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A common approach to clustering data is to view data objects as points in a metric space, and
then to optimize a natural distance-based objective such as the k-median, k-means, or min-sum
score. For applications such as clustering proteins by function or clustering images by subject,
the implicit hope in taking this approach is that the optimal solution to the chosen objective will
closely match the desired “target” clustering (e.g., a correct clustering of proteins by function or
of images by who is in them). However, most distance-based objectives, including those above,
are NP-hard to optimize. So, this assumption by itself is not sufficient, assuming P 6= NP, to
achieve clusterings of low-error via polynomial time algorithms.

In this paper, we show that we can bypass this barrier if we slightly extend this assumption to
ask that for some small constant c, not only the optimal solution, but also all c-approximations
to the optimal solution, differ from the target on at most some ε fraction of points—we call this
(c, ε)-approximation-stability. We show that under this condition, it is possible to efficiently obtain
low-error clusterings even if the property holds only for values c for which the objective is known
to be NP-hard to approximate. Specifically, for any constant c > 1, (c, ε)-approximation-stability
of k-median or k-means objectives can be used to efficiently produce a clustering of error O(ε), as
can stability of the min-sum objective if the target clusters are sufficiently large. Thus, we can
perform nearly as well in terms of agreement with the target clustering as if we could approximate
these objectives to this NP-hard value.
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1. INTRODUCTION

Overview. Problems of clustering data are ubiquitous throughout science. They
arise in many different fields, from computational biology where such problems
include clustering protein sequences by function, to computer vision where one may
want to cluster images by subject, to information retrieval, including problems of
clustering documents or search results by topic, just to name a few.

A commonly used approach for data clustering is objective-based clustering where
we first represent data as points in a metric space and then choose a particular
distance-based objective function (e.g., k-median or k-means) to optimize. How-
ever, in many of the clustering applications mentioned above there is an unknown
desired or target clustering, and while the distance information among data points
is merely heuristically defined, the real goal in these applications is to minimize
the clustering error with respect to the target (e.g., the true clustering of protein
sequences by function). From a modeling point of view, the implicit hope (or in-
ductive bias) in using objective-based clustering to solve such problems is that the
optimal solution to the chosen objective is close to or has small error with respect
to the target clustering. Unfortunately, however, most distance based objectives
are NP-hard to optimize, so this assumption by itself is not sufficient (assuming P
6= NP) to achieve clusterings of low-error via polynomial time algorithms. In this
paper we argue that a better inductive bias is to assume that not only the optimal
solution, but also all approximately optimal solutions to the distance based objec-
tive in fact have low error to the target – we call this approximation-stability. We
analyze the implications of the approximation-stability assumption in the context
of three well studied distance-based objectives and provide algorithms for finding
low-error clusterings. Surprisingly, we show it is possible to obtain low-error clus-
terings even if approximation-stability holds only for approximation factors that
are known to be NP-hard to achieve!

Problem setup and results. We assume that data is represented as a set S
of points in some metric space and consider three commonly studied objective
functions: k-median, k-means, and min-sum. In the k-median problem, the goal is
to partition S into k clusters Ci, assigning each a center ci, to minimize the sum of
the distances between each datapoint and the center of its cluster. In the k-means
problem, the goal is to partition S into k clusters Ci, assigning each a center ci, to
minimize the sum of squares of distances between each datapoint and the center of
its cluster. In min-sum clustering, the goal is to partition S into k clusters Ci that
minimize the sum of all intra-cluster pairwise distances. These objectives are all
NP-hard to optimize exactly especially when k is large and not a constant [Sahni
and Gonzalez 1976; Megiddo and Supowit 1984; Mahajan et al. 2009]. As a result,
from a theoretical point of view, substantial research has focused on the design
of approximation algorithms: algorithms guaranteed to produce a solution at most
some factor c larger than the optimum. For the k-median and k-means problems the
best approximation guarantees known are constant factors of 3 or larger [Arya et al.
2004; Kanungo et al. 2004] and for min-sum the best known result for general metric
spaces is an O(log1+δ n)-approximation [Bartal et al. 2001]; all these approximation
guarantees do not match the known hardness results, and much effort is spent on
obtaining tighter approximation ratios (see Related Work).
ACM Journal Name, Vol. V, No. N, Month 20YY.
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In this work we particularly focus on clustering instances whose solutions are
stable to small approximation factors. As argued earlier, this is especially rele-
vant for problems where there is some unknown correct “target” clustering (e.g.,
a correct clustering of proteins by their function or a correct clustering of images
by who is in them) and the underlying goal is not to minimize some function of
the distances, but rather to match this target as closely as possible (see Related
Work for further discussion). Formally, the key property we introduce and study is
(c, ε)-approximation-stability; a clustering instance (i.e., a data set) satisfies (c, ε)-
approximation-stability with respect to a given objective Φ (such as k-median,
k-means, or min-sum) and an unknown target clustering CT , if it has the property
that every c-approximation to Φ is ε-close to CT in terms of the fraction of mis-
clustered points. That is, for any c-approximation to Φ, at most an ε fraction of
points would have to be reassigned in that clustering to make it perfectly match
CT .

Clearly, if the (c, ε)-approximation-stability condition is true for a value of c such
that a c-approximation is known for these problems, then we could simply use
the associated approximation algorithm. As mentioned above, however, existing
results for approximating the three objectives we consider would require fairly large
constant values of c, or even c = ω(log n) in the case of the min-sum objective. What
we show in this paper is that we can do much better. In particular, we show that we
can efficiently produce a clustering that is O(ε)-close to the target even if stability
holds only for values c for which obtaining a c-approximation is provably NP-hard.
Specifically, we achieve this guarantee for any constant c > 1 for the k-median and
k-means objectives, as well as for any constant c > 1 for the min-sum objective
when the target clusters are sufficiently large compared to εn

c−1 . Moreover, if the
target clusters are sufficiently large compared to εn

c−1 , for k-median we can actually
get ε-close (rather than O(ε)-close) to the target.1 Furthermore, we achieve these
guarantees without necessarily approximating the associated objective; in fact, we
show that achieving a c-approximation for instances satisfying (c, ε)-approximation-
stability is as hard as achieving a c-approximation in general. Note that one should
view k and ε here as parameters and not as constants: our algorithms will run in
time polynomial in the number of points n and the number of clusters k. Indeed,
in many of the types of scenarios motivating this work such as clustering protein
sequences by function or clustering images by who is in them, k can be quite large.

Our algorithms operate by carefully exploiting the structure of the (c, ε)-approx-
imation-stability condition. We begin by showing that approximation-stability,
even for a constant c such as 1.01, implies that most data points are well-behaved
with respect to the optimal solution for the given objective, which itself (by as-
sumption) is close to the target. Specifically, all but an O(ε) fraction of data points
will be a constant factor closer to their own center of the optimal solution than
to their second-closest center (for min-sum, the condition is a bit different). We
then use this property to design algorithms that are able to correctly cluster these
“good” points without being misled by the (unknown) subset of “bad” points. This
in turn requires algorithms that are especially robust to outliers. Since a 1−O(ε)

1Results in this paper for both k-means and min-sum objectives are strengthened over those in
the conference version of this work [Balcan et al. 2009].
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fraction of points are good, this then leads to our O(ε) error guarantees. Finally, in
the case that the target clusters are large, for the k-median objective we are able
to recover nearly all the bad points through a second re-clustering step that can be
viewed as an outlier-resistant form of a 2-stage Lloyd’s k-means algorithm. This
allows us to produce a clustering of error at most ε: exactly as low as if we had a
generic c-approximation algorithm.

Overall, our results bring together approximation (of distance-based objectives)
and accuracy (of clusterings), and show that one can achieve polynomial-time ac-
curacy guarantees under substantially weaker assumptions than would seem to be
required given the worst-case approximability of these objectives. Our results also
show that there is an interesting computational difference between assuming that
the optimal solution to, say, the k-median objective is ε-close to the target, and
assuming that any approximately optimal solution is ε-close to the target, even for
approximation factor c = 1.01 (say). In the former case, the problem of finding a so-
lution that is O(ε)-close to the target remains computationally hard (see Section 2.4
and Theorem A.3), and yet for the latter case we give efficient algorithms.

From a broader theoretical perspective, our results can be viewed in the context
of work such as Ostrovsky et al. [2006] (see also Sections 1.1 and 7.4) showing that
one can bypass worst-case hardness barriers if one makes certain natural stability
assumptions on the data. In our case, the stability assumptions we consider are
especially motivated by the relation between objective functions and accuracy: in
particular, they allow us to conclude that we can perform nearly as well in terms
of accuracy as if we had a generic PTAS for the associated objective.

Subsequent work has also demonstrated the practicality of our approach for real
world clustering problems. For example, Voevodski et al. [2010; 2012] show that
a variant of the algorithm we propose for the k-median problem provides state of
the art results for clustering biological datasets. Our work has inspired a number
of other subsequent developments and we discuss these further in Section 7.

1.1 Related Work

Work on recovering a target clustering. Accuracy in matching a target clus-
tering is commonly used to compare different clustering algorithms experimentally,
e.g., [Manning et al. 2008; Yan et al. 2009; Brohée and van Helden 2006].

In theoretical work, much of the research on analyzing clustering accuracy has
been in the context of clustering or learning with mixture models [Achlioptas and
McSherry 2005; Arora and Kannan 2005; Duda et al. 2001; Devroye et al. 1996;
Kannan et al. 2005; Vempala and Wang 2004; Dasgupta 1999; Belkin and Sinha
2010; Moitra and Valiant 2010]. That work, like ours, has an explicit notion of a
correct ground-truth clustering; however, it makes strong probabilistic assumptions
about how data points are generated.

Balcan et al. [2008] investigate the goal of approximating a desired target cluster-
ing without probabilistic assumptions. They analyze what properties of a pairwise
similarity function allow one to produce a tree such that the target is close to some
pruning of the tree, or a small list of clusterings such that the target is close to at
least one clustering in the list. Regarding assumptions related to approximate op-
timization, they show that for k-median, the assumption that any 2-approximation
is ε-close to the target can be used to construct a hierarchical clustering such that
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the target clustering is close to some pruning of the hierarchy. Inspired by their
approach, in this paper we initiate a systematic investigation of the consequences of
such assumptions in the context of commonly-used distance-based objective func-
tions as well as their connections to approximation algorithms. Moreover, the goals
in this paper are stronger — we want to output a single approximately correct clus-
tering (as opposed to a list of clusterings or a hierarchy), and we want to succeed
for any c > 1.

Work on approximation algorithms. The study of approximation algorithms
for distance-based clustering objectives such as k-median, k-means, and min-sum
is a very active area, with a large number of algorithmic results.

For k-median, O(1)-approximations were first given by Charikar et al. [1999], Jain
and Vazirani [2001], and Charikar and Guha [1999], and the best approximation
guarantee known is (3 + ε) due to Arya et al. [2004]. A straightforward reduction
from max-k-coverage shows (1+1/e)-hardness of approximation [Guha and Khuller
1999; Jain et al. 2002]. The k-median problem on constant-dimensional Euclidean
spaces admits a PTAS [Arora et al. 1999].

For k-means in general metric spaces a constant-factor approximation is known
[Kanungo et al. 2004], and an approximation-hardness of 1 + 3/e follows from
the ideas of [Guha and Khuller 1999; Jain et al. 2002]. This problem is very
often studied in Euclidean space, where a near-linear time (1 + ε)-approximation
algorithm is known for the case of constant k and ε [Kumar et al. 2004]. Arthur
and Vassilvitskii [2007] show a fast randomized seeding approach gives an O(log k)
approximation for general values of k, which they then use as a starting point for
Lloyd’s local search algorithm [Lloyd 1982]. An interesting extension of the k-means
objective to clusters lying in different subspaces is given in [Agarwal and Mustafa
2004].

