as a means of adaptation

to best effort network conditions. We show the efficacy of this idea through a complete strategy

for adaptive streaming, and its implementation in a working prototype system, the scope of which

spans from the video encoding to the network streaming protocol.

1.6 Summary of Contributions

To summarize, the main contributions of this dissertation are as follows:

� SPEG and the Priority Mapper: We show how through proper framing and prioritization,

video need only be encoded once, yet it can support a wide range of bitrates with fine

granularity. Moreover, the mix of adaptations within the range is explicitly controllable so

that user, content, task and device specific requirements can be optimally addressed.

� Priority-Progress Streaming (PPS): We develop an adaptive streaming protocol that achieves

several important objectives, namely robustness, high utilization, consistent quality over

time, and low navigation latency.

� Priority-Progress Multicast (PPM): We extend PPS to multicast distribution through an over-

lay approach. PPM supports multi-rate, quality-adaptive, multicast distribution, in a com-

pletely TCP friendly manner. To our knowledge, prior approaches have only been able to a

subset of these characteristics simultaneously.

� QStream prototype: the above conceptual contributions are made concrete in a comprehen-

sive prototype implementation. This prototype is the basis for our experimental evaluation

of our framework. The prototype itself also constitutes interesting contributions toward pro-

gramming for time-sensitive applications, such as the use of reactive programming, and the

use of remote, real-time, visualization techniques.
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1.7 Dissertation outline

The remainder of this dissertation is organized as follows. In the next chapter we revisit the prob-

lems presented in this chapter and discuss them in relation to the related work. In Chapter 3, we

describe SPEG video and priority mapping. In Chapter 4 we give an overview of the PPS protocol.

We give an overview of our multicast protocol, PPM, in Chapter 5. Chapter 6 presents the com-

plete algorithms for unicast and multicast streaming as implemented in the prototype software,

QStream. Chapter 7 presents an experimental evaluation of unicast (PPS) and multicast (PPM)

streaming. Chapter 8 presents our conclusions and suggests problems that require future work.



Chapter 2

Background and Related Work

The basic idea of Internet streaming is a relatively old one, the first systems for streaming audio

and video over the Internet have existed since the early to mid 1990’s [8, 60, 10, 59]. However,

the impact of streaming so far seems to be well short of its potential. In this chapter we present a

brief history of streaming, describe the current state of the art, and point out relationships between

the contributions in this dissertation and the previous work.

2.1 On the limited impact of streaming

Since the time that Internet streaming technology first became available, many popular Internet

sites have incorporated streaming content. News sites such as cnn.com and nytimes.com reg-

ularly provide news clips in streaming formats. Entertainment oriented sites such as iFilm.com

and AtomFilms.com feature movie trailers and some short films in streaming formats. Music

videos are also available via sites like mtv.com. It is difficult to obtain exact estimates of how

many Internet users utilize streaming content, but anecdotal evidence suggests that most users at

least have a streaming player installed on their computer, and this could be taken as an indication

of the mainstream status of streaming. On the other hand, it would seem that relatively few people

actually use streaming on a regular basis, certainly less than the other basic Internet technologies,

such as e-mail, the web, instant messaging, and more recently peer to peer (P2P) file sharing sys-

tems 1. One might interpret the limited success of streaming as a general indication that people

are not as interested in using the Internet for audio and video, but this interpretation can be quickly

dismissed. One only has to consider the developments related to Napster and the subsequent P2P

1Again, this is difficult to verify in the literature, but anecdotal evidence is strong.

15
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systems for strong evidence to the contrary. In one recent traffic study [73], it was shown that

video and audio account for the first and second largest portions of Internet traffic. Individuals

(and businesses) are clearly very interested in using the Internet to deliver audio and video. We

believe there is a large gap between the current and potential popularity of streaming and that this

gap is due to a mixture of technology, business, and social-legal issues. Although the focus of

this dissertation is entirely on technology aspects, we must acknowledge that resolutions to the

other non-technological issues are essential to enable many streaming applications. Nevertheless,

the work in this dissertation is motivated by the belief that current streaming technology could

improve significantly, and that such improvements can eventually contribute to more wide spread

use of streaming. We now turn to the history of streaming so far, and to the current state of the art.

2.1.1 Streaming in practice

Very soon after the first streaming systems appeared and were described in the literature [10, 59],

there was rapid development and competition among commercial software platforms for video

streaming. This competition led fairly quickly to a division (which remains today) into three

popular platforms: Microsoft’s Windows Media, Real Networks’ RealSystem [13], and Apple’s

QuickTime. These three platforms consitute the basis for the majority of streaming on the Internet.

There are also some systems developed by academic projects, such as the Quasar project at OGI

[10, 87] and the MASH project at Berkeley [59], but those systems did not develop large user

communities.

To various degrees, the popular streaming systems adhere to a suite of Internet standards re-

lated to streaming, such as RTP [74], RSTP [75], SIP [34], and SMiL [33]. Despite the standard-

ization efforts, the three commercial systems were still largely proprietary. It is especially worth

noting that the core issue we address in this dissertation—how to adapt to variable resources—

are almost entirely outside the scope of the Internet standards. The Real-Time Protocol (RTP)

protocol, perhaps due to its rather general name, is often confused with a complete solution to

streaming. In fact, RTP and its various sub-profiles are mainly limited to specifying syntax for

timing and other information, and they do not specify at all how to manage timing of the stream-

ing process, nor do they provide any algorithms for adapting to available resources. We argue that

Internet streaming is unlike most other Real-Time applications, because of the best effort nature
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of the services provided by the Internet infrastructure. Classic real-time design generally involves

worst-case analysis and testing of system timeliness properties, and provisioning sufficient re-

sources for the worst case. However, neither video nor the Internet are well suited to worst-case

analysis, because the rate properties of both (video and available bandwidth) are known to be ex-

tremely bursty [29, 91, 14]. For video, the burstiness is due to the use of video compression. The

burstiness of available bandwidth on the Internet is due to its best effort model, and to the absence

of end-to-end resource provisioning services. We will now discuss why these properties are un-

likely to change, either for video or for the Internet, and hence motivate the subsequent discussion

of adaptive streaming approaches.

2.1.2 Video compresssion and variable bitrates

When television was developed, it used entirely analog electronics. The advent of computer tech-

nology led to the development of digital representations of video. Raw (uncompressed) video has

extremely high rate requirements, especially when the video is represented digitally. For exam-

ple, a television grade signal in digital form is typically coded to about 125 megabits per second

(Mbps)2. When digital video equipment was first developed, only highly specialized and expen-

sive devices could deal with such high resource requirements. Soon after, when video compression

techniques were introduced, it became possible to reduce the rate requirements of video dramati-

cally. Initially, the goals of using compression were tied to making digital video usable with more

affordable equipment. For example, the development of the MPEG-1 standard was closely tied

to the advent of consumer CD-ROM devices. Hence, MPEG-1 was often associated with a target

video rate of 1.5Mbps which fit nicely within the capabilities of early generations of CD-ROM

devices[41]. Since the time that MPEG-1 was developed, there has been significant progress in

improving video compression [35, 42]. However, the progress in hardware has been even greater,

and it seems likely that general purpose hardware will continue to improve more quickly than

compression. Thus it is worth considering whether the expected advances in hardware will elimi-

nate the need for video compression altogether. For the forseable future, we believe that the need

2125 Mbps is based on 720 x 480 pixel frames with 12 bits per pixel (YUV formats using 6 bytes for 4 pixels) and
30 frames per second.
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for compression will persist because compression technology already can reduce the rate require-

ments of video by between one and two orders of magnitude. This reduction in rate requirements

translates to cost reductions of the same proportions for storage and network bandwidth resources.

Thus, as long as there are non-negligible costs for storage and network bandwidth, the incentive to

utilize compression will remain strong. However, the space and bandwidth benefits of compres-

sion do not come without some disadvantages.

One of the primary disadvantages of video compression is that compressed video has rate

requirements that are highly variable over time. Statistical studies have shown that compressed

video is bursty over the full range of time scales [29]. While the rate reduction from compression

aids streaming, it is also true that compression hinders streaming because it adds the requirement

of dealing with significant rate changes over time. To be clear, these changes are not a deficiency

of video compression, they just reflect the fact that the entropy in video will naturally change as the

content varies betweeen frames and from one scene to the next. Some video encoders offer pur-

ported support for Constant Bit Rate (CBR) coding, but they do so at the expense of compression

efficiency3. As a more efficient alternative, various buffering techniques have been developed to

smooth out these rate changes for network transmission. Feng [25] has compared the performance

of a selection of the proposed smoothing techniques. However, all of the approaches examined

in Feng’s study assumed that there was some fixed level of available bandwidth, which would

be true if it were possible to provision network bandwidth in advance. While some special pur-

pose networks (such as networks dedicated solely to video broadcast) may have that property, the

general-purpose Internet does not. To cope with network bandwidth changes, adaptive streaming

is necessary. In this dissertation we will present an integrated approach that deals with video rate

and network bandwidth variations simultaneously.

Before we turn our attention to adaptive streaming, we first review two considerable efforts

towards augmenting the basic services of the Internet: Multicast and Quality of Service (QoS).

Both of these efforts share better support for video delivery as a principal goal. Multicast concerns

how to improve the scalablility of Internet based delivery. QoS concerns the goals of provisioned

resources and predictable service.

3Most CBR coders involve some amount of zero padding of the video data to smooth the rate.



19

2.1.3 Multicast

Multicast is a transmission technique that aims to support efficient, one-to-many data transmis-

sions such as video broadcasts. Multicast is especially attractive for multimedia data such as

video because the high bitrates of video and very large numbers of receivers can combine to make

the cost of a unicast based approach prohibative.

Multicast works by organizing the transmission to a group of receivers into a tree structure,

where the data is replicated at interior branch points of the tree. The effect of the tree is to limit

the amount of stress placed on any single point in the distribution. By stress, we mean the the

number of copies of the packets of a given flow to traverse a given node or link. An ideal multicast

tree will limit link stress to exactly 1 per active session, and the node stress will be the degree of

each node (number of directly connected edges). In a unicast scenario, the node and link stress

at the source of the distribution will be the same as the total number of destination receivers.

With multicast, the lower maximum stress means that the resource demands on nodes and links in

multicast can be spread more evenly throughout the network, hence multicast enables sharing the

available resources better with other traffic than unicast, which can easily overwhelm capacity of

links and nodes close to the source.

IP Multicast (RiP)

IP multicast [18] was proposed to incorporate multicasting as a basic service primitive in the

Internet. Intended as an interim solution, the MBone [20] was developed to allow IP multicast

traffic to cross regions of the Internet without native IP multicast support. For various reasons,

which include a mixture of technical and economic issues, full deployment of IP multicast has

yet to materialize [19]. Some of the technical reasons include problems with inter-domain routing

protocols, problems with management of the multicast address space, and the lack of congestion

control in multicast transports. The economic reasons include the pervasiveness of asymmetric

“policy” routing in the Internet, where Internet Service Providers (ISPs) configure routing policy

within their own domain so as to cause foreign packets to exit as soon as possible, rather than
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taking the shortest route to the destination4 . For this reason, routes on the Internet are often asym-

metric taking different paths in each direction between two end hosts (because the end hosts use

different service providers). The asymmetric aspect of policy routing can conflict with the stan-

dard mechanisms used to establish routing for multicast trees (e.g., reverse-path routing). Some

ISP may even perceive an economic disincentive to accept “foreign” multicast packets at all, due

to the interaction with service level agreements (SLAs) between ISPs. SLAs are usually enforced

based on packet accounting mechanisms at border points between ISPs. However, multicast pack-

ets may replicate at points other than the border, thus bypassing the SLA accounting. Network

operators are thus reluctant to allow IP multicast within their networks. After more than a decade

of development, IP multicast service is unavailable to most end users of the Internet. Due to the

slow deployment of IP Multicast, recent research is revisiting some of the assumptions of the IP

multicast design.

Multicast Revisited

In the wake of IP multicast’s shortcomings, there have been many recent multicast proposals that

move away from the notion of multicast as an IP primitive and move toward application level

approaches (overlays). Unlike the original multicast overlay—the MBone—these new proposals

also explore altering some of the basic assumptions of what the multicast service model should

be.

Although multicast can potentially generalize to many kinds of data distribution, there has

always been a fairly close association between multicast and video delivery. As mentioned in

Section 2.1.2, the high bitrates associated with video make it desirable to find ways to reduce

bandwidth costs. Multicast can be thought of as a kind of compression technique in so much as

it can reduce the overall network requirements to distribute a video to a group of users. Also,

like video compression, we see that multicast can bring additional complexities, which can only

be justified if the savings from using multicast are large enough. For the purpose of this disserta-

tion, we classify the challenges in multicast into two main categories: tree management and data

forwarding.

4A foreign packet is one who’s source address does not match any of the ISP’s customers.
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In multicast, one of the basic issues is how to establish and maintain the topology of mul-

ticast distribution trees. For instance, in order to simplify the address space and routing issues

relative to IP multicast (as well as certain security related issues), many of the recent overlay

approaches assume a strict, single-source model, as opposed to the more general many-to-many

model supported by IP multicast [94]. Another common direction has been to combine multicast

with ideas from the many recent peer to peer (P2P) approaches, which employ various strategies

with the common theme of achieving scalable and self-organizing routing [11, 45, 81]. One of the

key problem areas is how to find multicast topologies in an overlay that deliver the best perfor-

mance. A related question is what metric or combination of metrics should be used as in selecting

and judging topologies. The fact that overlays often only maintain partial routing information—

which can obscure the true underlying network topology—is a significant complication because

edges that are distinct in the overlay topology may in fact have common physical links in the real

network. However, many of the recent systems are intentionally designed to accept the possib-

lity of slightly suboptimal topologies (due to only partial knowlege) in exchange for much better

scalability properties.

Much of the work in multicast is on the routing side, and does not treat the data forwarding

issue. The default multicast forwarding function is relatively trivial: it simply duplicates and

forwards data as necessary from the incoming edge to the outgoing edges in a best effort fashion.

One of the goals of the IP multicast architecture is to keep the forwarding function as simple

as possible, preferably with minimal overhead relative to unicast IP forwarding. To maintain

this simplicity, purely end-host managed mechanisms had to be used to add other features to the

multicast service model, such as reliability [95, 28], and congestion control [85, 69, 7]. Although

the desire to minimize complexity inside the network is well intentioned and has been a long-

proven strength of the Internet architecture [72], the purely end-host based schemes for reliability

and congestion control were complex and, in some cases, it was difficult to judge if they achieved

the desired effect. For instance, congestion control mechanisms that rely on joining and leaving

multicast groups work on different time scales than TCP’s congestion control, so it is unclear

how fairly they share. Given the trend toward overlay multicast instead of IP multicast, it stands

to reason that an overlay might be designed with more advanced data forwarding functionality,

moving some of the complexity back into the network in the hope of realizing a better overall
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solution.

In this dissertation, we explore an overlay based approach for multi-rate adaptive multicast of

video, which treats the data-forwarding side of multicast. Our approach can be combined with

recent topology management techniques mentioned above to produce a fully adaptive multicast

solution. As with the unicast components of this dissertation, our focus is on adaptive delivery,

which is motivated largely by our expectation that resource provisioning will be unavailable to

most users of the Internet for at least the near future and perhaps well beyond that. Section 2.2.6

will discuss the related work on adaptive multicast.

2.1.4 Internet QoS

From the early days of the Internet, it was recognized that the Internet’s best-effort architecture was

at odds with the goals of time sensitive applications such as audio and video [12]. Often, the design

principles of telecommunications networks used for traditional voice traffic (telephone) were held

up as examples for how digital networks can provide provisioned resources. For some time, there

was a general belief that there would be some kind of unification between the architectures of data

networks typified by the Internet, and the more traditional telecommunications networks. Many

expected ATM technology to achieve this unification, bringing with it true support for Quality of

Service (QoS) in the Internet. In networking circles, the QoS term is often used to denote support

for various forms of resource reservation. Good support for video was an often touted payoff for

the transition to ATM and QoS support. A core design decision in ATM was that the use of small

fixed size packets (cells in ATM terminology), which allowed ATM to provide various degrees of

predictable service, and better switching latency properties. However, a significant transition of

the Internet towards ATM did not materialize and seems completely improbable now, for reasons

described well elsewhere by Kalmanek [46].

In addition to the activity surrounding ATM, there were efforts to add QoS support directly

to the existing Internet protocols. The approaches included two broad IETF programs: Integrated

Services (IntServ) and Differentiated Services (DiffServ). At a high level, the two differed in

their granularity. IntServ was more ambitious, and aimed to augment the Internet with mecha-

nisms that would provide per flow reservations, mainly via the RSVP protocol [92]. RSVP did

not succeed in achieving significant deployment. The resistance to RSVP was due to scalability
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problems (overall it was too heavy weight) and its high overheads [15]. DiffServ was an attempt

at a lighter weight solution, with coarser granularity of provisioning [6]. Unlike IntServ, which

was aimed at end-user per flow reservations, DiffServ was aimed at aggregate reservations mainly

for use between enterprises and service providers. However, by the time DiffServ arrived, service

providers had already decided that simply over provisioning the core of the Internet was a simpler

and cost effective enough solution to many of the problems addressed by DiffServ. As described

by Crowcroft et al. [15], DiffServ was “too little, too late”.

After more than a decade of significant effort, QoS support (especially on the “last mile” to

end-users) is almost non-existant. However, the research in the area remains active, and there are

new approaches (e.g. Subramaniam describes an overlay approach to QoS support [79]) that may

eventually prove more successful. Nevertheless, the lessons from the QoS efforts so far tell us

that it would be unwise to design video streaming to depend entirely on QoS support. Instead, we

should consider video streaming and Internet QoS as separate and complementary technologies.

Video streaming should benefit from QoS support if and when it is available, but it should deal

gracefully with the best effort infrastructure that seems likely to be with us for a long time to come.

2.2 Adaptive Streaming

Given the apparent barriers to including resource provisioning in the basic Internet service model,

our position is that an adaptive approach is essential to deal with the diversity and volatilty of the

various resources involved in Internet based streaming.

There has indeed been a great deal of work in the literature related to adaptive video stream-

ing, which spans several distinct domains, including video compression, real-time systems, and

networking (unicast and multicast). A spectrum of adaptive strategies have been proposed to deal

with the consequences of the Internet’s best effort service model, which we summarize below. The

surveys of [93] and [84] are also good references.

In the remainder of this section we expand on the basic performance issues for quality-adaptive

streaming in light of some of the approaches proposed in the literature and in terms of commercial

streaming systems. The related work on quality-adaptive streaming relevant to this dissertation

falls into six categories: single rate adaptation, multi-version techniques, online-scaling, scalable
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compression, adaptive unicast streaming, and adaptive multicast streaming. We will discuss each

of these areas below.

One of the main issues that spans each of these areas is the granularity of adaptation. Ideally, a

quality-adaptive streaming system will select video quality to match the average available network

bandwidth. In practice, adaptation tends to be limited to discrete steps, and consequently the rate

match is only approximate. A system that supports steps with finer-granularity generally results

in a better match, which manifests itself in higher quality and better reliability of streaming. The

type of video compression, especially whether the compression is scalable or not, is a major fac-

tor influencing the granularity of quality-adaptive streaming. Because many of the compression

formats in common use are not explicitly scalable [41, 40, 42, 43], the target rate is a required

parameter for encoding. These formats do not provide explicit support for adapting rate after en-

coding. Frame dropping is a well known work-around, and is probably the most popular video

adaptation mechanism, having been used since the first quality-adaptive Internet streaming sys-

tems appeared [10]. In addition to frame dropping, there are other important ways to adapt video,

which will be discussed in the following sections. When multiple adaptations are combined, it can

help to increase the granularity of the space of adaptations.

2.2.1 Single Rate Adapation

In practice, one of the most commonly used strategies is one-time adaptation, where the user

chooses between a small set of predetermined rates before streaming begins. Once started, stream-

ing is fixed at this single-rate regardless of competing traffic. One-time adaptation has two basic

problems: it is prone to yield lower quality than necessary when more bandwidth is available, and

it is prone to complete failure when less bandwidth is available (requiring play to pause while

client side buffers are re-filled). Both problems become more probable as the duration of stream-

ing increases. From a user’s perspective, the result of these difficiencies are that streaming for

long periods has poor quality and is unreliable. Apple’s Quicktime uses one-time adaptation and,

in addition, it adjusts the amount of client-side buffering based on measured rate volatility during

startup [83]. Consequently, startup time while initial buffering is established can be quite high—on

the order of tens of seconds. Windows Media and RealSystem based systems are often configured

in this mode also, even though they offer advanced mechanisms as options.
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2.2.2 Multi-version Techniques

Multi-version streaming systems store a single video at a range of pre-selected bitrates, with the

goal of switching adaptively between the versions according to available bandwidth. Multi-version

adaptation benefits from being able to use conventional, non-scalable codecs, which are more

commonly available. Also, conventional codecs presently achieve higher compression efficiency

than scaleable codecs. The main drawback to multi-version adaptation is that, to keep encoding

and storage overheads reasonable, it requires the selected bitrates divide the range of rates with

coarse granularity. This leads to quantization effects in the adaptation controllers, which hinders

their ability to attain utilization and robustness. A poor controller has similar problems to the one-

time adaptation strategy, it can under utilize average bandwidth, or it can be unreliable in times of

congestion. It is worth noting that, to the user of the video, the under utilization of bandwidth can

negate the compression efficiency advantages of using conventional codecs. The coarse division

of rates also makes it difficult to offer control over the kinds of adapation that occur, so as to

best match specific requirements. Despite these limitations, multi-version adapatation is the most

widely deployed technique for stored content, as it is used in Windows Media IntelliStream [5]

and Real’s SureStream [13].

2.2.3 Online scaling

Online-scaling techniques, which include live encoding, transcoding, and data-rate shaping (DRS),

allow changing the target rate parameter of the encoder or transcoder on the fly [44, 96]. Transcod-

ing and DRS can have significantly lower computational complexity than live encoding. The main

advantage of online scaling is very fine granularity. However, even DRS (the most efficient of

online-scaling methods) is very computationally intensive relative to non-adaptive streaming, or

to adaptive streaming through frame dropping or multi-coding5 . While online scaling allows very

fine-grained adaptation, the computational time required to recode limits scalability quite severely.

Online scaling is best suited to applications which only require support for just a single receiver

or perhaps for a small number of receivers. However, the computation cost of online scaling in

5DRS either requires a full encoding step, or a transcoding step, which decompresses all the video blocks sufficiently
to modify them, and then re-codes the result.
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servers and edge devices make it an ill-advised choice for supporting large numbers of indepen-

dently adaptable streams.

2.2.4 Scalable compression

Scalable video coding technologies focus on creating compression formats that allow adaptation

of the rate-distortion relationship without explicitly re-coding (e.g. MPEG-2 scalability, MPEG-4

FGS). In contrast to online scaling, scalable compression aims to support low-complexity adapta-

tion that will scale to large numbers of streams. Scalable compression schemes explicitly support

multiple quality levels, exposing two or more layers in the encoded video. The layers are progres-

sive: the higher layers depend on the lower layers, and the higher layers are used to refine quality.

The various scalable compression approaches differ in terms of granularity, ranging from very

coarse, as in the work in Layered Multicast [61] and MPEG-2 Scalability [35], to very fine, such

as in recent work in MPEG-4 and H.26L Fine Granularity Scalability [55, 37]. With the current

state of the art in scalable video compression, there remains a compression efficiency penalty, in

that video quality from scaleable compression is lower compared to the results of non-scalable

compression at the same rate, but this penalty is getting smaller [37]. Fine granularity scalabil-

ity through layering makes it possible to begin streaming without even knowing the target rate

by sending lower layers before higher layers and truncating higher layers if time runs out. The

contrast between this approach and online-scaling, where the quality adaptation must commit to

a target rate before encoded data is ready to transmit, is worth noting. In exchange for the small

efficiency penalty (see Section 3.4), scalable compression offers a significant boost in freedom for

the design of adaptive streaming mechanisms. Scalable compression techniques are complemen-

tary to the work we describe in this dissertation. We expect advances in scalable compression can

be easily and directly incorporated into our framework.

While the three categories above are concerned mainly with video representation and coding,

the next two categories concern adaptive streaming, that is, the mechanics of actual network de-

livery. We discuss adaptive streaming with respect to unicast scenarios first, and then we extend

our view to adaptive multicast.
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2.2.5 Adaptive Unicast Streaming

A principal concern with streaming is the potential impact of video traffic on existing Internet

traffic. Many research projects have studied quality adaptive streaming in relationship with TCP-

friendly congestion control [93, 66, 24, 22, 44, 78, 50]. A common idea among them is to let the

transport protocol and its congestion control dictate the appropriate sending rate. The main differ-

ences are in the details of deciding what to send and what to drop, and what information are used

to inform these control decisions. For example, Rejaie et al describe their algorithms for optimal

streaming [66], where optimal means minimal client-side buffering, and thus a minimal associated

contribution to end-to-end latency. The role of their algorithm is to control adding and removing

quality layers, where the control decisions are based on a rate-driven feedback control. The design

of their control is based on analysis of additive-increase multiplicative-decrease (AIMD) conges-

tion control6 and an assumption of a priori knowledge of video rate requirements [66]. Feamster

et al extend this work to more general congestion control mechanisms [22]. Recently, Dai et al.

[16] have presented an approach that proposes to integrate scaleable compression (MPEG-4 FGS)

with adaptive streaming, using alternative congestion controls based on Kelly controllers.

In contrast to these systems that explicitly attempt to match rates, Feng et al describe an

adaptive streaming algorithm that uses a sliding window over video frames, sending data from

low to high quality, in best effort fashion [24]. Feng’s algorithm gains simplicity because it does

not attempt to minimize client-side buffering absolutely, and it has the advantage of working

without direct assumptions about the design of the underlying congestion control. Kang et al. [47]

propose a priority-driven adaptation, but assuming fixed bandwidth channels. Prior to the work

in this dissertation, the question of how to link scalable video encoding and tailorable adaptation

policies to TCP-friendly streaming was mainly an open one.

The framework presented in this dissertation uses scalable compression and TCP. One of the

contributions of our approach is to demonstrate the benefits of using the priority-timestamp packet

as the basic unit of media abstraction, as opposed to video frames or layers in a stream. Through

priority mapping, we extend scalable video compression to support tailorable adaptation so that

compromises made in quality better reflect the influence of specific content, viewing devices, and

6TCP’s congestion control uses an instance of AIMD after it reaches steady state.
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user preferences. Our Priority-Progress Streaming (PPS) algorithm extends TCP-friendly adap-

tive streaming to support direct control over quality compromises in streaming, such as relative

preferences between different dimensions of video quality, latency tolerances, and limits on the

number of quality changes, while preserving the goals of high utilization and video quality.

2.2.6 Adaptive Multicast Streaming

The same basic principles that motivate an adaptive approach for unicast streaming apply to multi-

cast as well. To summarize, the bitrate of video is variable because of the use of compression, and

the available bandwidth is bursty because of the diverse makeup of the network and its best-effort

service model. Thus, an adaptive approach is needed to scale the video to match network con-

ditions. Moreover, where unicast streaming is concerned with adapting video to the highest rate

appropriate to a single receiver, in multicast there are multiple receivers, each of which may have

a unique appropriate rate. In contrast to unicast streaming, work on adaptive multicast has been

mainly confined to research, it is not yet supported by any of the popular commercial streaming

systems. In the remainder of this section, we summarize some of the related work on adaptive

multicast from the literature. For more details, Liu et al. have done a nice survey of the area [56].

We remark that we restrict our view to multicast streaming, noting that there has been considerable

work on multicast downloads as well.

Solutions for adaptive multicast can be either single rate or multi-rate. In both approaches, one

of the primary goals is to share the network fairly with other traffic, that is, the adaptation should

serve a congestion control function like that of TCP. In the single rate approach, the adaptation

matches the rate of the entire tree to that of the slowest link. Obviously, this penalizes some

receivers in the tree, but it may be simple to implement. In the multi-rate approach, the goal is to

find the best rate for each receiver, in a way that avoids penalizing faster receivers in the presence

of other slower recievers in the tree .

Receiver Driven Layered Multicast (RLM) was an early proposal for adaptive media stream-

ing over IP multicast for continuous media such as video [61]. The basic approach was to have the

media partitioned into layers that were associated with individual multicast groups. The layers in

the groups are progressive in that a base layer is used to carry the minimum quality version, and en-

hancement layers each refine the quality (presuming each of the lower layers are also present). The
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layered multicast approach is necessarily coarse grained—typically the layer sizes are distributed

exponentially, for example, each higher layer is double the size of the previous lower layer. The

coarse granularity is necessary to limit the number of multicast groups, and to limit the number

of join and leave operations, each of which can take significant time to complete. These join and

leave operations are the basis for adaptation in RLM, RLM receivers increase and decrease their

data rate by joining and leaving multicast groups. The receiver oriented nature of RLM is driven

by the goal of scalability. One of the main advantages (at least at the time of its design) of the

RLM approach is that it builds entirely upon the existing features of IP multicast service. This ad-

vantage is somewhat moot now, as deployment of IP multicast hasn’t reached significant numbers

of users (see Section 2.1.3). A major disadvantage of RLM is its coarse granularity of adaptation,

which among other things means that RLM is unable to share the network fairly with TCP traffic.

Extensions to the RLM approach to try and address the issue of TCP friendliness for the single

rate case have been proposed by Vicisano et. al [85] and later extended by Rizzo [69]. A number

of studies have also looked at approaches to multi-rate congestion control [86, 71, 48, 53]. The

priority drop approach we take in the multicast component of this dissertation is quite a departure

from those works, which generally assume a layered source stream. In these layered approaches,

adaptation is co-ordinated by recievers or the sender. In our approach, the internal nodes of the

multicast tree participate in the priority dropping decisions. Also, the TCP friendliness of our

approach is very easy to understand, since we use TCP.

Multi-rate adaptive multicast has also been one of the main target problems for a variety of

proposals for Active Networks. The basic idea of Active Networks was to add various forms of

extensibility to routers. Most of the literature in Active Networks concerns the infrastructure sup-

port needed to provide extensibility. However, some of the work took a higher level view towards

target applications such as video [96, 49, 88, 36]. Yeadon’s PhD work [96] proposed various ways

to adapt video in an active service framework. Our inspiration to develop SPEG came mainly from

Yeadon’s work. Yeadon’s filters were also our inspiration to investigate an alternate approach to

simplify the operations required of network nodes, because the computational complexity of his

filters is a serious impediment to scalability. In some sense, Yeadon’s filters are similar to Amir’s

earlier work on application level video gateways [1] in that they both do transcoding in the net-

work. The approach in this dissertation is to restrict in-network operations to priority dropping, so
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that our multicast data forwarding has much more modest computational demands.



Chapter 3

Streaming Friendly Video

In this chapter, we describe how we extend a common type of video compression to support

graceful quality adaptation (via priority data dropping). In our approach, video can adapt across

multiple quality dimensions simultaneously and the mix of adaptations is tailorable, meaning that

the adaptations can be controlled through an explicitly specified policy. These features are made

possible by a component of our system called the Priority Mapper (hereafter referred to simply

as the Mapper) that automatically converts specified adaptation policies into appropriate priority

assignments. The policies express relative quality preferences, which may be content, user, device,

and task specific. The Mapper assigned priorities are such that priority-order data dropping will

cause video quality to degrade in the least important aspects first, according to the specified policy.

The architecture of our adapative streaming framework divides the adaptive streaming process

into several distinct stages. The common point of reference between the stages is priority-drop

based adaptation. In this chapter, we describe the two stages that constitute the video preparation

phase of our architecture: video encoding and priority mapping. The adaptive streaming stage will

be described separately in Chapters 4 through 7. By treating video encoding and priority mapping

as separate stages, we allow the possibility that there may be multiple priority assignments for

the same video, which might be used to tailor the mix of adaptations to diverse usage scenarios.

For example, the mix of adaptations for a user with a small screen on a mobile device may differ

from a user with a workstation or even a home theater. Taking another example, the adaptation

mix may need to change temporarily whenever the viewer decides to do a slow motion replay.

Our separation between encoding and priority mapping makes it easy to tailor the adaptations as

necessary without incurring the cost of multiple encodings.

Our video preparation stages—encoding and priority mapping—can be done before (offline)

31
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or during (online) the actual streaming process. Because, in this dissertation, we focus mainly

on streaming of stored content (video on demand), we chose to do the encoding offline, and the

priority mapping online. It is also possible to do the priority-mapping offline, perhaps several times

to form a canned set of adaptation mixes. This would have less flexibility than mapping online, but

it would decrease the overall workload of the streaming server. We have not actually implemented

offline mapping, because the computational cost of online mapping hasn’t actually been significant

in practice. On the encoding side, we have done an online version in the context of a live streaming

variant of our system (from a webcam source) [38]. Whatever the chosen staging is, the result of

the preparation stages is a generic encapsulation of the video data, where priority and timestamp

information capture the essential information necessary for the streaming process to effect graceful

adaptation. The general techniques we have taken for video could potentially be applied to other

streaming data types (e.g., measurements from environmental sensors), with appropriate encoding

and priority-mapping analogues, while our Priority-Progress network protocols should continue

to work without changes.