Min-sum k-clustering in general metric spaces admits a PTAS for the case of
constant k [de la Vega et al. 2003] (see also Indyk [1999]). For the case of arbitrary
k there is an O(δ−1 log1+δ n)-approximation algorithm running in time nO(1/δ) due
to Bartal et al. [2001]. The problem has also been studied in geometric spaces for
constant k by Schulman [2000] who gave an algorithm for (Rd, `22) that either out-
puts a (1+ ε)-approximation, or a solution that agrees with the optimum clustering
on a (1− ε)-fraction of the points (but could have much larger cost than optimum);
the runtime is O(nlog log n) in the worst case and linear for sublogarithmic dimen-
sion d. More recently, Czumaj and Sohler have developed a (4 + ε)-approximation
algorithm for the case when k is small compared to log n/ log log n [Czumaj and
Sohler 2007].

Clustering under natural stability conditions. Motivated by the fact that
heurstics such as Lloyd’s k-means local search algorithm [Lloyd 1982] are often used
in practice despite poor worst-case performance, Ostrovsky et al. [2006] analyze
clustering under a natural stability condition they call ε-separation. They show
that under this condition, an appropriate seeding of Lloyd’s algorithm will result in
solutions with provable approximation guarantees. Their ε-separation condition has
an interesting relation to approximation-stability, which we discuss more fully in
Section 6. Essentially, it is a stronger assumption than ours; however, their goal is
different—they want to approximate the objective whereas we want to approximate
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the target clustering.
More recently, Bilu and Linial [2010], Kumar and Kannan [2010], Awasthi et al.

[2010], Awasthi et al. [2012], Balcan and Liang [2012], and Awasthi and Sheffet
[2012] consider other stability conditions; we discuss these further in Section 7.4.

Other theoretical directions in clustering. There is a large body of work on
other theoretical topics in clustering such as defining measures of clusterability of
data sets, on formulating definitions of good clusterings [Gollapudi et al. 2006],
and on axiomatizing clustering (in the sense of postulating what natural axioms a
“good clustering algorithm” should satisfy), both with possibility and impossibility
results [Kleinberg 2002]. There has also been significant work on approaches to
comparing clusterings [Meila 2003; 2005], and on efficiently testing if a given data
set has a clustering satisfying certain properties [Alon et al. 2000]. The main
difference between this type of work and our work is that we have an explicit notion
of a correct ground-truth clustering of the data points, and indeed the results we
are trying to prove are quite different. The work of Meila [2006] is complementary
to ours: it shows sufficient conditions under which k-means instances satisfy the
property that near-optimal solutions are ε-close to the optimal k-means solution.

2. DEFINITIONS, PRELIMINARIES & FORMAL STATEMENT OF MAIN RESULTS

The clustering problems in this paper fall into the following general framework: we
are given a metric space M = (X, d) with point set X and a distance function
d :

(
X
2

)
→ R≥0 satisfying the triangle inequality—this is the ambient space. We are

also given the actual point set S ⊆ X we want to cluster; we use n to denote the
cardinality of S. A k-clustering C is a partition of S into k sets C1, C2, . . . , Ck. In
this paper, we always assume that there is an (unknown) true or target k-clustering
CT for the point set S.

2.1 The Objective Functions

Commonly used clustering objectives provide a distance-based cost to any given
clustering that algorithms then seek to minimize. In all the objectives we consider,
the cost of a clustering C = {C1, . . . , Ck} is a sum of costs on the individual clusters
Ci. The k-median clustering objective defines the cost of a cluster Ci to be the
total distance of all points in Ci to the best “median” point ci ∈ X for that cluster;
that is,

Φ1(C) =
k∑

i=1

min
ci∈X

∑
x∈Ci

d(x, ci).

The k-means objective defines the cost of a cluster Ci to be the sum of squared
distances to the best center ci ∈ X for that cluster:

Φ2(C) =
k∑

i=1

min
ci∈X

∑
x∈Ci

d(x, ci)2.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Finally, the min-sum objective defines the cost of a cluster to be the sum of all
pairwise intra-cluster distances:

ΦΣ(C) =
k∑

i=1

∑
x∈Ci

∑
y∈Ci

d(x, y).

Given a function Φ and instance (M, S, k), let OPTΦ = minC Φ(C), where the
minimum is over all k-clusterings of S. We will typically use C∗ to denote the
optimal clustering for the given objective, and will simply write an instance as
(M, S) when k is clear from context.

2.2 Distance between Clusterings

In order to define the notion of approximation-stability, we need to specify what
it means for a clustering to be close to the target CT . Formally, we define the
distance dist(C, C′) between two k-clusterings C = {C1, C2, . . . , Ck} and C′ =
{C ′

1, C
′
2, . . . , C

′
k} of a point set S as the fraction of points in S on which they

disagree under the optimal matching of clusters in C to clusters in C′; i.e.,

dist(C, C′) = min
σ∈Sk

1
n

k∑
i=1

|Ci − C ′
σ(i)|,

where Sk is the set of bijections σ : [k] → [k]. Equivalently, dist(C, C′) is the
number of mistakes, or 0/1-loss, of C with respect to C′ if we view each as a k-way
classifier, under the best matching between their k class labels.2

We say that two clusterings C and C′ are ε-close if dist(C, C′) < ε. Note that if
C and C′ are ε-close and all clusters Ci have size at least 2εn, then the bijection
σ minimizing 1

n

∑k
i=1 |Ci − C ′

σ(i)| has the property that for all i, |Ci ∩ C ′
σ(i)| ≥

|Ci| − (εn − 1) > 1
2 |Ci|. This implies for instance that such σ is unique, in which

case we call this the optimal bijection and we say that C and C′ agree on x if
x ∈ Ci ∩ C ′

σ(i) for some i, and C and C′ disagree on x otherwise.

2.3 (c, ε)-approximation-stability

We now present our main definition whose implications we study throughout this
paper:

Definition 1 ((c, ε)-approximation-stability). Given an objective function
Φ (such as k-median, k-means, or min-sum), we say that instance (M, S) satisfies

2There are other reasonable notions of distance between clusterings that one can also consider. For
example, one could remove the restriction that σ be a permutation (see Lemma B.1 in Appendix
B for analysis of this notion). Alternatively, one could count the fraction of pairs x, y such that
the clusterings disagree on whether or not x and y belong to the same cluster. Note, however, that
if k is large and all clusters are about the same size, then any two clusterings will be fairly close
(distance ≤ 2/k) under the pair-based measure, since most pairs x, y belong to different clusters,
so it is not very discriminative. In contrast, under the point-based misclassification measure, two
random k-clusterings would have distance approximately 1 − 1/k. See [Meila 2012] for further
discussion of various notions of distance between clusterings and how they relate. We also wish
to emphasize that dist(., .) is a distance between clusterings, whereas d(., .) is a distance between
points.
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(c, ε)-approximation-stability for Φ with respect to (unknown) target clustering CT
if all clusterings C with Φ(C) ≤ c ·OPTΦ are ε-close to CT .

As mentioned above, if we have an instance satisfying (c, ε)-approximation-stability
for c sufficiently large that we have a polynomial-time c-approximation algorithm
for Φ, then we could simply use that algorithm to achieve a clustering ε-close to
CT . However, our key interest will be in values of c that are significantly smaller.
In particular, since we will be thinking of c as being only slightly larger than 1
(e.g., assuming that all 1.1-approximations to the k-median objective are ε-close
to CT ), we will often write c as 1 + α and look at the implications in terms of the
parameters α and ε. Additionally, we will typically drop the phrase “with respect
to the (unknown) target clustering CT ” when this is clear from context.

It is important to note that 1/ε, 1/α, and k need not be constants. For example,
we might have that CT consists of n0.1 clusters of size n0.9, ε = 1/n0.2 and α =
1/n0.09 (this would correspond to the “large clusters case” of Theorem 3.6).

Note that for any c > 1, (c, ε)-approximation-stability does not require that the
target clustering CT exactly coincide with the optimal clustering C∗ under objective
Φ. However, it does imply the following simple facts (where part (b) below follows
from the fact that the distance between k-clusterings itself is a metric):

Fact 2.1. If (M, S) satisfies (c, ε)-approximation-stability for Φ with respect to
target clustering CT , then:

(a) The target clustering CT , and the optimal clustering C∗ for Φ are ε-close.

(b) (M, S) satisfies (c, ε + ε∗)-approximation-stability for Φ with respect to the op-
timal clustering C∗, where ε∗ = dist(C∗, CT ).

Thus, we can act as if the optimal clustering is indeed the target up to a constant
factor loss in the error rate.

Finally, we will often want to take some clustering C, reassign some ε̃n points to
different clusters to produce a new clustering C′, and then argue that dist(C, C′) = ε̃.
As mentioned above, if all clusters of C have size at least 2ε̃n, then it is clear that no
matter how ε̃n points are reassigned, the optimal bijection σ between the original
clusters and the new clusters is the identity mapping, and therefore dist(C, C′) = ε̃.
However, this need not be so when small clusters are present: for instance, if we
reassign all points in Ci to Cj and all points in Cj to Ci then dist(C, C′) = 0.
Instead, in this case we will use the following convenient lemma.

Lemma 2.2. Let C = {C1, . . . , Ck} be a k-clustering in which each cluster is
nonempty, and let R = {(x1, j1), (x2, j2), . . . , (xt, jt)} be a set of t reassignments of
points xi to clusters Cji (assume that xi 6∈ Cji for all i). Then there must exist a
set R′ ⊆ R of size at least t/3 such that the clustering C′ produced by reassigning
points in R′ has distance exactly 1

n |R
′| from C.

Proof. See Appendix A.1.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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2.4 Intuition and Challenges

Before proceeding to our results, we first present some challenges in using the
(c, ε)-approximation-stability condition to achieve low-error clusterings, which also
provide intuition into what this condition does and does not imply.

First, suppose that (c, ε)-approximation-stability for some objective Φ implied,
say, (2c, 2ε)-approximation-stability. Then it would be sufficient to simply apply
an O(c) approximation in order to have error O(ε) with respect to the target.
However, it turns out that for any c1 < c2 and any ε > 0, for each of the three
objectives we consider (k-median, k-means, and min-sum), there exists a family of
metric spaces and target clusterings that are (c1, ε)-approximation-stable for that
objective, and yet have a c2-approximation with error 49% with respect to the
target (see Appendix, Theorem A.1). Thus, a direct application of an arbitrary
c2-approximation would not achieve our goals.3

Second, one might hope that (c, ε)-approximation-stability would imply structure
that allows one to more easily find a c-approximation. However, this is not the case
either: for any c > 1 and ε > 0, the problem of finding a c-approximation to any
of the three objectives we consider under (c, ε)-approximation-stability is as hard
as finding a c-approximation in general (Theorem A.2). Thus, we want to aim
directly towards achieving low error rather than necessarily aiming to get a good
approximation to the objective. Note that this reduction requires small clusters.
Indeed, as pointed out by [Schalekamp et al. 2010], our k-median algorithm for the
large-clusters case is, as a byproduct, a c-approximation.