3.1 Scalable Video

The video format used in our streaming system is called SPEG (Scaleable MPEG). Although

scaleable compression is an important component of our framework, it is not the primary focus

of this dissertation. SPEG adds a fairly basic level of spatial detail scaleabilty to MPEG, just

enough to demonstrate the basic properties we expect from more optimized scaleable codecs. In

particular, we are interested in the ideas that a scalable coding can be adapted gracefully across

a very wide range of rates and quality levels, and that more than one dimension of video quality

is adaptable. At the time this work began, there were few items in the literature to describe such

encodings, and no publicly available software implemenations that we knew of1. More recently,

other researchers have developed high performance scaleable compression with similar properties

for current standards such as MPEG-4 [55, 37]. In the body of this chapter, we give a basic review

of video coding along with the details of how SPEG adds spatial scalability. Readers familiar

with MPEG and FGS [35, 55] may choose to skip this material. We will conclude the discussion

1At the time of writing, ours is still the only publically available implementation that we are aware of.
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Figure 3.1: Typical Hierarchical Structure of Compressed Video

of SPEG with some observations of how we expect future scalable compression formats will be

improved to better assist streaming delivery.

This dissertation does not expect the reader to be familiar with the mathematics of signal

processing that underlies video coding. We attempt to provide explanation to give the intuition of

the mathematics, although understanding the compression aspect is not critical.

Figure 3.1 shows the typical structure of compressed images in common video formats such

as MPEG. A video consists of a sequence of groups of pictures (GOPs). A GOP is a sequence

of frames2. A frame is decomposed into sub-units, such as MPEG slices. A slice consists of a

2Although we try to use the term “frame” consistently in this dissertation, it should be noted that the terms image,
picture, and frame are synonymous
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sequence of macro blocks, which in turn consists of fixed numbers of blocks with a block being a

pixel array. Slices serve a combined purpose of allowing limited error recovery in the event of bit

errors, and some ability to fine tune certain encoding parameters for specific regions of a frame.

However, the error recovery role of slices in MPEG is very limited and is not intended to solve the

kinds of problems that occur during network transmission. The purpose of the macroblock relates

to the fact that it is common practice in video to represent color with lower fidelity than luminance

(color subsampling). So typically, as in MPEG, a macroblock might contain four luminance (Y)

blocks, and one block each for the two color components (U and V). Finally, a block is an array

of pixel values. In MPEG-1 through 4, a single fixed 8x8 size is used for all blocks. Upcoming

revisions to MPEG-4 will support a range of possible block sizes.

The foundation of MPEG compression is the treatment of the data in the blocks. MPEG

transforms the pixel values using a staple technique from signal processing called a frequency

transform. The original values are considered to represent values of a signal over time, where the

position of the pixel value within the block determines the time point in the signal, and the value of

the point represents the amplitude of the signal. The transformation produces a function over the

frequency components of the signal that approximates the orginal signal. MPEG uses the Discrete

Cosine Transform (DCT). The form of the function is a summation over cosines. The output of the

transform is the set of coefficients for the cosine terms of the sum. The value of each coefficient

represents how strongly the original signal contains the frequency of that corresponding term in

the sum. Intuitively, a larger value for a higher frequency term means the values of corresponding

pixels change quickly. Conversely, if the pixel values are similar to each other in the area of the

block, then only the coefficients of lower frequency terms will have large values.

Figure 3.2(a) shows the formula of a cosine transform. The shape of the function as a whole

is the same as the original sequence of pixel values. Figure 3.2(b) gives a visual representation

of the two dimensional (horizontal and vertical) DCT basis, which can give some of the intuition

for how they are combined to represent arbitrary signals. From left to right, the basis functions

have increasing frequency in the horizonal direction, and from bottom to top, frequencies increase

in the vertical direction. The bottom left is the zero frequency basis, often referred to as the

DC component, because it has a constant value (i.e., by analogy to electronics with DC “direct

current”, as opposed to AC “alternating current” ). The remaining components are referred to
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(a) DCT equation used in MPEG-1

(b) Visual representation of DCT basis functions

Figure 3.2: The Discrete Cosine Transform (DCT)
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as AC components. The DCT transform function takes a two dimensional array of pixel values

and produces a set of weighting coefficients, which, when applied in a summation over these

basis functions, results in the best approximation to the input pixel values. The DCT coefficients

constitute a frequency domain representation of the signal (pixel data). Using the inverse DCT

(IDCT), the transform can be reversed (applied to the coefficients) so as to produce original pixel

values.

The compression benefit comes from the fact that, whereas the original pixel values may be

distributed evenly (albeit randomly), the frequency domain version will tend to be concentrated in

a few low frequency coefficients. The high frequency coefficients will tend to have small values,

close to zero. Or rather more importantly, the human eye is more sensitive to the parts of the image

that are represented by the low frequency coefficients. This is the crux of the compression gains for

lossy video encoding compared to losseless techniques. It is possible to drop information from the

higher frequency coefficients with a relatively low perceivable impact on the image. By reducing

the numeric precision used to represent these coefficients, a simple conventional compression

algorithm, for example run-length and Huffman coding, can achieve orders of magnitude higher

compression ratios compared to the same algorithms applied directly to the original pixel data. So

then quantization, which is the strategic removal of low order bits from the DCT coefficients, is the

primary basis for compression gains in MPEG and very many other similar compression schemes.

Increasing the quantization (i.e., reducing the precision of coefficients) reduces the total size of the

compressed representation, in exchange for degradation of the fidelity of the reconstructed image.

The job of matching a target bit rate for an MPEG stream is done by a component of the encoder

called the rate control.

Whereas rate control tries to find quantization values that cause the compressed video to match

a target rate statically, a spatially layered coding partitions the coefficient data so that quantization

can be done dynamically and incrementally. This is the basic idea used in SPEG.

SPEG transcodes MPEG coefficents to a set of levels (one base level and three enhancement

levels) as follows. If we denote the original MPEG coefficents ��� � � 8�� , then SPEG partitions this

coefficient data according to the following equations3 :

3The ��� denotes the right bitwise shift operator, and the � denotes the bitwise and operation.
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The four layers are denoted ��������� � � � 8 � , � � � � � � 8�� , � � < � � � 8�� , � �� � � � 8 � respectively. The layers

in each SPEG frame are the basic application level data units (ADUs) in SPEG. The above steps

can be reversed to return SPEG back to the original MPEG. Alternatively, we can drop some or

or all of the enhancement layer ADUs (from high to low) subsituting zero values for the missing

data. The effect of such dropping is analogous to having used higher quantization parameters

during MPEG encoding, yielding lower bitrate in exchange for less spatial fidelity. SPEG suffices

to demonstrate the essential properties of scalable compression, albeit with lower compression

efficiency and fewer layers than something like MPEG-4 FGS.

We expect future scalable codecs will expose even more scalability mechanisms. One example

is spatial-size scalability, where the number of pixels of height and width are scalable. Another

example is chroma scalability which might allow a range of color fidelities, from 4:4:4 to 4:2:2 to

4:1:1 to greyscale to monochrome. The object based compression techniques starting to appear in

standards like MPEG-4 might allow content adaptation through addition and removal of objects

[42]. These possibilities raise the issue of tailorable adaptation. In order to take full advantage

of all of these scalability options, there would need to be a good way to control how they are

used together. To explore tailorable adaptation, we use SPEG’s spatial scalability in combination

with frame dropping to provide a minimal example of a compression scheme with more than one

scalability mechanism.

Finally we note that a deficiency of SPEG, and of MPEG rate control, is that we do not explic-

itly know how much image degradation a given level of quantization causes. We will discuss this

issue further in Chapter 8.

3.2 Priority Mapping

Having more than one quality dimension raises the issue that choosing how to best adapt the

multiple dimensions may depend on the usage scenario. For example, the target device may
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Figure 3.3: Priority Mapper

have a small screen, so preserving frame-rate may make more sense than spatial detail. A user

may want to repeat a scene in slow motion, which looks smoother if more frames are inserted.

Conversly, skipping frames is harder to notice when doing fast-forward scan. We have designed a

priority-mapper with the intent of providing a general approach to tailoring quality adaptation to

such specific quality preferences. A priority-mapper automatically assigns priorities to the units

of a media stream, so that priority drop yields the most graceful degradation, as appropriate to the

viewing scenario.

Figure 3.3 depicts the mapper used in our framework. The mapper’s inputs are application

data units (ADUs) and the quality adaptation policy. The output of the mapper is a sequence of

streaming data units (SDUs). Each SDU contains a group (subset) of the input ADUs, along with

a timestamp and priority computed by the mapper algorithm.

Figure 3.4 shows a set of ADUs. The ADUs have a packet like form, consisting of a fixed-

length header, and a variable length payload. The header contains basic information needed by

the mapper, such as the position and length of the payload. The mapper can examine the payload

to infer other properties, such as the timestamp, the type of MPEG frame the ADU is part of (I, B,

or P), and to which spatial scalability layer the ADU belongs4 .

We use utility functions as declarative specifications for adaptation policy. A utility function

is a simple and general means for users to specify their preferences. Figure 3.5 depicts the general

form of a utility function. The horizontal axis describes an objective measure of lost quality, while

4To simplify our examples, Figure 3.4 depicts only two spatial layers although our SPEG implementation has four.
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Figure 3.4: ADUs

the vertical axis describes the subjective utility of a presentation at each quality level. The region

between the ��� � � and ������� thresholds is where a presentation is acceptable. The ��� � � threshold

marks the point where lost quality is so small that the user considers the presentation “as good as

perfect.” The area to the left of this threshold, even if technically feasible, brings no additional

value to the user. The rightmost threshold �	����� marks the point where lost quality has exceeded

what the user can tolerate, and the presentation is no longer of any use. The utility levels on

the vertical axis are normalized so that zero and one correspond to the “useless” and “as good

as perfect” thresholds. In the acceptable region of the presentation, the utility function should

be monotonically decreasing, reflecting the notion that decreased quality should correspond to

decreased utility. In the case of priority mapping for SPEG, the adaptation policy consists of two

utility functions, one for spatial quality and one for temporal quality.

The mapping algorithm subdivides the timeline of the media stream into intervals called map-

ping windows. The mapper algorithm prioritizes the ADUs within each window separately. We

use the ADUs from Figure 3.4 as an example mapping window, which consists of a single GOP

and spans the interval 0–66 ms. The priority mapping algorithm processes the ADUs within a

window in two phases.

In the first phase, the ADUs are partially ordered according to a drop before relationship,

which we denote using the 
 symbol 5, based on video data dependencies. For example, the

5This is really drop no-later than, since dropping is always optional.
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Figure 3.5: A utility function with thresholds

spatial layering requires that base layer ADUs should not be dropped before their corresponding

enhancement layer ADUs, which applies to the ADUs of Figure 3.4 as follows:

����� < 
 ����� � �����
 


����� > �������


�����
	

In the example of Figure 3.4,
����� < is the enhancement layer of the I frame with timestamp

0, and
����� � is the base layer of the same I frame, so it follows that

����� < should be dropped

before
����� � .

Similarly, MPEG’s predictive coding rules (for I,P,B frames) are expressed as follows:

����� 	


����� > 


����� �
Again from the Figure 3.4,

����� > is the base layer of a P frame that depends on the I frame

whose base layer is contained in
����� � , so we have that

����� > should be dropped before
����� � .

These first two sets of ordering constraints represent hard dependency rules, in that they sim-

ply reflect SPEG semantics. The mapper adds some other soft dependency rules which improve

adapation results. With video, for example, the mapper would add soft-dependencies so as to

ensure that frame dropping be as evenly spaced as possible6 .

6If half the frames are to be dropped, then our in our experience, it has been clear that it is best to drop every other
frame, as opposed to more clustered dropping such as keeping even GOPs and dropping odd GOPs
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After the first mapping phase embodying hard and soft dependencies, there still remains sig-

nificant freedom for adaptation. For example, Figure 3.6 contains two very different mappings for

the ADUs of figure 3.4, yet both mappings adhere to the phase one constraints above.

SDU
length: ...
timestamp: 0
priority: 0

ADU0

ADU1

0 SDU
length: ...
timestamp: 0
priority: 1

1

ADU3

ADU2

SDU
length: ...
timestamp: 0
priority: 2

2

ADU4

ADU5

(a) Frame drop only

SDU
length: ...
timestamp: 0
priority: 0

ADU0

ADU2

0 SDU
length: ...
timestamp: 0
priority: 1

1

ADU3

ADU1

ADU4 ADU5

(b) Spatial drop only

Figure 3.6: SDUs: prioritized and grouped ADUs

The second phase of the priority mapper algorithm is where adaptation policy is used to refine

the partial ordering from the first phase, generating the prioritized SDUs. The algorithm works

through an iterative process of elimination over the ADUs. We say an ADU is alive if it is still

in the set of unprioritized ADUs, and dead otherwise. Each iteration considers a set of candidate

ADUs that are not yet dead (initially all ADUs from the mapping window), and have no living

dependants, based on the constraints generated by the first phase. For each of these candidate

ADUs, and for each quality dimension (spatial and temporal in SPEG), the mapper computes the
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presentation quality that would result if the candidate ADU were dropped, that is, the quality is

computed based on all ADUs that are still alive, less the current candidate. For the temporal

quality dimension, the mapper computes the frame rate, and for spatial quality the spatial level.

At this point the mapper is ready to apply the adapation policy. The utility functions are used

directly to convert the computed quality values to corresponding utilities. The “overall utility”

for each ADU is just the minimum of its per dimension utilities. The candidate ADU that has the

highest utility is selected as the next victim (i.e. dropping this ADU next has the smallest impact

on utility). The priority value for the victim ADU is a linear (inverse) fitting of the utility into the

range of priority values. For example, in the Quasar pipeline this fit goes from a utility range of

0 to 1 to a priority range of 15 to 07. The iterations stop when all ADUs have been assigned a

priority.

3.2.1 Mapper window duration

The boundaries of mapper windows are chosen by the mapper to avoid the potential for broken

data dependencies in the dropping actions of later stages. In particular, the mapper enforces that

mapper windows are aligned with SPEG GOP boundaries. Recall that the GOP patterns (i.e., the

combinations of I, B, and P frames) are decided by the video encoder (i.e., SPEG compression

algorithm). The GOP pattern need not be fixed from one GOP to the next in SPEG. For stored

SPEG content, such as DVDs, GOPs are selected adaptively by the encoder to improve compres-

sion efficiency. GOPs often coincide with scene boundaries of the content, so they effectively

have a random distribution. We define the lower limit for mapper windows based on the GOPs:

mapper windows must contain one or more whole GOPs. Thus, the mapper algorithm assumes

it will be given an set of whole GOPs as input. Typically, the longest GOPs will be less than a

second, which will be the approximate range for the smallest possible mapper windows. It may

split the input set of GOPs into multiple mapper windows (only along GOP boundaries) if their

total duration exceeds a threshold parameter. The mapper will not split the set if it would produce

a mapper window smaller than the threshold value, hence the largest possible mapper window

will be twice the threshold. Keeping the duration of mapping windows bounded by splitting helps

7The maximum priority level (for the most important ADUs) is 15
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to keep the computational complexity of the mapping algorithm low, and as should become clear

later, it will allow a finer granularity of adaptation later on (in the streaming stage)8.

Once the mapping algorithm has assigned priorities to all of the ADUs in a map window, it

then groups them into SDUs. In our algorithm, there is one SDU per priority level, which contains

all the ADUs that ended up with that same priority. In addition to the priority, the other main

attribute of an SDU is its timestamp. If we didn’t group ADUs into SDUs in this way, the most

obvious values for the timestamps might be the time values of corresponding video frames to

which ADUs belong. However, with our method of ADU grouping, we use a more conservative

(coarse grained) timestamp assignment where the SDUs (groups of ADUs) are all set to have the

same timestamp as the first video frame in the whole map window. Thus, all the ADUs in a map

window are grouped into a single set of SDUs, sharing the same timestamp, but distinguished by

priority. This grouping simplifies matters for later stages, like the PPS algorithm and the video

decoder, because the timestamps expose the minimum information needed to preserve low-level

data dependencies in the dropping process9 . This organization of one timestamp per map window

forms a layer of abstraction which provides just enough detail to perform informed dropping (via

the priorities) in a manner that avoids violating low level data dependencies (via the timestamps).

3.3 Mapping Results

We now present the results of mapping for several test movies. Figure 3.7 shows the set of movies,

which were prepared with a variety of encoders and encoder parameters.

In Figures 3.8(a) and (b) we set a quality adaptation policy consisting of equal linear utility

functions for temporal and spatial quality. Figures 3.8(c) and (d), show the presentation quality

derived from this policy for various priority-drop thresholds. At each threshold, the quality corre-

sponds to the point where all packets with priority lower than the threshold are dropped. Increased

priority drop threshold means more packets are dropped.

8We do not formally characterize the asymptotic complexity of the mapper in this disseration, although we expect
it is super-linear in the number of ADUs

9Otherwise, there can be pathological cases during streaming where low priority ADUs for one timestamp are kept
even though higher priority ADUs with different timestamps, but belonging to the same mapping window, are dropped.
For example, a P frame (low priority) might be kept when its I frame (high priority) was dropped, however the P frame
can not be decoded properly without the dropped I frame.
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Video Resolution Length GOP
(frames) length

Giro d’Italia 352x240 1260 15
Wallice and Grommit 240x176 756 3
Jackie Chan 720x480 2437 8
Apollo 13 720x480 864 6
Phantom Menace 352x240 4416 16

Figure 3.7: Movie Inputs. The movies were coded with several different MPEG encoders. A
variety of content types, movie resolutions, and GOP patterns were chosen to verify our techniques
perform consistently.

Ideally, the presentation quality graphs would look the same as the utility functions they were

derived from. In particular, the range of acceptable presentation QoS would be covered, and

the shape of adaptation would follow the shapes of the utility functions. Figure 3.8(c) shows

the relationship between presentation-QoS for temporal resolution (frame rate) and priority-drop

threshold. It should be noted that Figure 3.8(c) contains lines for each of the test movies, but

they overlap very closely because the mapper is able to label packets to follow the utility function

policy closely. Although desirable, this result was not entirely expected because MPEG’s inter-

frame dependencies constrain the order in which frames can be dropped, and some GOP patterns

are particularly poorly suited to frame dropping. On the spatial resolution side, in Figure 3.8(d),

we note that the mapper drops resolution levels uniformly across all frames, resulting in a stair-

shaped graph, because there are only 4 spatial levels in SPEG. In as much as the SPEG format

allows, the presentation-QoS matches the specified user preferences.

The resource side of the adaptation profiles is shown in the third pair of graphs in Figures 3.8(e)

and (f). We show the average bandwidth of the movies at each drop threshold as a percentage of the

bandwidth when no packets are dropped. Similarly, we show the CPU time required for client side

processing of the video at each drop threshold. A good shape for these graphs would be smooth

and linear over a wide range of resource levels. We see that bandwidth in Figure 3.8(e) does indeed

range all the way down to only a few percent, although there is a rather sharp drop when the first

SNR layer is dropped. CPU time in Figure 3.8(f) is very nice and smooth, although it does not

cover as much range as bandwidth, and reaches a minimum of about 10 percent. We also note

that the movies are closely clustered in their resource-QoS graphs, indicating that adaptation is

independent from differences in encoders or encoder parameters. Further results for other policies
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are presented in [52].

3.4 The Price of Adaptation

We now describe some of the performance costs associated with dynamic quality adjustment.

Figure 3.9 compares compression performance for MPEG and SPEG versions of movies at the

same presentation quality level.

Video MPEG SPEG Increase
bandwidth bandwidth bandwidth
(Mbps) (Mbps) (%)

Giro d’Italia 1.823 2.121 16.3
Wallice and Grommit 0.968 1.081 12.7
Jackie Chan 1.839 2.479 34.8
Apollo 13 3.474 4.193 20.7
Phantom Menace 1.228 1.313 6.9

Figure 3.9: Bandwidth Overhead of SPEG

Given the wide range of adaptation shown in the adaptation experiments, the relatively small

bandwidth overhead of SPEG is encouraging, especially considering the simplicity of the approach

used in SPEG. The fact that SPEG defines ADUs based on MPEG slices appears to be the source

of much of the variation in increase bandwidth in Figure 3.9. Some encoders only generate one

slice per picture, while others generate as many as one per row of macroblocks. Since the main

purpose of SPEG is a test vehicle for the Mapper and the PPS protocol, we do not persue further

improvements to SPEG’s compression efficiency. A production grade implementation could easily

replace SPEG with something like MPEG-4 FGS.

3.5 Related Work

As mentioned in the sections above, SPEG is representative of various approaches to scalable

compression such as MPEG FGS [55]. Other streaming frameworks have been based upon scal-

able compression, very notably the recent work of Phillippe de Cuetos on streaming of MPEG-4

FGS [17]. The most important difference in our approach is our focus on generic framing of data
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and explicit prioritization. In other words, our approach deliberately prepares the video so that

the network layer will only be exposed to generic attributes such as timestamps and priorities. In

contrast, de Cuetos framework features a tight coupling between the encoding format and the net-

work transmission layer. In his framework, de Cuetos has delved more deeply into complexities

such as receiver-side loss concealment when using lossy transports. On the other hand, we have

addressed issues of mixed adaptation across multiple quality dimensions, and (as we will show)

quality-adaptive multicast.

3.6 Summary

In this chapter, we discussed how video preparation is handled in our approach. We treat video

preparation as a two stage process, where video is first encoded using scalable compression, and

then, once encoded, we assign priorities to the video data so as to expose how video should be

adapted.

To show how scalable video coding fits into our framework, we introduced a simple scalable

video format called SPEG that adds spatial scalability to MPEG. With SPEG, a single encoded

video can support a wide range of bitrates and video quality levels with fine granularity. Mea-

surements from our implementation of SPEG showed that the range of bitrates spanned about two

orders of magnitude from the minimum to maximum rates. Within the space of supported bitrates,

SPEG allows spatial and temporal qualities to be adapted independently. The actual adaptation is

determined by the order in which SPEG data is dropped. However SPEG does not fix such an or-

der because that would overly constrain the video before appropriate details of the usage scenario

are known.

To best match the video to requirements that might be content, user, task, or device specific, we

presented a general strategy for policy-driven priority assignment called the Mapper. The Mapper

accepts policy specifications in the form of utility functions, which relate the supportable quality

levels (in each of the controllable dimensions of video quality) to their utility to the user. The

Mapper algorithm produces a prioritized version of SPEG data such that priority-order dropping

has the effect that the least important aspects of video quality degrade first. We have presented

results from our implementation of the Mapper to show that it provides effective control over the
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mix of adaptations, in that priority-order dropping directly reflects the supplied utility functions.

By separating encoding and mapping, we allow the corresponding steps to be done offline, online,

or a mixture of both, according to what makes sense for the type of video application. The sepa-

ration also makes it possible to apply the Mapper several times to the same SPEG video, so as to

tailor the mix of adaptations to different usage scenarios.

We call our approach to video preparation streaming friendly because it emphasizes flexibility

in anticipation of the difficulties of streaming over best effort networks. The next chapter will

begin to describe the networking parts of our streaming framework, the Priority-Progress adap-

tive streaming protocols, where the benefits of streaming-friendly video preparation will come to

fruition.



Chapter 4

Priority-Progress Streaming

The previous chapter described our scalable video encoding (SPEG) and our priority mapper

(Mapper) algorithm. Recall that the Mapper transforms the application data units (ADUs) of a

video into a sequence of streaming data units (SDUs) that have explicit timestamp and priority

labels. The purpose of organizing the video into SDUs is to prepare it for our adaptive stream-

ing algorithm, Priority-Progress Streaming (PPS). Based on the SDU timestamp labels, PPS can

regulate the progress of the stream so as to ensure that the receiver can achieve proper playback

timing. Should the data requirements for the stream exceed the bandwidth available between the

sender and the receiver, then the priorities describe the order in which video data may be dropped,

from least important to most important, to ensure that video quality degradation is as graceful as

possible. So adaptive streaming is able to maintain timing (using timestamps) and adapt to the

available bandwidth (using priorities) at the same time. However, these goals each imply two

different transmission orders. To achieve both, the PPS algorithm first subdivides the timeline of

the video into a sequence of time intervals using the SDU timestamps. We call these intervals

adaptation windows1. Next, the algorithm transmits the sequence of windows in time order, but

the algorithm transmits the SDUs within each window in priority order. The rest of this chapter

will examine the PPS approach in more detail.

Figure 4.1 shows the conceptual outline of PPS. A pair of re-ordering buffers is employed

around the bottleneck, for example, the TCP transport. The buffers contain the SDUs of an adap-

tation window. The algorithm for PPS contains three subcomponents, the upstream buffer, the

downstream buffer, and the progress regulator. The upstream buffer admits all SDUs within the

1Recall that each mapper window results in a single set of SDUs with the same timestamp and differing priorities,
hence an adaptation window is by its definition a sequence of one or more mapper windows.
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Figure 4.1: PPS Conceptual Architecture

time boundaries of an adaptation window, these boundaries are chosen by the progress regulator.

Each time the regulator advances the window forward, the unsent SDUs from the old window

position are expired and the window is populated with SDUs from the new position. SDUs flow

from the buffer in priority-order through the bottleneck to the downstream adaptation buffer, as

fast as the bottleneck will allow. The downstream adaptation buffer collects ADUs contained in

SDUs and re-orders them to their original timestamp order. When the regulator advances forward,

the entire downstream buffer contents are passed on for subsequent processing, which normally

consists of decoding and display. SDUs may arrive late because of unexpected delays through the

bottleneck. In the event of a late SDU, since the decoding window to which the SDU belongs has

already begun, the late SDU is dropped. When late SDU(s) occur, the progress regulator is notified

so that it may try to avoid late SDUs in the future by adjusting the phase between the clocks. The

goal is that the downstream buffer receives as many SDUs as the bandwidth of the bottleneck will

allow and the rest, which are of lowest priority, are dropped at the server. In this way, the dropping

will adapt video quality to match the network conditions between the sender and the receiver.



51

Figure 4.2: PPS Example
.

As described in the paragraph above, each adaptation window goes through three distinct pro-

cessing phases. The first phase is window preparation, which includes retrieval from the source

(file or live capture), prioritization, and re-ordering from timestamp to priority order. The second

phase is window transmission, where the SDUs are transmitted in priority order. The third phase

is decoding and display. Figure 4.2 and Table 4.1 give a simple example for a sequence of seven

adaptation windows. In the table, each row describes the timing of the phases for the � th adapta-

tion window. Referring to this example, we make some simple observations about how the PPS

algorithm works.

First, observe that the timelines of the phases are continuous, so the end value for a given

phase in the �
���

window is the same as the corresponding start value of the
�
�
* � 	 ��� window. A

gap in the transmission timeline, for example, would imply under utilization of the network. A

gap in the display timeline would indicate a failure to maintain the timeliness of the video.

The second observation is that the transmission of a window has to completely precede its

display, so in Table 4.1 the transmit end value of a given window must be less than or equal to
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Window Prepare Transmit Display
Number Start End Start End Start End

1 0 1 1 2 2 3
2 1 2 2 3 3 4
3 2 3 3 4 4 5
4 3 4 4 5 5 6
5 4 5 5 6 6 7
6 5 6 6 7 7 8
7 6 7 7 8 8 9

Table 4.1: PPS Example

the display start of the same window. This is a consequence of how re-ordering works in PPS.

Transmission of a window’s contents proceeds in priority order, but display in time order. On the

receiving side, the re-ordering from priority-order back to time-order can not complete until all

of the priority-ordered SDUs have arrived from the sender. Hence, the transmission and display

phases are strictly sequential for a given window. However, the transmission and display phases

do overlap in time in the sense that an earlier window is displayed while the current window

transmits, except for the first and last windows2. This is a ubiquitous strategy called pipelining.

Finally, observe that the first and last windows are special cases. Since the first window has

no predecessor, there is nothing to display while it transmits. This period is commonly referred

to as the transmission preroll period. Similarly, the last window has no successor, so transmission

stops when the last window begins the display phase. For symmetry, we’ll call the last period

postroll. The duration of the preroll period represents the main component of startup wait time—

the streaming responsiveness, which is a subject of the next section. The postroll period is also

significant, as we shall see later in Section 4.3.

4.1 Streaming Scenarios

The main control problem for the PPS algorithm is managing the sequence of adaptation win-

dows: when should each window be transmitted, and what segment of the video timeline should

each window contain? When considering the transmission schedule for windows, there are three

2In Table 4.1, it happens that display phase for window ����� happens at exactly the same time as the transmit phase
for window � , but this will not always be the case in practice
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Figure 4.3: Streaming Scenarios

separate scenarios to consider, which are defined according to the relationship between available

bandwidth and the adaptation range of the video stream. These scenarios correspond to the three

regions of Figure 4.3: adaptive streaming, unacceptable quality, and full quality.

4.1.1 Adaptive Streaming

The main concern of this dissertation is the middle region of Figure 4.3, where available bandwidth

is somewhere between the minimum and maximum of the video rates. This case is the main target

of our overall approach. In this case, the timing of window transmissions will be more or less

linked to the real-time rate of the video. The most basic constraint is that the windows should

always be transmitted so as to maintain real-time playout at the receiver.

4.1.2 Unacceptable Quality

The lowest region of Figure 4.3 is when the available bandwidth is less than the minimum required

by the video. In our approach, this lower bound corresponds to the scenario where the algorithm

finds that it does not have enough time to transmit all the highest priority SDUs. When this

scenario arises, a logical recourse might be to declare a fatal failure and abort the stream. Other

possibilities would be to play slower than real-time, or to skip whole adaptation windows to try
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and keep up with real-time3 . In the implementation we chose a mixed strategy. If the base layer

of a window has started tranmsission, we always complete it, even it means allowing playout

interruptions. We call such a scenario base layer backup. If we discover that a window is late for

display before we even begin transmission, then we skip it entirely.

4.1.3 Full Quality

Finally, the top region of Figure 4.3 is where available bandwidth is more than the maximum

rate of the video. On the one hand, one might disqualify consideration of this region, on the

grounds that it contradicts the observations in Chapter 1. If available bandwidth is always more

than enough, then adaptive streaming isn’t needed at all. However, there may be threshold cases

where available bandwidth fluctuates above and below the upper limit of the video rate. Also, in a

multicast tree there may be some clients that have excess bandwidth while others do not. Thus, it

is worth considering what should happen in the upper region.

Work Conservation Options

PPS can use two possible strategies when network bandwidth is abundant. It can be work conserv-

ing or non work conserving.

In the work conserving strategy, as soon as the upstream buffer is emptied, that is, when all

SDUs in the window have been transmitted before the window’s deadline, then the algorithm

advances immediately to the next adaptation window. This strategy is work conserving in the

sense that it tries to ensure that the network transport always has data to transmit, which in turn

ensures that the stream claims its full share of available bandwidth. However, in this strategy the

transmission timeline is advancing faster than the real-time rate of the video. Because the display

component of the receiver will only consume video at the real-time rate, the fill levels of its buffers

will increase in proportion to the difference between network bandwidth and video rate. In the

limit, if bandwidth were essentially infinite, the client would have to buffer the entire movie. The

work-conserving strategy is not feasible for certain application scenarios, such as live streaming.

3These might be considered degenerate solutions. The semantics of the highest priority level is that the data are
essential to maintain the minimum acceptable quality. So these solutions proceed on a path that, by definition, delivers
unacceptable quality.
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With a live source, it is not possible to advance early to the next adaptation window, since the

video for the next window may not have been captured yet. The multicast overlay covered later

will also turn out to be an example where the work conserving strategy does not make sense.

The non work conserving strategy, in contrast, is where the PPS algorithm does not advance

immediately if the upstream buffer is emptied, but rather the algorithm waits for the adaptation

window deadline anyway, effectively pausing network transmission. In this strategy, the client

side buffer requirements are bounded to a single adaptation window.

Our implementation supports both strategies or a hybrid combination of the two. A workahead

limit is used to specify how much work conservation is allowable. If the limit is as large as the

duration of the video, then the algorithm will be fully work conserving. If the limit is less, then the

algorithm switches from work-conserving mode to non-work conserving mode when a specified

workahead limit is reached. Finally, if the workahead limit is zero, the algorithm is always in non

work conserving mode.

4.2 Window Durations: Latency vs Consistency

The duration of the adaptation windows has major implications for the performance of the ap-

proach. The minimum possible value for window duration is constrained by the requirements of

the video. Clearly, an adaptation window duration must be long enough to hold at least one ba-

sic unit of the stream, such as a single video frame. In Section 3.2.1, we described how mapper

window boundaries are chosen to avoid the possibility of broken data dependencies in dropping.

Therefore, we honor the data dependencies by requiring that adaptation windows contain a se-

quence of one or more undivided mapper windows. This restriction to whole mapper windows

means that the minimum size of an adaptation window will in general be at least several video

frames. However, as we described in Section 3.2.1, a single map window (which determines the

minimum adaptation window size) will be on the order of one second or less. On the other hand,

the upper limit for the adaptation window size could comprise as many mapper windows as we

like, upto the full duration of the video itself4 , or we might deliberately constrain the upper limit

4The video may not have a bounded duration, if for example, it were a TV style broadcast channel which operates
24 hours a day.
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in order to bound the amount of storage required for the streaming process.

Using only primary storage (RAM), a window size of several minutes is certainly feasible.

For example, 64 Mbytes holds over 8 minutes of 1 Mbit/s video. With a minimum duration on the

order of a second and maximum durations on the order of minutes, the range of possible window

sizes is very wide (several orders of magnitude). The best size depends on several factors. As

the next couple of sections will explain, the duration of adaptation windows is directly linked to

a trade-off between the end-to-end latency of the streaming process and the consistency of video

quality.

4.2.1 Latency

To understand the latency-consistency tradeoff, we first analyze the expected latency of the steps

of PPS. The overall concern is the end-to-end latency, the time it takes between when a user makes

a request, starting the stream for example, and when they see the results. However, this section will

focus on the component of latency that is due to the re-ordering employed in the PPS algorithm.

An ideal streaming mechanism would have zero perceivable latency. In contrast, a download

has best effort semantics and effectively unbounded latency. However, unlike the ideal, all stream-

ing algorithms will buffer some data, which in turn will add some latency to the overall end-to-end

latency. In PPS, the buffers are the adaptation windows5. Since one of the principal goals of the

algorithm is to maintain the timing of the video, an important part of the design of the PPS algo-

rithm is that it manages adaptation windows in terms of time. That is, the timestamps of SDUs

control what goes into the buffers. This differs from traditional buffers, which are managed in

units of storage space such as kilobytes, and the relationship between buffer fill and time can be

imprecise (since video rates fluctuate). Just as time-sized buffers allow control over timing, they

also make it straightforward to predict the latency contribution of PPS.

Figure 4.4 shows how the latency introduced by PPS is related to the window duration � .

Recall that each adaptation window goes through three phases. We’ll now describe why the total

duration of the phases is at most
�

� , and the latency of an individual component (e.g., video

frame) through these phases is at most
(

� .

5This is not entirely true, Section 4.4 will discuss how PPS buffers, in addition to the adaptation windows, also
include a separate component to compensate transport delays (e.g. TCP delay).
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Figure 4.4: PPS Latency: Total latency for contents of a window of duration � is at most
(

�
.

The first phase is window preparation, where the video data for the window interval are col-

lected, prioritized, and sorted into priority order, at which point they are ready for transmission.

Preparation should take at most time � , where � is the duration of the window in the video time-

line. For stored content, preparation may take much less than � , given fast enough storage and

CPU time6. For live content the preparation will require the full time � , since real video frames

are collected in real time.

The time given to the transmission phase is a decision for the PPS algorithm. A transmit time

greater than � is disqualified since it would not provide data fast enough for real-time play. If the

window is given time � to stream, then the transmission timeline advances at the same rate of the

video, using all of the available network bandwidth. Hence, we assume for now that the full time

� is given for transmission.

Finally, the duration of the display phase would also equal the duration of the window � ,

assuming normal playout matching the “real-time” rate of the video.

Figure 4.4 also shows the latency for each video frame in the window, in terms of the frame

� , assuming each of the phases takes time � to complete. In the preparation phase, the � ��� frame

must wait until all � frames of the window have been converted into SDUs and sorted into priority

order, this time is given by the term ��� �
�

� � . Similarly, only when the last SDU arrives at the

receiver can the receiver complete re-sorting back to timestamp order for the decode and display

6This is verified in our prototype, where the preparation stage is at least an order of magnitude faster than real time.
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stage7. Hence all video frames experience the entire delay of the transmission phase, � . In the

display phase, the � ’th video frame of the window would be displayed only after the previous ��� �
frames, which is given by �

�
� � . Summing the latencies for the three phases, as shown in the

Figure 4.4, the total latency for each video frame is at most twice the duration of the adaptation

window, i.e.,
(

� . Thus, using smaller values of � (shorter adaptation windows) in PPS will reduce

its contribution to end to end latency.

In the next section, we consider a technique where PPS will vary the value of � from one

window to the next, with the goal of taking advantage of the following observation. Although

streaming is in a sense by its definition about small startup latency, it remains that, for some video

applications, the end-to-end latency is only temporarily important or perceptible the user. The

latency is perceivable in terms of the startup time, or more generally in the response to interactive

controls (such as fast forward, rewind, etc.). When video is actually playing, some of the video’s

timing properties may be very perceptible (such as rate, jitter, audio synchronization), but the end

to end latency is not necessarily one of them. In applications such as video conferencing, remote

control, or surveillance, the latency may be perceptible or important due to interactive aspects of

the application. However, in many other video applications, the users have a completely passive

role, such as when viewing video for entertainment, like a movie or an episode of a TV series. For

these applications, the latency after play commences is neither perceptible nor important to the

user.

4.2.2 Consistency

In PPS, the duration of the adaptation windows also has important implications on the consistency

of video quality. Having fewer quality changes is generally desirable from a viewer’s perspective.

Although adapting video quality to match the network is the foundation of adaptive streaming, it

is also true that the goal should be to adapt with least noticeable effect to the user. Making fewer

changes is surely one way to make adaptation less noticeable.

7The last transmitted SDU could belong to the first video frame of the window.
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Figure 4.5: Two Quality Levels per Window. Each block represents an SDU, and each vertical
column of blocks corresponds to a single map window.

In PPS, the sizes of the adaptation windows have a direct effect on the number of quality

changes. Figure 4.5 shows how, for a single adaptation window, the final quality levels are deter-

mined by the transmission order used in PPS. The PPS transmission order is such that the SDUs

for the window are transmitted primarily in priority-order, and secondarily in timestamp order,

as in the figure. The resulting transmission pattern is like filling the rectangle from left to right,

bottom to top. In the end, there are (upto) two priority levels that have been reached, hence two

quality levels, as shown by the dashed line8. Consequently, the total number of quality changes for

the whole video will be at most two times the number of adaptation windows in the video timeline.

It follows naturally that since longer adaptation windows mean fewer window positions in the PPS

timeline, and since fewer windows means fewer quality changes, that therefore longer adaptation

windows ensure more consistent quality. In practice the quality is not only more consistent in

terms of the number of changes, but also in terms of smaller variances between quality levels.

8This assumes that quality for a single priority level is uniform, which is true for our priority mapper algorithm.
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4.3 Window Scaling

The previous section established that shorter and longer adaptation windows each have their bene-

fits, which reflects what is probably an inherent trade-off between responsiveness and consistency

in adaptive streaming. Indeed this kind of trade-off is likely common to most forms of adap-

tive control. However, in PPS it is not necessary to restrict all window sizes to the same value.

The PPS algorithm includes the option to adjust the window size during the streaming process,

which we call window scaling. With window scaling, the window duration starts out minimal, so

that the startup latency is minimal, and then the window durations grow with each new window

as the stream plays. As the window durations get larger, quality changes become less frequent.

Compared to a fixed window duration, we will see that window scaling yields dramatically better

balance between latency and consistency. However, we must first explain how window scaling

actually works, and in doing so, we’ll examine the trade-offs that arise. The main questions will

be how fast can windows grow, and what are the quality implications?

Window scaling is possible because PPS can transmit the video at a faster (or slower) rate than

it will be consumed at the receiver. The consumption rate at the receiver is naturally fixed to the

video’s “real time” rate, but the transmission schedule is not so constrained. The priority dropping

mechanism is what affords flexibility in this respect. Sending a window faster just means that

more SDUs might be dropped. In altering the transmission schedule, the PPS algorithm can create

(or reclaim) workahead in the transmission schedule, which is what allows subsequent adaptation

windows to be larger (or smaller). Workahead accumulates whenever the duration of the transmis-

sion phase is shorter than the display phase. By definition, the preroll period establishes the initial

workahead. With the exception of the preroll window, the accumulated workahead is the upper

bound on the duration of each step of the transmission phase. We call the ratio between duration

of a step of the transmission phase and the duration of the corresponding step of the display phase

the window scaling growth ratio.

Figure 4.6 and Table 4.2 describe the timelines for four adaptation windows, where the growth

ratio is fixed at 2. Each box in Figure 4.6 represents an adaptation window. The height of the boxes

represents the display duration of the window. The top timeline of Figure 4.6 is for the Transmit

phase, the rectangular shapes of the boxes in that timeline reflect that the windows’ transmission
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Figure 4.6: PPS with Window Scaling Example
.
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durations are less than their display durations. The Display phase proceeds at the normal real-time

rate of the video, so the boxes on the bottom timeline of Figure 4.6 are square. Table 4.1 gives

the details of the timelines depicted in Figure 4.6. The group of columns marked Video describe

the timestamps from a stored video. The Transmit and Display describe the windows in terms of

the streaming timeline as depicted in the figure. In this example, the transmit duration is always

the full amount of workahead, so that the display of an adaptation window starts exactly when the

transmission ends. This is not the case in the actual implementation: the transmit durations do not

usually match workahead exactly because the intervals of video contained within each adaptation

window have to be aligned with GOP boundaries.

Window Video Transmit Display
Number Duration Start end Duration Start End Duration Start End

1 1 0 1 0.5 0 0.5 1 0.5 1.5
2 2 1 3 1 0.5 1.5 2 1.5 3.5
3 4 3 7 2 1.5 3.5 4 3.5 7.5
4 8 7 15 4 3.5 7.5 8 7.5 15.5

Table 4.2: Window Scaling Example: windows grow at 100% rate

From this example we now extrapolate to a more general analysis of window scaling, which

sheds more light on the question of quality implications of window scaling.

If the PPS growth ratio is kept constant as in this example, then the sequence of window

durations forms a geometric series, whose total is the overall duration of the video. In the example

the series is 1 + 2 + 4 + 8 = 15 seconds. Generically, the geometric series is
� ��� *���� *���� > *

� � �

*���� � where
�

is the total duration of the video,
�

is the duration of the initial window,
�

is

the growth ratio, and �
* � is the number of windows. Recall that the solution for the sum of a

geometric series is
� � �
	������� � < �� � < . Solving this equation for the number of windows �

* � , we

get �
* � ��� #��

�
� 	�� � < ��� <� . In words, the number of adaptation windows is logarithmic, where

the base of the logarithm is the growth ratio, and the argument to the logarithm is a function of the

total length of the video, the growth ratio, and the initial window size. In non mathematical terms,

this means that, through window scaling in PPS, the number of adaptation windows grows very

slowly relative to the total duration of a video. The analysis could be extended to the case where
�

might be allowed to vary. For instance, it might be profitable to start with a relatively large value
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of
�

and decrease the value as time goes on. A piecewise version of the analysis here could be

used to show the same general results.

The significant implication of this analysis is that window scaling in PPS can cause video

quality to become more and more consistent the longer the video plays. This result holds no

matter how volatile the video rates and network rates are (within reason).

In the analysis above, we see that the consistency effects of window scaling depend on several

parameters: the total length of the video, the initial window duration
�
, and the window scaling

growth rate
�
. Of these variables,

�
turns out to be of the main interest. The length of the video is

a fixed value that depends on the chosen content. The value of
�

is the preroll duration, for which

there is an incentive to choose the smallest values the video constraints will allow, in order to have

the best interactive response (as discussed in the previous section). The question remains: how

fast should the windows grow, or, what values should
�

have? From the analysis of the previous

paragraph, larger values of
�

yield more consistent quality (the larger the base, the smaller a

logarithmic value will be). On the other hand, larger values of
�

have a negative impact on network

utilization and average video quality, for reasons we describe next, so arbitrarily large values of
�

will not be acceptable.

To help explain the negatives of large values of
�
, we begin by considering the example in Table

4.2. Notice that the sum of the transmit durations is 7.5, while the sum of the display durations

15. In other words, the transmission occurs only for half of the time that video is displayed. If we

assume that available network bandwidth is uniform, then our example results in using only one

half of the network bandwidth that was available, which would be reflected in the average quality

of the video. This level of utilization is unacceptable, as high utilization is one of the primary

motivations of PPS and adaptive streaming in general. The cause of the problem in this case is

that window growth leads to a very large postfix window, and recall that during the display of the

postfix window, PPS will leave available network bandwidth unused.

Figure 4.7 and Table 4.3 give an example which shows how we can modify the window scaling

approach to avoid sacrificing so much network utilization. In this example, the windows grow for

the first half of the video, and then shrink down again for the second half, significantly reducing the

size of the postfix. The postfix interval now represents a very small fraction of the total timeline.

As a result, utilization is close to complete, and average quality will reflect the nearly double
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Figure 4.7: Example of PPS with Window Scaling.
.
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Window Video Transmit Display
Number Duration Start end Duration Start End Duration Start End

1 1 0 1 0.5 0 0.5 1 0.5 1.5
2 2 1 3 1 0.5 1.5 2 1.5 3.5
3 4 3 7 2 1.5 2.5 4 3.5 7.5

4 4 7 11 4 2.5 6.5 4 7.5 11.5

5 2 11 13 4 8.5 10.5 2 11.5 13.5
6 1 13 14 2 10.5 12.5 1 13.5 14.5
7 0.5 14 14.5 1 12.5 13.5 0.5 14.5 15

Table 4.3: Modified Window Scaling Example: windows 1–3 form an expansion phase, window
4 is neutral, and windows 5–7 are the shrinking phase.

average rate compared to the previous example where windows only grow. This improvement

in utilization has come at some expense in consistency, because there are now more adaptation

windows (approximately twice as many compared to when scaling only grows the window), but

the total number of windows still retains a logarithmic relationship with the total video duration.

That is, it retains the important property that longer videos will have more consistent quality. This

example reflects the strategy for window scaling that is used in the current implementation of PPS,

which is as follows.

As Figure 4.7 shows, the PPS timeline is subdivided into three phases: expansion, neutral,

and contraction. In the expansion phase, the windows grow at a growth rate
�
. The expansion

phase lasts until a window size limit is reached, in which case a neutral phase begins, or when

the half-way point of the video timeline is reached. The expansion of the streaming timeline is

essentially mirrored in reverse for the final part, yielding a contraction phase of similar length to

the expansion phase, in which windows shrink at a rate of <� . The three phases provide a balance

between consistency, average overall quality, and latency. Now, we turn to the issue of what are

plausible values for the growth ratio
�
.

For the sake of argument, let us suppose for the moment that the video has a constant rela-

tionship between data rate and video quality, and let us also assume that the available network

bandwidth is constant (denoted as � 	 9. With these assumptions, we can see that the example

choice of growth factor of 2 in Table 4.3 has a rather major problem. In the expansion phase,

9These assumptions are not true in practice, but the difference is neither here nor there for the point we make in this
paragraph.
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there are 3 windows that account for 7 seconds of the video timeline, but are given 3.5 seconds

to stream, yielding an average video rate of about ��� ( . In contrast, during the contraction phase,

there are 3 windows spanning 3.5 seconds of the video timeline and given 7 seconds to stream, so

the average video rate for these windows is close to
( � . Thus the video quality for the expansion

phase will be 4 times worse than in the contraction phase. In the general case, with growth rate
�
, the quality imbalance will be

� >
. To keep the quality imbalance between the expansion and

contraction phases reasonable, the value of
�

needs to be much more conservative than 2.
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Figure 4.8: Window Scaling and Consistency: This plot shows the average time between quality
changes as a function of the total duration of stream. Initial window size is 0.25 seconds. Both
axes are log scale.

Fortunately, growth ratios as small as 1.1–1.5 give reasonable results. Let us define consistency

to be the average time between quality changes. With window scaling, this average increases as a

function of total video duration. Given that quality can change twice per window, the upper limit

on the average can be approximated with the following formula:
(�� �

� ����� �����	� � ��
 � � � ��� � 	 � �
� where

� is the video duration, and  � ������ � � ����� ��� � ��� 	 is the size of the adaptation window at time
�

in

the stream. Figure 4.8 shows this average, for a range of video durations upto 2 hours, assuming

that the initial window size is 0.25 seconds, and that the window grows until the half way point of

the timeline, then shrinks back down for the second half. Even with a conservative growth rate of
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1.1, quality changes are on average approximately 10 seconds apart for a 10 minute clip, and for a

two hour movie they would be nearly two minutes apart.

If the user can perform interactive (VCR style) operations, then some modifications to the win-

dow scaling schedule will be required. One way to treat interactive operations would be to proceed

as if the streaming process were starting over. That is, PPS would reset window size to the min-

imum size and restart the expansion phase, starting at the point in the video timeline where the

interactive operation was initiated. This would be simple to implement, but there is certainly room

for optimizations. One might be to attempt to avoid re-transmitting valid data that already made it

to the client before the interactive operation occurred. Another optimization would be to continue

with the original streaming schedule in the cases where the interactive operation goes backward,

restarting the expansion phase only if the interactive operation goes forward. This might be com-

bined with having the player cache video data (to local secondary storage) as it arrives, so that

all of the data from previous adaptation windows is available. With these approaches, interactive

operations will tend to reduce the maximum consistency, but the general benefit of window scaling

(better consistency) will still hold as long as there are significant periods where play is allowed to

proceed uninterrupted.

In review, latency and consistency are in conflict with each other. Through window scaling,

this conflict can be mitigated in PPS. Using short windows at the start and end of streaming

allows interactive operations to be responsive and network utilization to be maximized. Using

larger windows elsewhere allows big improvements in average consistency. This technique is not

appropriate for a live conversation, but it is feasible for the large class of applications that do not

involve two way communication. Even for some live applications, such as watching live sporting

events, or the evening news, a few seconds or even a few minutes of latency are unlikely to matter

to most viewers.

4.4 Propagation Delay

So far in this chapter, the description of PPS has only alluded at how to deal with delay in the

network transport path. For ease of presentation, the examples of the previous sections presumed

a zero delay between the sender and receiver sides of a PPS stream. Actual network transports
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will introduce significant delay, due to a number of factors. In this section, we now explain how

PPS deals with the delay through the network transport.

In Figure 4.1, the outline of the PPS architecture shows two distinct clocks, the regulator

clock and the downstream clock. The reason for separate clocks is precisely to cope with trans-

mission delay. In particular, the PPS regulator contains a state variable we call phase offset, whose

value should be the largest transmission delay PPS expects to experience. The regulator maintains

the two clocks so that downstream clock time equals the regulator clock minus the phase offset:
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To ensure uninterrupted playout, the downstream side of PPS will set a deadline on each

adaptation window. The deadline corresponds to the point when the workahead (see Section 4.3)

reaches zero, and the display would run out of video frames to display. The normal expectation

is that the last SDU for each window will arrive downstream before this deadline is reached.

As long as the phase offset is larger than transmission delay, this will be true. If, however, the

phase offset value is understated in error, then as soon as the deadline expires, the contents of

downstream buffer will be committed for decode and display. Subsequently, any SDUs that arrive

for that window are considered late, and dropped by the receiver. These late SDUs waste network

bandwidth because they do not end up contributing to quality of the displayed video. To avoid

future waste, the regulator is informed about unexpected delay (late SDUs), and the phase offset is

adjusted, causing one of the two clocks to change. We now consider some pros and cons of which

of the two clocks to adjust.

4.4.1 Server-side Phase Adjustments

The first strategy for dealing with unexpected delay is to adjust the regulator clock backward, by

an amount proportional to the tardiness of the late SDU(s). This will have the effect of causing the

upstream side to advance transmission of the current and future adaptation windows earlier than

originally expected. The video quality for the current window will be somewhat lower as a result.

However, the video quality for subsequent windows will be unaffected. Using this approach,

unexpected delays manifest in transient drops in quality. With our implementation, our observation

is that such quality effects are often qualitatively imperceptible. Unfortunately, this approach is

not appropriate for all applications. With live content for example, it may not be feasible to adjust
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the regulator clock, because it can not request video that hasn’t been captured yet.

4.4.2 Player-side Phase Adjustments

Another alternative method for delay compensation is to adjust the downstream clock. This ap-

proach implies making adjustments to the video playout rate. To avoid timing artifacts in the video

and in the audio component in particular, the regulator should gradually adjust the playout clock

to reach the new target phase offset. Since computer audio devices do not typically provide a way

to alter their timing directly, the player will need to employ digital signal processing algorithms

to resample the audio data so that the audio timeline can converge to the new target phase offset.

These techniques are not yet implemented in our player, but we do anticipate that doing so would

not be difficult.

4.4.3 Improving latency with MINBUF

With either of the above two strategies, the value of the phase offset effectively adds to client

side buffering, and hence to the total latency of PPS described in Section 4.2.1. In practice, if the

network path is saturated with competing traffic, the phase offset typically settles to a value of a

few seconds within the first minute of streaming.

Our measurements have shown that the send side socket buffer is responsible for the majority

of the transport latency. This can be reduced significantly through a minor extension to the socket

API called the MINBUF socket option [31]. Roughly speaking, the MINBUF option signals the

kernel to buffer only as much data as TCP’s congestion window requires10 . With MINBUF the

phase offset stays much closer to the true network delay between the sender and receiver, and the

quality artifacts associated of phase offset adjustments are much less significant. Once streaming

is underway, the phase offset tends to stabilize within the first seconds. Meanwhile, the window

scaling mechanism takes effect to grow the adaptation windows. As time progresses, the phase

offset becomes an insignificant component of the buffering, since it may be on the order of a

second, whereas the adaptation window is orders of magnitude larger.

10The amount of data buffered is subject to tuning parameters, which can be used to adjust tradeoffs between through-
put and latency.
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4.4.4 Supporting Interactive Applications

There are some classes of video application, such as conferencing, where the user is continually

sensitive to end-to-end latency. The general reason these applications are latency sensitive is that

they are interactive. In conferencing, the dialog is based on a sequence of exchanges between

the participants. High streaming latency causes the natural flow the dialog to become interrupted,

which is hard for people to tolerate. Similarly, surveillance and remote control applications may

require that users take some real world response to what they see. For instance, a pilot flying an

unmanned aircraft based on a video feed from the aircraft itself requires that the video is as fresh

as possible to avoid crashing. Generally, we consider these interactive applications to be outside

the scope of this dissertation, however we can make some observations about PPS and interactive

applications.

Huang began follow on work to this dissertation to examine PPS and interactive applications

[38], the preliminary results show that we measured latencies in the range of 400ms with our

prototype. To summarize, the total contribution to end-to-end latency by PPS is controlled by (the

sum of) two parameters: the adaptation window size and the phase offset. Other delays relating to

capture and decode and display will add to the PPS delay. In relation to other approaches in the

literature (e.g., feedback based), the window size component of PPS delay reflects the upper bound

on extra delay due to the data re-ordering aspect of PPS. It is worth noting that, as mentioned at

the end of Section 4.3, window scaling is inappropriate for interactive applications, because the

demand for fresh video trumps the desire to hide quality fluctuations.

Aside from the delay due to re-ordering, the phase adjustment strategy of PPS described in the

sections above is probably too simplistic for interactive applications, and leads to unacceptable

delay. The problem is that our current approach never attempts to reduce the phase offset, even

though it may have overcompensated. In the non-interactive case, this was acceptable because

the phase offset delay, even when overcompensted, represented a small amount relative to the

adaptation window part of PPS delay. Recall that the window scaling mechanism increases the

window size to tens of seconds or even minutes. In an interactive (live) application, the window

size would be restricted to reflect the latency tolerance of the application, which might be just

a few hundred milliseconds. In this case, the current phase adjustment strategy can easily allow
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phase offset to grow beyond acceptable levels. Thus for interactive streaming, it might be more

prudent to control the phase offset less conservatively. In particular, the control should work so

that streaming latency can be reduced if and when network conditions improve. Also, it might

be sensible to set an upper bound on the phase-offset, accepting occassional badput due to spikes

in transmission delays. We have implemented the bounded phase offset as an option in QStream,

but not the more agressive control. These and other issues of low-latency PPS are the subjects of

ongoing work.

4.5 Related Work

There are numerous works in the literature on multimedia streaming in general and quality-

adaptive streaming in particular. We have already discussed them generally in Section 2.2, so

we do not repeat the references here. However, one rather unique issue the we have treated in

this chapter has been what we termed consistency, and the role of our window scaling approach

to balance consistency against latency. Our motivation to minimize the amount of quality changes

has been based on our intuition and experience with our prototype implementation, QStream. Re-

cently, Zink has performed a a proper human subject study on the perceptual effects of quality

changes in video and his results affirm our intuitions [97]. It is also worth noting that Zink incor-

porated our SPEG implementation into his study, because at the time, it was still the only publicly

available implementation of a scalable video codec.

4.6 Summary

In this chapter we have described the design of PPS, our quality adaptive streaming protocol. PPS

uses timestamps and priorities to manage the real-time and adaptive requirements of streaming.

The basic approach is to subdivide the video timeline into intervals called adaptation windows, and

then to transmit the contents of these windows in priority order. The rate of transmission is limited

according to the congestion control of the underlying transport protocol. When proper play-out

timing requires it, the transmission will move from one window to the next, possible dropping

unsent data (lowest priority by definition). We also described how the duration of adaptation

windows plays a crucial role in controlling the trade-off between startup latency and consistency.
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We then described how window-scaling can be used to manipulate the trade-off so that startup

latency is low, yet the quality will still be very consistent on average.



Chapter 5

Streaming for Multicast Overlays

Multicast is a transmission technique that aims to improve the scalability of video delivery to large

numbers of receivers. The basic idea is to form a tree structured distribution network in which the

interior nodes perform data replication. The structure of the tree serves to reduce the resources

required at any single point, in contrast to unicast, which can quickly cause resources near the

source of a distribution network to be overwhelmed when there are large numbers of receivers

trying to access the same content. In Chapter 2, we described the related work on multicast and

some of the outstanding challenges. In this chapter, we describe how we extend the framework

we’ve developed so far (SPEG, the Mapper, and PPS) to provide a solution for multi-rate multicast.

Our multicast extension is called Priority-Progress Multicast (PPM) streaming. The unicast

PPS algorithm is adaptive at a very fine-granularity, and can even work well using TCP as the

transport. PPM streaming works by implementing the multicast tree as a series of point-to-point

unicast PPS sessions. However, the application level processing done in the interior nodes of

the PPM tree has significantly lower complexity than for the end-points. We show that Priority-

Progress Multicast (PPM) can achieve multi-rate multicast in a TCP friendly manner. By multi-

rate, we mean that the bandwidth of the stream reaching each receiver of the multicast is as if

there were a unicast between that receiver and the sender. Thus, slow receivers of the multicast do

not penalize fast receivers of the multicast. The TCP friendliness results from the fact that each

point-to-point connection in the tree is a unicast connection that employs TCP friendly congestion

control. In our implementation, this unicast connection actually is TCP. Our experiments have

verified that PPM correctly implements multi-rate multicast for broadcasting. They also show that

PPM is very lightweight. On commodity server class hardware, our implementation of PPM can

support very large volumes of multicast traffic, saturating Gigabit network links. Thus, we do not

73
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expect node stress to be a first order scalability factor for PPM trees.

5.1 Priority-Progress Multicast

The basic Priority-Progress architecture consists of three components: a progress regulator, an

upstream re-order buffer, and a downstream re-order buffer. The network link is the conceptual

bottleneck residing between the two re-order buffers.

In Priority-Progress Multicast (PPM), we put a distribution tree in place of the single link. The

tree consists of multiple network links, connected by PPM forwarding nodes. In this dissertation,

we do not address how the topology of the tree is established. Instead, we assume that either the

tree topology is pre-established statically, or that one of the recent techniques from the literature

is used for dynamic tree construction [2, 11, 81]. Our implementation uses a static tree topology.

In PPM, each edge in the tree is a separate unicast PPS session, which as we mentioned earlier is

layered over TCP in our implementation. Thus, a multicast forwarder has one incoming (upstream

side) TCP flow, and one or more outgoing (downstream side) TCP flows per active PPS session.

For the purpose of this presentation, a PPS session can be thought to be analogous to a TV channel

in traditional video broadcast. We now describe the operation of the PPM forwarder.

Session Startup

The first task of the PPM forwarder is to handle the start phase of PPS sessions. For the start

phase we have two cases, the first being the initial activation of a multicast session due to the

arrival of the first session member, and the second case being the arrival of subsequent members

who join in on the already active broadcast. The arrival of the first member is the easier one to

handle, in that the steps involved are very similar to the case in unicast streaming, only they are

replicated as datagrams relayed through the nodes on the path from the source to the sink. Since

Priority-Progress sends data in priority order, and the lower priority data generally represents

enhancements relative to high priority data, it follows that joining in on an active session can only

happen at points where a new window position is started, otherwise the missing high priority data

would make all the remaining data unusable. As suggested, the simple solution is to have new

members wait until the next window to begin. Since the decode and presentation of data does not
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begin until the first window is completely received at the receiver, this means the startup process

can take at least one and as long as two whole window periods from the time the member selects

a session to the time session display begins.

To improve startup times in multicast, we might implement a more advanced hybrid-startup in

the future, which we sketch here. The hybrid version would begin with unicast and transition to

multicast. New members are started with an separate unicast that begins with a small window size,

the window size then ramps up (using the window scaling option of PPS) until it synchronizes its

size and position of the window of the multicast session. Once synchronized, the unicast session

is terminated, and the member is switched into the multicast section proper. The goal of this

approach is to support rapid “channel surfing” by way of the unicasts, while using relatively large

windows in the multicast during the periods of time where the viewer has settled into viewing

one particular session. The large windows are desirable for the reason of keeping quality resilient

against transient bandwidth changes. After startup, the PPM forwarder enters the main multicast

streaming phase.

Window Forwarding

The root of the PPM tree periodically sends window position messages to the PPM forwarder

immediately below in the tree (for simplicity of explanation, we assume there is one, but extension

to multiple receivers is straightforward). The PPM forwarder in turn, replicates the message along

each of its downstream edges (and so on down the tree). The forwarder then begins receiving data

units for the window position from upstream. We use a reference counting mechanism to track

which data have been forwarded down each of the downstream edges. For each data unit received

the forwarder maintains a reference counter, which is initialized to the number of downstream

edges. Each data unit and its counter is entered into the head end of a FIFO linked-list data

structure. The forwarder maintains a separate pointer into the list for each of the outgoing tree

edges, which we call the ”out pointer” vector. Each out pointer is initialized to point at list tail.

For each connection the forwarder writes the data unit pointed to by the corresponding out pointer.

When the write completes, the counter for the data unit is decremented. The new value of this out

pointer will be the next item in the list. If the counter decrement reached zero, the item is removed

from the list. In the event that the head of the list is reached, the out pointer is null, and output
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for the downstream link is (temporarily) paused. A separate list is maintained to track which

downstream connections are paused. For every data unit received, this list is processed to resume

any paused connections. This whole process continues, with data units arriving from upstream,

and writes on each of the downstream links. Eventually, the forwarder receives the message from

the upstream regulator indicating the start of the next window position, followed immediately by

the first data unit for the new position. At this time, the current contents of the list are flushed,

dropping any remaining data units from the old window position, and the new window position

message is replicated down each of the downstream links.

5.1.1 SDU Fragmentation

PPM is an example of the store and forward networking model, similar to the model used in the

IP protocol. As it turns out, the description of PPM so far overlooks a problem that relates to

store and forward. The problem occurs when PPS messages, SDUs in particular, are very large. In

concrete terms, a single SDU in PPS can be tens or even hundreds of kilobytes. When SDUs are

this large, it introduces the chance that a PPM forwarder may spend a substantial amount of time

just receiving a single large SDU. Even though QStream is implemented using reactive style that

avoids blocking, it is still the case that a PPM forwarder waits for the entire SDU to arrive before it

starts to forward it downstream. In this time, the PPM forwarder can run out of data to send to its

downstream children, which allows the downstream connections to go idle, even though network

bandwidth is available. It turns out that this happens quite often at the start of each adapation

window, because data from older windows have been dropped, and the first SDU must arrive in its

entirety before it can be forwarded. This problem can cause serious reductions in PPM’s ability to

utilize available bandwidth.