It is also interesting to note that results of the form we are aiming for are
not possible given only (1, ε)-approximation-stability. Indeed, because the stan-
dard hardness-of-approximation proof for k-median produces a metric in which all
pairwise distances lie in a bounded range, the proof also implies that it is NP-hard,
given a data set with only the guarantee that the optimal solution is ε-close to the
target, to find a clustering of error O(ε); see Theorem A.3.

2.5 Main results and organization of this paper

We present our analysis of the k-median objective in Section 3, the k-means ob-
jective in Section 4, and the min-sum objective in Section 5. Our main results for
each of these objectives are as follows. (Theorems are numbered according to their
location in the main body.)

Theorem 3.6 (k-Median, Large Clusters Case) There is an efficient algorithm
that if the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the
k-median objective, and each cluster in CT has size at least (4 + 15/α)εn + 2, will
produce a clustering that is ε-close to CT .

Theorem 3.7 (k-Median: General Case) There is an efficient algorithm that if the
given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the k-median
objective, will produce a clustering that is O(ε + ε/α)-close to CT .

Theorem 4.3 (k-Means: General Case) There is an efficient algorithm that if

3Balcan and Braverman [2009] show that interestingly a relationship of this form does hold for
the correlation-clustering problem.
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the given instance (M, S) satisfies (1+α, ε)-approximation-stability for the k-means
objective, will produce a clustering that is O(ε + ε/α)-close to CT .

Theorem 5.4 (Min-sum: Large Clusters Case) There is an efficient algorithm
that if the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the
min-sum objective and each cluster in CT has size greater than (6 + 120/α)εn, will
produce a clustering that is O(ε + ε/α)-close to CT .

We emphasize that our algorithms run in time polynomial in n and k with no
dependence on α and ε; in particular, 1/α and 1/ε (and k) need not be constants.

For the “large-cluster” case of k-means, we also have a weaker version of Theorem
3.6, where we mark some O(εn/α) points as “don’t know” and cluster the rest with
error at most ε. That is, while the total error in this case may be more than ε,
we can explicitly point out all but εn of the points we may err on (see Theorem
4.4). As noted earlier, we only give results for the large-cluster case of min-sum
clustering, though [Balcan and Braverman 2009] have recently extended Theorem
5.4 to the case of general cluster sizes; in particular, they achieve the analog of
Theorem 3.7 if a (good approximation to) the optimum objective value is provided
to the algorithm, else a list of at most O(log log n) clusterings such that at least
one is O(ε + ε/α)-close to CT if such a value is not provided.

3. THE K-MEDIAN PROBLEM

We now study clustering instances satisfying (c, ε)-approximation-stability for the
k-median objective. Our main results are that for any constant c > 1, (1) if all
clusters are “large”, then this property allows us to efficiently find a clustering that
is ε-close to the target clustering, and (2) for any cluster sizes, we can efficiently
find a clustering that is O(ε)-close to the target. To prove these results, we first
investigate the implications of (c, ε)-approximation-stability in Section 3.1. We then
give our algorithm for the case that all clusters are large in Section 3.2, and our
algorithm for arbitrary cluster sizes in Section 3.3.

3.1 Implications of (c, ε)-approximation-stability

Given a clustering instance specified by a metric space M = (X, d) and a set of
points S ⊆ X, fix an optimal k-median clustering C∗ = {C∗

1 , . . . , C∗
k}, and let c∗i be

the center point (a.k.a. “median”) for C∗
i . For x ∈ S, define

w(x) = min
i

d(x, c∗i )

to be the contribution of x to the k-median objective in C∗ (i.e., x’s “weight”), and
let w2(x) be x’s distance to the second-closest center point among {c∗1, c∗2, . . . , c∗k}.
Also, define

wavg =
1
n

n∑
i=1

w(x) =
OPT

n

to be the average weight of the points. Finally, let ε∗ = dist(CT , C∗). As noted in
Fact 2.1, approximation-stability implies ε∗ < ε.
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Lemma 3.1. If the instance (M, S) satisfies (1 + α, ε)-approximation-stability
for the k-median objective, then

(a) If each cluster in CT has size at least 2εn, then less than (ε− ε∗)n points x ∈ S
on which CT and C∗ agree have w2(x)− w(x) <

αwavg

ε .
(a’) For general cluster sizes in CT , less than 6εn points x ∈ S have w2(x)−w(x) <

αwavg

2ε .

Also, for any t > 0 we have:

(b) At most t(εn/α) points x ∈ S have w(x) ≥ αwavg

tε .

Proof. To prove Property (a), assume to the contrary. Then one could take
C∗ and move (ε − ε∗)n points x on which CT and C∗ agree to their second-closest
clusters, increasing the objective by at most αOPT. Moreover, this new clustering
C′ = {C ′

1, . . . , C
′
k} has distance at least ε from CT , because we begin at distance

ε∗ from CT and each move increases this distance by 1
n (here we use the fact that

because each cluster in CT has size at least 2εn, the optimal bijection between CT
and C′ remains the same as the optimal bijection between CT and C∗). Hence we
have a clustering that is not ε-close to CT with cost only (1+α)OPT, a contradiction.

For Property (a’), we use Lemma 2.2. Specifically, assuming for contradiction
that 6εn points satisfy (a’), Lemma 2.2 states that we can find a subset of 2εn of
them such that starting from C∗, for each one that we move to its second-closest
cluster, the distance from C∗ increases by 1

n . Therefore, we can create a clustering
C′ that is distance at least 2ε from C∗ while increasing the objective by at most
αOPT; by Fact 2.1(b) this clustering C′ is not ε-close to CT , thus contradicting
(1 + α, ε)-approximation-stability. Property (b) simply follows from the definition
of the average weight wavg, and Markov’s inequality.

Notation. For the case that each cluster in CT has size at least 2εn, define the
critical distance dcrit = αwavg

5ε , else define dcrit = αwavg

10ε ; note that these quantities
are 1/5 times the values in properties (a) and (a’) respectively of Lemma 3.1.

Definition 2. Define point x ∈ S to be good if both w(x) < dcrit and w2(x)−
w(x) ≥ 5dcrit, else x is called bad. Let Xi ⊆ C∗

i be the good points in the optimal
cluster C∗

i , and let B = S \ (∪Xi) be the bad points.

Proposition 3.2. If the instance (M, S) satisfies (1+α, ε)-approximation-stability
for the k-median objective, then

(i) If each cluster in CT has size at least 2εn, then |B| < (1 + 5/α)εn.
(ii) For the case of general cluster sizes in CT , |B| < (6 + 10/α)εn.

Proof. By Lemma 3.1(a), the number of points on which C∗ and CT agree where
w2(x)−w(x) < 5dcrit is at most (ε− ε∗)n, and there can be at most ε∗n additional
such points where C∗ and CT disagree. Setting t = 5 in Lemma 3.1(b) bounds the
number of points that have w(x) ≥ dcrit by (5ε/α)n, proving (i). The proof of (ii)
similarly follows from Lemma 3.1(a’), and applying Lemma 3.1(b) with t = 10.
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Definition 3 (Threshold Graph). Define the τ -threshold graph Gτ = (S, Eτ )
to be the graph produced by connecting all pairs {x, y} ∈

(
S
2

)
with d(x, y) < τ .

Lemma 3.3 (Threshold Graph Lemma). For an instance satisfying (1+α, ε)-
approximation-stability and τ = 2dcrit, the threshold graph Gτ has the following
properties:

(i) For all x, y in the same Xi, the edge {x, y} ∈ E(Gτ ).
(ii) For x ∈ Xi and y ∈ Xj 6=i, {x, y} 6∈ E(Gτ ). Moreover, such points x, y do not

share any neighbors in Gτ .

Proof. For part (i), since x, y are both good, they are at distance less than dcrit

to their common cluster center c∗i , by definition. Hence, by the triangle inequality,
the distance

d(x, y) ≤ d(x, c∗i ) + d(c∗i , y) < 2× dcrit = τ.

For part (ii), note that the distance from any good point x to any other cluster
center, and in particular to y’s cluster center c∗j , is at least 5dcrit. Again by the
triangle inequality,

d(x, y) ≥ d(x, c∗j )− d(y, c∗j ) ≥ 5dcrit − dcrit = 2τ.

Since each edge in Gτ is between points at distance less than τ , the points x, y
cannot share any common neighbors.

Hence, the graph Gτ for the above value of τ is fairly simple to describe: each
Xi forms a clique, and its neighborhood NGτ (Xi) \Xi lies entirely in the bad set
B with no edges going between Xi and Xj 6=i, or between Xi and NGτ (Xj 6=i). We
now show how we can use this structure to find a clustering of error at most ε if
the size of each Xi is large (Section 3.2) and how we can get error O(ε) for general
cluster sizes (Section 3.3).

3.2 An algorithm for Large Clusters

We begin with the following lemma.

Lemma 3.4. There is a deterministic polynomial-time algorithm that given a
graph G = (S, E) satisfying properties (i), (ii) of Lemma 3.3 and given b ≥ |B|
such that each |Xi| ≥ b + 2, outputs a k-clustering with each Xi contained in a
distinct cluster.

Proof. Construct a graph H = (S, E′) where we place an edge {x, y} ∈ E′ if x
and y have at least b common neighbors in G. By property (i), each Xi is a clique
of size ≥ b + 2 in G, so each pair x, y ∈ Xi has at least b common neighbors in G
and hence {x, y} ∈ E′. Now consider x ∈ Xi ∪NG(Xi), and y 6∈ Xi ∪NG(Xi): we
claim there is no edge between x, y in this new graph H. Indeed, by property (ii),
x and y cannot share neighbors that lie in Xi (since y 6∈ Xi∪NG(Xi)), nor in some
Xj 6=i (since x 6∈ Xj ∪ NG(Xj)). Hence the common neighbors of x, y all lie in B,
which has size at most b. Moreover, at least one of x and y must itself belong to
ACM Journal Name, Vol. V, No. N, Month 20YY.
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B for them to have any common neighbors at all (again by property (ii))—hence,
the number of distinct common neighbors is at most b − 1, which implies that
{x, y} 6∈ E′.

Thus each Xi is contained within a distinct component of the graph H. Note
that the component containing some Xi may also contain some vertices from B;
moreover, there may also be components in H that only contain vertices from B.
But since the Xi’s are larger than B, we can obtain the claimed clustering by
taking the largest k components in H, and adding the vertices of all other smaller
components in H to any of these, using this as the k-clustering.

We now show how we can use Lemma 3.4 to find a clustering that is ε-close to CT
when all clusters are large. For simplicity, we begin by assuming that we are given
the value of wavg = OPT

n , and then we show how this assumption can be removed.

Theorem 3.5 (Large clusters, known wavg). There is an efficient algorithm
such that if the given instance (M, S) satisfies (1+α, ε)-approximation-stability for
the k-median objective and each cluster in CT has size at least (3 + 10/α)εn + 2,
then given wavg it will find a clustering that is ε-close to CT .

Proof. Let us define b := (1+5/α)εn. By assumption, each cluster in the target
clustering has at least (3 + 10/α)εn + 2 = 2b + εn + 2 points. Since the optimal
k-median clustering C∗ differs from the target clustering by at most ε∗n ≤ εn
points, each cluster C∗

i in C∗ must have at least 2b + 2 points. Moreover, by
Proposition 3.2(i), the bad points B have |B| ≤ b, and hence for each i,

|Xi| = |C∗
i \B| ≥ b + 2.