To solve this problem, we choose to limit the size of SDU messages by splitting an SDU into

a sequence of smaller SDU fragment messages. These SDU fragments messages are limited to a

size similar to the maximum segment size of TCP. As a result, PPM is able to forward data very

quickly when it is received. Chapter 7 will show that SDU fragmentation allows PPM to achieve

full network utilization.
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5.1.2 Multicast Flow Control

Another issue not addressed in the PPM algorithm, as described so far, is conservation of upstream

bandwidth. That is, what if the upstream link is significantly faster than all of the downstream

links? The algorithm above allows the upstream link to proceed at full rate. In the case where all

the downstream links are relatively slow, a large proportion of SDUs received from upstream will

be dropped before they make it to any receiver. This issue arises in PPM because it partitions the

path between the source and the client into separate transport (TCP) sessions, one for each edge

of the tree. By contrast, in unicast PPS, all of the dropping happens at the server. To prevent such

waste, PPM includes a (application level) multicast flow control option.

PPM flow control works as follows. Each PPM forwarder keeps a count of SDUs in its SDU

queue that have not yet been transmitted through any of its downstream edges. This value is called

the SDU fill. When the SDU fill exceeds a high water threshold, the upstream link is paused. To

pause the link, a message is sent upstream to the parent, which causes the parent to stop sending

SDUs. The parent may delay this pause if it has base layer SDUs to send. Also, the start of the

next adapation window (signalled by the arrival of a corresponding message) always immediately

unpauses all links. While the upstream link is paused, messages will continue their transmission

on the downstream links, causing the SDU fill level to drop. When the SDU fill drops below a

low water threshold, then the PPM forwarder will resume the upstream link, by sending a resume

message upstream. This flow control mechanism is naturally recursive, since pausing the link to

the parent may cause the parent’s SDU fill level to rise, and hence the parent may send a pause

message further up the tree, and so on, until the final link to the root of the tree is paused. The

resume messages will propagate in the same way.

An alternative approach to PPM flow control would be to use the transport’s flow control more

directly. In this version, rather than sending a pause message upstream, a PPM forwarder would

cause the pause simply by halting reception (reads) of messages from upstream. The main advan-

tage of this option over using explicit pause/resume messages is that it involves fewer changes to

the PPM algorithm, in particular the algorithm at the root is unchanged. However, this approach

is deficient due to its effect on end-to-end latency. If a PPM node suspends message reception as

suggested, then eventually the flow control mechanism in the transport would stop upstream nodes
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from sending further messages, which is the desired effect. Unfortunately this process completes

only after all the upstream receive buffers become full, for every edge on the path to the root.

When the PPM forwarder resumes accepting messages, all of those buffers will have to drain,

which would often cause significant latency. In the worst scenario, should the root of the tree need

to advance to the next adaptation window during the period where all the receive buffers are full,

then it will be unable to transmit the window start message until after the buffers drain. This may

cause many of the buffered SDUs to be declared late at the leaves of the tree. The phase offset

will adjust eventually, but the resulting phase offset would be much larger than truly necessary.

In contrast, with the explicit pause/resume flow control scheme, transport receive buffers should

stay close to empty, as the Priority-Progress algorithm always consumes incoming messages as

soon as possible. Also, the root of the tree will send window start messages regardless of the flow

control. Therefore, the flow-control should make no difference to the phase-offset. Thus PPM,

uses explicit flow control messages because they do not impair end-to-end latency.

5.2 Related Work

In section Section 2.2.6, we gave an overview of the literature on adaptive multicast. PPM dis-

tinguishing features are that it supports multi-rate adaptation of video, and since it can be imple-

mented using TCP, it is TCP friendly by definition. Furthermore it conserves bandwidth at the top

of the tree so that it only expends bandwidth at the source that will be used by at least some of the

receivers.

More recently in the literature, a new development in multicast has been emerging, namely,

multicast approaches which go beyond a strict tree structure. Systems such as SplitStream [9],

CoopNet [65], and Bullet [51] use multi-path multicast techniques, either through multiple trees

(CoopNet and SplitStream) or meshes (Bullet). These multi-path approaches have advantages in

light of the greater potential for nodes to be unreliable when the trees correspond mostly or entirely

of end-hosts. As these systems are all very new, a comprehensive comparison of them remains an

open problem.
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5.3 Summary

In this chapter, we described PPM which uses the basic PPS approach to construct a multicast

overlay. In PPM, each edge of a multicast tree is a separate PPS session. Since the PPS server at

the root of the tree transmits data into the tree in priority order, the PPM forwarder can do data

dropping in a simple, first-in, first-out fashion. PPM uses the arrival of a new adaptation window

as the trigger to drop data for slower receivers. PPM also includes an application level flow control

to ensure that the subdivision of the path into separate sessions does not lead to wasted bandwidth

in the higher parts of the tree.



Chapter 6

The QStream Implementation

The previous two chapters were intended to provide the reader with a basic understanding of how

Priority-Progress Streaming (PPS) and Priority-Progress Multicast (PPM) work, and to explain

the important performance trade-offs and how they can be controlled.

The purpose of this chapter is to present a concrete description of the PPS and the PPM al-

gorithms, based on our prototype streaming system, QStream. This description provides pseudo-

code and commentary at a level of detail which is greater than the previous chapters, yet still

significantly more abstract than the actual QStream source code. In this chapter, we also elab-

orate on how the software developed for this thesis constitutes a framework for adaptive media

streaming.

The framework we present, and its realization in QStream, is divided between parts that are

implemented as directly re-usable software components (libraries) and those which are re-usable

as a kind of design pattern. This division in the framework falls roughly along the line between

the real-time and quality-adaptive aspects of the streaming application. Our libraries are called

QSF (Quasar Streaming Framework) and GAIO (Asynchronous IO). They provide support for the

conventional real-time aspects of the application. The quality-adaptive parts of our framework

(SPEG, the Mapper, PPS and PPM) are implemented in the QStream application, but are not

packaged as libraries or components that would be immediately re-usable in other applications.

However, we do feel that Priority-Progress illustrates a relatively clear design pattern applicable to

wide range of applications. We have released all of the QStream software under open source terms,

as one way to promote re-use of the entire framework. The next section describes the libraries in

greater detail, and the remaining sections of the chapter describe the QStream application and

the details of the PPS and PPM algorithms (see Chapter 3 for the descriptions of SPEG and the

80
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Mapper).

6.1 Quasar Streaming Framework

This section will describe the approach to real-time programming used in QStream, and the two

software libraries we have developed to support the approach. We begin by describing some of the

motivating design requirements of adaptive media streaming, which have to do with concurrency

and timeliness.

6.1.1 Challenges: Concurrency and Timeliness

There are multiple levels at which concurrency arises in media streaming. A streaming server, like

most network servers, has one obvious concurrency requirement in that a server should be able

to maintain multiple sessions to distinct and unrelated network clients, all at the same time. We

call this type of concurrency inter-session concurrency. Media streaming also requires the ability

to deal with intra-session concurrency, because a single streaming session consists of separate

control and data communications planes. The control plane implements user actions, such as the

so-called VCR actions (start, pause, fast forward, rewind, etc.). The data plane implements the

continuous parts of the session, such as the video stream. In addition to the concurrency between

the data plane and the control plane, the data plane is typically also internally concurrent. A

video player, for example, has to manage video rendering and audio playback at the same time.

Concurrent programs are notoriously tricky to develop because there are types of errors that are

easy to make in concurrent programming that do not exist in sequential programming. Some

well known examples of the unique types of errors that arise in concurrent programming are race

conditions, deadlocks, and livelocks.

Conventional servers, such as web servers or database servers, have similar concurrency is-

sues, but their main performance concern is optimizing overall throughput of the server. A video

streaming system also requires high throughput, but additionally it requires accurate timing for

the time sensitive elements of the streaming process. For example, a streaming system has to

deal with maintaining audio-video synchronization, which is easy to spot when it goes wrong (but

not necessarily easy to correct). With all their concurrency requirements, Video players are often
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used as the example application for real-time systems research. Streaming video systems add the

challenges of distributed systems to the real-time challenges of regular video players.

Given the objective of developing a video streaming system which addresses concurrency

and timing issues, there are several flavors of programming model to choose from. Three of the

most well known programming models are preemptive multitasking, cooperative multitasking,

and event driven. Various hybrid combinations of these models are possible (and do exist). Our

implementation of PPS has evolved through various architectures representing different choice

points in space of these three models. The current implementation is based on a flavor of event-

driven model, referred to as reactive programming.

6.1.2 Reactive Programming

Reactive programming is so called because it places emphasis on the notion of programs that are

driven by external events (which originate ultimately from real-world sources) and generate real

world output in response. Reactive programming is a natural fit for building real-time systems

when clocks are included in the set of event sources. The reactive model has been used very

successfully as the basis for time-sensitive applications, especially those in embedded systems [4].

The model is based on state machines which are driven by the arrival of the external events. The

ideal realization of the model would be a state machine which responds with optimal timeliness

to all events. To achieve the instant execution property of an ideal reactive program, the program

must have two properties: the first is that all IO operations are asynchronous, and the second is

that CPU speed is sufficiently fast that computation times are a non-issue.

The traditional IO APIs provided in general purpose operating systems are synchronous, which

is to say that an IO request returns only after its result is complete. With asynchronous IO, rather

than issue an IO and wait for a completion, the IO is requested, and if it’s completion is not im-

mediate, then the completion will generate a new separate event in the future. Dividing the IO

into two parts, one for issuing the request and the other for handling the result, is generally harder

to program than using a synchronous IO API. The payoff is a much better approximation to the

instant responsiveness the reactive model aspires to, because asynchronous IO allows the applica-

tion’s state machine to respond to new events while other IO requests are pending completion.

If we were free of practical resource constraints, we could imagine that achieving the ideal
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of optimal responsiveness would mean that state actions execute instantly (in zero time), so the

timing of the system would depend solely on the arrival of the external events. In the limit, we

could consider the CPU to be infinitely fast, so that all computations take zero time. In practise,

it suffices if the CPU time available for execution of event handlers is such that event response

times stay within acceptable bounds. Our implementation relies on the application to bound the

time of individual state actions, and hence preserve overall timeliness. Our implementation does

not enforce responsiveness, in particular, it does not employ pre-emptive state scheduling. This

requires that the application programmer has some understanding of the CPU requirements of the

state actions. If a state does require so much computation time that it would impede the programs

ability to maintain tolerable response times, then the state should be subdivided into smaller states.

Often this technique is used in connection with potentially long loops, by scheduling successive

iterations of a loop as separate events.

In our case, we implement the reactive programming support within an application through

GAIO and QSF, the pair of support libraries we mentioned earlier. Although we’ve concentrated

at the application level, the effectiveness of our real-time support also relies on the service provided

by the OS kernel. In [30], we evaluate the Linux kernel’s support for time sensitive applications.

Briefly, we can summarize as as follows.

6.1.3 Kernel considerations

There are three main concerns with kernel performance for a time-sensitive application: schedul-

ing policy, accuracy of timer facilities, and responsiveness of kernel (how quickly it can act on

scheduling decisions). The first, scheduling policy, has to do with how the kernel allocates CPU

time between various running processes, that is how it makes the decision to switch to the context

of a target process. The second concern, the timer mechanism, has to do with how accurately

the kernel can implement application specified deadlines (this accuracy is independent of what

competing applications may be running), which can be one of several reasons the scheduler might

switch to a target process. The last of the three concerns has to do with how responsive the kernel

is in actually effecting scheduling policy. Responsiveness is independent of the scheduling policy,

but has to do with granularity issues within the kernel. The evaluation in [30] shows that Linux can

provide very accurate timers and that the kernel can execute with fine granularity, hence providing
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a high degree of responsiveness. The Linux kernel developers generally maintain two versions

of the kernel at a time: the stable branch (even numbered minor version) and the development

branch (odd numbered minor version). At the time of writing, the stable development tree of the

standard Linux kernel (version 2.4) requires some modifications to achieve the timer accuracy and

fine granularity properties, as described in [30]. The development branch of the Linux kernel tree

(version 2.5) has already incorporated adequate changes. The development branch is expected to

transition into the new stable version in the near future. The issue of scheduling policy, which

has been a principle issue of real-time scheduling research, remains the more open research area.

However, our approach is less prone to the effects of scheduling policy, in the following ways.

One of the key properties of our implementation of reactive programming is that we generally

strive to minimize the number of threads or processes used within the application. Although we’ve

just described how media streaming has many concurrent aspects, we avoid the natural temptation

to map those aspects into a multi-threaded application. In designing QStream, we’ve considered

multi-threading strictly as a last resort, to be used when there is no other choice. The philosophy

behind this policy is simple: we wish to keep as much control over timing as possible within the

application. Hence, our approach tends to limit the importance of the kernel CPU scheduler so

that it only matters in relation to how other applications may impact our timeliness. In contrast, a

multi-threaded application architecture tends to depend on the kernel CPU scheduler even in the

complete absence of competing applications. Our approach also affords a pragmatic option when

competing applications do exist, that is, running the streaming system with real-time priority.

This is a kind of brute-force solution, in the sense that it doesn’t go very far in a scenario with

several time sensitive applications. However, although it is not a panacea, the single-threaded

real-time priority architecture is reasonable in many typical usage scenarios. Alternatively, one

can consider it as a proof of concept demonstration of what could be achieved with an OS that

provided direct support for reactive programming in the style of the GAIO and QSF APIs. For

example, StreamPlay (the QStream player) can effectively manage two or more video sessions

at the same time on a single display1 , without noticeable timing artifacts in video or audio. We

are unaware of any other publicly available Linux video solution (streaming or otherwise) that is

1Provided an adequately fast CPU.
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capable of this at this time.

6.1.4 GAIO

The GAIO library provides the core API for reactive programming in QStream (using the C lan-

guage) consisting of the following services:

� Asynchronous IO primitives, which are emulated over the nonblocking file API.

� A primitive to schedule events for execution at a given time deadline.

� A primitive to schedule an event for execution immediately (as soon as possible).

� An event dispatcher that schedules the handlers for the mix of IO completion events, dead-

line events, and immediate events. GAIO allows the application to prioritize all events so

that the application has some control over the order of event execution.

� A worst case execution time (WCET) profiler.

6.1.4.1 Event Dispatcher

The GAIO event dispatcher is the core of the application’s state machine. The application calls

GAIO and QSF primitives, providing a event-handler callback parameter (a C function pointer) to

be invoked when the requested action is complete (the IO has completed or the deadline expired).

Primitives that always complete immediately omit the callback. The event dispatcher also ensures

that executions of event handlers are atomic; i.e., every time an event handler is dispatched, it is

allowed to run to completion before another handler can be dispatched. We think this property

makes it easier to avoid race conditions in the application2 . The event handlers contained in an

application constitute the states of its state machine. GAIO allows events to be prioritized so that

order of execution can be tuned in cases where multiple events are ready to run.

2Another reason for making the handlers atomic is to bound the size of the application stack. Earlier versions of
GAIO allowed the dispatcher to make nested invocations of event handlers, and under some workloads we could cause
the stack to grow so large that it corrupted other program data structures.
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6.1.4.2 IO Events

The IO primitives provided by GAIO are relatively similar to their counterparts in the standard

Berkeley Sockets API, with the addition of asynchronous semantics. The difference between

nonblocking and asynchronous APIs can be subtle. The primitives of a nonblocking API always

return immediately, with a special error type (EAGAIN) if an immediate result is not possible.

An asynchronous API always returns immediately, but the completion status is always delivered

later (usually by a function callback). The difference is that calling an asynchronous primitive

commits the application to the request, whereas the non-blocking version requires the application

to re-issue the request if the non-blocking IO returns the EAGAIN error. The non-blocking version

only makes sense if there is a way to check later when the IO should be re-issued, as with the

select() and poll() primitives in the case for network sockets. However, these primitives do not

apply to filesystems, since filesystem IO only occurs in response to committed requests. Hence,

the asynchronous style of API semantics are slightly more general than the non-blocking style3.

With GAIO, the application instantiates a separate GAIO object for each file (unix file de-

scriptor) it uses. GAIO allows the application to specify dispatching priority on a per GAIO

object basis. For example, in the QStream video player, the GAIO object for the audio device gets

assigned the highest priority, since audio interruptions are very important to avoid.

6.1.4.3 Immediate Events

GAIO also provides a primitive to schedule an event handler of a specified priority for execution

as soon as possible, meaning after any other outstanding events that have higher priority. As de-

scribed above, this allows the program to avoid long running computations that might hamper the

event dispatcher’s ability to respond to other events, by dividing the computations across multi-

ple events. For example, if a sequence of iterations of a long running loop that are scheduled as

separate events, the loop may be interrupted if another higher priority event occurs, such as an IO

completion or a deadline expiry.

3Although standardized by POSIX, asynchronous APIs remain un-supported in many OS kernels, which is one of
the reasons we developed GAIO.
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6.1.4.4 Deadline Scheduled Events

The GAIO dispatcher provides a timer primitive that allows the application to schedule an event

handler for execution at a set deadline time. The deadline can be specified as an absolute time,

or time relative to the current time. When the deadline expires, the event dispatcher will execute

the handler as soon as possible. All other events have lower dispatching priority than those with

expired deadlines.

6.1.4.5 WCET Profiler

Since in our reactive approach, the overall timeliness of an application depends on limiting the time

in any single event handler, GAIO provides a tool to assist in diagnosing long running handlers.

The tool is a Worst Case Execution Time (WCET) profiling facility. When this is enabled, GAIO

tracks the duration of every event handler it dispatches. At the end of a test, GAIO can print a

sorted list of the longest running event handlers, identified by the function name of the handler.

GAIO uses a feature of the GNU bfd library to translate pointers (callback parameters) to their

symbolic name. Enabling the facility typically adds a 10-20% CPU overhead to the program.

Using this facility, the application developer can identify when an event handler might need to be

restructured to improve the application granularity. In QStream, our subjective assessment was

that application timeliness seemed very good when the largest WCET value was kept below 1 or

2 milliseconds.

6.1.5 QSF

In addition to GAIO, QStream includes a second library called QSF (Quasar Streaming Frame-

work) that provides services that are more specialized to network streaming applications. The

services provided by QSF are the following:

� Simplified primitives for establishing network connections (initiate and accept connections).

� Primitives for message passing style communication over QSF connections.

� A primitive to safely enable real-time OS scheduling, which includes the feature that it

creates a separate watchdog process.
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� Logging and tracing primitives, to help in understanding the dynamics of the program exe-

cutions (for debugging and performance analysis).

6.1.5.1 Networking and Message Passing

The GAIO network primitives provide the same level of generality as the underlying Berkeley

API upon which they are implemented. Thus, one could use GAIO to implement most kinds

of network application, such as a web servers or file servers, using standardized protocols. The

goals of QStream are not so general. QStream is an experimental platform for adaptive media

streaming. Consequently, we were not concerned with compatibility with existing protocols, but

rather in developing a prototype PPS protocol. Initially, we developed PPS directly with GAIO, but

we discovered that some of the code was verbose and repeated within several QStream programs.

In order to make the most salient details of PPS most prominent, we decided to develop a higher

level API for networking which more directly supports the message oriented style of the PPS

protocol4 . QSF provides a generic API for message oriented protocols, of which PPS is one

instance. QStream contains two other message based protocols which are implemented using

the QSF API, one used by the MxTraf traffic generator, and the other used by the Monitor. The

Monitor and MxTraf are applications provided with QStream that will be described later (see

Sections 6.6 and 7.2.2).

The goal of the QSF network primitives is to provide a simple API for sending and receiving

messages. These primitives require that all messages share a generic message header. Figure 6.1

shows the generic message header defined by QSF.

QsfMsg {
Integer length;
Integer type;
Integer magic;

}

Figure 6.1: QSF Message

The length and type fields provide the essential information necessary to implement message

4QSF started with the networking support, the other features came later.
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oriented communication over a (TCP style) reliable, byte-stream session. The length field indi-

cates the size in bytes of the message body that follows the header. The type indicates the what

kind of message is contained in the body. The type values are application specific. The magic

field is for debugging purposes, and it is used to detect if basic framing of messages has been

corrupted5 .

On the sender side, QSF provides helper functions for message creation and initialization, as

well as the primitives for sending the message. On the receiving side, QSF provides a complete

message dispatching facility. For each QSF session, the application registers a set of handler func-

tions, which is indexed by message types. The QSF dispatcher then handles the low level details

of receiving the messages and dispatches the appropriate handler for each complete incoming

message.

Since QSF is built on top of GAIO, the application can safely mix GAIO and QSF primitives.

For example, StreamPlay uses QSF for the PPS connection to StreamServ, but it uses GAIO

primitives to do asynchronous IO on the sound card device.

6.1.5.2 Logging and Tracing

Although perhaps mundane, application logging (instrumentation) is nevertheless a critical facility

for debugging and maintenance. The QStream programs have extensive amounts of instrumenta-

tion in two forms. The first form of instrumentation generates debugging messages to an appli-

cation log. The second kind of instrumentation sends data to the QStream monitor for real-time

visualization in the gscope software oscilloscope (see Section 6.6).

The QStream programs accept a command line argument which enables the generation of the

debug messages. One of the main benefits of the QSF logging facility is that its messages contain

a wealth of human readable time references.

Figure 6.2 shows an example of the output from StreamPlay when the debug option is enabled.

The details of the messages are application specific, but some aspects are generic to QSF logging.

Each message has a prefix which is generated by QSF on behalf of the application. The prefix

can contain the session number, absolute time, session time, and a time delta, as in the last line of

5The value of magic should be 0x1337.
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0: 15:12:43.908909 0.003091 connected, socket pair=127.0.0.1.4005,127.0.0.1.33808,
starting recvs

0: 15:12:43.909005 0.000096 sending open file request:file=/mpgs/angels
0: 15:12:43.932743 0.023738 Open ok, uuid=20142b06-c802-4373-86e9-d1db5ed8afbe,

video duration= 00:04:10.992000, hsize=704, vsize=304
0: 15:12:44.056734 0.123991 audio fd is 10
0: 15:12:44.056780 0.000046 sending start stream
0: 15:12:44.173926 0.117146 stream start:origin=15:12:44.173870:

stream time= 00:00:00.000000
0: 15:12:44.174009 00:00:00.000139 0.000017 win 00: vid range= 00:00:00.000000-

00:00:01.876874
xmit end= 00:00:01.706078
num_sdus=32 num_base_sdus=2
pictures=45

0: 15:12:44.174098 00:00:00.000228 0.000089 win 00: schedule decode start
at 00:00:01.706078

0: 15:12:44.174116 00:00:00.000246 0.000018 win 00: recv first frag length=412
0: 15:12:44.174148 00:00:00.000278 0.000032 win 00: recv cont’d frag length=6732
0: 15:12:44.174193 00:00:00.000323 0.000045 win 00: recv cont’d frag length=8

. . .

Figure 6.2: Example of QSF debug logging. This log fragment comes from StreamPlay, it shows
the initial sequence of events in a PPS session.

Figure 6.2. The time delta is simply the difference between the absolute time of the current and

previous message in the log. A very large value of the delta can often provide a quick hint to help

in diagnosing timing related problems.

The remainder of the log message is supplied by the application, but QSF does provide some

helper primitives, for making human readable time values, to ease the formatting of the application

part of messages. These helpers make it easy for the application to format time values in the same

format used in the prefix: hh:mm:ss.uuuuuu (hours, minutes, seconds, and microseconds) . We

have found the debugging messages to be invaluable during the development of QStream.

6.1.5.3 Safe Real Time Scheduling

As described earlier in Section 6.1.2, our implementation of the reactive model is done at the user

level, but the kernel CPU scheduler still has the ultimate control over the timing of the program.

Like most general purpose operating system kernels, Linux does offer some basic support for

real-time applications. The Linux scheduler allows applications (with root privileges) to specify a

real-time scheduling priority, which assures the application will always get scheduling preference

over non real-time processes. Linux also implements the POSIX standardized mlockall() system

call, which allows a process to pin all of its virtual memory pages into physical memory. In Linux,
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if an application runs at real-time priority (with no other real-time competitors) and has all of its

pages pinned, then it will have very tight control over its timing.

However, running applications at real-time priority is commonly and rightfully considered

very dangerous, because real-time processes can effectively freeze the entire system if they enter

a non-terminating loop—usually due to a bug (a livelock condition). Because of the danger, the

Linux kernel strongly discourages casual use of its real-time facilities by only allowing processes

running as root to enable real-time priority or to pin pages with mlockall().

One technique to reduce the danger of running real-time is to use an application-level watch-

dog. A watchdog is a separate helper process that also runs at real-time priority (higher than the

main process) with the sole purpose of detecting if the main process has livelocked the system. If

the watchdog detects livelock, it will terminate the main process. The technique works by having

the main process emit heartbeats to the watchdog on a periodic basis6. If the main process erro-

neously enters an infinite loop, it will cease to emit the heartbeats, which in turn will be detected

by the watchdog. QSF provides a primitive that enables real time priority and also automatically

establishes the watchdog process, taking care of all the details of the watchdog’s operation on

behalf of the application.

6.1.6 Summary

The QStream implementation is a full realization of our framework for quality-adaptive streaming.

Our description of the implementation is divided along the conceptual line between the real-time

aspects of the problem and the quality-adaptive aspects. This section has been concerned with

describing the real-time support in our framework, which is embodied by a pair of libraries, called

GAIO and QSF. GAIO provides the core facilities for real-time with the reactive programming

model, including an event scheduling and dispatching facility and primitives for asynchronous IO.

QSF complements GAIO by providing specific support for streaming applications, such as easy

setup of network sessions and application message passing over those sessions. In the following

sections, we describe the implementation of the applications included in QStream, focusing on the

details of the algorithms for the Priority-Progress protocols. Along with SPEG and the Mapper

6We use a unix pipe to communicate the heartbeats, once per second.
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(described in Chapter 3), the Priority-Progress protocols realize the quality-adaptive duties in our

framework.

6.2 QStream Architecture and PPS Message Protocol

SPEG Video Bitstream:
(ADU payloads)

  ADU index

FileServ

Berkeley DB

Session startup
- accept StreamServ   
  connection
- open index and SPEG

              for requested video

Fetch windows
- lookup ADUs  in interval
- ensure ADU payloads 
  are memory resident

Unix Local
Socket

Session startup
- connect to StreamServ

            - request video
- initialize decoder and display

Receive Windows
- window start:  set window deadline
- receive SDUs in priority order
- unwrap SDUs back into time-ordered ADUs
- phase adjust clock to compensate for late SDUS

Display Windows
- video decode and display

StreamPlay

Internet (TCP)

Session startup
- accept connection from network
- make local connection with FileServ
- player requests setup for specific video

Prepare Windows for Transmission
- fetch ADUs within window interval from    
  FileServ
- mapper assigns priorities
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- sort SDUs into priority order for streaming 

Transmit Windows
- send SDUs until window deadline
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Downstream Node

Upstream Node Parent

 Child

Helper

Figure 6.3: QStream in a Unicast Configuration

Figure 6.3 shows the QStream architecture in a unicast streaming configuration. The upstream

node stores two types of data per video: a video bitstream and an index. In QStream, the format of

the bitstream is SPEG (see Chapter 3). The index uses Berkeley DB B-trees to provide time-based

lookups into the bitstream. The index supports efficient assembly of the adaptation windows in
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the PPS algorithm7 . QStream provides a pair of programs, not shown in the figure, that convert

MPEG-1 video files to SPEG and generate the index (offline).

The upstream node consists of a pair of threads, called FileServ and StreamServ8. Most of the

work of the PPS algorithm is done by StreamServ. To help keep good control over timing, Stream-

Serv restricts itself exclusively to using non-blocking IO. Our target implementation platform is

Linux, which (at the time of writing) provides only synchronous (blocking) access to filesystems.

To isolate StreamServ from operations that could potentially block, a separate QStream thread

called FileServ is used to perform all filesystem accesses needed for each session. StreamServ

and FileServ communicate with each other through QSF and GAIO, in this case layered over

Unix local sockets, which support the same non-blocking API as network sockets (over TCP).

The bottom program in Figure 6.3 is StreamPlay. StreamPlay implements the downstream

part of the PPS algorithm (see Figure 4.1), video decode, and video display.

Another QStream program, not shown in the figure, is the QStream remote monitor, hereafter

referred to simply as the Monitor. All of the the QStream programs contain extensive internal

instrumentation which is used for generating both online and offline traces of various aspects of

QStream performance and the PPS algorithms. The online versions of the traces are visually

presented in real-time using a graphical software oscilloscope called gscope [32]. The offline

versions can be plotted graphically using software such as gnuplot [90].

Compared to the conceptual architecture presented in Figure 4.1 of Chapter 4, the concrete

architecture of QStream presented in this chapter is somewhat different. As one might expect, the

upstream component of the conceptual architecture is realized in StreamServ and the downstream

component in StreamPlay. As the following sections will reveal, the functionality of the PPS

progress regulator is mainly contained within StreamServ, but a few aspects (mostly relating to

maintenance of the phase offset) are contained in StreamPlay.

7Random access seeking functions are also easier to support with the index.
8FileServ and StreamServ were initially separate programs. They were later merged into a single, dual-threaded

program for reasons of ease of use.
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6.2.1 Naming conventions

The following sections will describe the algorithms of the QStream implementation of PPS. Each

algorithm contains several functions. We use a particular naming convention for these functions,

which is described here.

For example, we have a function named ss child send stream start(). Each name begins with

a prefix that identifies which QStream program or to which library the function belongs. In this

example, the ss prefix is for functions in the StreamServ program. Other program prefixes are sp

for StreamPlay, and fs for FileServ. The qsf prefix is used for QSF library functions. The second

component of the name often refers to the object on which the function acts or was triggered

by. In this example, child refers to a network session. In this chapter, we have three names for

network sessions: StreamServ’s connection to FileServ is called helper, StreamServ’s downstream

connection to StreamPlay is called child, and StreamPlay’s upstream connection to StreamServ is

called parent9. The remaining suffix of the name describes the action performed by the handler,

which in this example is to send a START REQUEST message.

6.2.2 PPS messages

Figure 6.4 gives an example of the sequence of messages that would be exchanged between the

QStream programs during the start of a PPS session. The messages exchanged between Stream-

Serv and StreamPlay comprise the PPS protocol. The dialogue between StreamServ and, its helper

program, FileServ are not part of the protocol proper, but we include them in the figure to help

understand the QStream implementation.

Each PPS session begins with the StreamPlay establishing a transport level connection to

StreamServ, which in turn establishes a connection to FileServ. From then on, the PPS session

consists of a sequence of application level messages exchanged across the transport connections.

Unlike some other protocols [74, 76], PPS interleaves control and data messages within the same

transport connection.

The startup is made up of two steps. First StreamPlay sends an OPEN REQUEST message

9When we introduce multicast, there will be intermediate nodes between StreamServ and StreamPlay.
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Figure 6.4: Sequence of Messages in a PPS session
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to StreamServ that indicates which video to stream. StreamServ forwards this message to File-

Serv, which is responsible for checking that the video bitstream and index files are available for

streaming. The OPEN RESPONSE message is sent back to StreamServ and then forwarded from

StreamServ to StreamPlay. The message indicates whether the video is available and, if so, in-

cludes a stream header for the video. The stream header contains basic information about the

video (duration, resolution, audio sample frequency, . . . ), which the client can use, for exam-

ple, to configure output devices such as the display window and audio card. StreamServ initiates

preparation of the first adaptation window, which includes sending a READ RANGE REQUEST

to FileServ to fetch the contents of the first adaptation window from storage. FileServ sends back

a READ RANGE RESPONSE when the contents are ready. StreamServ will not actually start

transmission of the first window until the second step of PPS startup completes. In the second

step, the client sends a START REQUEST message to StreamServ. This may not happen until the

destination video and audio devices are given a chance to get ready at the client10 . StreamServ

then sends the START RESPONSE message to StreamPlay.

The purpose of the START RESPONSE is to provide an approximate time synchronization

between the StreamServ and StreamPlay sides of the PPS session. PPS does not assume a globally

synchronized time reference is available, because services such as ntp [62] are not implemented in

the majority of Internet hosts. Each side maintains a session origin time, which is an absolute time

reference relative to the local time. All other time values communicated between the StreamServ

and StreamPlay are expressed in terms relative to the origin. StreamServ sets the origin for the PPS

session to be the local time at which it sent the START RESPONSE message, while StreamPlay

sets it to the local time upon receipt of the START RESPONSE. The basic assumption is that while

the local times of StreamServ and StreamPlay may not be synchronized to the same value, they

advance at the same rate11.

Once the START RESPONSE is sent, then the remainder of the session consists of a sequence

of adaptation windows. From the perspective of StreamPlay, each adaptation window starts with

10And until the server has established a connection to the Monitor, although we elide the details of Monitor commu-
nication here.

11Should there be significant rate drift, the phase offset management part of the algorithm will adjust to compensate
for it.
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the reception of a WINDOW START message from StreamServ, followed by a sequence of indi-

vidual SDU messages. The WINDOW START message contains information about the adapta-

tion window such as its positions within the video (display) timeline and the transmission time-

line. To prepare each adaptation window, StreamServ sends a READ RANGE REQUEST to File-

Serv, which fetches the video data from storage, and sends a READ RANGE RESPONSE back to

StreamServ to indicate the data can be accessed without risk of blocking.

6.3 StreamServ Algorithm

This section presents the server-side algorithm for PPS. The presentation includes a description

of the main data structures, and pseudo-code, based on the source code for StreamServ as im-

plemented in QStream. Despite the low-level of detail here, there is still a significant amount of

simplification relative to the actual source code. Some details from the source code have been

omitted because they are not specific to the PPS algorithm. They include error handling, debug

logging, remote monitoring, and normal session termination and cleanup. There are also some

parts of the server side of the PPS algorithm that are multicast specific, they are presented later in

Section 6.5.

6.3.1 StreamServ Data Structures

There are two main data structures used in the StreamServ program, one for a state related to a

PPS session and the other for individual adaptation windows. They are shown in Figures 6.5 and

6.7. References to these structures will appear throughout the pseudo-code fragments that appear

in the following sections.

A StreamServSession object, shown in Figure 6.5, is allocated for each PPS session. The

child session and helper session fields are handles used to send and receive messages with QSF

(QSF was described in Section 6.1.5). As mentioned earlier in Section 6.2.1, the child session is

used for the PPS protocol, while helper session is used for communication to FileServ.

The StreamServ side of the PPS algorithm pipelines its preparation and transmission phases

to ensure that data is always ready for transmission before it is needed, which in turn ensures that
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ServPpsSession {
QsfSession child_session; // Handle for TCP connection downstream
QsfSession helper_session; // Handle for local connection to FileServ
Queue recv_windows; // windows captured/fetched from storage
Queue mapped_windows; // windows mapped beyond workahead limit
Queue xmit_windows; // adaptation windows ready to stream
StreamHeader stream_header; // contains video duration, fps, etc.
MapSession mapper_session; // mapper specific sesssion state
Integer video_fd; // file descriptor for video data
Time session_origin; // base time of regulator clock
Time phase_offset; // worst case transport latency
Time workahead_limit; // for work conserving mode
Time expand_end; // when window sizes stop growing?
Time shrink_start; // when window sizes start shrinking?
Time prev_vid_end; // video end position of latest window
Time prev_xmit_end; // transmit end position of lastest window
Float growth_rate; // how fast do windows grow/shrink?
Boolean serv_ready; // first window ready for transmit
Boolean child_ready; // child has sent start request
...

}

Figure 6.5: StreamServ PPS Session Object

the available network bandwidth will be fully utilized by PPS12. The basic unit of work in the

pipeline is the PPS adaptation window (the ServPpsWindow object is described below), each stage

of the pipeline maintains a separate queue (first in, first out) of windows belonging to that stage.

There are three such queues per session: recv windows, mapped windows and xmit windows. The

recv windows queue holds windows as they are initially fetched from storage (or captured and

encoded in the case of streaming directly from a live source), and prioritized by the mapper. The

map windows queue holds windows that have been prioritized but are not ready for transmission

(due to the workahead limit). Finally, the xmit windows queue holds windows that have been fully

prioritized and are eligible for transmission.

The use of queues for the pipeline stages might not seem an obvious choice. Intuitively, the

server side of the PPS algorithm should only require two windows at a time (one in preparation,

and the other in transmission). However, we realized queues were necessary when we extended

12The pipelining ensures that transient storage access latencies do not delay transmission. Non-transient latencies
would be the result of insufficient sustainable throughput from the filesystem. In this dissertation, we are making
the assumption that the storage system can sustain the rates required by PPS. Adapting to filesystem performance
bottlenecks is outside the scope of this work.
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our original implementation with features such as work conserving mode (discussed in Section

4.1.3) and live streaming, each of which can lead to scenarios with several windows in various

stages of progress.

The map session object contains state for the Mapper algorithm (the Mapper is described in

Chapter 3). The stream header field contains configuration information from the video. The

contents of the stream header are shown in Figure 6.6. The resolution information is used by

StreamPlay to initialize the display window during startup. The preroll duration is used to inform

the PPS of the smallest feasible adaptation window duration, which is constrained by the GoPs

that happen to occur in the particular video (see Section 3.2.1). Aside from the brief comments

in Figure 6.5, we leave the discussion of remaining fields of the ServPpsSession object until they

appear in the pseudo-code of the following sections.

StreamHeader {
VideoRate video_rate; // fps, timecode settings
Time duration; // total duration of stream
Integer h_size; // horizontal resolution
Integer v_size; // vertical resolution
Time preroll_duration;

}

Figure 6.6: StreamHeader Object

Figure 6.7 shows the ServPpsWindow object that is allocated per adaptation window. The

vid start and vid end fields delimit the position of this window within the video timeline. The

xmit start and xmit end are the window’s position within the transmission timeline.

Before priority-mapping, the contents of the adaptation window is a set of ADUs. The

fetch done flag is used to track whether FileServ has fetched the contents. When received from

FileServ, the adus field stores these ADUs, which are as yet unprioritized. The content of adus

is consumed by the mapper algorithm, which prioritizes and groups the ADUs transforming them

into SDUs. As the mapper proceeds, it inserts SDUs into a heap data structure, the sdus field. Us-

ing a heap allows the priority sorting to be done incrementally. The ADU and SDU object types

are shown in Figure 6.8.

In work conserving mode, the transmission of an adaptation window is allowed to start imme-

diately if bandwidth was enough for the previous window to finish before its deadline. However,
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ServPpsWindow {
Time vid_start; // start position in video timeline
Time vid_end; // end position in video timeline
Time xmit_start; // start position in transmit timeline
Time xmit_end; // end position in transmit timeline
Time xmit_deadline; // end position in absolute time
Boolean fetch_done; // window has arrived
Queue adus; // window contents before mapping (time order),
Heap sdus; // window contents after mapping (priority order)
Timeout start_timeout // handle to timeout scheduled to start transmit
Timeout xmit_timeout // handle to timeout scheduled to stop transmit

}

Figure 6.7: StreamServ Adaptation Window Object

this is allowed only up to the configurable workahead limit for the session (see ServPpsWindow

above). The start timeout field stores a handle to a scheduled callback, in this case the callback

enqueues the window for transmission. The use of start timeout may possibly delay the trans-

mission of the current window so that workahead limit is honoured. The xmit timeout is used

to issue a callback that will trigger the transmission phase to stop for the current window (drop-

ping unsent SDUs), allowing the next window to start. In the non work conserving configuration,

the start timeout deadline for a window will always be equal to the xmit timeout deadline of the

previous window.

PpsSdu {
Time timestamp; // derived from map window
Integer priority; // assigned by mapper
Integer num_adus; // PpsAdus follow, then ADU payloads
PpsAdu adus[num_adus]; // Index ADU payloads
Bytes payloads[]; // ADU payloads (variable length)

}

PpsAdu {
FileOffset offset;
Integer length;

}

Figure 6.8: ADU and SDU Objects

Figure 6.8 shows the message related objects, for SDUs and ADUs. An SDU contains the

timestamp and priority, along with a group of ADUs. The adus field is an array which describes



101

the logical location of the ADU within the video bitstream. The actual ADU payloads form the

suffix of the SDU.

This completes our description of the StreamServ data structures. The PPS algorithm will

be described in pseudo-code in the following three sections, one each for the three phases of the

algorithm: startup, window preparation, and window transmission.

6.3.2 StreamServ Phase I: Session Startup

The session startup phase is where StreamServ accepts a new child connection and the initial

PPS protocol sequence is processed. This protocol sequence starts with an OPEN REQUEST

message from downstream that indicates which video is requested. After receiving this message,

StreamServ initiates a connection to FileServ for the session13 . Once the connection to FileServ

is established, StreamServ forwards the OPEN REQUEST message to FileServ, which opens the

requested video and its index. After opening the files, FileServ generates a response message to

StreamServ that includes the video stream header. StreamServ forwards the response downstream.

StreamPlay uses the information in the stream header for initializing the output window and audio

device. Finally, StreamServ initiates the preparation phase for the first adaptation window.

6.3.2.1 ss child acceptor()

SS CHILD ACCEPTOR ����������	 
��
�
��������
1 ����
�� NEW ����������� �!
����
�
��������
2 ����
#" ��������	 
��
�
������%$&���'����	 
���
�
������
3 ����
#" �(���)�(��� 
���
�
������%� QSF CONNECT �+*!�,���
������ -�	.	���
�
#/0�(���1�(��� 23��45�(�	.
#/����!
��

This function is the entry point for the the PPS algorithm, it is called when a new connec-

tion has been accepted. This marks the beginning of a new PPS session. Line 1 creates a new

ServPpsSession object. Line 3 initiates a local connection to FileServ, fileserv address is the name

of a unix local socket. The helper methods argument is an array that associates PPS messages

with the corresponding functions below.

13Another option would be to have a single connection between StreamServ and FileServ, multiplexing requests from
all active PPS sessions. This is how communication with the remote monitor works.
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6.3.2.2 ss helper connected()

SS HELPER CONNECTED �)����
��
1 QSF START MSG RECVS �1����
�" ��������	 
��
�
��,�����
2 QSF START MSG RECVS �1����
�" �(���1�(��� 
��
�
��������

This function is called when the per-session connection to FileServ has been established. At

this point, the application-level message dispatching is enabled for both the downstream TCP

connection and the local connection to FileServ (lines 1 and 2). Between the time a connec-

tion is established and the time dispatching is enabled, messages transmitted over the connection

would simply accumulate in OS kernel buffers. The only message expected at this point in PPS is

the OPEN REQUEST message from downstream (see Figure 6.4), which mainly indicates which

video the user wishes to stream.

6.3.2.3 ss child recv open file()

SS CHILD RECV OPEN FILE �)����
#/ � �(��� *!����� ��� ��� �
�45�
1 QSF SEND MSG �)����
#" �(���)�(��� 
���
�
�������/ � �!��� *!����� ��� ��� �
�45�

ss child recv open file is called upon receipt of the OPEN REQUEST message from Stream-

Play, it simply forwards the request to FileServ (line 1).

6.3.2.4 ss helper recv open file()

SS HELPER RECV OPEN FILE �)�#�!
#/ � �!��� *!����� ��
5�!����
����
1 ����
#" 
�4����-#2 �(��-�	.��� � � �!��� *!����� ���
 �!����
��." 
�4�����-.2 ����-�	#���
2 QSF SEND MSG �)����
#" ��������	 
��
�
�������/ � �(��� *!����� ��
 �(����
���
3 SS WIN PREP FIRST �1����
��

ss helper recv open file is dispatched upon the arrival of an OPEN RESPONSE message from

FileServ. The message contains a stream header object which contains information that will be

needed in ss win prep first, such as the required preroll duration and the total duration of the video

(line 1). The message is forwarded downstream to StreamPlay so that it may use the stream header

information to initialize its display (line 2). Line 3 calls ss win prep first to initiate preparation of

the first adaptation window.
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6.3.2.5 ss win prep first()

SS WIN PREP FIRST �1����
��
1 � �+� � NEW ����������� �!
 � �,� 	#�����
2 � �+��" ��23�,4 
�4 -#��4 ���
3 � �+��" �.�,	 
�4 -.��4 ���
4 � �+��" �.�,	 ��� 	 � �,� �,4���-.� � �+� 
����.�
5 if �#�!
#" 	.���� 45� �-.4 ��
�
6 then ����
#" �����!-.� 	 ��� 	 � �#�!
#" 2%-�� � �,� 	 � �-.4�������� �1���!
#" 	.���� 45� �-.4 �������
7 �#�!
#" 
������,��� 
�4 -.��4 � ����
#" 
�4����-#2 ����-�	.���" 	 � �-.4��������3����
�" �����!-#� 	 ��� 	
8 if �#�!
#" 
������,��� 
�4 -.��4�� �#�!
#" ���#�(-.� 	 ��� 	
9 then ����
#" �����!-.� 	 ��� 	 � �#�!
#" 
�4����-.2 �(��-�	.���" 	 � �-.4����������

10 ����
#" 
������,��� 
�4 -.��4 � ���!
#" �����(-.� 	 ��� 	
11 ENQUEUE �1���!
#" ���� � � �+� 	.����
#/�� �+���
12 SS HELPER SEND READ RANGE �)�#�!
��

ss win prep first allocates a ServPpsWindow object for the first window of the session timeline

(line 1). The xmit start and vid start fields are set to zero since this is the first window in the stream

(lines 2–3). The vid end is set to according to a configuration value initial win size (line 4), which

may be adjusted downward later by FileServ to align with the first GoPs in the video. If window

scaling is enabled (checked on line 5), then lines 5–10 compute the expand end and shrink start

values that are to be used in later steps for computing the sequence of adaptation windows. Note

that if growth rate is 1, then the expand end and shrink start values will have no effect (they will

be 0 and duration respectively). Line 11 puts the new window in the recv windows queue, where

it will stay until the preparation phase is complete. The first step in window preparation is for

FileServ to locate and fetch the contents of the window from storage. This is initiated by the call

to ss helper send read range function (see Section 6.3.3.1) which sends a read range message for

the new window to FileServ (line 12).

6.3.2.6 ss child recv start stream()

SS CHILD RECV START STREAM �)�#�!
��
1 ����
#" ��������	 ����-�	�� �! �"�#%$
2 if �#�!
#" 
������ ���-�	&�
3 then SS START STREAM �)����
��
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ss child recv open file is called upon receipt of the START REQUEST message from Stream-

Play. This message indicates that the child is ready to receive the first adaptation window, which

is recorded in the variable child ready (Line 1). Line 2 tests serv ready, which indicates whether

the first adaptation window has been fully prepared. If so, the call to ss start stream (see Section

6.3.3.5) will begin the transmission phase for the session. Otherwise, transmission will begin later

when the preparation of the first adaption window completes (see Section 6.3.3.4).

6.3.3 StreamServ Phase II: Window Preparation

This phase is driven by the arrival of READ RANGE RESPONSE messages from FileServ. Each

message will include descriptors for all the ADUs that fall within an adaptation window interval.

StreamServ calls the priority map algorithm to convert the ADUs to a set of prioritized SDUs.

When mapping is complete, the adaptation window can enter the transmission phase of Stream-

Serv.

6.3.3.1 ss helper send read range()

SS HELPER SEND READ RANGE �)�#�!
��
1 � �,� � PEEK HEAD �1���!
#" ���� � � �,� 	.����
��
2 ���-.	 �-.� 	�� 2 
 	�" �#��	 
�4 -.��4 �!� �,��" �.��	 
�4 -.��4
3 ���-.	 �-.� 	�� 2 
 	�" �#��	 ��� 	 ��� �,��" �.��	 ��� 	
4 ���-.	 �-.� 	�� 2 
 	�" � �,� �!� �+�
5 QSF SEND MSG �)����
#" �(���)�(��� 
���
�
�������/5���-�	 �-.� 	�� 2 
 	'�

The first step in the preparation phase is to send a READ RANGE REQUEST message to

FileServ (lines 1–5), which directs FileServ to locate and retrieve all the ADUs that fall within the

interval of the window.

6.3.3.2 ss helper recv read range()

SS HELPER RECV READ RANGE �)����
#/5���-.	 �-.� 	�� ��
5�!����
����
1 � �+� $ PEEK HEAD �)�#�!
#" ���� � � �,� 	#��� 
��
2 � �+��" *���4 ��� 	.��� � �� �"�#%$
3 � �+��" -�	 � 
�� ����-�	 ��-.� 	 � ���
 �(����
��." -.	 � 

4 � �+��" �.�,	 
�4 -.��4 � ���-�	 �-.� 	 � ��
 �(����
��." 
�4 -.��4
5 � �+��" �.�,	 ��� 	 � ���-�	 �-.� 	�� ��
 �(����
��." ��� 	
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6 �.��	 	 � ��-.4������ $ � �,��" �#��	 ��� 	 � � �+��" �.�,	 
�4 -.��4
7 switch

8 case � �,��" ��23�,4 
�4 -.��4�� �#�!
#" ���#�(-.� 	 ��� 	 �
9 ��23�+4 	 � ��-.4������ � �#��	 	 � �-.4��,��� � ����
�" 	������ 45� �-.4 �

10 case � �,��" ��23�,4 
�4 -.��4�� �#�!
#" 
������+��� 
�4 -.��4 �
11 �(2 �,4 	 � �-.4������ � �#��	 	 � �-#4�������� ���!
#" 	.���� 45� �-.4 �
12 case default �

13 �(2 �,4 	 � �-.4������ � �#��	 	 � �-#4������
14 � �,��" ��23�,4 ��� 	 $ � �,��" ��23�+4 
�4 -.��4�� �(2 �,4 	 � �-.4������
15 	#� 
5�!��-�� 
�4 -.��4 $ ����
#" 
�4����-#2 �(��-�	.���" �(��������� 	 � �-#4�������� � �,��" �.��	 
�4 -.��4
16 � �,��" ��23�,4 ��� 	 $
	��� ��	#� 
5�!��-�� 
�4 -.��4 /�� �,��" ��23�,4 ��� 	.�
17 G AIO SCHEDULE EVENT ��
�
 23-�� -�	 � 
#/��#�!
��
18 �#�!
#" �(���� �.�,	 ��� 	 $ � �+��" �.�,	 ��� 	
19 �#�!
#" �(���� ��23�,4 ��� 	 $ � �,��" ��23�,4 ��� 	

ss helper recv read range is dispatched when the READ RANGE RESPONSE message ar-

rives from FileServ. The response message contains an array of ADU descriptors for the ADUs

that fall within the range requested, which are stored for later processing by the priority mapper

(line 3). The response also includes the adjusted adaptation window boundaries (lines 4–5). File-

Serv is allowed to adjust the requested video boundaries downward if necessary; for example, to

make sure that the adaptation window boundary is aligned with timestamps in the video14. This

alignment is necessary to ensure that window duration accurately matches the amount of video the

window contains.

Lines 6–16 compute the transmission expiry deadline for the window. The transmission dead-

line is derived from the window’s duration in the video timeline and the session’s window scaling

policy. Lines 8–9 treat the case where the window is part of the window scaling expansion phase.

Similarly, lines 10–11 treat the shrink phase, and line 13 treats the neutral phase. Lines 14–16

clamp the deadline to ensure the transmission ends by the time display must start. The next step

of the preparation phase is priority mapping. Since the mapper algorithm is CPU oriented, the

mapper function is scheduled as an event with the GAIO event dispatcher (line 17), which will

call ss map adus as soon as no other higher priority events are pending. Lines 18–19 store the

actual end position of this window which will become the start position for the next window.

14It also ensures that the response is non-empty, that is, it contains at least one GoP
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6.3.3.3 ss map adus()

SS MAP ADUS �)�#�!
��
1 � �,� � PEEK HEAD �1���!
#" ���� � � �,� 	.����
��
2 MAPPER PRIORITIZE � � �+��" -�	 � 
#/�� �,��" 
�	 � 
��
3 if QUEUE EMPTY � � �+��" -�	 � 
��
4 then SS MAP DONE �1���!
��
5 else G AIO SCHEDULE EVENT ��
�
 23-�� -.	 � 
�/�����
��

ss map adus is a wrapper function that calls the mapper algorithm to prioritize the contents

of the adaptation window. The adaptation window consists of a sequence of one or more smaller

intervals called map windows, which were discussed in Section 3.2. Line 2 calls to the mapper to

prioritize a single map window, which will consume some number of the ADUs in the win.adus

queue. When the mapper has prioritized the entire adaptation window, the win.adus queue will

be empty (line 3) and the adaptation window is ready to enter the transmission phase (line 4).

Otherwise, the mapper is scheduled to continue processing the ADUs of the next map window

(line 5).

6.3.3.4 ss map done()

SS MAP DONE �)����
��
1 � �+� � DEQUEUE �1���!
#" ���� � � �,��
��
2 ENQUEUE �1���!
#" 23-��#�(��	 � �,��
#/�� �+���
3 if � �+��" � � 2�� ��� $ �
4 then ����
#" 
������ ���-�	&� �! �"�#%$
5 if �#�!
#" ���'����	 ���-�	��
6 then SS START STREAM �)����
��
7 else ��23�,4 	#��-�	.� �,� � � ����
#" 
��
�
������ ����� 	.�,� � � �,��" ��23�,4 
�4 -.��4 � �#�!
#" � ����� - ����-�	 ���,2 �,4
8 � �,��" 
�4 -#��4 4��,2%��� � 4 �
9 G AIO SCHEDULE TIMEOUT � ��23�+4 	.��-�	#���+� �./ SS WIN XMIT START /�����
��

10 � �,� � PEEK HEAD �1����
�" ���� � � �+��
��
11 if � �+���$ NIL and � �,��" *���4 ��� 	.��� �
12 then G AIO SCHEDULE EVENT �+
�
 2%-�� -�	 � 
#/�����
��

When preparation of an adaptation window is complete, ss map adus calls ss map done. At

this point, the window is moved from the recv wins queue to the mapped wins queue (lines 1–2).

Lines 3–6 of ss map done treat the case of the very first adaptation window in the stream.
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Line 4 updates serv ready to indicate that the first adaptation window is ready for transmission.

Line 5 checks whether the client has send a START REQUEST message yet. If so, the call to

ss start stream (described below) in Line 6 will initiate the transmission phase.

Lines 7–9 of ss map done treat all adaptation windows other than the first. Line 7 computes

the deadline (in absolute time units) at which transmission of the window should start. If the value

of workahead limit is greater than zero, then the algorithm is in the work conserving configuration.

Lines 8–9 schedule the dispatch ss win xmit start at the deadline. If the value of xmit deadline

happens to have already past, then the event dispatcher will dispatch ss win xmit start as soon

as possible. Lines 10–12 check whether the next adaptation window is available and ready for

mapping, and if so, an event is scheduled to invoke the mapper.

6.3.3.5 ss start stream()

SS START STREAM �)�#�!
��
1 ����
#" 
��
�
������ ����� 	.�,�%� GET CURRENT TIME ���
2 SS CHILD SEND STREAM START �1���!
��
3 SS WIN XMIT START �1����
��

The ss start stream routine initiates the transmission phase for the first adaptation window

in the stream. As described in Section 6.2.2, line 1 is where the server side session clock is

started, by recording the current time in session origin. The ss child send stream start function

(line 2) simply constructs the START RESPONSE message and sends it to the child. Line 3 calls

ss win xmit start (described next) which begins transmitting the actual window contents.

6.3.3.6 ss win xmit start()

SS WIN XMIT START �1����
��
1 � �,� � DEQUEUE �)�#�!
#" 2%-����!��	 � �,��
��
2 ENQUEUE �)�#�!
#" ��23�+4 � �,��
#/�� �+���
3 ��23�,4 	#��-�	.� �,� ��� �#�!
#" 
��
�
��,��� ����� 	.�,� � �#�!
#" ����- 
�� � * * 
���4 � � �,��" ��23�+4 ��� 	
4 � �,��" ��23�+4 4��,2%��� � 4�� G AIO SCHEDULE TIMEOUT � �(2 �,4 	.��-.	.� �,� �./
5 SS WIN XMIT EXPIRE / � �,���
6 SS WIN PREP NEXT �)�#�!
��
7 if QUEUE LENGTH �)�#�!
#" �(2 �,4 � �,� 	.����
�� $ �
8 then SS CHILD SEND WIN START �1���!
��
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ss win xmit start is called each time an adaptation window is ready to begin the transmission

phase. By this point, the window contents have been fetched into memory, prioritized, and sorted

into priority order. By queueing the window for transmission, the window enters the transmission

phase (line 1). A timeout is scheduled to expire the window (lines 2–5). If the timeout fires before

the transmission of the entire window contents completes, then the algorithm will proceed to drop

unsent SDUs for this window (see Sections 6.3.3.7 and 6.3.4.4). Line 6 invokes a helper called

ss win prep next to initiate preparation of the next adaptation window in the video timeline, this

preparation will then proceed concurrently with the transmission of the current window. Lines

7–8 start (or resume) the transmission phase if necessary, which is determined by the absence of

other adaptation windows in the transmission queue15 .

6.3.3.7 ss win xmit expire()

SS WIN XMIT EXPIRE � � �,���
1 � �,��" ��23�+4 4��,2%��� � 4�� NIL

The ss win xmit expire function simply clears the xmit timeout field. This will trigger the

retirement of the current window in ss sdu next (see Section 6.3.4.4).

6.3.3.8 ss win prep next()

SS WIN PREP NEXT �)����
��
1 if �#�!
#" ������ �.��	 ��� 	 $ ���!
#" 
�4�����-.2 ����-�	#���" 	 � �-.4��,���
2 then return �+�
3 � ��� � �+� � NEW ����������� �!
 � �,� 	#�����
4 ENQUEUE �1���!
#" ���� � � �+� 	.����
#/5� ��� � �,���
5 � ��� � �+��" �.�,	 
�4 -.��4 � �#�!
#" ������ �.�,	 ��� 	
6 � ��� � �+��" ��23�,4 
�4 -#��4 � ����
#" �(����� ��23�,4 ��� 	
7 �(2 �,4 	 � �-.4������ � ���!
#" 
�4�����-.2 �(��-�	#���" ����������� 	 � �-.4������ � � ��� � �,��" �.��	 
�4 -.��4 �
8 � ��� � �+��" ��23�,4 
�4 -#��4
9 switch

10 case � ��� � �,��" ��23�,4 
�4 -.��4�� �#�!
#" ���#�(-.� 	 ��� 	 �
11 �.��	 	 � ��-.4������ �!��23�,4 	 � �-#4������ � ���!
#" 	.���� 45� �-.4 �

15The transmission phase pauses if it empties the queue, which would happen if bandwidth were abundant.
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12 case � ��� � �,��" ��23�,4 
�4 -.��4�� �#�!
#" 
������+��� 
�4 -.��4 �
13 �.��	 	 � ��-.4������ �!��23�,4 	 � �-#4�������� ���!
#" 	.���� 45� �-.4 �
14 case default � �#��	 	 � �-.4��,��� �!�(2 �,4 	 � �-.4������
15 �.��	 	 � �-.4������ $ CLAMP � �.�,	 	 � �-.4�������/�����
#" 23�,� � �+� 	 � ��-.4�������/��#�!
#" 23-�� � �,� 	 � �-.4��������
16 � ��� � �,��" �#��	 ��� 	 � � ��� � �,��" �#��	 
�4 -.��4�� �.��	 	 � ��-.4������
17 SS HELPER SEND READ RANGE �)�#�!
��

ss win prep next instantiates the ServPpsWindow object for the next adaptation window in the

PPS timeline, and initiates the preparation phase for the new window. This includes computing the

new window’s position in the video and transmission timelines, taking into account the window

scaling settings of the session.

Line 1 checks if the previous adaptation window reached the end of the stream. If so, the

function returns immediately without creating a window (line 2). Otherwise, line 3 allocates the

object for the new window and line 4 puts that window into recv windows queue. Lines 5–6 set the

start positions for the new window in the transmission and video timelines. These start positions

are set to the end positions of the last window, ensuring that the timelines are free of gaps. Lines

7–16 compute the target duration of the new window in the transmit and video timelines. It should

be noted that the actual durations (in the video and transmit timelines) may end up shorter, since

FileServ may round the window boundary down to align with the timestamps present in the stream

(see Section 6.3.3.2). The target duration is computed based on the amount of time available to

transmit, which is computed in Line 7 as the difference between the time that window will be

needed for display (preroll + video start) and the time that the window will start transmission.

Then, using this transmission time and the window scaling schedule, lines 9–14 compute the

duration in the video timeline. Lines 10–11 treat the case where the window falls within the

window scaling expansion phase. Lines 12–13 treat the shrink phase. Line 14 treats the neutral

phase. Line 15 ensures that the resulting duration falls within configuration parameters for the

session. Line 17 initiates the iteration of the preparation stage for the newly created adaptation

window, issuing the read range request to FileServ.
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6.3.4 StreamServ Phase III: Window Transmission

The third phase of StreamServ handles network transmission of the adaptation window. A WIN-

DOW START message is sent at the beginning of each window, followed by as many SDUs as the

network will allow before the window’s transmission expiry deadline. When the deadline passes,

low priority SDUs are dropped, and transmission of the next adaptations window commences.

6.3.4.1 ss child send win start()

SS CHILD SEND WIN START �)����
��
1 � �,� � QUEUE PEEK HEAD �)�#�!
#" �(2 �,4 � �,� 	.����
��
2 � �,� 
�4 -.��4 2%
 	�" �.��	 
�4 -.��4 �!� �+��" �.�,	 
�4 -.��4
3 � �,� 
�4 -.��4 2%
 	�" �.��	 ��� 	 �!� �,��" �#��	 ��� 	
4 � �,� 
�4 -.��4 2%
 	�" �(2 �,4 
�4 -#��4 �!� �,��" ��23�,4 
�4 -.��4
5 � �,� 
�4 -.��4 2%
 	�" �(2 �,4 ��� 	 �!� �,��" ��23�+4 ��� 	
6 � �,� 
�4 -.��4 2%
 	�" � � 2 
�	 � 
���� �,��" � � 2 
�	 � 

7 � �,� 
�4 -.��4 2%
 	�" � � 2 � - 
�� 
�	 � 
 �!� �,��" � � 2 � - 
�� 
�	 � 

8 QSF SEND MSG �)����
#" ��������	 
��
�
�������/�� �,� 
�4 -#��4 2%�
�
�-�	 �#/ SS CHILD SEND SDU HEAD �

ss child send win start is the entry point for the transmission phase of StreamServ. It instan-

tiates a WINDOW START message and sends the message downstream.

The SDU data structure consists of a header and a payload. Recall that all ADUs with the same

priority in a mapper window are grouped into one SDU (see Section 3.2). Thus, an SDU payload

consists of the ADUs that have been grouped together. The header part of the SDU contains and

array of ADU descriptors which specify offset and length of each ADU within the video bitstream.

The descriptors are present in the SDU so that StreamPlay can re-sort ADUs back from priority

order back to bitstream order. The second part of an SDU contains actual video data from the

bitstream file.

Transmission of each SDU is divided across two functions in QStream. The extra function is

required in order to take advantage of the sendfile primitive to forward raw video data directly from

the filesystem to the downstream socket16 . Using sendfile instead of read and write reduces CPU

overhead. The reduction is due to fewer user-kernel context switches, fewer memory copies, and

16sendfile() is available on Linux and BSD. Similar primitives are available in most other operating systems.
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offloading of memory copies from the CPU to the NIC. The code to transmit an SDU is divided

into the following two functions, which send the header and payload parts respectively.

6.3.4.2 ss child send sdu head()

SS CHILD SEND SDU HEAD �)����
��
1 � �,� � QUEUE PEEK HEAD �)�#�!
#" �(2 �,4 � �,� 	.����
��
2 2 
 	 � HEAP PEEK MIN � � �+��" 
�	 � 
��
3 � �,��" -.	 � � � � � 4 ���
4 QSF SEND MSG �)����
#" ��������	 
��
�
�������/52 
 	�/ SS CHILD SEND ADU �

ss child send sdu head transmits the header part of the SDU. Lines 1–2 select the SDU from

the head of queue for the current adaptation window of the transmission phase. Line 3 initializes

the count of adus sent (for the current SDU) to zero. Line 4 sends the header part of the SDU

message.

6.3.4.3 ss child send adu()

SS CHILD SEND ADU �)����
��
1 � �+� � QUEUE PEEK HEAD �1���!
#" ��23�,4 � �+� 	.����
��
2 if � �+��" -�	 � � � � � 4 � 
�	 � " � � 2 -�	 � 

3 then 2 
 	 � HEAP PEEK MIN � � �+��" 
�	 � 
��
4 
�	 � � 2 
 	�" 
�	 �
5 � * * 
���4 � 
�	 � " -�	 � 
�� � �+��" -�	 � � � � � 4��+" � * * 
���4
6 � � � � 4 � 
�	 � " -�	 � 
�� � �,��" -�	 � � � � � 4��," � � � � 4
7 � �,��" -�	 � � � � � 4 �!� �,��" -�	 � � � � � 4 � �
8 � 
�* 
���� 	�*!����� 2%
 	 �)�#�!
#" ���'����	 
��
�
�������/�����
#" �.��	#��� *�	�/0� * * 
���4 /0� � � � 4 /
9 SS CHILD SEND ADU �

10 else HEAP DELETE MIN � � �,��" 
�	 � 
��
11 SS SDU NEXT �)�#�!
#/�� �,���

ss child send adu transmits the video data parts of the current SDU to the downstream socket

using sendfile(). The function iterates through the path from lines 3–9 for each ADU in the SDU,

transmitting them one by one. When all ADUs have been transmitted, the current SDU is retired

(line 10) and the helper function ss sdu next is called to start transmission of the next SDU.
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6.3.4.4 ss sdu next()

SS SDU NEXT �)�#�!
#/�� �,���
1 if HEAP IS EMPTY � � �,��" 
�	 � 
��
2 then SS WIN DONE �)�#�!
#/�� �,���
3 else 
�	 � � HEAP PEEK MIN � � �,��" 
�	 � 
��
4 if � �,��" ��23�+4 4��,2%��� � 4�$ NIL and 
�	 � " �(���������,4�� � 	���� � " ���%" �� ��
5 then SS WIN DONE �)����
#/�� �,���
6 else SS CHILD SEND SDU HEAD �)�#�!
��

When transmission of the current SDU is complete, ss sdu next is called to start transmission

of the next SDU. Line 1 checks if the current SDU was the last, if so, line 2 calls ss win done

(described below) to perform end of window processing. ss sdu next will also call ss win done

(line 5) if it detects that the window expiry timeout has occurred, and also provided that at least

the base layer SDUs are done (line 4). Otherwise, Line 6 initiates transmission of the next SDU

in the window.