Now, given wavg, we can construct the graph Gτ with τ = 2dcrit (which we
can compute from the given value of wavg), and apply Lemma 3.4 to find a k-
clustering C′ where each Xi is contained within a distinct cluster. Note that this
clustering C′ differs from the optimal clustering C∗ only in the bad points, and
hence, dist(C′, CT ) ≤ ε∗ + |B|/n ≤ O(ε + ε/α). However, our goal is to get ε-close
to the target, which we do as follows.

Call a point x “red” if it satisfies condition (a) in Lemma 3.1 (i.e., w2(x)−w(x) <
5dcrit), “yellow” if it is not red but satisfies condition (b) in Lemma 3.1 with t = 5
(i.e., w(x) ≥ dcrit), and “green” otherwise. So, the green points are those in the sets
Xi, and we have partitioned the bad set B into red points and yellow points. Let
C′ = {C ′

1, . . . , C
′
k} and recall that C′ agrees with C∗ on the green points, so without

loss of generality we may assume Xi ⊆ C ′
i. We now construct a new clustering C′′

that agrees with C∗ on both the green and yellow points. Specifically, for each point
x and each cluster C ′

j , compute the median distance dmedian(x,C ′
j) between x and

all points in C ′
j ; then insert x into the cluster C ′′

i for i = argminjdmedian(x,C ′
j).

Since each non-red point x satisfies w2(x) − w(x) ≥ 5dcrit, and all green points g
satisfy w(g) < dcrit, this means that any non-red point x must satisfy the following
two conditions: (1) for a green point g1 in the same cluster as x in C∗ we have

d(x, g1) ≤ w(x) + dcrit,

and (2) for a green point g2 in a different cluster than x in C∗ we have

d(x, g2) ≥ w2(x)− dcrit ≥ w(x) + 4dcrit.
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Therefore, d(x, g1) < d(x, g2). Since each cluster in C′ has a strict majority of green
points (even with point x removed) all of which are clustered as in C∗, this means
that for a non-red point x, the median distance to points in its correct cluster with
respect to C∗ is less than the median distance to points in any incorrect cluster.
Thus, C′′ agrees with C∗ on all non-red points. Finally, since there are at most
(ε − ε∗)n red points on which CT and C∗ agree by Lemma 3.1—and C′′ and CT
might disagree on all these points—this implies

dist(C′′, CT ) ≤ (ε− ε∗) + ε∗ = ε

as desired. For convenience, the above procedure is given as Algorithm 1 below.

Algorithm 1 k-median Algorithm: Large Clusters (given a guess w of wavg)
Input: w, ε ≤ 1, α > 0, k.
Step 1: Construct the τ -threshold graph Gτ with τ = 2dcrit = 1

5
αw
ε .

Step 2: Apply the algorithm of Lemma 3.4 to find an initial clustering C′. Specifi-
cally, construct graph H by connecting x, y if they share at least b = (1+5/α)εn
neighbors in Gτ and let C ′

1, . . . , C
′
k be the k largest components of H.

Step 3: Produce clustering C′′ by reclustering according to smallest median dis-
tance in C′. That is, C′′i = {x : i = argminjdmedian(x,C ′

j)}.
Step 4: Output the k clusters C′′1 , . . . , C′′k .

We now extend the above argument to the case where we are not given the value
of wavg.

Theorem 3.6 (Large Clusters, unknown wavg). There is an efficient al-
gorithm that if the given instance (M, S) satisfies (1+α, ε)-approximation-stability
for the k-median objective, and each cluster in CT has size at least (4+15/α)εn+2,
will produce a clustering that is ε-close to CT .

Proof. The algorithm for the case that we are not given the value wavg is the
following: we run Steps 1 and 2 of Algorithm 1 repeatedly for different guesses w of
wavg, starting with w = 0 (so the graph Gτ is empty) and at each step increasing
w to the next value such that Gτ contains at least one new edge (so we have at
most n2 different guesses to try). If the current value of w causes the k largest
components of H to miss more than b := (1 + 5/α)εn points, or if any of these
components has size ≤ b, then we discard this guess w, and try again with the next
larger guess for w. Otherwise, we run Algorithm 1 to completion and let C′′ be the
clustering produced.

Note that we still might have w < wavg, but this just implies that the resulting
graphs Gτ and H can only have fewer edges than the corresponding graphs for the
correct wavg. Hence, some of the Xi’s might not have fully formed into connected
components in H. However, if the k largest components together miss at most b
points, then this implies we must have at least one component for each Xi, and
therefore exactly one component for each Xi. So, we never misclassify the good
points lying in these largest components. We might misclassify all the bad points (at
most b of these), and might fail to cluster at most b of the points in the actual Xi’s
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(i.e., those not lying in the largest k components), but this nonetheless guarantees
that each cluster C′i contains at least |Xi| − b ≥ b + 2 correctly clustered green
points (with respect to C∗) and at most b misclassified points. Therefore, as shown
in the proof of Theorem 3.5, the resulting clustering C′′ will correctly cluster all
non-red points as in C∗ and so is at distance at most (ε− ε∗) + ε∗ = ε from CT . For
convenience, this procedure is given as Algorithm 2 below.

Algorithm 2 k-median Algorithm: Large Clusters (unknown wavg)
Input: ε ≤ 1, α > 0, k.
For j = 1, 2, 3 . . . do:

Step 1: Let τ be the jth smallest pairwise distance in S. Construct τ -threshold
graph Gτ .

Step 2: Run Step 2 of Algorithm 1 to construct graph H and clusters C ′
1, . . . , C

′
k.

Step 3: If min(|C ′
1|, . . . , |C ′

k|) > b and |C ′
1 ∪ . . . ∪ C ′

k| ≥ n(1 − ε − 5ε/α), run
Step 3 of Algorithm 1 and output the clusters C ′′

1 , . . . , C ′′
k produced.

3.3 An Algorithm for the General Case

The algorithm in the previous section required the minimum cluster size in the
target to be large (of size Ω(εn)). In this section, we show how this requirement
can be removed using a different algorithm that finds a clustering that is O(ε/α)-
close to the target; while the algorithm is just as simple, we need to be a bit more
careful in the analysis.

Algorithm 3 k-median Algorithm: General Case
Input: ε ≤ 1, α > 0, k.
Initialization: Run a constant-factor k-median approximation algorithm to com-

pute a value w ∈ [wavg, βwavg] for, say, β = 4.
Step 1: Construct the τ -threshold graph Gτ with τ = 1

5
αw
βε .

Step 2: For j = 1 to k do:
Identify the vertex vj of highest degree in Gτ .
Remove vj and its neighborhood from Gτ and call this cluster C(vj).

Step 3: Output the k clusters C(v1), . . . , C(vk−1), S − ∪k−1
i=1 C(vi).

Theorem 3.7 (k-Median: General Case). There is an efficient algorithm
that if the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the
k-median objective, will produce a clustering that is O(ε + ε/α)-close to CT .

Proof. The algorithm is as given above in Algorithm 3. First, if we are not
given the value of wavg, we run a constant-factor k-median approximation algorithm
(e.g., [Arya et al. 2004]) to compute an estimate ŵ ∈ [wavg, βwavg] for, say, β =
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4.4 Redefining d̂crit = αŵ
10βε ≤

αwavg

10ε , as in the proof of Proposition 3.2(ii), but
using Lemma 3.1(b) with t = 10β, we have that the set B = {x ∈ S | w(x) ≥
d̂crit or w2(x) − w(x) < 5d̂crit} of bad points has size |B| ≤ (6 + 10β/α)εn. If we
again define Xi = C∗

i \B, we note that Lemma 3.3 continues to hold with τ = 2d̂crit:
the graph Gτ satisfies properties (i),(ii) that all pairs of points in the same Xi are
connected by an edge and all pairs of points in different Xi, Xj have no edge and
no neighbors in common. In summary, the situation is much as if we knew wavg

exactly, except that the number of bad points is slighly greater.
We now show that the greedy method of Step 2 above correctly captures most

of the cliques X1, X2, . . . , Xk in Gτ—in particular, we show there is a bijection
σ : [k] → [k] such that

∑
i |Xσ(i) \ C(vi)| = O(b), where b = |B|. Since the b bad

points may potentially all be misclassified, this gives an additional error of b.
Let us think of each clique Xi as initially “unmarked”, and then “marking” it the

first time we choose a cluster C(vj) that intersects it. We now consider two cases.
If the jth cluster C(vj) intersects some unmarked clique Xi, we will assign σ(j) = i.
(Note that it is not possible for C(vj) to intersect two cliques Xi and Xj 6=i, since by
Lemma 3.3(ii) these cliques have no common neighbors.) If C(vj) misses ri points
from Xi, then since the vertex vj defining this cluster had maximum degree and
Xi is a clique, C(vj) must contain at least ri elements from B. Therefore the total
sum of these ri can be at most b = |B|, and hence

∑
j |Xσ(j) \ C(vj)| ≤ b, where

the sum is over j’s that correspond to the first case.
The other case is if C(vj) intersects a previously marked clique Xi. In this

case we assign σ(j) to any arbitrary clique Xi′ that is not marked by the end
of the process. Note that the total number of points in such C(vj)’s must be
at most the number of points remaining in the marked cliques (i.e.,

∑
j rj), and

possibly the bad points (at most b of them). Since the cliques Xi′ were unmarked
at the end, the size of any such Xi′ must be bounded by the sizes of its matched
C(vj)—else we would have picked a vertex from this clique rather than picking
vj . Hence the total size of such Xi′ is bounded by |B| +

∑
i ri ≤ 2b; in turn, this

shows that
∑

j |Xσ(j) \ C(vj)| ≤
∑

j |Xσ(j)| ≤ 2b, where this sum is over j’s that
correspond to the second case. Therefore, overall, the total error over all C(vj)
with respect to the k-median optimal is the two sums above, plus potentially the
bad points, which gives us at most 4b points. Adding in the extra ε∗n to account
for the distance between the k-median optimum and the target clustering yields
the claimed 4b + ε∗n = O(ε + ε/α)n result.

4. THE K-MEANS PROBLEM

Algorithm 3 in Section 3.3 for the k-median problem can be easily altered to work for
the k-means problem as well. Indeed, if we can prove the existence of a structure like
that promised by Lemma 3.1 and Lemma 3.3 (albeit with different parameters), the
same algorithm and proof would give a good clustering for any objective function.

Given some optimal solution for k-means define w(x) = mini d(x, ci) to be the

4The reason we need to do this, rather than simply increasing an initial low guess of wavg as in
the proof of Theorem 3.6, is that we might split some large cluster causing substantial error, and
not be able to recognize our mistake (because we only miss small clusters which do not result in
very many points being left over).
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distance of x to its center, which is the square root of x’s contribution to the k-means
objective function; hence OPT =

∑
x w(x)2. Again, let w2(x) = minj 6=i d(x, cj) be

the distance to the second-closest center, and let ε∗ = dist(CT , C∗).

Lemma 4.1. If the instance (M, S) satisfies (1 + α, ε)-approximation-stability
for the k-means objective, then

(a) If each cluster in CT has size at least 2εn, then less than (ε− ε∗)n points x ∈ S
on which CT and C∗ agree have w2(x)2 − w(x)2 < αOPT

εn .
(a’) For the case of general cluster sizes in CT , less than 6εn points x ∈ S have

w2(x)2 − w(x)2 < αOPT
2εn .

Also, for any t > 0 we have:

(b) at most t(εn/α) points x ∈ S have w(x)2 ≥ αOPT
tεn .