6.3.4.5 ss win done()

SS WIN DONE �1���!
#/ � �,���
1 QUEUE REMOVE �)�#�!
#" �(2 �,4 � �,� 	.����
#/�� �,���
2 if � �,��" ��23�,4 4��+2%��� � 4 �$ NIL

3 then CANCEL TIMEOUT � � �,��" ��23�,4 4��+2%��� � 45�
4 � �,��" �(2 �,4 4��,2%��� � 4 � NIL

5 if not QUEUE IS EMPTY �1����
�" ��23�,4 � �,� 	#��� 
��
6 then SS CHILD SEND WIN START �1���!
��
7 else if � �,��" ��� 	 $ ����
�" 
�4����-.2 ����-�	.���" 	 � �-.4������
8 then QSF SEND MSG �1���!
#" �����,��	 
��
�
�������/ ��� * 2%
 	'�

ss win done treats end of window processing. Line 1 removes the current window from the

transmission queue. If the current window has finished before its expiry timeout has occurred,

then the current window’s timeout is cancelled (lines 2–4). If the transmission queue contains

another adaptation window, then transmission of that window commences immediately (lines 5–

6). Otherwise, if the current window is the last in the stream, then an end of stream message is

sent downstream (lines 7–8).
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This completes the description of the server side of PPS. The next section will describe the

client side of PPS.

6.4 StreamPlay Algorithm

The client side of the PPS algorithm is implemented in StreamPlay. Similar to the server case,

there are three main phases in the client side of the PPS algorithm.

The first phase is session startup. A connection to StreamServ is initiated. Once established,

an OPEN REQUEST message is sent upstream to StreamServ, to identify the video to stream. An

OPEN RESPONSE from StreamServ will provide information about the video. This information

is used to initialize output devices. Once they are ready, a START REQUEST message will be

send upstream. A subsequent START RESPONSE message will indicate the start of continuous

streaming, and marks the point where the client-side clock for the session should start.

The second phase in StreamPlay receives adaptation windows from StreamServ. Each win-

dow consists of a WINDOW START message and a sequence of SDUs. Since the contents of the

window are re-ordered as they arrive, the reception of the entire window must complete before it

can be displayed. To maintain continuous play-out, the window must be ready for display—at the

latest—by the time all frames of the previous window have been displayed. Thus a timeout is set

for each window to prevent gaps in the display timeline. If the start of the next window arrives

before the timeout occurs, the timeout is cancelled. Otherwise, when the timeout fires, the ADUs

already present are committed for display, and subsequent SDU arrivals are considered late. In the

event of late SDUs, an adjustment is made to the phase offset to try and prevent late SDUs from

also occurring in future windows.

The final StreamPlay phase decodes and displays the contents of the adaptation windows.

6.4.1 Data Structures

Similar to StreamServ, StreamPlay’s main data structures are a per-session object called PlayPpsSes-

sion and a per-adaptation window object called PlayPpsWindow, shown in Figures 6.9 and 6.10.

A PlayPpsSession object is allocated for each active PPS session. Normally the player will

have just one active session at a time, although multiple sessions are plausible, for example in
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PlayPpsSession {
QsfSession parent_session; // handle for TCP connection upstream
StreamHeader stream_header; // contains video duration, fps, etc.
Time session_origin; // base time of regulator clock
Time slack; // how early did last SDU arrive?
PlayPpsWindow xmit_window; // window in transmission
Queue decode_windows; // adaptation windows in decode/display

}

Figure 6.9: StreamPlay Per-Session State

surveillance applications. The parent session field is a handle to the network socket to Stream-

Serv corresponding to the PPS session. The stream header is also received during the startup

phase, and is used to initialize decode and display components. The session origin contains the

start time of the transmission phase for this session, in absolute (wall-clock) time units, and is

used as the basis for converting time of day values to the transmission and display timelines. For

every SDU that arrives, the slack field is set to the amount of time remaining before the deadline

for its adaptation window. A negative value means the last SDU received was late. The slack

value is used to maintain the correct phase offset between the StreamServ and StreamPlay clocks.

The xmit window field is a PlayPpsWindow object (described below) corresponding to the current

adaptation window of the transmission phase. The decode windows field is a queue of PlayPp-

sWindow objects for adaptation window(s) in the process of decoding. A queue is used to allow

the transmission phase to work more than one window ahead of the decode and display phase,

which can be necessary when PPS is configured to be work conserving.

PlayPpsWindow {
Time vid_start; // start position in video timeline
Time vid_end; // end position in video timeline
Time xmit_start; // when should xmit start
Time xmit_end; // when should xmit end
Timeout xmit_timeout; // handle for cancellation
Boolean decode_started; // has decode already started?
Integer sdu_count; // how many SDUs so far
Integer num_base_sdus; // how many SDUs in base layer
Heap adus; // window contents (time order),

}

Figure 6.10: StreamPlay Adaptation Window Object
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Figure 6.10 shows the PlayPpsWindow object, which is instantiated for each adaptation win-

dow in the video timeline. The vid start and vid end fields delimit the position of the window in

the video timeline. The xmit end field contains the time at which the decode/display phase for the

window must start, which is also the time that any subsequent SDUs for this window must be con-

sidered late. The xmit timeout field is a handle to a scheduled timeout, which can be used to cancel

the timeout in the event that processing of the window completes prior to the timeout deadline.

The num sdus and num base sdus are used to track the status of the current transmission phase

window, in order to detect conditions such as when the base layer is complete and when the entire

window is complete (reached full quality). The adus field is a handle to the heap data structure

that is used to sort the contents of SDUs from priority order back to the original time order.

This completes our description of client-side data structures. The following sections will pro-

vide pseudo-code for the three phases of the client side of the PPS algorithm: startup, receive

windows, and decode and display.

6.4.2 StreamPlay Phase I: Session Startup

The first stage of the StreamPlay PPS algorithm is where session startup is treated. The startup

consists exchange of four messages with the server (as described in detail in Section 6.2.2) :

OPEN REQUEST, OPEN RESPONSE, START REQUEST, and START RESPONSE.

6.4.2.1 sp parent connected()

SP PARENT CONNECTED �)�#�!
��
1 QSF START MSG RECVS �1����
�" �(-.���� 4 
���
�
��������
2 QSF SEND MSG �)����
#" �!-#���� 4 
��
�
�������/ � �!��� *!����� 2%
 	'�

The sp parent connected() function is the entry point of the session startup phase, when the

upstream connection has been established. Line 1 starts message dispatching for incoming mes-

sages on the connection to the parent. Line 2 sends an OPEN REQUEST request to StreamServ

to identify which video to transmit.
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6.4.2.2 sp parent recv open file()

SP PARENT RECV OPEN FILE �1���!
#/0� �(��� *!�,��� ��
 �(����
���
1 ����
#" 
�4����-#2 �(��-�	.��� � � �!��� *!����� ���
 �!����
��." 
�4�����-.2 ����-�	#���
2 SP DISPLAY INIT �1���!
��
3 QSF SEND MSG �)����
#" �!-#���� 4 
��
�
�������/0
�4 -.��4 ��� ��� �
�45�

sp parent recv open file is dispatched when the OPEN RESPONSE message has arrived. The

stream header field of the response includes basic parameters necessary to initialize play-out, such

as duration of the stream, width and height of the video, and frame rate. Line 2 calls sp display init

to do whatever is necessary to initialize the video decoder and display window. After that, line

3 sends the START REQUEST message upstream to indicate the player is ready to commence

streaming. An alternative option would be to wait until a separate start request is made by the

user. This might be preferable in some circumstances, for example to give user a chance to select

preferences, such as adjusting window size.

6.4.2.3 sp parent recv stream start()

SP PARENT RECV STREAM START �)����
#/0
�4����-.2 
�4 -.��4 2 
 	 �
1 ����
#" 
��
�
������ ����� 	.�,�%� GET CURRENT TIME ���

The START REQUEST message has arrived. The client side stream clock is initialized at this

point. The first adaptation window of the stream should follow immediately, marking the start of

the receive phase.

6.4.3 StreamPlay Phase II: Receive Windows

The second phase of StreamPlay is where adaptation windows are received, each window consist-

ing of a window start message and a sequence of SDUs in priority order. Based on information

in the window start message, an expiry deadline is set for the adaptation window. Before the

deadline, as SDUs arrive they are disassembled into their constituent ADUs, and the ADUs are

sorted to their original bitstream (time) order. If the deadline passes before the next window starts,

then the ADUs that have already arrived are committed to the decode and display phase, and any

subsequent SDUs for the current window are considered late.
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6.4.3.1 sp parent rev win start()

SP PARENT RECV WIN START �)�#�!
#/�� �+� 
�4 -.��4 2%
 	'�
1 if �#�!
#" �(2 �,4 � �,� 	.��� �$ NIL

2 then SP WIN DONE �)�#�!
��
3 � �,� � NEW ��� ��-�� � �!
 � �,� 	#��� �
4 � �,��" � � 2 
�	 � 
 �!� �,� 
�4 -.��4 2%
 	�" � � 2 
�	 � 

5 � �,��" � � 2 � - 
�� 
�	 � 
 ��� �,� 
�4 -.��4 2 
 	!" � � 2 � - 
�� 
�	 � 

6 � �,��" ��23�+4 	.��-�	#���+� � $ ����
#" 
��
�
������ ����� 	.�,� � � �,� 
�4 -.��4 2%
 	�" ��23�,4 ��� 	
7 � �,��" ��23�+4 4��,2%��� � 4�$ G AIO SCHEDULE TIMEOUT � � �,��" �(2 �,4 	.��-�	.� �,� �./
8 SP WIN EXPIRE / � �,���
9 ����
#" �(2 �,4 � �,� 	.��� �!� �,�

ss parent recv win start is dispatched when a window start message arrives from StreamServ.

This is also the normal indication that the previous window is done, and that it should be com-

mitted to the decode and display phase (lines 1–2). A new instance of PlayPpsWindow is created

for the new window, and initialized according to the contents of the window start message (lines

3–6). Lines 7–8 schedule a timeout to expire the window at its deadline to ensure that the display

does not stall due to late arrival of the next transmission window. Finally, the new window object

is set to be the current window for the transmit phase of the session (line 9). After the window

start message, SDUs for this window will start to arrive.

6.4.3.2 sp parent recv sdu()

SP PARENT RECV SDU �)�#�!
#/0
�	 � 2 
 	 �
1 � �+� $ ���!
#" ��23�,4 � �+� 	.���
2 � �+��" 
�	 � � � � � 4 �!� �+��" 
�	 � � � � � 4 � �
3 � �+��" 
���-�� � �!� �,��" ��23�+4 	.��-�	#���+� � � GET CURRENT TIME �+�
4 if � �+��" ��23�,4 4��,23��� � 4 �$ NIL or 
�	 � 2%
 	�" �(���,�����,4�� $ 	���� � " ���%" �& ��
5 then for � ��� to 
�	 � " � � 2 -�	 � 
 � �
6 do HEAP INSERT � � �,��" -�	 � 
#/0
�	 � " -�	 � 
�� � � �
7 switch

8 case � �,��" 
�	 � � � � � 4 $ � �,��" � � 2 
�	 � 
 �
9 SP WIN DONE �)�#�!
��

10 case �#�!
#" �(2 �,4 4��,23��� � 4 $ NIL and � �,��" 
�	 � � � � � 4�$ � �,��" � � 2 � -�
�� 
�	 � 
 �
11 SP WIN EXPIRE �)�#�!
��



118

sp parent recv sdu is called upon the arrival of each SDU message. A counter in the adap-

tation window object tracks how many SDUs have arrived so far for the window (line 2). The

counter is used to check two special case conditions. The first is whether the base layer of the

window is complete. The second is whether all of its SDUs have arrived. In addition to the SDU

counter, a slack value for the window is updated upon the arrival of each SDU, where the slack is

the difference between the expiry deadline for the window and the arrival time of the SDU (line

3). The slack represents how early or late the SDU arrived. When the window experiences late

SDUs, the slack value will be used to adjust the phase offset between server and player clocks.

If the display phase hasn’t begun for the current transmission window, then the ADUs con-

tained within the SDU are entered into a heap, which has the effect of sorting all of the ADUs for

the window back to their original time-order (lines 4–6).

Lines 7–11 treat two cases where the window might be ready for the decode and display phase.

The first case is that the SDU counter has reached the total number of SDUs for this window, so

the window is committed immediately (lines 8–9). The second case is that the window’s timeout

previously expired, but the base layer is only now complete with the arrival of the current SDU

(lines 10–11).

6.4.3.3 sp win done()

SP WIN DONE �1���!
��
1 if �#�!
#" �(2 �,4 � �,� 	.��� " �(2 �,4 4��,2%��� � 4 �$ NIL

2 then CANCEL TIMEOUT �)�#�!
#" �(2 �,4 � �,� 	.��� " ��23�+4 4��+2%��� � 45�
3 SP WIN EXPIRE �1���!
��
4 if �#�!
#" �(2 �,4 � �,� 	.��� " 
���-.��� � �
5 then �!�(-�
�� -�	 � 
 2%
 	�" 4 -.�	��,� �
�
 � �������!
#" ��23�,4 � �+� 	.��� " 
���-�� �'�
6 QSF SEND MSG �1����
�" �(-.���� 4 
���
�
�������/�����- 
�� -�	�� � 
�4 2%
 	'�

sp win done is called by sp parent recv win start or sp parent recv sdu (for the last SDU in

a window) to retire the current transmit-phase window. Lines 1-3 handle cancelling the window’s

expiry timeout, if it hasn’t already fired. Lines 4–6 check whether there were late SDUs in this

window. If so, a phase adjust message is sent to StreamServ, which tells StreamServ how much it

should adjust its clock in order to avoid late SDUs in future windows17.

17Alternatively, we could adjust the display clock, as discussed in section 4.4.
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6.4.3.4 sp win expire()

SP WIN EXPIRE �1����
��
1 ����
#" �(2 �,4 � �,� 	.��� " �(2 �,4 4��,2%��� � 4�� NIL

2 if �#�!
#" �(2 �,4 � �,� 	.��� " 
�	 � � � � � 4 � �#�!
#" ��23�+4 � �,� 	.��� " � � 2 � - 
�� 
�	 � 

3 then ���!
#" ��23�,4 � �,� 	#��� " 	#��
 �!��-�� 
�4 -.��4 ��	 �! �"�#%$
4 ENQUEUE �)�#�!
#" 	.��� �	.� � �+� 	.����
#/��#�!
#" ��23�+4 � �+� 	.�����
5 if QUEUE LENGTH �)����
#" 	.��� �	#� � �,� 	.����
�� $ �
6 then SCHEDULE IDLE � SP DECODE /��#�!
��

sp win expire is either triggered by the adaptation window expiry timeout, or by the arrival of

the last base layer SDU in the event of base layer backup (see Section 4.1.2). Line 1 clears the

value of the xmit timeout field in the adaptation window object. This way, xmit timeout can be

used elsewhere to detect whether the window expiry has occurred. If the base layer is complete

(line 2), then the window enters decode phase immediately (line 4), restarting decode processing

if necessary (lines 5–6).

6.4.4 StreamPlay Phase III: Decode and Display

The third phase of client side PPS algorithm is where the video data are decoded and displayed.

6.4.4.1 sp decode()

SP DECODE �)�#�!
��
1 � �,� 	.��� � QUEUE PEEK HEAD �)�#�!
#" 	.��� �	.� � �+� 	.����
��
2 while not HEAP EMPTY � � �,� 	.��� " -�	 � 
�� and "�"�"
3 do VIDEO DECODE � HEAP DELETE MIN � � �,� 	.��� " -.	 � 
�� �
4 if HEAP EMPTY � � �+� 	.��� " -�	 � 
��
5 then QUEUE POP HEAD �1���!
#" 	#��� �	.� � �,� 	#����
��
6 if QUEUE LENGTH �)�#�!
#" 	.��� �	.� � �,� 	.����
�� 
��
7 then SCHEDULE IDLE � SP DECODE /����!
��

Since this chapter’s main concern is the PPS details, the pseudo-code for sp decode is just a

sketch of final StreamPlay phase, omitting video specific processing. The receive phase will com-

mit adaptation windows to the decode queue. Lines 1-3 of sp decode do some decode processing

for the the adaptation window at the head of the pps.decode windows queue, consuming ADUs

from the window’s heap (line 3). The loop condition is partially unspecified (line 2), but the idea is
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that the worst case execution time of sp decode should be limited to maintain the responsiveness

of the StreamPlay algorithm. In QStream, the video decoding step (line 3) includes the conversion

from SPEG back to MPEG, and MPEG decode. It also schedules a timeout for each decoded

frame to display it at the appropriate time.

When the adaptation window’s heap becomes empty, the window is removed from the decode

phase (lines 4–5). If there are more windows already in the queue, then sp decode immediately

schedules itself for execution at the next idle time (lines 6–7).

This concludes our description of the core PPS algorithm for unicast streaming. In the next

section we describe the Priority-Progress multicast algorithms.

6.5 Priority Progress Multicast

Recall from Chapter 5 that PPM implements a multicast tree by treating each of the edges of the

tree as a separate PPS session. The nodes of PPM trees fall into three distinct categories: the root,

interior nodes, and leaves. In QStream, the root and leaves are and are implemented by StreamServ

and StreamPlay. To support PPM, some extensions to StreamServ, relating to PPM flow control,

are necessary. Otherwise, the PPS algorithm in StreamServ and StreamPlay is the same in unicast

and multicast. For the interior nodes, we developed a separate program called MCastProxy. The

basic role of MCastProxy is to forward PPS messages from the upstream edges to downstream

edges in a best effort fashion. The arrival of a WINDOW STARTmessage from the upstream edge is

used as the trigger that initiates dropping of unsent SDUs from the previous window. MCastProxy

also implements the PPM flow control mechanism, which is intended to prevent waste of upstream

bandwidth when downstream links are constrained. The remainder of this section will consist of

two parts: first, we describe the core algorithms in the MCastProxy implementation, and second,

we describe the extensions in StreamServ to support PPM flow control.

6.5.1 MCastProxy

MCastProxy implements the interior node part of the PPM algorithm. This part of the algorithm

has two main phases: Stream Startup and Forward Windows.

The Stream Startup phase is where new children arrive. The first message received from a
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Figure 6.11: Sequence of Messages in a PPM session

child will identify which video the child is requesting. If a session is already started for that video,

the child is added into that session. Otherwise a new session will be started, forwarding the startup

process up the tree to the parent. In the case that the child is joining an already active session, the

logic of the startup phase will delay completion of the forwarding phase for the new child until the

next adaptation window begins.

The Forward Windows phase of the MCastProxy algorithm forwards adaptation windows to

the children, dropping unsent SDUs from the current window when a new adaptation window

starts. Since the messages arrive in priority order, the dropped SDUs are the lowest priority ones.
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6.5.1.1 PPM Messages

The messages exchanged in PPM are a superset of those in PPS (see Section 6.2.2). Figure 6.11

depicts an example of the messages exchanged during the steady state of PPM. PPM adds two

new messages to PPS, PAUSE and RESUME, which are used to implement PPM flow control.

When a child sends a PAUSE message to its parent, the parent will suspend transmission of

SDU messages. The child will do this when it determines that the parent is getting too far ahead

of all of the child’s descendants. After a PAUSE, the child may later send RESUME message

upstream, which happens if and when at least one of its children are sufficiently caught up. Al-

ternatively, the WINDOW START message implies a resume, since the start of a new window in

PPM is what triggers dropping of unsent SDUs, which in turn forces all of the children to become

caught up18. Because the transmission of messages in opposite directions may overlap in time,

the PAUSE and RESUME messages contain the window number for which they are issued. The

parent uses the window number to detect if they have crossed paths with a WINDOW START, and

if so, it ignores them. For example, in Figure 6.11 the second PAUSE message is ignored because

it arrives after the parent has already started transmission of the next adaptation window.

6.5.2 Data Structures

The are two kinds of object in the MCastProxy algorithm. The first, called MCastPpsSession, is

used to manage per session state. Each session consists of a set of two or more unicast Priority-

Progress connections, one to the parent in the tree and the rest to the children. The second kind of

object called MCastChild is allocated one per-child, it tracks the state for a child connection.

Figure 6.12 shows the MCastPpsSession object. The parent session field holds a Qsf han-

dle for the connection to the parent in the tree. Four lists are used to keep track of children

(MCastChild objects) in various states: startups, xmits, stalled, and paused. The startups list con-

tains children that are waiting for a new adaptation window so they can join the session. Recall

that PPM uses a simple policy where new children can not join a window after it has already

started, because some of the SDUs for that window may have already been discarded. Due to

the dependencies between SDUs, the remaining SDUs may be of no use to new children without

18The exception to this rule is the base layer (maximum priority), which will not be dropped by PPM.
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MCastPpsSession {
QsfSession parent_session; // handle for TCP connection to parent

// Children in various states
List startups; // waiting for first window start
List xmits; // streaming has started
List stalled; // waiting for upstream
List paused; // paused due to downstream request

QsfMsg open_request; // cached for new arrivals
McastMsg open_response; // cached for new arrivals
QsfMsg stream_start_request; // cached for new arrivals
McastMsg stream_start_response; // cached for new arrivals
Queue mcast_msgs; // messages to be forwarded
Integer max_ref_count; // used to initialize sdu.ref_count
Boolean parent_started;
Boolean parent_paused; // for limiting upstream bandwidth
Integer sdu_fill; // how many unsent SDUs are there?
Integer win_num; // most recent window

}

Figure 6.12: MCastProxy Per-Session State

the missing SDUs. The list will be used to start such children when the next WINDOW START

message arrives. The xmits list contains children to which transmission is active19. Once trans-

mission to a child is active, it may be suspended for two reasons: lack of data to send, and a flow

control request from the child. The stalled list contains children that have stopped transmission

because they have completely caught up with the messages received so far. The stalled list is

used to resume such children as soon as a new message arrives from the parent. The paused list

contains children for which transmission has been suspended because they sent PAUSE messages.

This list is used to resume them all immediately in the event that a WINDOW START message

arrives from the parent. Note that a child can be both paused and stalled at the same time. The

open request, open response, stream start request and stream start response are cached copies of

messages from the startup phase of the session. They are used in adding new children that arrive

after the session has already started. The mcast msgs field is a queue that stores all other PPS mes-

sages as they arrive from the parent in the tree. These messages will be forwarded to the children,

each of which has a separate pointer into the mcast msgs list to track what messages have been

19The list is used mainly for cleanup purposes.
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sent so far. A reference count is used for each message to determine if it has been forwarded to

all of the children. When the reference count reaches zero, the message will be removed from the

queue. Otherwise, messages stay in the queue until the next window start message arrives. At that

time, all non-base layer messages are dropped (recall that base layer SDUs are never dropped).

The value max ref count stores the number of children that are eligible to forward each incom-

ing message, this number is used to initialize the reference count for each message. When an

message’s reference count reaches zero, the message will be discarded. The parent started field

is used to record if a START REQUEST has been sent to the parent. This is used to ensure that

only one em START REQUEST is forwarded upstream. The parent paused, sdu fill and win num

fields are used to implement the flow control part of the PPM algorithm, which aims to keep up-

stream bandwidth usage from exceeding the downstream bandwidth to the fastest of the children

(see Section 5.1.2).

MCastPauseStatus :=
UNPAUSED

| PAUSE_PENDING
| PAUSED

MCastChild {
QsfSession child_session; // handle for downstream connection to child
MCastPpsSession pps; // backpointer to session wide state
McastMsg mcast_msg; // private pointer into pps.mcast_msgs
Boolean start_reqd; // received stream start request
Integer win_num; // what window is child working on
MCastPauseStatus pause_status; // downstream flow control state

}

Figure 6.13: MCastProxy Per-Session Child State

The per-child state object is shown in figure 6.13. The child session field stores the Qsf handle

for the network connection to the child. The pps field is simply a back-pointer to the session wide

state. The mcast msg field is a pointer into the mcast msgs list of the pps object, the pointer marks

the boundary between those messages that have already been forwarded to this child and those that

have not. If a child has sent all of the messages received so far–meaning it is completely caught up

with the parent–then this pointer will have a NIL value, and this child will be in the list of stalled

children. The start reqd field is used during session startup to record whether the SESSION START
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message has been received from the child. MCastProxy will only start forwarding adaptation

windows after it arrives20 . The win num and pause status fields are used to implement PPM flow

control (see Section 5.1.2).

This completes the description of MCastProxy’s data structures. The next two sections will

describe the PPM algorithm which consists of two phases: startup and window forwarding.

6.5.3 MCastProxy Phase I: Stream Startup

In the first phase of the PPM algorithm, the startup of new sessions, and addition of new children

to existing sessions are handled.

6.5.3.1 mp child acceptor()

MP CHILD ACCEPTOR �����'����	 
���
�
��������
1 ��������	 � NEW � 	�� - 
�4�� �'����	.�
2 ��������	(" ��������	 
��
�
��,��� � ��������	 
��
�
��,���
3 ��������	(" � �,� � � 2 � � �
4 ��������	(" �!- � 
�� 
�4 -.4 � 
�� #  � �%# � $��
5 QSF START MSG RECVS �������,��	 
��
�
��,����/0	�� 
 �(-.4 ��� 4 - � ����

MCastProxy’s entry point is mp child acceptor, which is called when a new connection has

arrived. Lines 1–4 instantiate a new MCastChild object. The protocol sequence will begin with

the child sending an OPEN REQUEST message to identify which video to transmit.

6.5.3.2 mp child recv open()

MP CHILD RECV OPEN ����������	(/52 
 	'�
1 �#�!
 � HASH TABLE LOOKUP ��-�� 4��,��� 
��
�
��,����
#/ 2%
 	�" *!������� -.2%���
2 if �#�!
 $ NIL

3 then ����
 � NEW � 	�� - 
�4 � �!
����
�
��,�����
4 �#�!
#" �!-.����� 4�� QSF CONNECT � LOOKUP PARENT ��� �!��� *!����� 2%
 	�" *!������� -.2%�� /
5 �!-#���� 4 2%��45�(�	�
�/�����
��
6 �#�!
#" � �!��� �� ��� ��
�4�� 2%
 	

20In the implementation, there can be delay because the child may not send the SESSION START until it has fully
established its connection to the Monitor. This is to ensure that the Monitor will record the complete history of a
session.
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7 �#�!
#" ���'����	#����%� LIST PREPEND �)�!-#���� 4 " ���'����	������/ ��������	��
8 HASH TABLE INSERT ��-.� 4��+��� 
���
�
�������
#/52 
 	�" *!�,����� -#2%�./��#�!
�� ��������	(" �#�!
 � ���!

9 �#�!
#" 
�4 -.��4 � �!
 � LIST PREPEND �����'����	�/����!
#" 
�4 -#��4 � �!
��

10 if �#�!
#" � �(��� ���
 �(����
�� �$ NIL

11 then QSF SEND MSG ����������	(" ��������	 
��
�
��,����/�����
�" � �(��� ���
 �!����
���
12 ��������	(" � �!��� 
���� 4��! " # $

mp child open file is dispatched when the OPEN REQUEST message arrives. A hash table is

used to map video names to their corresponding session objects. The table contains entries for all

active sessions. Lines 1–2 check whether there is an active session for the requested video.

If the requested video does not have an active session, a new session is created (lines 3–

8). Line 3 instantiates a new MCastPpsSession object. Lines 4–5 initiate a connection to the

parent. The lookup parent() function is called to provide the address of the parent in the multicast

tree. lookup parent() might be a hook into a multicast routing subsystem, such as End System

Multicast [11]. In the current QStream prototype, the multicast topology is completely static, so

the lookup parent() call is simply a placeholder, returning an address fixed as a startup parameter

of MCastProxy. Line 6 stores the OPEN REQUEST so that it can be forwarded upstream after the

connection to the parent has been established. Line 7 attaches the child to the just created session

object. Line 8 enters the new session into the hash table, so that subsequent requests for the same

video will join the existing session.

Line 9 enters the session into the startups list, which will be used later when the next WIN-

DOW START message arrives from the parent. If the child is joining an existing session for which

the OPEN RESPONSE has already arrived, then the OPEN RESPONSE is forwarded to the child

immediately, so that downstream players may initialize their displays as soon as possible (lines

10–12).

6.5.3.3 mp child recv start()

MP CHILD RECV START ����������	(/52 
 	'�
1 ����
�� ���'����	(" ���!

2 ��������	(" 
�4 -.��4 ��� � 	 �� �"�#%$
3 if �#�!
#" �!-.����� 4 
�4 -.��4 ��	 $�� ��� � $
4 then ���!
#" �(-.���� 4 
�4 -.��4 ��	 $  �"�#%$
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5 QSF SEND MSG �1����
�" �(-.���� 4 
���
�
�������/52 
 	 �

The mp child recv start function is dispatched on the arrival of a START REQUEST from

downstream. Line 2 records the fact that it has arrived, which will allow this child to start

streaming when the next WINDOW START message arrives from upstream. If this is the first

START REQUEST to arrive for the session, then the message is forwarded upstream (lines 3–5).

6.5.3.4 mp parent connected()

MP PARENT CONNECTED �1����
��
1 QSF START MSG RECVS �1����
�" �(-.���� 4 
���
�
�������/ 	#� 
5�!-.4 ��� 4 - � ����
2 QSF SEND MSG �)����
#" �!-#���� 4 
��
�
�������/��#�!
#" � �(��� �� ��� ��
�45�

mp parent connected is dispatched when the connection to the parent in the multicast tree is

established. Line 1 enables message dispatching for incoming messages on the connection. Line

2 starts the upstream protocol sequence, by forwarding the open file request up to the parent.

6.5.3.5 mp parent recv open()

MP PARENT RECV OPEN �1���!
#/ 2%
 	'�
1 ����
#" � �!��� ��0�(� � � 2 
 	
2 for �����,��	 in �#�!
#" 
�4 -.��4 � �!

3 do if ��������	(" � �!��� 
���� 4 $ � ��� � $
4 then ���'����	�" � �(��� 
���� 4 �! �"�#%$
5 QSF SEND MSG �������,��	�" ��������	 
��
�
�������/����!
#" � �(��� ���
 �(����
���

mp parent recv open file is dispatched when the OPEN RESPONSE message has arrived from

upstream. Line 1 caches the message in the session object, for use in the future when new chil-

dren connect and request the same file. Lines 2–5 immediately forward the message to existing

children.

6.5.3.6 mp parent recv stream start()

MP PARENT RECV STREAM START �)�#�!
#/52 
 	 �
1 ����
#" 
�4����-#2 
�4 -.��4 ��
 �(����
�� � 2%
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mp parent recv stream start is dispatched when the START RESPONSE message arrives from

upstream. StreamServ sends the START RESPONSE when it begins the transmission of the first

adaptation window. The message is stored, and will be forwarded when the first WINDOW START

arrives.

6.5.4 MCastProxy Phase II: Forward Windows

Once the session is established, the session enters the second phase of the PPM algorithm, which

consists of forwarding adaptation windows to the children. A first-in first-out queue (mcast msgs)

is used to store messages as they arrive from upstream. Each child maintains a private pointer into

the queue, where the pointer signifies the next message to transmit for that child.

6.5.4.1 mp parent recv win start()

MP PARENT RECV WIN START �1����
�/ 2%
 	'�
1 �#�!
#" � �,� � � 2 � 2 
 	!" � �,� � � 2
2 �#�!
#" �(-.���� 4 �!- � 
���	 $ � � � � $
3 �#�!
#" 
�	 � *!������$ �
4 �#�!
#" 23-�� ��* � � � � 4�$ LIST LENGTH �)�#�!
#" ��23�+45
��
5 for ��������	 in ����
�" 
�4 -.��4 � �!

6 do if ���'����	(" 
�4 -.��4 �� � 	 $  " # $
7 then ����
�" 2%-�� ���* ��� � � 4 $ �#�!
#" 2%-�� ��* � � � � 4 � �
8 2 
 	!" 
���� 4 *���-�	 � � ��� � $
9 2 
 	!" ��* ��� � � 4 � ����
#" 2%-�� ���* ��� � � 4

10 ENQUEUE �1���!
#" 23��-�
�4 2 
 	 
#/52 
 	 �
11 for �����,��	 in ���!
#" 
�4 -#��4 � �!