The proof is identical to the proof for Lemma 3.1, and is omitted here. We now
give some details for what changes are needed to make Algorithm 2 from Section 3.3
work here. Again, we use a β-approximation to k-means for some constant β to get
ÔPT ∈ [OPT, βOPT]. Define the critical distance d̂crit as (αÔPT

25εβn )1/2 in the case of

large clusters, or (αÔPT
50εβn )1/2 in the case of general cluster sizes—these are at most

1/5 times the square-roots of the expressions in (a) and (a’) above. Call point x ∈ S
good if both w(x) < dcrit and w2(x) ≥ 5dcrit, and bad otherwise; let B be the bad
points. The following proposition has a proof very similar to Proposition 3.2(b).

Proposition 4.2. If the instance (M, S) satisfies (1+α, ε)-approximation-stability
for the k-means objective, then |B| < (6 + 50β/α)εn.

Now the rest of the proof for Theorem 3.7 goes through unchanged in the k-
means case as well; indeed, first we note that Lemma 3.3 is true, because it only
relies on the good points being at distance < dcrit to their center, and being at
distance ≥ 5dcrit to any other center, and the rest of the proof only relies on
the structure of the threshold graph. The fraction of points we err on is again
ε∗ + 4|B|/n = O(ε + ε/α). Summarizing, we have the following result.

Theorem 4.3 (k-Means: General Case). There is an efficient algorithm that
if the given instance (M, S) satisfies (1 + α, ε)-approximation-stability for the k-
means objective, will produce a clustering that is O(ε + ε/α)-close to CT .

4.1 An Algorithm for Large Clusters

Unfortunately, the argument for exact ε-closeness for k-median in the case of large
target clusters does not extend directly, because Lemma 4.1(a) is weaker than
Lemma 3.1(a)—the latter gives us bounds on the difference in distances, whereas
the former only gives us bounds on the difference in the squared distances. Instead,
however, we will use the same algorithm style to identify most of the bad points (by
outputting “don’t know” on some O(ε/α) of the points) and output a clustering on
the remaining 1−O(ε/α) fraction of the points which makes at most εn errors on
these points.
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Theorem 4.4. There is an efficient algorithm that if the given instance (M, S)
satisfies (1+α, ε)-approximation-stability for the k-means objective, and each cluster
in CT has size at least (4 + 75/α)εn + 2, will produce a clustering in which at most
O(εn/α) points are labeled as “don’t know”, and on the remainder the clustering is
ε-close to CT .

Proof. Let us first assume that we know the value of OPT; we will discharge
this assumption later. Define the critical distance dcrit := 1

5 (αOPT
εn )1/2. As in

Theorem 3.5, we categorize the points in a more nuanced fashion: a point x ∈ S
is called “red” if it satisfies condition (a) of Lemma 4.1 (i.e., if w2(x)2 − w(x)2 <
25d2

crit), “yellow” if it is not red and has w(x) ∈ [dcrit, 5dcrit], “orange” if it is not
red and has w(x) > 5dcrit, and “green” otherwise. Hence, Lemma 4.1(a) tells us
that there are at most (ε − ε∗)n points on which C∗ and CT agree, and that are
red; at most 25ε/α fraction are either yellow or orange (by setting t = 25); at most
ε/α fraction of the points are orange (by setting t = 1); the rest are green. Let
all the non-green points be called bad, and denoted by the set B. Let us define
b := (1 + 25/α)εn; note that |B| ≤ b.

Now, as in Theorem 3.5, if the cluster sizes in the target clustering are at least
2b+ εn+2, then constructing the threshold graph Gτ with τ = 2dcrit and applying
Lemma 3.4 we can find a k-clustering C′ where each Xi := C∗

i \B is contained with
a distinct cluster, and only the O(ε + ε/α) bad (i.e., non-green) points are possibly
in the wrong clusters. We now want to label some points as “don’t knows”, and
construct another clustering C′′ where we correctly cluster the green and yellow
points.

Again, this is done as in the k-median case: for each point x and each clus-
ter C ′

j , compute the median distance dmed(x,C ′
j) from x to the points in C ′

j . If
the minimum median distance minj∈[k] dmed(x,C ′

j) is greater than 4dcrit, then
label the point x as “don’t know”; else insert x into the cluster C ′′

i for i =
argminjdmed(x,C ′

j).
First, we claim that the points labeled “don’t know” contain all the orange points.

Indeed, for any orange point x, the distance to each optimal cluster center is at
least 5dcrit; moreover, since the target clusters are large, a majority of the points in
each cluster C ′

j are green, which are all within distance dcrit of the optimal cluster
center. Using the triangle inequality, the median distance of an orange point to
every cluster center will be at least 4dcrit, and hence it will be classified as “don’t
know”. There may be more points classified this, but using a similar argument we
can deduce that all such points must have w(x) ≥ 3dcrit, and Lemma 4.1(b) implies
that there are at most 25εn

9α such “don’t know” points.
Next, we show that the yellow and green points will be correctly classified. Note

that each non-red point x satisfies w2(x)2−w(x)2 ≥ 25d2
crit, all yellow/green points

satisfy w(x)2 ≤ 25d2
crit, and all green points g satisfy w(g) < dcrit. We show that

this means that any yellow/green point x must satisfy the property that for a green
point g1 in the same cluster as x in C∗, and for a green point g2 in a different
cluster than x in C∗, we have d(x, g1) < d(x, g2). Indeed, d(x, g1) < w(x) + dcrit

and d(x, g2) > w2(x)−dcrit, and hence it suffices to show that w2(x) ≥ w(x)+2dcrit
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for x being yellow or green. To show this, note that

w2(x)2 ≥ w(x)2 + 25d2
crit

≥ w(x)2 + 4d2
crit + 4 · dcrit · (5dcrit)

≥ w(x)2 + 4d2
crit + 4 · dcrit · w(x)

≥ (w(x) + 2dcrit)2

where we use the fact that w(x) ≤ 5dcrit for green and yellow points. Again,
since each yellow or green point is closer to a strict majority of green points in
their “correct” cluster in C′, we will correctly classify them. Finally, we finish the
argument as before: ignoring the O(εn/α) “don’t knows”, C′′ may disagree with C∗
on only the (ε− ε∗)n red points where C∗ and CT agree, and the ε∗n points where
C∗ and CT disagree, which is εn as claimed.

One loose end remains: we assumed we knew OPT and hence dcrit. To remove
this assumption, we can again try multiple guesses for the value of dcrit as in
Theorem 3.6. The argument in that theorem continues to hold, as long as the size
of the clusters in the target clustering is at least 3b + εn + 2 = (4 + 75/α)εn + 2,
which is what we assumed here.

5. THE MIN-SUM CLUSTERING PROBLEM

Recall that the min-sum k-clustering problem asks to find a k-clustering C =
{C1, C2, . . . , Ck} to minimize the objective function

Φ(C) =
j∑

i=1

∑
x∈Ci

∑
y∈Ci

d(x, y).

In this section, we show how assuming (1 + α, ε)-approximation-stability for the
min-sum clustering problem, and assuming that all the clusters in the target are
“large”, allows us to find a clustering that is O(ε)-close to the target clustering.

5.1 The high-level idea

As one might expect, the general plan is to extend the basic techniques from the
previous sections, though the situation is now a bit more delicate. While we can
still argue that there cannot be too many points that could be cheaply reassigned
to different clusters (since that would violate our basic assumption, though we have
to be careful about the somewhat messy issue of multiple reassignments), now the
cost of reassigning a point x to cluster Cj is proportional to the number of points
in Cj . In particular, the net effect of this cost structure is that unlike the k-median
and k-means objectives, there is no longer a uniform threshold or critical distance.
Many points in some cluster Ci could be quite close to another cluster Cj if Cj

is large. On the other hand, one can show the (good) points in Cj will be even
closer to each other. Thus, by slowly growing a threshold distance, we will be able
to find the clusters in the order from largest to smallest. We then argue that we
can identify points in time when the size of the largest component found is large
enough compared to the current threshold to have captured the cluster, allowing us
to pull those clusters out before they have had the chance to mistakenly connect to
smaller ones. This argument will require an assumption that all clusters are large.
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(See subsequent work of [Balcan and Braverman 2009] for an algorithm that allows
for general cluster sizes).

5.2 Properties of Min-Sum Clustering

Let the min-sum optimal clustering be C∗ = {C∗
1 , . . . , C∗

k} with objective function
value OPT = Φ(C∗). For x ∈ C∗

i , define

w(x) =
∑

y∈C∗
i

d(x, y)

so that OPT =
∑

x w(x), and let wavg = avgxw(x) = OPT
n . Define

w2(x) = min
j 6=i

∑
y∈C∗

j

d(x, y).

A useful fact, following immediately from the triangle inequality, is the following:

Fact 5.1. For two points x and y, and any cluster C∗
j ,∑

z∈C∗
j

(d(x, z) + d(y, z)) ≥ |C∗
j | d(x, y).

We now prove the following lemma.

Lemma 5.2. If the given instance (M, S) satisfies (1+α, ε)-approximation-stability
for the min-sum objective and each cluster in CT has size at least 2εn, then:

(a) less than (ε− ε∗)n points x ∈ S on which CT and C∗ agree have w2(x) <
αwavg

4ε ,
and

(b) at most 60εn/α points x ∈ S have w(x) >
αwavg

60ε .

Proof. To prove Property (a), assume to the contrary. Then one could take C∗
and move a set S′ of (ε − ε∗)n points x that have w2(x) <

αwavg

4ε and on which
CT and C∗ agree to the clusters that define their w2 value. We now argue that the
resulting increase in min-sum objective value is less than αOPT.

Let the new clustering be C′ = (C ′
1, . . . , C

′
k), where |C ′

i \ C∗
i | = δin, so that∑

i δi = ε− ε∗. Also, let C2(x) denote the cluster C∗
i that point x ∈ S′ is moved to.

Then, for each point x ∈ S′ moved, the increase to the min-sum objective is at most
2w2(x) +

∑
y∈S′:C2(y)=C2(x) d(x, y)—here the factor of two arises because the min-

sum objective counts each pair of points in a cluster twice, once from each end. From
Fact 5.1, we know that if C2(y) = C2(x) then d(x, y) ≤ 1

|C2(x)| (w2(x)+w2(y)). Thus,
we can replace the term d(x, y) in the cost charged to point x with 2

|C2(x)|w2(x),
yielding a total cost charged to point x moved to cluster C∗

i of

2w2(x) + 2w2(x)
δin

|C∗
i |

.
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Summing over all points x moved to all clusters, and using the fact that w2(x) <
αwavg

4ε for all x ∈ S′, we have a total cost increase of less than∑
i

(δin)
2αwavg

4ε

[
1 +

δin

|C∗
i |

]
≤ εn

αwavg

2ε
+

αwavg

2ε

∑
i

δ2
i n2

|C∗
i |

≤ α

2
OPT +

αwavg

2ε

ε2n2

mini |C∗
i |

≤ α

2
OPT +

α

4
OPT < αOPT.

Finally, property (b) follows immediately from Markov’s inequality.

Let us define the critical value vcrit := αwavg

60ε . We call point x good if it satisfies
both w(x) ≤ vcrit and w2(x) ≥ 15vcrit, else x is called bad ; let Xi be the good
points in the optimal cluster C∗

i , and let B = S \ ∪iXi be the bad points.

Lemma 5.3 (Structure of Min-Sum optimum). If the given instance (M, S)
satisfies (1+α, ε)-approximation-stability for the min-sum objective then as long as
the minimum cluster size is at least 2εn we have:

(i) For all x, y in the same Xi, we have d(x, y) < 2vcrit

|C∗
i |

,

(ii) For x ∈ Xi and y ∈ Xj 6=i, we have d(x, y) > 14 vcrit

min(|C∗
i |,|C∗

j |)
, and

(iii) The number of bad points |B| = |S \ ∪iXi| is at most b := (1 + 60/α)εn.

Proof. For part (i), note that Fact 5.1 implies that

d(x, y) ≤ 1
|C∗

i |
∑

z∈C∗
i

(d(x, z) + d(y, z)) =
1
|C∗

i |
(w(x) + w(y)).

Since x, y ∈ Xi are both good, we have w(x), w(y) ≤ vcrit, so part (i) follows.
For part (ii), assume without loss of generality that |C∗

j | ≤ |C∗
i |. Since both

x ∈ C∗
i , y ∈ C∗

j are good, we have w2(x) =
∑

z∈C∗
j

d(x, z) ≥ 15vcrit and w(x) =∑
z∈C∗

j
d(y, z) ≤ vcrit. By the triangle inequality d(x, y) ≥ d(x, z)−d(y, z), we have

|C∗
j | d(x, y) ≥

∑
z∈C∗

j

(d(x, z)− d(y, z)) = w2(x)− w(y) ≥ 14vcrit.

Finally, part (iii) follows from Lemma 5.2 and a trivial union bound.

While Lemma 5.3 is similar in spirit to Lemma 3.3, there is a crucial difference:
the distance between the good points in Xi and those in Xj is no longer bounded
below by some absolute value τ , but rather the bound depends on the sizes of Xi

and Xj . However, a redeeming feature is that the separation is large compared to
the sizes of both Xi and Xj ; we will use this feature crucially in our algorithm.

5.3 The Algorithm for Min-Sum Clustering

For the algorithm below, define critical thresholds τ0, τ1, τ2, . . . as: τ0 = 0 and τi is
the ith smallest distinct distance d(x, y) for x, y ∈ S. Thus, Gτ0 , Gτ1 , . . . are the
only distinct threshold graphs possible.
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Theorem 5.4. If the given instance (M, S) satisfies (1 + α, ε)-approximation-
stability for the min-sum objective and we are given the value of wavg, then so long
as each cluster in CT has size greater than (5 + 120/α)εn, Algorithm 4 produces a
clustering that is O(ε/α)-close to the target. If we are not given wavg, there is an
efficient algorithm that uses Algorithm 4 as a subroutine and on any such instance
will produce a clustering that is O(ε/α)-close to the target.

Algorithm 4 Min-sum Algorithm
Input: (M, S), wavg, ε ≤ 1, α > 0, k, b := (1 + 60/α)εn.
Let the initial threshold τ = τ0.

Step 1: If k = 0 or S = ∅, stop.
Step 2: Construct the τ -threshold graph Gτ on the current set S of points.
Step 3: Create a new graph H by connecting two points in S by an edge if they

share at least b neighbors in common in Gτ .
Step 4: Let C be largest connected component in H. If |C| ≥ 3vcrit/τ ,

then output C as a cluster, set k ← k − 1, S ← S \ C, and go to Step 1,
else increase τ to the next critical threshold and go to Step 1.

Proof. Since each cluster in the target clustering has more than (5+120/α)εn =
2b + 3εn points by the assumption, and the optimal min-sum clustering C∗ must
differ from the target clustering by fewer than εn points, each cluster in C∗ must
have more than 2b + 2εn points. Moreover, by Lemma 5.2(iii), the bad points B
constitute at most b points, and hence each |Xi| = |C∗

i \B| > b + 2εn ≥ b + 2.

Analysis under the assumption that wavg is given. Consider what happens
in the execution of the algorithm: as we increase τ , the sizes of the H-components
increase (since we are adding more edges in Gτ ). This happens until the largest
H-component is “large enough” (i.e., the condition in Step 4 gets satisfied) and we
output a component whose size is large enough; and then we go back to raising τ .

We claim that every time we output a cluster in Step 4, this cluster completely
contains some Xi and includes no points in any Xj 6=i. More specifically, we show
that as we increase τ , the condition in Step 4 will be satisfied after all the good
points in the some cluster have been fully connected, but before any edges appear
between good points in different clusters. It suffices to show that the first cluster
output by the algorithm contains some Xi entirely; the claim for the subsequent
output clusters is the same. Assume that |C∗

1 | ≥ |C∗
2 | ≥ . . . ≥ |C∗

k |. Define
di = 2vcrit

|C∗
i |

and recall that maxx,y∈Xi d(x, y) ≤ di by Lemma 5.3(i).
We first claim that as long as τ ≤ 3 d1, no two points belonging to different Xi’s

can lie in the same H-component. By Lemma 5.3(ii) the distance between points
in any Xi and Xj 6=i is strictly greater than 14vcrit

min(|C∗
i |,|C∗

j |)
, which is strictly greater

than 2τ for any τ ≤ 3 d1. Hence every x ∈ Xi and y ∈ Xj share no common
neighbors, and by an argument identical to that in Lemma 3.4, the nodes x, y
belong to different components of H.

Next, we claim that for values of τ < min{di, 3d1}, the H-component containing
points from Xi cannot be output by Step 4. Indeed, since τ < 3d1, no Xi and Xj
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belong to the same H-component by the argument in the previous paragraph, and
hence any H-component containing points from Xi has size at most |C∗

i | + |B| <
3|C∗

i |
2 ; here we used the fact that each |C∗

i | > 2b due to the large cluster assumption.
However, the minimum size bound 3vcrit

τ in Step 4 is equal to 3 di |C∗
i |

2τ ≥ 3|C∗
i |

2 for
values of τ < di, where we used the definition of di, and that di > τ . Hence
the condition of Step 4 is not satisfied and the H-component will not be output.
Moreover, note that when τ ≥ di, all the points of Xi lie in the same H-component.

The above two paragraphs show that nothing bad happens: no incorrect com-
ponents are constructed or components outputted prematurely. We finally show
that something good happens—in particular, that the condition in Step 4 becomes
true for some H-component fully containing some Xi for some value τ = [d1, 3d1].
(By the argument in the previous paragraph, τ ≥ di, and hence the output com-
ponent will fully contain Xi.) For the sake of contradiction, suppose not. But
note at time τ = 3d1, at least the H-component containing X1 has size at least
|C∗

1 | − |B| > |C∗
1 |/2 and will satisfy the minimum-size condition (which at time

τ = 3d1 requires a cluster of size 3vcrit

τ = vcrit

d1
= |C∗

1 |/2), giving the contradiction.
To recap, we showed that by time 3d1 none of the clusters have merged together,

and the Step 4 condition was satisfied for at least the component containing X1

(and hence for the largest component) at some time prior to that. Moreover, this
largest component must fully contain some set Xi and no points in Xj 6=i. Finally,
we can now iterate this argument on remaining set of points to complete the proof
for the case that we know wavg.

Analysis if wavg is not given. In this case, we do not want to use a β-
approximation algorithm for min-sum to obtain a clustering that is O(βε/α)-close
to the target, because the minsum clustering problem only has a logarithmic ap-
proximation for arbitrary k, and hence our error would blow up by a logarith-
mic factor. Instead, we use the idea of trying increasing values of wavg. Specifi-
cally, the approximation algorithm gives us upper and lower bounds for wavg that
differ by a logarithmic factor, hence we can start at the lower bound for wavg,
and try increasing powers of 2: this ensures that we would try the process only
O(log log n) times before we reach the correct value of wavg. Since we don’t really
know this correct value, we stop the first time we output k clusters that cover at
least n− b = (1−O(ε/α))n points in S. Clearly, if we reached the correct value of
wavg we would succeed in covering all the good n − b points using our k clusters;
we now argue that we will never mistakenly output a high-error clustering.

The argument is as follows. Let us say we mark Xi the first time we output a
cluster containing at least one point from it. There are three possible sources of
mistakes: (a) we may output a cluster prematurely: it may contain some but not
all points from Xi, (b) we may output a cluster which contains points from one or
more previously marked sets Xj (but no unmarked Xi), or (c) we may output a
cluster with points from an unmarked Xi and one or more previously marked Xj .
In case (a), if we end up clustering all but an O(ε/α)-fraction of the points, we
did not miss too many points from the Xi’s, so our error is O(ε/α). In case (b),
such an event would use up an additional cluster and therefore would end with
missing some Xi completely, which would result in more than b unclustered points,
and we would try a larger guess for wavg. The dangerous case is case (c), but we
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claim case (c) in fact cannot happen. Indeed, the value of τ at which we would
form connected components containing points from both Xi and Xj is a constant
times larger than the value τ at which all of Xi would be in a single H-component.
Moreover, since our guess for wavg is too small, this H-component would certainly
satisfy the condition of Step 4 and be output as a cluster instead.

6. RELATIONSHIP TO ε-SEPARATION CONDITION

Ostrovsky et al. [2006] consider k-means clustering in Euclidean spaces, and define
and analyze a very interesting separation condition that provides a notion of how
“naturally clustered” a given dataset is. Specifically, they call a k-means instance
ε-separated if the optimal k-means cost is at most ε2 times the cost of the optimal
(k−1)-means solution. Under this assumption on the input, they show how to seed
Lloyd’s method to obtain a 1+f(ε) approximation in d-dimensional Euclidean space
in time O(nkd + k3d), and a (1 + δ)-PTAS with run-time nd2k(1+ε2)/δ. This no-
tion of ε-separation, namely that any (k − 1)-means solution is substantially more
expensive than the optimal k-means solution, is in fact related to (c, ε)-approx-
imation-stability. Indeed, in Theorem 5.1 of their paper, they show that their
ε-separatedness assumption implies that any near-optimal solution to k-means is
O(ε2)-close to the k-means optimal clustering. However, the converse is not nec-
essarily the case: an instance could satisfy approximation-stability without being
ε-separated.5 We present here a specific example with c = 2, in fact of a point set
in Euclidean space. Consider k = 2 where target cluster C1 has (1 − δ)n points
and target cluster C2 has δn points, with δ a parameter to be fixed later. Suppose
that any two points inside the same cluster Ci have distance 1 and any two points
inside different clusters have distance 1 + 1/ε. Choosing any δ ∈ (ε, 1 − ε), the re-
sulting example satisfies (2, ε)-approximation-stability for k-median, and choosing
any δ ∈ (ε2, 1 − ε2), the resulting example satisfies (2, ε2)-approximation-stability
for k-means. However, it need not satisfy the ε-separation property: for δ = 2ε,
the optimal 2-median solution has cost n − 2, but the optimal 1-median solution
picks a center at any point in the cluster of size (1 − 2ε)n and hence has cost
(1− 2ε)n− 1 + (2εn)(1 + 1/ε) = 3n− 1. Likewise for δ = 2ε2, the optimal 2-means
solution has cost n−2, but the optimal 1-means solution has cost less than (3+4ε)n.
Thus, in both cases the ratio of costs between k = 1 and k = 2 is not so large.

In fact, for the case that k is much larger than 1/ε, the difference between the two
properties can be more substantial. Suppose ε is a small constant, and consider a
clustering instance in which the target consists of k =

√
n clusters with

√
n points

each, such that all points in the same cluster have distance 1 and all points in
different clusters have distance D+1 where D is a large constant. Then, merging two
clusters increases the cost additively by Θ(

√
n), since D is a constant. Consequently,

the optimal (k − 1)-means/median solution is just a factor 1 + O(1/
√

n) more
expensive than the optimal k-means/median clustering. However, for D sufficiently
large compared to 1/ε, this example satisfies (2, ε)-approximation-stability or even

5[Ostrovsky et al. 2006] shows an implication in this direction (Theorem 5.2); however, this
implication requires a substantially stronger condition, namely that data satisfy (c, ε)-approx-
imation-stability for c = 1/ε2 (and that target clusters be large). In contrast, our primary interest
is in the case where c is below the threshold for existence of worst-case approximation algorithms.
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(1/ε, ε)-approximation-stability (for proof, see Appendix B).