12 do if ��������	(" 
�4 -.��4 ��� � 	 $  �"�#%$
13 then ����
�" 
�4 -.��4 � �!
 � LIST REMOVE �1���!
#" 
�4 -#��4 � �!
#/ ���'����	��
14 ����
�" ��23�,45
�� LIST PREPEND �1���!
#" ��23�,45
�/0�����,��	.�
15 QSF SEND MSG ����������	(" ��������	 
��
�
�������/�����
#" 
�4 -.��4 ��
 �(����
���
16 MP CHILD SEND MSG �����'����	.�
17 MP CHILDREN WAKEUP �1���!
#/ 2%
 	'�

mp parent recv win start is dispatched when a window start message arrives from upstream,

each adaptation window begins with such a message. Line 1 sets the window counter for the

session. This will trigger the children to skip forward to the new window as soon as possible (see

Section 6.5.4.6). Lines 2–3 reset the parent paused and sdu fill values, since WINDOW START
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messages restart the flow control process. Line 4 sets the starting value for SDU reference counter

to include children that have already started, while lines 5–7 add children that will be newly

started due to the arrival of this message. Lines 8–10 initialize the reference count and send status

for the WINDOW START message itself, and enter it into the transmission queue. Lines 11–16

initiate the transmission phase for newly joined children. Finally, the call to mp children wakeup

(described next) will restart the transmission logic for children that were previously paused due to

flow control, or stalled due to a lack of messages to send.

6.5.4.2 mp children wakeup()

MP CHILDREN WAKEUP �)�#�!
#/52 
 	 �
1 for �����,��	 in �#�!
#" �(- � 
���	
2 do ���	 
�4 -#4 � 
 � ���'����	(" �(- � 
�� 
�4 -.4 � 

3 ��������	(" �!- � 
�� 
�4 -.4 � 
�� #  � �%# � $��
4 ����
#" �!- � 
���	 $ LIST REMOVE �1���!
#" �(- � 
���	(/ ��������	��
5 if ���	 
�4 -.4 � 
 $ � � # � $�� and ���'����	(" 23� - 
�4 2%
 	
6 then MP CHILD SEND MSG ����������	��
7 MP CHILDREN UNSTALL �)�#�!
#/52 
 	 �

mp children wakeup is simple helper function for mp parent recv win start that iterates through

the list of previously paused children and restarts them. The check in line 5 prevents re-starting

children that haven’t actually paused yet (their pause status is still PAUSE PENDING). The call to

mp children unstall will resume those children that were stopped because they ran out of messages

to send.

6.5.4.3 mp children unstall()

MP CHILDREN UNSTALL �)�#�!
#/52 
 	 �
1 for �����,��	 in �#�!
#" 
�4 -�������	
2 do ����
�" 
�4 -�������	 � LIST REMOVE �)����
#" 
�4 -�������	(/ ���'����	��
3 ��������	(" 2%� - 
�4 2 
 	 � 2 
 	
4 if ��������	(" �!- � 
�� 
�4 -.4 � 
�$ #  � � # � $ �
5 then MP CHILD SEND MSG ����������	��

The mp children unstall helper function is called when a WINDOW START message or a SDU

message arrives. It simply resumes transmission for all children that had previously caught up to
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the parent completely and had run out of messages to send. Note, the check in line 3 ensures that

the child is not restarted if it is also paused due to PPM flow control.

6.5.4.4 mp parent recv sdu()

MP PARENT RECV SDU �1���!
#/ 
�	 � 2 
 	 �
1 if 
�	 � 2 
 	!" �����������,4�� � 	���� � " � �%" �� ��
2 then ����
#" 
�	 � *!����� � ����
#" 
�	 � *!����� � �
3 if �#�!
#" 
�	 � *!�������&� ��# � � ��� � � �� �$�" and not ����
�" �(-.���� 4 �(- � 
���	
4 then ����
#" �!-#���� 4 �(- � 
���	 �! " # $
5 �!- � 
�� 2 
 	!" � �,� � � 2 $ ����
#" � �,� � � 2
6 QSF SEND MSG �)�#�!
#" �!-.����� 4 
��
�
�������/��!- � 
�� 2 
 	 �
7 
�	 � 2 
 	!" ���* ��� � � 4�� ����
�" 2%-�� ���* ��� � � 4
8 
�	 � 2 
 	!" 
���� 4 *���-&	 � FALSE

9 QUEUE PUSH TAIL �1���!
#" 23��-�
�4 2 
 	'
#/0
�	 � 2 
 	'�
10 MP CHILDREN UNSTALL �)�#�!
#/0
�	 � 2 
 	 �

mp parent sdu is called upon each SDU message arrival. Lines 1–6 are part of PPM flow

control. Lines 1–2 update the sdu fill value to count the number of non base layer messages that

are as yet unsent by any child. When too many SDUs are backing up behind all the children (line

3), the parent’s status is changed and a pause message is sent upstream (lines 4–6).

Lines 7–8 initialize the reference counter and flow control flag for the SDU and then enter it

into the message transmission queue. The transmission logic for the children loops on the contents

of the queue. Line 9 adds the message to the tail of the transmission queue. A child enters stalled

status when it has transmitted all of the messages available. Lines 10 restarts any such children,

since there is now a message available for them to send.

6.5.4.5 mp child send msg()

MP CHILD SEND MSG �1���!
#/0���'����	.�
1 if ��������	(" 2%� - 
�4 2 
 	!" 4����(��$ � �� � � � �  �� "  
2 then ���'����	�" � �,� � � 2 � ���'����	�" 23��-�
�4 2%
 	�" � �+� � � 2
3 QSF SEND MSG ����������	(" ��������	 
��
�
��,����/0�����,��	�" 2 
 	�/ QSF CHILD SENT MSG �

mp child send msg starts transmission of the current message for a child. Lines 1–2 update

the win num field if the child is starting a new window (this field is used elsewhere to detect if
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the child should catch up to a new window position). Line 3 actually initiates transmission of the

current message for this child.

6.5.4.6 mp child sent msg()

MP CHILD SENT MSG �)�#�!
#/ ��������	��
1 MP CHILD NEXT MSG �)�#�!
#/ ��������	��
2 if ��������	(" � �+� � � 2 � �#�!
#" � �,� � � 2
3 then while ���'����	(" 2%
 	�" �(���������,4�� � 	���� � " � �%" �� ��
4 do MP CHILD NEXT MSG �)����
#/ ��������	��
5 if ��������	(" �!- � 
�� 
�4 -.4 � 
 $&� �%# � $ � $  � �  �
6 then ���'����	�" �(- � 
�� 
�4 -#4 � 
 � � �%# � $��
7 else if ��������	(" 2%� - 
�4 2 
 	
8 then MP CHILD SEND MSG �)�#�!
#/ ��������	��

mp child sent msg is dispatched when the transmission of the current message to a particular

child is complete.

A helper function mp child next msg (described next) handles the details of advancing the

child’s private pointer to the next message in the transmission queue (line 1). If the child notices

that it is working on an older window than the parent, then it will skip any non-base layer messages

to try to catch up (lines 2–4). Line 5 checks whether a pause is pending for this child due to

the previous arrival of a PAUSE message. If so, the status for the child is updated (line 6) and

transmission stops. Otherwise, if there is a message to send, it begins sending right away (lines

7–8).

6.5.4.7 mp child next msg()

MP CHILD NEXT MSG �)�#�!
#/ ���'����	��
1 � � � � �����,��	�" 2%� - 
�4 2 
 	
2 � ���(4�� ���'����	(" 23� - 
�4 2%
 	�" � ����4
3 if � � �" 
���� 4 *���-&	 $ � ��� � $
4 then � � �" 
���� 4 *���-�	 �! �"�#%$
5 if ��������	(" � �+� � � 2 $ �#�!
#" � �,� � � 2 and � � �" �����������,4�� �$ 	���� � " � �%" �� ��
6 then ����
�" 
�	 � *!����� � ����
�" 
�	 � *!����� � �
7 if �#�!
#" 
�	 � *!����� � � � � � �  $�"  � "%$ � � and ����
�" �(-.���� 4 �(- � 
���	
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8 then ����
�" �(-.���� 4 �(- � 
���	 � � � � � $
9 ��
 � 2%� 2 
 	!" � �,� � � 2 $ ����
#" � �,� � � 2

10 QSF SEND MSG �)����
#" �!-#���� 4 
���
�
�������/5��
 � 2%� 2 
 	 �
11 � � �" ���*������� � � ��� � � 4�� � � �" ��*������� ��� � � � � 4 � �
12 if � � �" ���*������� � � � � � � 4 $ �
13 then QUEUE REMOVE �)����
#" 2%� - 
�4 2%
 	'
�/0� � ��
14 ��������	(" 2%� - 
�4 2 
 	 $&� � �" � ����4
15 if ���'����	(" 23� - 
�4 2%
 	 $ NIL

16 then ����
#" 
�4 -�������	 � LIST PREPEND �����'����	(/��#�!
#" 
�4 -�������	.�

mp child next msg is responsible for advancing the child’s private pointer into the transmis-

sion queue (line 14). In doing so, it also performs the bulk of the work for PPM flow control and

message cleanup.

Lines 3–10 treat flow control duties. The sent flag is used to ensure that the sdu fill value is

decremented once for every non-base layer SDU that has been transmitted to at least one child

(lines 5–6). If the parent has been previously paused, then lines 7–10 take care of resuming the

parent when the sdu fill value hits the LOW WATER THRESH value. Lines 11–13 maintain the

reference count and free messages when the reference count hits zero.

Lines 15–16 treat the case that there is no next message, so the child enters the stalled list.

The child will resume when the next available message arrives from the parent.

6.5.4.8 mp child recv pause()

MP CHILD RECV PAUSE ����������	(/��!- � 
�� 2 
 	 �
1 ����
�� ���'����	(" ���!

2 if �!- � 
�� 2 
 	!" � �,� � � 2 $ ����
#" � �,� � � 2 and ��������	(" �!- � 
�� 
�4 -.4 � 
 �$&� �%# � $��
3 then if ��������	(" 2%� - 
�4 2 
 	 �$ NIL

4 then ���'����	(" �(- � 
�� 
�4 -.4 � 
 $ � � # � $ � $  � �� �
5 else ���'����	(" �(- � 
�� 
�4 -.4 � 
 $ � � # � $ �

mp child recv pause is dispatched on the arrival of a PAUSE message from downstream. Line

2 checks that the message matches the current adaptation window and that the child is not already

paused. If not, the PAUSE message can be ignored. Line 3 checks whether this child is currently

forwarding messages. If so, line 4 sets the child’s pause status to PAUSE PENDING, which will

signal transmission to stop after the current message is done (see Section 6.5.4.6). Otherwise, line
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5 marks the child as PAUSED immediately. Message forwarding to this child will be suspended

until either a RESUME message arrives from downstream or a WINDOW START message arrives

from upstream.

6.5.4.9 mp child recv resume()

MP CHILD RESUME ����������	(/5��
 � 2%� 2 
 	 �
1 ����
�� ���'����	(" ���!

2 if ��
 � 2%� 2 
 	!" � �,� � � 2 $ ����
#" � �,� � � 2
3 then ���	 
�4 -.4 � 
 $ ���'����	�" �(- � 
�� 
�4 -#4 � 

4 �����,��	�" �(- � 
�� 
�4 -.4 � 
 � #  � � # � $��
5 ����
�" �(- � 
���	 � LIST REMOVE �)�#�!
#" �!- � 
���	�/0�����,��	.�
6 if ���	 
�4 -.4 � 
 $ � � # � $�� and ��������	(" 2%� - 
�4 2 
 	
7 then MP CHILD SEND MSG ����������	��

mp child resume is dispatched when a RESUME message arrives from downstream. The mes-

sage will be ignored if it doesn’t match the current adaptation window (line 2). Lines 3–7 handle

updating the child’s pause status to UNPAUSED and if a message is ready, resume forwarding to

the child immediately (lines 6–7).

This concludes our description of the PPM algorithm parts of MCastProxy. The next section

will describe the modifications to StreamServ necessary to support PPM flow control.

6.5.5 StreamServ: Multicast Extensions

A PPM tree consists of three node types: the server at the root of the tree, the interior nodes, and

the video players at the leaves of the tree. The bulk of PPM algorithm is located in the interior

nodes, as implemented in MCastProxy that was described in the previous section. The server and

the players in PPM are essentially the same as for unicast PPS. The only significant component

of the PPM algorithm outside of interior nodes is support for flow control required in the root

of the tree, that is, in StreamServ. In this section, we describe the additions to StreamServ that

implement the required support for PPM flow control.
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ServPauseStatus :=
UNPAUSED

| PAUSE_PENDING
| PAUSED

ServPpsSession {
...
ServPauseStatus xmit_status; // for PPM flow control
Integer xmit_window_number
...

}

Figure 6.14: StreamServ PPS Session Object: extensions for multicast

6.5.6 Data Structures

Figure 6.14 shows the additional data structures required to add PPM flow control support into

StreamServ (see Section 6.3.1 for the original data structures). The xmit status field tracks the

flow control state of the child, like the pause status value used in the MCastProxy algorithm. The

xmit window number is used to make sure that PAUSE and RESUME messages do not take effect

in the case that they cross paths with a WINDOW START message.

6.5.6.1 ss child send sdu head()

SS CHILD SEND SDU HEAD �)����
��
1 � �,� � QUEUE PEEK HEAD �)�#�!
#" �(2 �,4 � �,� 	.����
��
2 2 
 	 � HEAP PEEK MIN � � �+��" 
�	 � 
��
3 � �,��" -.	 � � � � � 4 ���
4 if �#�!
#" �(2 �,4 
�4 -.4 � 
 $ � � # � $ � $  � �� �
5 then ���!
#" ��23�,4 
�4 -.4 � 
 $ � � # � $ �
6 else QSF SEND MSG �1���!
#" �����,��	 
��
�
�������/ 2%
 	�/ SS CHILD SEND ADU �

The ss child send sdu head function is slightly extended for PPM. The original version was

described in Section 6.3.4.2. The version here is the same in the first three lines. The added code

is lines 4 and 5, which make the transmission of the SDU conditional on whether the a PAUSE

message has arrived from downstream.
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6.5.6.2 ss win xmit expire()

SS WIN XMIT EXPIRE � � �,���
1 � �,��" ��23�+4 4��,2%��� � 4�� NIL

2 SS UNPAUSE XMIT � � �,��" �#�!
��

The ss win xmit expire is also slightly modified for PPM (the original is in Section 6.3.3.7).

Rather than waiting for the child to send a RESUME, the transmission of the new window is started

immediately by the call to ss unpause xmit (described next).

6.5.6.3 ss unpause xmit()

SS UNPAUSE XMIT � � �,���
1 ���	 
�4 -.4 � 
 � ���!
#" ��23�,4 
�4 -.4 � 

2 ����
#" �(2 �,4 
�4 -.4 � 
 � #  � � # � $��
3 if ���	 
�4 -.4 � 
�$&� � # � $��
4 then SS SDU NEXT �)����
#/ QUEUE PEEK HEAD �)�#�!
#" �(2 �,4 � �,��
��5�

ss unpause xmit restarts transmission for the child if it was paused. This function is called

either when a RESUME message arrives from downstream (described next) or when the timer

event expires to start a new adaptation window (described above).

6.5.6.4 ss child recv pause()

SS CHILD RECV PAUSE �1����
�/��(- � 
�� 2%
 	'�
1 if �!- � 
�� 2%�
�
�-�	 �#" � �,� 	.��� � � 2 � ��� �$ ����
�" ��23�,4 � �,� 	#��� � � 2 � ���
2 then if not QUEUE EMPTY �)����
#" �(2 �,4 � �,��
��
3 then � �+� � QUEUE PEEK HEAD �1���!
#" ��23�,4 � �,��
��
4 if ����
 � �,��" ��23�,4 4��+2%��� � 4
5 then �#�!
#" �(2 �,4 
�4 -.4 � 
�� � � # � $ � $  � �� �

ss child recv pause is dispatched when a pause request is received from the multicast tree. The

check in line 2 ensures the request matches the adaptation window currently in the transmission

phase. If so, line 3 sets xmit status to reflect that pause has been requested. This will signal

ss child send sdu head to pause transmission before starting the next SDU.
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6.5.6.5 ss child recv resume()

SS CHILD RECV RESUME �)�#�!
#/��!- � 
�� 2 
 	 �
1 if �!- � 
�� 2%�
�
�-�	 �#" � �,� 	.��� � � 2 � ��� $ ����
�" ��23�,4 � �,� 	#��� � � 2 � ���
2 then SS UNPAUSE XMIT �)�#�!
��

ss child recv resume is dispatched when a resume request is received from the multicast tree.

The check in line 2 ensures the request matches the adaptation window currently in the transmis-

sion phase. Line 4 changes the transmission status to unpaused. Line 6 initiates transmission of

the next SDU, but only if the transmission phase actually reached the paused state since the prior

pause request (line 5).

This completes our description of the PPS and PPM algorithms. The following section will

briefly describe the support for remote monitoring of experiments in the QStream implementation.

6.6 The QStream Monitor

In this section, we give an overview of the QStream Monitor (hereafter referred to as the Monitor),

which is a separate program in QStream that gathers data in real-time from the other QStream

programs, and displays (or records) them as signals in a set of software oscilloscopes (or in graphs

generated by gnuplot). At present, the Monitor contains more than a half dozen scopes, and close

to a hundred different signals. The signals fall into several categories, such as information about

SPEG, information about the PSS and PPM, and information about traffic generated by mxtraf.

The Monitor facility has played an essential role in the development and performance evaluation

tasks of this dissertation. The Monitor has also been a prominent feature when we show the

QStream software in demonstrations and research talks.

The Monitor is implemented as a network server. The other QStream programs establish a

session with the Monitor when they start. As they perform their tasks (e.g. PPS), they send data

samples to the Monitor, typically in the form of timestamped, attribute-value tuples. In addition

to the server, the Monitor also provides a client-side library which provides a stub API for data

collection. This API hides the work of network communication from the instrumented programs.

Unlike PPS, the Monitor protocol is quite different in that it multiplexes sessions into a single

connection. That is to say, each QStream program establishes at most one network connection
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to the Monitor, even when several logical sessions (PPS streams or mxtraf flow) are monitored.

For example, if StreamServ accepts several PPS sessions at the same time, coming from different

instances of StreamPlay, the monitoring data for all of the PPS sessions are sent by StreamServ

over single connection to the Monitor. To sort out the data, every attribute-value tuple carries with

it a unique session id. We use UUIDs for these IDs, which have the property that they can be

generated without global communication, and without fear of collisions. This also allows data

pertaining to the same session, but originating from different hosts to be combined in single view,

for example to have signals for the same PPS session, but originating separately from StreamServ

and StreamPlay, displayed in the same oscilloscope. Since the data originating from different

programs may take different network paths, and hence different amounts of time to arrive, the

Monitor uses a priority-queue (implemented via a heap) to buffer incoming samples, and sort

them for display according to their timestamps. This allows certain signals to be displayed with

perfect synchronization, even when their data samples originate from different hosts. The buffer

is managed in the Monitor according to a late-offset parameter, which is used by the monitor to

add a fixed delay between the timestamp values and when they are displayed. If the samples arrive

at the monitor later than their timestamp adjusted by this offset, then they are considered late and

dropped. In practise, we set the delay to a few seconds. This allows the TCP session to combine

samples into full sized segments, which is good for keeping the TCP packet overheads minimized.

In addition to the graphical oscilloscope, the Monitor can also store data to a database for

offline processing. For example, we use this feature to generate plots with gnuplot. In this case,

the timestamp is used as the sort key for the database. As samples arrive, they are inserted into

the database (in this case, samples never need to be dropped). At the end of an experiment, the

database will have all the samples available in timestamp sorted order, and an in-order traversal

can be used extract the data for plotting.



Chapter 7

Streaming Evaluation

In this chapter, we present an experimental evaluation of Priority-Progress Streaming (PPS) and

Priority-Progress Multicast (PPM), based on a real implementation of them in our prototype

streaming system, QStream (Quasar Streaming). As we described in Chapter 6, QStream includes

significant internal instrumentation that generates data for various quantitative assessments. In our

experiments, we use a combination of simulated, emulated and live networks, as appropriate to

the questions we are trying to answer. In the next section, we expand upon the advantages and dis-

advantages of each type of network. The remaining sections present three major groups of results.

The first group addresses rate and quality metrics of SPEG video as they vary over the timeline

of a video, expanding upon some of the basic results presented in Chapter 3. The second group

of results addresses the performance of PPS in unicast streaming scenarios. The third group of

results treats multicast streaming scenarios.

7.1 Experimental Approach

In distributed systems research, there are three general approaches to conducting experiments:

simulation, emulation, and live experiments. Each approach remains popular because they each

occupy different points in a space defined in terms of realism, control, and ease-of-use [89]. The

results presented in this chapter are based on a mixture of simulation and emulation. For reasons

that we describe below, our first preference is the emulation approach. To support experiments in

an emulated network setting, we have invested a significant amount of effort in instrumenting the

QStream code so as to produce a prolific set of measurements.

Of the three experimental approaches, simulation is the most attractive approach in terms of

138
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control and ease-of-use. In simulation, all entities of an experiment, end-hosts, network nodes,

and links, are modelled using discrete-event programming techniques. Simulation offers com-

plete control, and thus repeatability, and is generally the easiest to use because experiments can

be conducted entirely on a single machine. Simulation is also attractive because a small number

of tools, especially ns and ns2 [21, 82], have achieved de-facto standard status in the networking

community, which helps to make sharing of research results with the community more effective.

Simulation’s greatest weakness is realism. Although simulation tools go to great lengths to max-

imize realism, they always abstract some details of real implementations. In the case of ns, the

de-facto standard for network simulation, one such detail is the socket buffer used in real OS pro-

tocol stacks. In a real in-kernel protocol stack, the socket buffer is used both for the purpose of

supporting TCP retransmission, and for reducing CPU overhead due to user-system transitions.

For the purposes of evaluating most networking topics such as routing protocols, congestion con-

trol mechanisms, etc., the socket buffer does not have significant effects, so the simulation does not

model the socket buffer at all. However, for streaming applications using a congestion controlled

transport such as TCP, the socket buffer has the dominant impact on end to end latency [31]. To

address this issue, we might have chosen to try and extend the simulators to encompass the miss-

ing socket buffer dymamics, or to find other simulators that do model socket buffers. However,

it seems clear that even with such extensions, it would be prudent to compare simulation results

to some baseline based on measurements from a real implementation. So, we defer simulation

of PPS to future work, and instead focus on the real system options, network emulation and live

network experiments.

Where simulation might be thought of as attempting to recreate the Internet in a single host,

emulation can be thought of as extending the idea to recreate the Internet in a single laboratory

testbed. The basic idea of emulation is to replace wide area network links with local ones, using

routing software for each link to emulate the wide-area counterparts’ behaviour in terms of delay,

rate, and queuing characteristics. Additionally, traffic generation tools may be used to try and

replicate the traffic conditions that occur on the real Internet. With the dramatic drops in hardware

costs and the increased breadth of available open source software in recent years, it has become

feasible for research institutions to construct testbeds capable of emulating a relatively large range

of network scenarios. Potentially, emulation can be much more realistic than simulation, because
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a much larger fraction of software and hardware involved, relative to simulation, are the same

as in the Internet. Experiment control and ease of use are more difficult since many of the im-

portant control parameters must be separated across the many machines that makeup the testbed.

Furthermore, since multiple systems are involved, a degree of non-determinism is introduced that

makes exact repeatability impossible. However, with appropriate setup, experiments in an emula-

tion testbed can be expected to yield acceptably consistent results under repetition. Scripting and

other forms of automation can mitigate the ease-of-use issues. The balance between realism and

control affored by emulation make it our main choice of experimental method.

Live experiments, where experiments are conducted over the Internet, are at the other extreme

from simulation in terms of control, ease-of use, and realism. Live experiments obviously hold the

potential for the most realistic results. However, they are the most difficult from the perspective

of control and ease of use. A live experiment cannot include control over traffic of other users,

so the results from an experiment may be impossible to repeat. A live experiment is also the

most difficult to co-ordinate because of issues of physical separation between components of the

experiment.

As mentioned above, we are very concerned with realism in our work, so we prefer to conduct

our development and experiments under an emulation network, which gives a balance between re-

alism and control. We did chose to use simulation to generate baseline performance measurements

for a selection of other approaches previously described in the literature. Emulation is generally

more realistic than simulation because it can reveal performance issues that might get missed in

simulation. In the case of the baselines, we felt that simulation was acceptable, because by us-

ing simulation we would at worst overstate the performance of the baselines and understate the

advantages of our approach.

In the next section, we describe the emulation testbed that we constructed for our experiments.

The results of these experiments will be the main focus of our evaluation. However, we note that

we have tested the QStream prototype regularly over live networks, including over cable-modem

based broadband and 802.11 wireless links. Although we will not present any data here from

live network tests, we can report that the behaviour of QStream in live network conditions has

conformed to the results we will present from our emulation testbed experiments. Furthermore,

all of the software components used in our experiments, including those we developed ourselves,
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are publicly ally available, so it should be feasible for other researchers to validate and extend

upon our results.

7.2 Network Emulation Testbed Setup

7.2.1 Testbed Hardware

The hardware of our experimental testbed consists of a rackmounted cluster of commodity hosts

and a Gigabit network. The cluster contains 12 identical 1U sized hosts, which we use in the roles

of end hosts and emulation routers in the testbed. The 1U hosts were manufactured by SuperMicro

Inc., model name SuperServer 6012P-6. Each host is a dual processor machine configured with

1.8Ghz Pentium 4 Xeon processors, a pair of Gigabit NICs (Intel e1000), a single 100Mb NIC

(Intel e100), 1GB of RAM, and three 120GB disks (WD Caviar). At the time the cluster was con-

structed (Summer 2002), commodity PC hardware was generally unable to reach the full potential

of Gigabit links due to limitations of system memory and PCI bus implementations. One of the

reasons we chose the SuperServer 6012P-6 models was because they were among the first to ship

with the Intel E7500 server chipset, which has memory and IO bus capacities sufficient (3MBs

each) to allow the Gigabit NICs to run at full speed.

The cluster hosts are connected to each other via a CISCO Catalyst 4000 Gigabit switch.

We use VLANs to partition the set of network links into separate virtual networks, whereby the

switch enforces physical separation of traffic. We used the 100Mb links for cluster management,

on a separate VLAN from the Gigabit links. The Gigabit links were also partitioned into two or

more VLANs as required by the desired topology for each particular experiment.

7.2.2 Testbed Software

The operating system we use on the hosts is RedHat Linux version 8.0. The kernel version is

RedHat 8.0’s 2.4.18, with an small additional patch of our own for our TCP_MINBUF option to

setsockopt(), described in Section 4.4.3. The TCP_MINBUF option is only used in a subset

of our experiments. RedHat kernels include a number of patches beyond the version maintained

by Linus Torvalds. Notably, this RedHat kernel included a low-latency patch and a patch to allow

finer granularity kernel clock (1ms).
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To emulate wide area links, we use NISTnet [63]. NISTnet is a software package that enables

a Linux router to mimic various characteristics of a wide area path, such as delay, drop probability,

and bandwidth limitations through rate shaping or queue bounds.

For many of our experiments, we use a traffic generator to mix competing traffic into the

network path with PPS flows, to ensure that PPS is robust in the face of busy links. Creating traffic

in a way that reflects what happens on the Internet is a non-trivial task. We examined several

available traffic generation tools, but then decided to write our own, which is called mxtraf. The

reason we resorted to writing mxtraf was that the existing tools were either too simplistic in

the type of traffic they generated, or they were too slow to generate significant amounts of traffic.

For example on the simple side, the ttcp package only generates a single flow at a time. In

contrast, the SURGE traffic generator goes to great lengths to generate flows that accurately model

the behaviour of individual web users, in terms of various statistical distributions such as file size,

time between file accesses, etc. Unfortunately, when we tried SURGE we found that it required

a considerable number of CPUs to generate just one or two megabits of traffic. In their study

of aggregate traffic performance, Iannaconne et al. suggest that a mix of flows can reasonably

approximate the dynamics of busy Internet routers [39]. In particular, they suggest that the traffic

consists of three classes of flow: long-lived TCP flows, short-lived TCP flows which repeat, and a

small amount of non-TCP traffic. However, their study used simulation. Our program, mxtraf,

allows a similar mix of real flows to be injected into an emulation testbed. Although we sacrifice

some of the accuracy of SURGE, mxtraf can scale the number of flows up so as to generate

much more realistic amounts of traffic. Together, NISTnet and mxtraf are able to emulate a

broad range of network scenarios.

In the following sections we present measurements taken from QStream in our experimental

testbed.

7.3 Adaptive Video

Recall, in Chapters 1 and 2, we gave our motivations for an adaptive approach. Recapping briefly,

the two basic reasons we need to adapt are that video bitrates are variable over time, and that avail-

able network bandwidth also varies. Video bitrates vary due to the use of compression. Although
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variable bitrates pose a challenge for streaming, the resource savings that result from compression

are significant enough to justify its use. In this section, we will present some bitrate measurements

to illustrate the volatilty of video bitrates from several perspectives. We will also re-affirm the first

claim of our thesis statement: through informed dropping, it is possible to cover a very wide range

of quality-rate combinations and with fine granularity.
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Figure 7.1: Maximum video rate for full 2 hour video

We expect that the need for adaptation grows stronger for longer duration content. The simple

intuition behind this expectation is that over a longer period there are more chances that mis-

matches between video and network will occur. In Figure 7.1, we show the bitrate requirements

(at maximum quality) for an SPEG encoding of a full length movie (approximately 2 hours). The

movie in this case is “Crouching Tiger Hidden Dragon”. The SPEG file was created in a two step

process. First the DVD version of the movie was transcoded from the MPEG-2 on the DVD to

MPEG-1. The MPEG-1 was transcoded to SPEG using Quasar software1. It should be noted that

the data in Figure 7.1 is smoothed to 1 minute intervals in order to make it easier to read. Even

with this level of smoothing the bitrate varies quite dramatically, spanning a wide range from about

1Mbps to close to 10Mbps. Although we do not present the data here, our own experience and

other anectdotal evidence suggests that the bursty profile of this movie is reasonably representative

of the level of burstiness in other movies (e.g., Feng et al. present a survey of data gathered from

over 100 of the most popular DVDs which confirms this [23]).

Another characteristic of major interest is the granularity of adaptation afforded by SPEG.

1We used the transcoder from the Quasar pipeline, which is the predecessor to the QStream prototype.
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Section 3.3 summarized granularity issues of SPEG. Here, in Figures 7.2 and 7.3, we show the

granularity over time. Each line in the figure represents the video bitrate at each of 16 priority

thresholds, normalized to the maximum video bitrate. Each priority level represents a video qual-

ity, with a corresponding frame rate and level of spatial detail (number of SPEG layers). In these

figures, the bitrate is computed for each PPS mapper window. Recall that, in PPS, the timeline

of the video is divided into mapper windows for the purpose of prioritization. A mapper window

consists of one or more SPEG GoPs, and a PPS adaptation window consists of one or more mapper

windows. In these figures, the mapper windows are 0.5 seconds each. Refer to Chapter 4 for more

detailed descriptions of these subdivisions of the video timeline. Figure 7.2 shows the normalized

bitrates by priority over the course of the entire video.
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Figure 7.2: Relative video rates by priority of full 2 hour video

Figure 7.3 shows the same data as Figure 7.2 narrowed down to a selected 30 second interval.

At this smaller timescale, it is possible to see the rates of individual mapper windows, noting that

there are visible changes from one window to the next.

These figures reinforce a couple of the basic messages from Chapter 3. SPEG covers a wide

range of rates, and with fine granularity. However, there are some large gaps, due to the limited

spatial scalability in SPEG (only 4 spatial levels). The relative distribution of bitrates by priority

level is interesting too. If the bitrate variations were the same across priority levels, then the lines

in these figures would have a constant spacing across the whole timeline. Figures 7.2 and 7.3 show

that there are in fact some fairly substantial variations over time in the per-priority bitrates. This

is of interest in relation to video smoothing techniques (we referred to this area of the literature in
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Figure 7.3: Relative video rates by priority of a selected 30 second interval

Section 2.1.2). Recall that those techniques use a priori knowledge of the video’s bitrate profile

to guide the buffering process during transmission, in such a way as to smooth the transmission

rate requirements of the video stream. However, the smoothing algorithms in the literature were

restricted to the assumption of a single target rate. In that case, the goal of smoothing was to

aid in provisioning network resources. With adaptive streaming and scalable video, the goal of

smoothing would be to improve the consistency of video quality. The most direct way to extend

existing smoothing algorithms to scalable video (with multiple rates) is to calculate the smoothing

plan based on the maximum rate. However, the variations in relative rates that we see above

suggest a buffering plan that effectively smooths the video at the maximum quality level will not

smooth the rate as well for lower quality levels.