7. SUBSEQUENT WORK

In this section we describe work subsequent to the initial conference publication of
our results [Balcan et al. 2009] that has gone on to further expand understanding
of the algorithmic implications of approximation-stability, explore relaxations of
the approximation-stability condition, and use approximation-stability to develop
fast, effective algorithms for clustering biological data. Additionally, we discuss
subsequent work exploring other deterministic stability and separation conditions.

7.1 Algorithmic Results under Approximation-Stability

Further guarantees for min-sum clustering. Balcan and Braverman [2009]
further analyze the min-sum problem and show how to handle the presence of
small target clusters. To achieve this they derive new structural properties implied
by (1 + α, ε)-approximation-stability. In the case where k is small compared to
log n/ log log n they output a single clustering which is O(ε/α)-close to the target,
while in the general case their algorithm outputs a small list of clusterings with the
property that the target clustering is close to one of those in the list. They further
show that if we the target clusters are large (of size at least 100εn/α2), they can
reduce the approximation error from O(ε/α) down to O(ε).

Further guarantees for k-median and k-means clustering. Schalekamp et
al. [2010] show that Algorithm 1 additionally achieves a good approximation to the
k-median objective in the case that target clusters are large. We note that our
approximation hardness result for clustering under (c, ε)-approximation-stability
(which appears as Theorem A.2 in Appendix A) requires the target to have small
clusters. They also discuss implementation issues and perform a number of exper-
imental comparisons between various algorithms.

Awasthi et al. [2010] go further and provide a PTAS for k-median, as well as
for k-means in Euclidean space, when all target clusters have size > εn and α > 0
is a constant. One implication of this is that when α > 0 is a constant, they
improve the “largeness” condition needed to efficiently get ε-close for k-median from
O((1 + 1/α)εn) to εn. Another implication is that they are able to get the same
guarantee for k-means as well, when points lie in Rn, improving on the guarantees in
Section 4.1 for points in Euclidean space. Note that while α does not appear in the
“largeness” condition, their algorithm has running time that depends exponentially
on 1/α, whereas ours does not depend on 1/α at all.

Correlation clustering. Balcan and Braverman [2009] also analyze the corre-
lation clustering problem under the (c, ε)-approximation-stability assumption. For
correlation clustering, the input is a graph with edges labeled +1 or −1 and the goal
is to find a partition of the nodes that best matches the signs of the edges [Blum
et al. 2004]. Usually, two versions of this problem are considered: minimizing dis-
agreements and maximizing agreements. In the former case, the goal is to minimize
the number of −1 edges inside clusters plus the number of +1 edges between clus-
ters, while in the latter case the goal is to maximize the number of +1 edges inside
the cluster plus the number of −1 edges between. These are equivalent at opti-
mality but differ in their difficulty of approximation. Balcan and Braverman [2009]
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show that for the objective of minimizing disagreements, (1 + α, ε)-approximation-
stability implies (2.5, O(ε/α))-approximation-stability, so one can use a state-of-the-
art 2.5-approximation algorithm for minimizing disagreements in order to achieve
an accurate clustering.6 This contrasts sharply with the case of objectives such as
k-median, k-means and min-sum (see Theorem A.1).

7.2 Relaxations of Approximation-Stability

Stability with noise and outliers. Balcan, Roeglin, and Teng [2009] consider
a relaxation of (c, ε)-approximation-stability that allows for the presence of noisy
data—data points for which the (heuristic) distance measure does not reflect clus-
ter membership well—that could cause stability over the full dataset to be vio-
lated. Specifically, they define (ν, c, ε)-approximation-stability which requires that
the data satisfies (c, ε)-approximation-stability only after a ν fraction of the data
points have been removed. Balcan et al. [2009] show that in the case where the
target clusters are large (have size Ω((ε/α + ν)n)) the large-clusters algorithm we
present in this paper can be used to output a clustering that is (ν + ε)-close to
the target clustering. They also show that in the more general case there can be
multiple significantly different clusterings that can satisfy (ν, c, ε)-approximation-
stability (since two different sets of outliers could result in two different clusterings
satisfying the condition). However, if most of the points come from large clusters,
they show one can in polynomial time output a small list of k-clusterings such that
any clustering that satisfies the property is close to one of the clusterings in the
list.

Deletion-stability. Awasthi et al. [2010] consider instances satisfying the condi-
tion that deleting any center in the k-median/k-means-optimal solution, and reas-
signing its points to one of the k − 1 other centers, raises the objective value by at
least a 1+α factor. This can be viewed as a relaxation of (1+α, ε)-approximation-
stability in the event that target clusters have size greater than εn (since in that
case no solution with k − 1 clusters can be ε-close to the target). It also can be
viewed as a relaxation of the condition of [Ostrovsky et al. 2006]. They then show
how to obtain a PTAS under this condition when α > 0 is a constant. Note, how-
ever, that their running time is exponential in 1/α; in contrast, our algorithms have
running times polynomial in n and k and independent of 1/α.

The Inductive model. Balcan et al. [2009] and Balcan and Braverman [2009] also
show how to cluster well under approximation-stability in the inductive clustering
setting. Here, rather than being given the entire set S up front, the algorithm is
provided only a small random sample S̃ of it. Our goal is then to use S̃ to produce
a hypothesis h : X → Y which implicitly represents a clustering of the whole set S
and which has low error on it. Balcan et al. [2009] show how in the large clusters
case the analysis in our paper can be adapted to the inductive model for k-median
and k-means, and Balcan and Braverman [2009] have shown how to adapt their
minsum algorithm to the inductive setting as well.

6Note that the maximizing agreement version of correlation clustering is less interesting in our
framework since it admits a PTAS.
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7.3 Practical Application of Approximation-Stability

Motivated by clustering applications in computational biology, Voevodski et al.
[2010; 2012] analyze (c, ε)-approximation-stability in a model with unknown dis-
tance information where one can only make a limited number of one versus all
queries. They design an algorithm that, assuming (c, ε)-approximation-stability for
the k-median objective, finds a clustering that is ε-close to the target by using only
O(k) one-versus-all queries in the large cluster case, and in addition is faster than
the algorithm we present here. In particular, the algorithm for the large clusters
case we describe in Section 3 can be implemented in O(|S|3) time, while the one
proposed in [Voevodski et al. 2010; 2012] runs in time O(|S|k(k + log |S|)). They
then use their algorithm to cluster biological datasets in the Pfam [Finn et al. 2010]
and SCOP [Murzin et al. 1995] databases, where the points are proteins and dis-
tances are inversely proportional to their sequence similarity. This setting nicely
fits the one-versus all queries model because one can use a fast sequence database
search program to query a sequence against an entire dataset. The Pfam [Finn
et al. 2010] and SCOP [Murzin et al. 1995] databases are used in biology to observe
evolutionary relationships between proteins and to find close relatives of particular
proteins. Voevodski et al. [2010; 2012] show that their algorithms are not only fast
on these datasets, but also achieve high accuracy. In particular, for one of these
sources they obtain clusterings that almost exactly match the given classification,
and for the other, the accuracy of their algorithm comparable to that of the best
known (but slower) algorithms using the full distance matrix.

7.4 Other Deterministic Separation Conditions

There has also been subsequent work exploring the problem of clustering under
other deterministic stability and separation conditions.

Bilu and Linial [2010] consider inputs satisfying the condition that the optimal
solution to the objective remains optimal even after bounded perturbations to the
input weight matrix. They give an algorithm for maxcut (which can be viewed as
a 2-clustering problem) under the assumption that the optimal solution is stable to
(roughly) O(n2/3)-factor multiplicative perturbations to the edge weights. Awasthi
et al. [2012] consider this condition for center-based clustering objectives such as k-
median and k-means, and give an algorithm that finds the optimal solution when the
input is stable to only factor-3 perturbations. This factor is improved to 1+

√
2 by

Balcan and Liang [2012], who also design algorithms under a relaxed (c, ε)-stability
to perturbations condition in which the optimal solution need not be identical on
the c-perturbed instance, but may change on an ε fraction of the points (in this
case, the algorithms require c = 2 +

√
7). Note that for the k-median and min-sum

objectives, (c, ε)-approximation-stability with respect to C∗ implies (c, ε)-stability to
perturbations because an optimal solution in a c-perturbed instance is guaranteed to
be a c-approximation on the original instance;7 so, (c, ε)-stability to perturbations
is a weaker condition. Similarly, for k-means, (c, ε)-stability to perturbations is
implied by (c2, ε)-approximation-stability. However, as noted above, the values of

7In particular, a c-perturbed instance d̃ satisfies d(x, y) ≤ d̃(x, y) ≤ cd(x, y) for all points x, y. So,
using Φ to denote cost in the original instance, Φ̃ to denote cost in the perturbed instance and
using C̃ to denote the optimal clustering under Φ̃, we have Φ(C̃) ≤ Φ̃(C̃) ≤ Φ̃(C∗) ≤ cΦ(C∗).
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c known to lead to efficient clustering in the case of stability to perturbations are
larger than for approximation-stability, where any constant c > 1 suffices.

Kumar and Kannan [2010] consider the problem of recovering a target cluster-
ing under deterministic separation conditions that are motivated by the k-means
objective and by Gaussian and related mixture models. They consider the setting
of points in Euclidean space, and show that if the projection of any data point
onto the line joining the mean of its cluster in the target clustering to the mean
of any other cluster of the target is Ω(k) standard deviations closer to its own
mean than the other mean, then they can recover the target clusters in polyno-
mial time. This condition was further analyzed and reduced by work of Awasthi
and Sheffet [2012]. This separation condition is formally incomparable to approx-
imation-stability (even restricting to the case of k-means with points in Euclidean
space). In particular, if the dimension is low and k is large compared to 1/ε, then
this condition can require more separation than approximation-stability (e.g., with
k well-spaced clusters of unit radius, similar to the example of Appendix B, approx-
imation-stability would require separation only O(1/ε) and independent of k). On
the other hand if the clusters are high-dimensional, then this condition can require
less separation than approximation-stability since the ratio of projected distances
will be more pronounced than the ratios of distances in the original space.

8. CONCLUSIONS AND OPEN QUESTIONS

8.1 Discussion

The main motivation for this work is that for many unsupervised-learning clustering
problems, such as clustering proteins by function or clustering images by subject,
the true goal is to partition the points correctly—e.g., to produce a clustering in
which proteins are correctly clustered by their function, or all images by who is
in them. However, since accuracy typically cannot be measured directly by the
clustering algorithm, distance-based objectives such as k-median, k-means, or min-
sum are used instead as measurable proxies for this goal.8 Usually, these distance-
based objectives are studied in isolation, for an arbitrary point set, with upper and
lower bounds proven on their approximability. In this work, we consider instead the
implications of studying them along with the underlying accuracy goal. What our
results show is that if we consider the natural inductive bias that would motivate
use of a c-approximation algorithm for such problems, namely (c, ε)-approximation-
stability, we can use it to achieve a clustering of error O(ε) even if we do not have a
c-approximation algorithm for the associated objective: in fact, even if achieving a
c-approximation is NP-hard. In particular, for the case of the k-median, k-means,
and min-sum objectives, we can achieve a low-error clustering on any instance
satisfying (c, ε)-approximation-stability for any constant c > 1 (if additionally the
target clusters are large in the case of min-sum).