As we explained in Chapter 4, PPS uses adapation windows to match the video to the available

network bandwidth. The window scaling feature of PPS, which expands the size of the windows

over time, has a simultaneous smoothing effect in relation to the network bandwidth and the video

bitrate. Unlike the smoothing techniques mentioned above, the window scaling mechanism does

not use rate profiles in any way, because window scaling is intended to smooth the network rate

and our assumption is that the network rate is effectively unpredictable. It might be viewed as a

kind of side-effect that PPS window scaling also smoothes the video rate. We believe it would

be relatively straightforward to extend window scaling to take advantage of a priori video rate

knowlege, for example by making minor adjustments to the Critical Bandwidth Allocation (CBA)

algorithm by Feng et al. [26]. However, as the results later in this chapter will show, the PPS
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window scaling already achieves a significant degree of smoothing.

To summarize this section, our measurements verify that, through our approach to video, a

wide range of adaptation is supported with fine granularity, which is the first of the claims in

our thesis statement. The measurements also confirm the first component of our motivation for

adaptive streaming, that is, that video requirements are very bursty. In the rest of this chapter,

we show how PPS treats these bursty aspects of video bitrates with the goal of providing the best

possible user experience.
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7.4 Unicast Streaming

Sender Receiver Router 

Monitor 

25Mbps/50ms RTT

Figure 7.4: Unicast Experiment Setup

In this section, we examine the performance of PPS in streaming the full-length movie de-

scribed above through a network saturated with competing traffic. The goals of the experiment are

to evaluate the robustness, utilization, and consistency of PPS, and to compare them with existing

streaming protocols. Figure 7.4 depicts the configuration of this experiment. This is a basic dumb-

ell setup where a router running NISTNET is used to impose a 25Mbs rate limitation and a 50ms

RTT delay between the sender and the receiver. The rate limitation in NISTNET is imposed by

two mechanisms. The maximum capacity of the forwarding queue is set according to maximum

number of packets in flight given the 50ms RTT and the 25Mbs rate target. Also, the maximum

speed of the router’s incoming link is limited using a token bucket style shaper (which ensures that

burst rates do not exceed our modelled link capacity).

For the entire duration of the experiments, the network is saturated with competing traffic. We

use mxtraf (see Section 7.2.2) to generate the various mix of competing traffic, which is made

up of non-responsive UDP traffic (10%), short-lived (20Kb) TCP flows (˜60%), and long-lived

infinite-source TCP flows (˜30%), similar to measurements reported in [39]. The overall mxtraf

workload was balanced across a set of hosts, including the same hosts used for the PPS streams.

We use the QStream implemenation of PPS to stream a two hour video through this saturated

network path. We measure the performance of PPS in two cases, the first using a fixed adaptation

window, and the second with the PPS adaptation window scaling feature enabled.

To provide baseline performance references, we simulate two existing streaming algorithms
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assuming they are given the same video and available bandwidth during our PPS experiments. The

first algorithm is based on the Berkeley CMT [58], and the second on Feng’s technique [24]. In

the CMT algorithm, layered data is transmitted from low to high quality upto a fixed duration (2s)

ahead of the current play point. The Feng priority-algorithm allows the workahead to grow to a

much larger size (60s) in order to increase resiliency to short term rate fluctuations.

Figure 7.5 shows the transmission rate over time of a TCP session used by PPS. The competing

traffic generated by mxtraf ensures that the video stream never gets enough bandwidth to reach

the maximum quality (refer to Figure 7.1). We were careful in QStream to ensure that PPS acts

as a greedy source toward TCP, so that the transmission rate is exclusively determined by TCP’s

congestion control. This rate profile was used as an input to our simulations of the CMT and Feng

algorithms. Our intent is to stress the adaptive capabilities of each of the streaming algorithms,

and to compare them in terms of the resulting video quality. The high volatility of the session

rate in Figure 7.5 demonstrates the second part of our overall motivation to investigate adaptive

streaming. Even though we have a constant mix of background traffic, the session still experiences

significant network rate variations.
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Figure 7.5: Video stream TCP Transmission Rate (smoothed to 1s intervals)

Figure 7.7 shows the performance of the streaming algorithms under these conditions. For

each streaming algorithm we give one figure showing the frame-rate and another showing SNR

level over the course of the whole stream2. Figures 7.7(a) and 7.7(b) show that the CMT algorithm

has great difficulty with the conditions of our experiment. Video quality is extremely volatile, and

2Recall SPEG has four SNR levels.
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there are several instances where the algorithm is not able to deliver even the minimum quality.

Figures 7.7(c) and 7.7(d) show that the sliding window algorithm fares much better, with fewer

quality changes and no failures. The number of quality changes is still quite large though. Figures

7.7(e) and 7.7(f) show that PPS with a fixed adaptation window behaves quite similarly to the

sliding window approach. It would be possible to improve the consistency of PPS in the fixed

window case by increasing the size of the window, but that would come at the direct expense of

startup latency. The startup latency is perhaps why a sliding window approach might seem more

intuitive at first.

The major benefits of PPS arise when the adaptive window scaling is enabled, shown in Fig-

ures 7.7(g) and 7.7(h), where quality gets more consistent over the course of the stream. For

the majority of the movie timeline, quality changes are infrequent—several minutes apart, even

though startup latency is in the range of 1 second. We notice that the quality is volatile at the start,

in the first minute or so, and for several minutes at the end of the movie (approximately minutes

110–120).
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Figure 7.6: Window size (growth rate=1.1)

Figure 7.6 shows the PPS adaptation window size for the window scaling version of the ex-

periment. We see that the anomalies of Figures 7.7(g) and 7.7(h) correspond to the period at the

end of the contraction phase in Figure 7.6, where window size is at the minimum. We deliberately

chose to allow this to occur in this experiment because we wanted to see PPS behaviour in bound-

ary conditions. In real use, we manage the contraction phase of the timeline more conservatively,

only allowing the window size to reach the minimum at the last possible time. Moreover, it is not

necessary to use the same minimum window size in the contraction phase as the expansion phase.
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Recall from Section 4.3, the purpose of the contraction phase is to ensure that PPS utilizes the

network bandwidth over most of the streaming timeline. For a two-hour movie, we typically set

the final window size in contraction phase to be on the order of 10s of seconds, which has only a

slight impact on overall utilization, but avoids the drastic loss of consistency we observed in this

experiment.

One of the keys to PPS’s ability to control consistency is due to the sequential, non-overlapping

treatment of windows, as was described in Section 4.2.2. Since existing algorithms use sliding

windows, simply increasing their window sizes will not yield the same consistency benefit.

To summarize the unicast portion of this chapter, our experiments have shown that, under

saturated network conditions, PPS adapts effectively so that it is able to achieve full utilization,

and is robust in that it avoids streaming failures. Furthermore, through window scaling, PPS is able

to balance between low navigation latency and consistent video quality, which sets it apart from

existing streaming algorithms. These experiments have confirmed two of the main claims of our

thesis statement: c) this kind of video leads to an enhanced user experience when streaming takes

place over typical Internet links; and d) the video can be streamed over networks in a TCP-friendly

way, making it easier to deploy in the real world.
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(b) CMT (2s buffer)
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(c) Sliding Window Smoothing (60s window)
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(d) Sliding Window Smoothing (60s window)
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(e) PPS (10s window fixed)
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(f) PPS (10s window fixed)
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(g) PPS with adaptive window scaling (10%)
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(h) PPS with adaptive window scaling (10%)

Figure 7.7: Streaming results: Sub-figures (a)-(h) show the resulting video quality with each of
four streaming algorithms. The left column shows temporal quality (frame rate). The right column
shows spatial quality (number of SPEG levels).
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7.5 Multicast Streaming

In this section, we turn our attention to the performance of Priority-Progress Multicast (PPM)

in our QStream prototype. Here our concern is the ability of PPM to accomodate a diverse set

of receivers, and its ability to do so without wasting bandwidth high in the multicast tree. To

address the diversity, we aim to show that PPM correctly performs multi-rate adaptation. On the

efficiency side, our goal is to show that the multicast flow control in PPM correctly avoids sending

unnecessary data in higher parts of the multicast tree if none of the receivers below are able to use

it.

7.5.1 Multi-rate Adaptation

Sender 

MCast

Receiver (R1) Receiver (R2) 

Router 

Router Router 

0.75Mbps/20ms RTT1.5Mbps/20ms RTT

4Mbps/30ms RTT

Monitor 

Figure 7.8: Testbed setup for basic multi-rate multicast experiment

This experiment is concerned with testing basic multi-rate adaptation, the first functional re-

quirement of PPM—that is to match the rate of the video to the available bandwith to each receiver.
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We would like to see that PPM can match the video rate to the bandwidth available to each re-

ciever in the tree. Figure 7.8 depicts the topology we setup in our testbed to test the basic rate

matching functions of PPM. The topology is the minimal multicast tree, with a single sender, a

multicast node and two recievers. Between each pair of nodes, a router machine emulates wide

area link characteristics with NISTnet. On a separate network, each of the nodes particpating

in the tree sends measurements to the QStream monitor, which stores all of the data in a central

location for subsequent analysis. The links of this tree are set so that neither of the links between

the multicast node and the receivers have as much bandwidth as the upstream link between the

sender and the multicast node. Unlike the unicast experiments above, this configuration imposes a

static bandwidth limit on each link, which makes the following rate plot easier to understand than

it would be if we were to allow the link rates to vary in the presence of competing traffic.
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Figure 7.9: Measured link rates in multi-rate multicast with PPM

Figure 7.9 shows the measured bitrates over the course of a complete broadcast of a two

hour movie. The PPS windows were fixed at a size of 10 seconds. In addition to the link rates,

we also show the maximum and minimum rate requirements of the movie, noting that in some
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periods, the maximum rate of the movie drops below the link capacity. The figure shows two

basic results. First, PPM properly matches the rate of the video to the link capacity of each of the

receivers. Second, the PPM flow control mechanism is properly conserving upstream bandwidth

conservation, in that the upstream link between the sender and the mulicast node tracks the greater

of its downstream links, as opposed to the maximum rate of the video.

7.5.2 Upstream Bandwidth Conservation

In this experiment, we expand the multicast topology to stress the PPM flow control mechanism.

Recall from Section 5.1.2 that the PPM design includes flow control at the application protocol

level, as opposed to just using the flow control functionality already provided by TCP. The pur-

pose of this design decision is to conserve upstream bandwidth by reducing the number of places

in the multicast tree where data will accumulate in buffers. If PPM just used TCP flow control,

the receive buffer upstream of each stepdown point (a multicast forwarder that has more upstream

bandwidth available than all of its children) would fill completely before the TCP flow control

mechanism would cause the corresponding upstream node to stop sending. As a result, a complete

path through the tree from the source to a reciever may include several reciever buffers worth of

accumulated data. This would have a negative impact on the total source to receiver transmission

latency and on the responsiveness of the flow control. PPM’s flow control sends an explicit ap-

plication level message upstream to stop sending, so that the multicast node can keep the receive

buffer for its upstream TCP session drained. Figure 7.10 shows the topology we used to stress the

PPM flow control mechansim. Here we use a deeper tree, where each level of the tree on the path

from the sender to the receiver is progressively more bandwidth limited.
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Figure 7.10: Stressing flow control with a deep multicast tree
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Figure 7.11: Measured link rates in a deep PPM tree

In Figure 7.11, we show the rates for each link of the deep tree of Figure 7.10, again using a

two hour movie. Here we see that PPM flow control functions as we’d hope, in that the rates of all

of the links are properly limited to match the most constrained link at the bottom of the tree.

7.5.3 Bandwidth Conservation with Progressive Bottlnecks

While the previous experiment showed that PPM properly constrained link usage in a deep tree,

we now add additional receivers to the tree to ensure that PPM doesn’t allow downstream limits

to overconstrain upstream links. In Figure 7.12, we show the modified topology which adds a

receiver at each level of the tree. The idea of this topology is that the receiver at each level should

cause the multicast node to fully utilize its upstream link.
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Figure 7.12: Stressing flow control with a deep and wide multicast tree
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Figure 7.13: Measured link rates in a deep and wide PPM tree

The resulting data rates are shown in Figure 7.13, which confirm that PPM is able to tightly

match the rate to each receiver closely to the available capacity between itself and the root of the

tree.

To summarize, we have shown that PPM performs multi-rate multicast using an overlay tree

where the individual links are PPS multicast sessions. By virtue of the fact that each link is

a separate TCP friendly session, PPM is TCP friendly by definition. Our experiments showed

that PPM successfully preserves the basic strengths of PPS in the multicast setting meaning that,

through adapatation, each reciever is able to utilize the full bandwidth between it an the root

of the tree. Furthermore, the flow control mechanism in PPM ensures that upstream bandwidth

utilization is limited only to what is required below. These results confirm the final claim of our

thesis statement: e) TCP-video streaming can be applied efficiently to multicast delivery, enabling

large scale video broadcast distribution.



Chapter 8

Conclusions and Future Work

In the first section of this chapter, we summarize the contributions of this dissertation, recapping

our motivating arguments, the conceptual contributions we made, the system components we im-

plemented, and our evaluation methodology and the results we obtained. After that, the second

section describes some of the open problems that we leave for future work.

8.1 Conclusions

This dissertation has presented a framework for adaptive media streaming toward an overall goal

of an encode-once, stream anywhere level of flexibility and simplicity.

8.1.1 Motivating arguments

In this dissertation, we argued that an adaptive approach to streaming is necessary due to bitrate

variations with compressed video and to the volatile dynamics of best-effort networks. We de-

fined the goals of adaptive streaming as effectiveness, efficiency, and scalability. Our notion of

effectiveness consisted of a number of sub-goals: robustness, utilization, latency and consistency.

To achieve the basic goals of robustness and utilization, we argued for the necessity of a

scalable video representation, which should have the goals of supporting a wide range of quality

levels and bitrates, with fine granularity. We recognized that in light of the multi-dimensional

nature of video quality, adaptive video streaming should allow control over the mix of video

adaptations. These factors, and additional concerns for scalability, lead us to select the priority-

drop approach for our investigation. To stream such video over the network, we made the case

that an adaptive protocol is needed to match the rate of the video to available bandwidth (so that

159
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robustness and utilization can be maximized), and that the protocol should also balance the goals

of latency and consistency. Finally, to support continued scalability of the Internet, we argued that

adaptive video streaming needs to be TCP friendly, and should support multicast distribution.

8.1.2 Conceptual contributions

Our conceptual contributions began with our treatment of video in Chapter 3. To serve as a demon-

stration of scalable video, we described SPEG, which is a simple extension to MPEG that adds

spatial scalability. We used SPEG as a basis to exercise the priority-drop approach throughout the

rest of our framework. To show how we could offer control over the mix of adaptations, we de-

scribed our approach to quality specification based on utility functions. We used utility functions

to capture preferences that dictate the best mix of quality adaptations across the range of accept-

able quality-resource tradeoffs. We showed how a Mapper could be used to effectively translate

these preferences into priority assignments on the basic application data units (ADUs) of video

data, the result being a set of timestamped and prioritized streaming data units (SDUs).

For network transport, we described the Priority-Progress Streaming (PPS) algorithm (in

Chapter 4), which adaptively matches the bitrate of a stream of SDUs to the network rate, as

detected by a TCP-friendly congestion-control mechanism. We described how our PPS approach

balances the simultaneous requirements of maintaining the real-time progress of the stream while

adapting to the best-effort service of the network, thereby addressing the goals of robustness and

utilization. We showed how PPS can do this by subdividing the timeline of the video into intervals

called adaptation windows, and then re-ordering the data (SDUs) within those intervals so that

transmission proceeds from high to low priority. When moving from one adaptation window to

the next, PPS drops unsent (low-priority) data at the server without transmitting it to the network.

In this way the rate of the PPS stream naturally matches the available bandwidth. We described the

role of adaptation window size in determining the latency and consistency performance of PPS.

Noting the conflict between these two objectives, we introduced a window scaling mechanism

that allowed the size of the adaptation windows to change as streaming proceeds. We showed how

this mechanism adjusts the compromise between latency and consistency over the course of a long

stream, thereby allowing PPS to provide low navigation latency, and to deliver progressively better
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consistency (and robustness) as streaming proceeds uninterrupted (by navigation actions). To ad-

dress network delay, we showed how to manage a phase offset between the server and receiver-side

streaming clocks. The overall contribution of PPS is to show how to achieve effective streaming

at the micro-level (single user).

To address scalable distribution, we described how to extend PPS to a multicast overlay, called

Priority-Progress Multicast (PPM) in Chapter 5. PPM defines an adaptive data forwarding disci-

pline for multicast by composing a multicast tree as an overlay of unicast PPS sessions. Each edge

of a PPM multicast tree is a self-contained PPS unicast session. We described how PPM enables

priority data drop at each interior node of the multicast tree, so that the whole tree performs multi-

rate adaptation, meaning that the video rate to each receiver is matched to the available bandwidth

on the path between the receiver and the root of the tree. We showed that the presence of slower

receivers in the tree does not penalize faster receivers. We also described the multicast flow control

mechanism in PPM, which ensures that upstream bandwidth is conserved if none of the receivers

below in the tree are able to utilize it. With PPM, we showed how the Priority-Progress approach

can address macro-level (network wide) concerns of scalability.

8.1.3 Implementation

We have built a complete software system for video streaming based on the framework presented

in this dissertation. Our streaming system is called QStream (Quasar Streaming). The QStream

prototype is a fully operational end-to-end video streaming system. QStream includes a server

(StreamServ), a player (StreamPlay), a multicast proxy (MCastProxy), and a number of support

programs and libraries. All of the major components described in this dissertation are fully im-

plemented in QStream: the SPEG video format, the Mapper algorithm, the PPS protocol, and the

PPM protocol. The SPEG format and Mapper algorithm were described in Chapter 3. Chapters

4 and 5 gave the conceptual descriptions of the PPS and PPM protocols. More details of their

algorithms were covered in Chapter 6. QStream also includes a number of significant features

that were not described in this dissertation, such as audio support (multiplexed transport and syn-

chronized playback), and live streaming from a webcam source. QStream was used extensively in

the evaluation part of this dissertation. We have used it to generate data for simulations, we have

used it for controlled tests in our lab testbed, and we have used it in live tests and demonstrations
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over the real Internet to home broadband (e.g., cable modems) and over 802.11b networks. In

general, the system is stable enough and free of serious bugs, so that we use it frequently in live

demonstrations and research talks to show the Priority Progress approach in action.

In addition to the core streaming software, we developed a substantial amount of support soft-

ware in QStream, including the the mxtraf traffic generator, the QStream remote network mon-

itor (Monitor), and a pair of libraries called GAIO (Asynchronous IO library) and qsf (Quasar

Streaming Framework library). The mxtraf program is a scalable and efficient network traffic

generator, used to inject realistic mixes of competing traffic into a network testbed. The QStream

Monitor program collects a wealth of diagnostic data from the other QStream programs, and

presents them for real-time visualization through a set of graphical views with a software os-

cilloscope, gscope. We also used the Monitor to store the data to a database for offline analysis

and subsequent visualization through programs such as gnuplot1 .

We described the GAIO and qsf libraries in Chapter 6. They provide the infrastructure for

the reactive programming model we adopted, and provide support for the network protocols in

the QStream programs (PPS, PPM, mxtraf client-server protocol, and Monitor data collection

protocol). We have publicly released all of the QStream software under open source terms (with

a GPL license) to promote re-use of our framework by other researchers. The QStream software

was used extensively in our evaluation of Priority Progress, which we summarize next.

8.1.4 Evaluation

The Priority-Progress framework was evaluated experimentally through measurements of QStream

performance, including live and emulated network settings. We also used measurements from

QStream to drive simulations that compared the performance of PPS to previous streaming algo-

rithms. By using an emulated network in our lab testbed, we were able to verify the performance

of PPS in demanding conditions where the network was saturated with competing traffic. Also,

through carefully constructed multicast trees, we were able to use our testbed to verify PPM’s abil-

ity to perform effective and efficient multi-rate multicast. The rest of this section will summarize

our major results.

1This is how we generated most of the plots in this thesis
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In Chapter 3, using SPEG to encode a sequence of real movies, we showed how SPEG’s

scalability can span a wide range of bitrates, as much as two orders of magnitude between the

minimum and maximum, and the supported rates were spread well within this range. This first set

of results demonstrated the first claim of our thesis statement: a) through informed dropping, it is

possible to cover a very wide range of quality-rate combinations and with fine granularity. We also

showed, using our implementation of the Mapper, that the translations from policy specifications to

priority assignments are correct, i.e. the priorities assigned by the Mapper cause priority dropping

to produce a mix of adaptations that accurately match the target policy. Hence we have verified

the second claim of our thesis statement: b) tailorable adaptation policies can be used to control

the mixture of adaptations to best meet content, task, and user specific requirements.

We presented the measured performance of the PPS protocol in Chapter 7. We tested PPS

performance along a network path that emulated wide-area conditions (delay, bandwidth, etc.)

and was saturated with competing traffic that we generated with mxtraf. In these conditions, we

compared the performance of PPS over the course of a full length (two hour) movie to existing

streaming algorithms, and showed that it was more effective and robust. In particular, we showed

that, with the window scaling feature of PPS enabled, PPS delivered significantly better consis-

tency than previous approaches. Hence we verified the next two claims of the thesis statement: c)

this kind of video leads to an enhanced user experience when streaming over typical network lines,

and d) video can be streamed over networks in a TCP-friendly way making it easier to deploy in

the real world.

Our next set of experiments, in Chapter 7, measured the performance of multicast PPM in our

testbed, using a sequence of carefully selected multicast topologies. First, using a simple tree, we

showed that PPM correctly matches the rates of individual receivers to the available bandwidth.

Then, using a larger tree, we showed how PPM was able to use only the bandwidth necessary

to service a given set of receivers. In particular, we verified that the flow control mechanism

in PPM avoids the waste of upstream bandwidth. Our final PPM experiment used a tree that

tested both aspects together, showing that rate matching and bandwidth conservation functions

did not interfere with each other. The overall performance of PPM verified the final claim of our

thesis statement: e) TCP-friendly video streaming can be applied efficiently to multicast delivery,

enabling large scale video broadcast distribution.
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8.1.5 Summary of Conclusions

Our framework is broad in its scope in that it treats areas of video representation, quality of service

specification, network protocols, and even the real-time programming model. However, we had a

common theme joining these areas, that is, adaption through priority data dropping. Priority-data

drop is the foundation of our vision of an encode once, stream-anywhere framework.

To summarize, the main contributions of this dissertation were the following:

� SPEG and the Priority Mapper: We showed how through proper framing and prioritization,

a single video encoding can support a wide range of bitrates with fine granularity. Moreover,

the mix of adaptations within the range is explicitly controllable so that user, content, task

and device specific requirements can be optimally addressed.

� Priority-Progress Streaming (PPS): our adaptive streaming protocol achieves several im-

portant objectives, namely robustness, high utilization. Furthermore, the window-scaling

feature of PPS provides a powerful mechanism to mitigate the conflict between consistent

quality over time (characteristic of downloads) and low navigation latency (characteristic of

streaming).

� Priority-Progress Multicast (PPM): We extended PPS to multicast distribution through an

overlay approach. PPM supports multi-rate, quality-adaptive, multicast distribution, in a

completely TCP friendly manner. To our knowledge, prior approaches have only been able

to a subset of these characteristics simultaneously.

� QStream prototype: We have implemented a complete implementation of our system that

was used extensively for our experimental evaluation. The prototype itself also constitutes

interesting contributions toward programming for time-sensitive network applications, such

as the use of reactive programming, support for scalable generation of competing traffic, and

the use of remote, real-time, visualization techniques. We have made the whole framework

publicly available.

Although we made contributions across the various sub-areas, the overall combination of the

components into the framework, including their full implementation, is perhaps the major contri-

bution. More than any of the parts, we believe it is the whole system that best demonstrates the
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elegance of priority data drop as an adaptation strategy.

8.2 Future Work

In this section, we describe some of the future research problems that have emerged from the work

in this dissertation. Where appropriate, we sketch out the potential solutions we have devised.

8.2.1 Better quality-calibration in scalable compression

The emergence of scalable compression was one of the main factors that inspired our investiga-

tion into priority-drop based adaptation. The SPEG format provides a sufficient demonstration of

the essential advantages of a scalable approach: the ability to adapt quality with fine granularity

over a wide range. The combination of scalable compression with priority-drop was quite potent,

particularly in our framework where it retains the ability to control the mix of adaptations. We

developed the SPEG part of this work mainly out of necessity, since we could not find publicly

available scalable codecs. Our main research objectives were on the delivery side of streaming,

with QoS specification and adaptive streaming. We were specifically not concerned with improv-

ing the compression efficiency of scalable coding, which is a research area in which others are

making steady progress. However, our experience with QStream shows that SPEG, and scalable

compression in general, needs more radical restructuring to better support our overall goal of “en-

code once, stream anywhere”. For instance, scalable video compression should be more explicitly

integrated with work from the emerging field of video quality metrics [70]. This area can be

partitioned into two significant sub-areas: objective and subjective quality measurement.

Objective quality measures are those that can be automated (i.e., given some video data possi-

bly with a reference video, the metric can calculate a measure of the video quality). In QStream,

we simply use the number of SPEG layers as our measure of spatial quality, although this value

is only indirectly related to the actual spatial quality. The most ubiquitous quality measure in the

field of video compression is the pseudo signal-to-noise ratio (PSNR), which is based on the mean

square error between each reconstructed image and the original. Within the video community, it is

widely acknowledged that PSNR is a rather crude quality measure. At least conceptually, it would

be preferable to have a measure based on a model of the human visual system (HVS). On the
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other hand, PSNR is well understood and easy to implement, while the HVS based metrics remain

an open research area. We think that our framework makes it obvious that scalable compression

ought to calibrate various quality layers against one of these objective quality measures (perhaps

PSNR initially, and an HVS measure when they become more practical), and that the quality val-

ues should be exposed as part of the compressed representation. We think the construction of a

new scalable video encoder in this way would have the dual advantage of better compression ef-

ficiency, and in our framework it would have the advantage that it would facilitate more accurate

priority assignments by our mapper.

Subjective quality measurements use human subject studies to better understand the psychol-

ogy of human visual perception, which can help provide insight into the biological side of visual

perception, as well as provide a means to verify the effectiveness of objective quality measures. In

terms of our approach, there are important questions about the utility of different aspects of video

quality, as well as the impact of changes in quality to users. Zink et al. have built a subjective

quality evaluation system, which uses our SPEG implementation, and they have conducted a study

to measure human assessments of various patterns of changing quality [97]. This type of study is

important in relation to this dissertation, as the information revealed relates directly to a question

we have left unanswered: “On what basis should utility functions be set?”

8.2.2 Quality adaptation for other resource types

Our investigation of the priority-drop approach in this dissertation was limited to the context of

adapting to a single resource type, wherein our goals concerned how to match video bitrate with

the available bandwidth in the network. As it does for the network, the commodity infrastructure

typically provides a best effort service model for the other basic resources, such as CPU time and

storage (disk) bandwidth. The PPS approach can be extended to these resources also. The basic

approach of PPS, which subdivides the processing timeline into adaptation windows, and then

processes the contents of the windows in priority order, forms a design pattern that is applicable

to the other resources. For instance, video decoding could work in this fashion so that it adapts

to available CPU, although it would require minor modifications to legacy software, such as the

ffmpeg codec [3] from which we derived the SPEG codec in QStream. The ffmpeg API is

typical of software based video decoders, in that it assumes that frames are decoded in MPEG’s
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natural order. To apply the PPS pattern, we would decode video in priority order. The context

(state) management in the codec would need modifications to accommodate priority order decod-

ing. We expect with these minor modifications, we could extend our player StreamPlay to perform

Priority-Progress based CPU adaptation.

8.2.3 Quality adaptation for other application domains

In this dissertation, we have focused on video streaming applications, as they embody many of

the critical challenges relating to supporting time-sensitive applications in the Internet. How-

ever, the general approach and parts of our existing framework are directly applicable to other

data types and applications. For example, the Priority-Progress model should make sense for dis-

tributed graphics applications such as networked games and scientific visualizations, especially as

the size of the full graphical environments become large and detailed enough to overwhelm the

available bandwidth of some receivers. The transport of sensor data in sensor networks is another

good match with our approach, as consumers of sensor data generally desire fresh data with as

much fidelity as possible. Sensor networks usually depend heavily or entirely upon wireless links,

so bandwidth variabilites are extreme. Also, control over bandwidth usage is critical for power

management in these types of networks, as power availability is yet another source of resource

variation (beyond available network bandwidth and video bitrate requirements). Variable power

availability will be especially significant for networks that derive some or all of their power from

unpredictable sources such as wind and solar energy.

8.2.4 Alternatives to TCP

Another important question left unanswered in this thesis is how Priority-Progress might perform

on the many alternative protocols (and congestion control schemes) targeted specifically at media

streaming such as HPF [54], TFRC [27], RAP [67], TEAR[68], or SCTP [64]. Such a comparison

is not trivial however, as these protocols are unreliable, and so using them with PPS will mean

that the effects of random data loss must be dealt with in some way at the application level. In our

estimation this could represent a significant amount of effort. SCTP might be the most promising

choice in this regard, because it offers a partial reliability model (bounded retransmission time)

that might be the most straightforward to accommodate in PPS.
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8.2.5 Improving TCP’s support for streaming applications

We have used TCP as our transport for streaming, which is notoriously difficult. The high ef-

fectiveness of PPS over stock TCP might come as quite a surprise to many. That said, there is

certainly room for improvement.

8.2.5.1 AQM and ECN

Although not discussed at detail in this dissertation, we expect that Active Queuing Mechanisms

(AQM) in routers in combination with Early Congestion Notification (ECN) could result in sig-

nificant benefits to TCP based streaming applications. In brief, one of the principle goals of an

AQM+ECN combination is to eliminate packet dropping due to congestion through the use of ex-

plicit congestion notifications. The AQM mechanism’s job is to anticipate congestion (at routers)

and to select the packets that belong to the best candidate for congestion avoidance. ECN imple-

ments the actual mechanism for routers to signal these conditions to TCP endpoints. Although

there are serious deployment issues with AQM and ECN (as with any mechanism that targets the

core of the Internet), in our network testbed, we have observed significant improvements to TCP’s

latency and sharing performance when AQM (NISTnet’s DRED mechanism) and ECN were en-

abled. For future work, comprehensive measurement studies that investigate and quantify the

potential benefits of AQM+ECN to multimedia would help to make the case for AQM deploy-

ment, and might also shed further light on the strengths and weaknesses of TCP relative to other

transport protocols we mentioned in Section 8.2.4.

8.2.5.2 TCP segment-size tuning

In a previous study [31], we described our TCP MINBUF socket option, which makes great im-

provements to latency properties of TCP in practice, notably without changing the “on the wire”

part of the TCP protocol. One of the areas we looked at in this dissertation was the performance

of PPS in the presence of competing network traffic. Because PPS is layered above TCP, the basic

sharing properties of TCP are of interest to us. TCP is known to converge to a fair sharing when

flows compete for the same link. In [57], Mathis et al. suggest the rate behaviour for each TCP

flow can be modelled by the following equation: ��� ��� ��������
	= � where ��� is the bandwidth,
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� � �
is the maximum segment size, � � � is round-trip time, � is a constant (

�
> ) derived from

TCP’s congestion control, and 	 is the packet drop probability. Holding values on the right side

of the equation constant (for a group of flows sharing a common bottleneck), the equation con-

firms the rule of thumb that � TCP flows will converge on a � � � bandwidth share. However, we

have noticed that this behaviour breaks down when the number of flows becomes large relative

to the total capacity of the bottleneck. The reason for the breakdown stems from the relationship

between packet size and � � � in TCP’s congestion control. In view of the Matthis equation, we

notice that, under high multiplexing, the bandwidth share for each flow, in terms of number of

packets per round trip, drops below the minimum required to maintain AIMD. The range in which

this effect holds increases with larger values of RTT and packet size. For instance, with RTT

of 40ms and flows using path MTU discovery (PMTU), the minimum per flow rate required to

sustain TCP’s fair sharing is in the range of 500kbps2 . This constrains the low end of the range

of effectiveness of TCP for video streaming, and is a major concern for audio-only streaming us-

ing TCP. We plan to investigate modifications to the OS protocol stack that would do packet size

tuning, to adapt packet sizes at low rates in order to promote better sharing (and consistency of

throughput). We think this technique could lead to important performance gains not only to media

streaming, but for any application that does bulk transfer over TCP.

2PMTU typically leads to a TCP MSS of about 1440 bytes. We’re assuming an minimum average of 2 packets per
round trip are required to maintain AIMD.
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