From the perspective of approximation algorithms, this work suggests a new av-
enue for making progress in the face of approximation-hardness barriers for prob-

8This is similar to the way quantities such as hinge-loss are often used as surrogate losses for error
rate or 0-1 loss in the context of supervised learning—except that for supervised learning, this is
done to make the computational problem more tractable, whereas in the case of clustering it is
done because the underlying accuracy goal cannot be directly measured.
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lems where the given objective may be a proxy for an underlying accuracy goal.
In particular, an appealing aspect of (c, ε)-approximation-stability is that it is a
property that one would hope to hold in any event for such problems when using
an approximation algorithm. That is because if the given instance does not satisfy
this condition, then achieving a c-approximation is, by itself, insufficient to ensure
producing a desirable solution for that instance. So, an algorithm that guaran-
tees low-error solutions under (c, ε)-approximation-stability can be said to perform
nearly as well on such problems as if one had a generic c-approximation, and as we
show, this may be achievable even when achieving a c-approximation is NP-hard.
In particular, since we achieve this guarantee for any constant c > 1, this means
that our performance guarantee in terms of accuracy is nearly as good as if we had
a generic PTAS for the k-median, k-means, and min-sum objectives.

Approximation-stability additionally motivates algorithms with interesting and
useful properties. For example, it motivates outlier-resilient re-clustering of data
as in Algorithm 1 (Section 3) as well as algorithms that aim to explicitly identify
and output “I don’t know” on outliers in order to achieve especially low error on
the remainder (e.g., Theorem 4.4, Section 4). Furthermore, as with approximation
ratio, approximation stability can provide a useful and convenient guide for algo-
rithm design in novel data clustering scenarios. For example, as discussed in Section
7, Voevodski et al. [2010] consider the problem of clustering biological datasets in
which only limited distance information can be obtained. They find that algorithms
designed for approximation-stability—in fact, a variant of the algorithm that we
propose for the k-median problem—yield fast and highly accurate results.

8.2 Open questions

One natural open question is whether the O(ε/α) form of the bounds we achieve
are intrinsic, or if improved bounds for these objectives are possible. For exam-
ple, suppose our instance satisfies (1 + ε, ε)-approximation-stability for all ε > 0,
say for k-median (e.g., achieving a 1.01-approximation would produce a solution
of error 1%, a 1.001-approximation gives error 0.1%, etc.); is such an assumption
sufficient to produce a near-optimal solution of some form, either in terms of ap-
proximation or in terms of low error? (Note that directly applying our results for
(1 + α, ε)-approximation-stability yields nothing useful in terms of low error, since
our closeness guarantee of O(ε/α) becomes greater than 1 when α = ε.) Another
natural question is whether one can use this approach for other clustering or par-
titioning objective functions. For example, the sparsest cut problem has been the
subject of a substantial body of research, with the best known approximation guar-
antee a factor of O(

√
log n) [Arora et al. 2004]. However, in the event this objective

is a proxy for a true goal of partitioning a dataset in a nearly-correct manner, it is
again natural to consider data satisfying (c, ε)-approximation-stability. In this case,
given the current state of approximation results, it would be of interest even if c is
a large constant. See [Balcan 2009] for more details. The max-cut problem would
also be of interest, for values c closer to 1 than the Goemans-Williamson bound
[Goemans and Williamson 1995] (defining approximation-stability appropriately for
maximization problems).

More broadly, there are other types of problems, such as evolutionary tree re-
construction, where the measurable objectives typically examined may again only
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be a proxy for the true goals, e.g., to produce a correct evolutionary tree. It would
be interesting to examine whether the approach developed here might be of use in
those settings as well.
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A. ADDITIONAL PROOFS

Theorem A.1. For any 1 ≤ c1 < c2, any ε, δ > 0, for sufficiently large k, there
exists a family of metric spaces G and target clusterings that satisfy (c1, ε)-approx-
imation-stability for the k-median objective (likewise, k-means and min-sum) and
yet do not satisfy even (c2, 1/2− δ)-approximation-stability for that objective.

Proof. We focus first on the k-median objective. Consider a set of n points
such that the target clustering consists of one cluster C1 with n(1 − 2δ) points
and k − 1 clusters C2, . . . , Ck each with 2δn

k−1 points. All points in the same cluster
have distance 1. The distance between points in any two distinct clusters Ci, Cj
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for i, j ≥ 2 is D, where D > 1 will be defined below. Points in C1 are at distance
greater than c2n from any of the other clusters.

In this construction, the target clustering is the optimal k-median solution, and
has a total k-median cost of n−k. We now define D so that there (just barely) exists
a c2 approximation that splits cluster C1. In particular, consider the solution that
merges C2 and C3 into a single cluster (C4, . . . , Ck will each be their own cluster)
and uses 2 clusters to evenly split C1. This clearly has error at least 1/2 − δ, and
furthermore this solution has a cost of ( 2δn

k−1 )(D − 1) + n − k, and we define D to
set this equal to c2(n− k)) = c2OPT.

Any c1 approximation, however, must be ε-close to the target for k > 1+2δ/ε. In
particular, by definition of D, any c1-approximation must have one median inside
each Ci. Therefore, it cannot place two medians inside C1 as in the above c2-
approximation, and so can have error on fewer than 2δn

k−1 points. This is less than
εn by definition of k.

The same construction, with D defined appropriately, applies to k-means as well.
In particular, we just define D to be the square-root of the value used for D above,
and the entire argument proceeds as before.

For min-sum, we modify the construction so that distances in C1 are all equal
to 0, so now OPT = (k − 1)( 2δn

k−1 )( 2δn
k−1 − 1). Furthermore, we set points in C1 to

be at distance greater than c2OPT from all other points. We again define D so
that the cheapest way to use k − 2 clusters for the points in C2 ∪ . . . ∪Ck has cost
exactly c2OPT. However, because of the pairwise nature of the min-sum objective,
this is now to equally distribute the points in one of the clusters C2, . . . , Ck among
all the others. This has cost 2( 2δn

k−1 )2D + OPT− ( 2δn
k−1 )2(k−3

k−2 ), which as mentioned
above we set to c2OPT. Again, because we have defined D such that the cheapest
clustering of C2∪. . .∪Ck using k−2 clusters has cost c2OPT, any c1 approximation
must use k − 1 clusters for these points and therefore again must have error less
than 2δn

k−1 < εn.

Theorem A.2. For k-median, k-means, and min-sum objectives, for any c > 1,
the problem of finding a c-approximation can be reduced in polynomial time to the
problem of finding a c-approximation under (c, ε)-approximation-stability. There-
fore, a polynomial-time algorithm for finding a c-approximation under (c, ε)-approx-
imation-stability implies a polynomial-time algorithm for finding a c-approximation
in general.

Proof. Given a metric G with n nodes and a value k (a generic instance of the
clustering problem) we construct a new instance that is (c, ε)-approximation-stable.
In particular we create a new graph G′ by adding an extra n/ε nodes that are all at
distance D from each other and from the nodes in G, where D is chosen to be larger
than cOPT on G (e.g., D could be the sum of all pairwise distances in G). We
now let k′ = k + n/ε and define the target clustering to be the optimal (k-median,
k-means, or min-sum) solution on G, together with each of the points in G′ \G in
its own singleton cluster.

We first claim that G′ satisfies (c, ε)-approximation-stability. This is because,
by definition of D, any solution that does not put each of the new nodes into its
own singleton cluster will incur too high a cost to be a c-approximation. So a c-
approximation can only differ from the target on G (which has less than an ε fraction
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of the nodes). Furthermore, a c-approximation in G′ yields a c-approximation in
G because the singleton clusters do not contribute to the overall cost in any of the
k-median, k-means, or min-sum objectives.

The following shows that unlike (1.01, ε)-approximation-stability, obtaining an
O(ε)-close clustering is NP-hard under (1, ε)-approximation-stability.

Theorem A.3. For any contant c′, for any ε < 1/(ec′), it is NP-hard to find a
clustering of error at most c′ε for the k-median and k-means problem under (1, ε)-
approximation-stability.

Proof. First, let us prove a (1 + 1/e)-hardness for instances of k-median where
one is allowed to place centers at any point in the metric space. The proof is very
similar to the proof from [Guha and Khuller 1999; Jain et al. 2002] which gives a
(1 + 2/e)-hardness for the case where one can place centers only at a distinguished
set of locations in the metric space. We then show how to alter this hardness result
to prove the theorem.

Consider the max-k-coverage problem with n elements and m sets: that is, given
m subsets of a universe of n elements, find k sets whose union covers as many
elements as possible. It is NP-hard to distinguish between instances of this problem
where there exist k sets that can cover all the elements, and instances where any k
sets cover only (1− 1/e)-fraction of the elements [Feige 1998]. The hard instances
have the property that both m and k are a tiny fraction of the number of elements
n. For some suitably large constant C, we construct an instance of k-median with
cn+m points, one point for each set and c points for each element, assign distance 1
between any two points such that one of them represents an element and the other
a set containing that point, and distance 2 to all other pairs.

Note that if there are k sets in the set system that cover all the elements (the
“yes” instances), choosing the corresponding k points as centers gives us a solution
of cost cn + 2(m − k) ≤ (1 + δ)cn for some arbitrarily small constant δ > 0. On
the other hand, given any solution to k-median with cost C, if any of these centers
are on points corresponding to elements, we can choose a set-point at unit distance
from it instead, thus potentially increasing the cost of the solution by at most m
to C + m. Hence, if this collection of k sets covers at most (1 − 1/e) fraction of
the elements (as in a “no” instance of max-k-coverage), the cost of this solution
would be at least (1− 1/e)cn + 2/ecn + 2(m− k) = (1 + 1/e)cn + 2(m− k); hence
C would be at least (1 + 1/e − δ)cn in this case. This shows that for every δ,
there are instances of k-median whose optimal cost is either at most C or at least
(1 + 1/e− δ), such that distinguishing between these two cases is NP-hard.

Let us now add infinitesimal noise to the above instances of k-median to make
a unique optimal solution and call this the target; the uniqueness of the optimal
solution ensures that we satisfy (1, ε)-approximation-stability without changing the
hardness significantly. Now, in the “yes” case, any clustering with error c′ε will have
cost at most (1− c′ε)cn + 2c′εcn + 2(m− k) ≤ (1 + c′ε + δ)cn. This is less than the
cost of the optimal solution in the “no” case (which is still at least (1+1/e− δ)cn)
as long as c′ε ≤ 1/e − 2δ, and would allow us to distinguish the “yes” and “no”
instances. This completes the proof for the k-median case, and the proof can be
altered slightly to work for the k-means problem as well.
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A.1 Proof of the Reassignment Lemma

We now prove Lemma 2.2, which we restate here for convenience.
Lemma 2.2. Let C = {C1, . . . , Ck} be a k-clustering in which each cluster is

nonempty, and let R = {(x1, j1), (x2, j2), . . . , (xt, jt)} be a set of t reassignments of
points xi to clusters Cji (assume that xi 6∈ Cji for all i). Then there must exist a
set R′ ⊆ R of size at least t/3 such that the clustering C′ produced by reassigning
points in R′ has distance exactly 1

n |R
′| from C.

Note: Before proving the lemma, note that we cannot necessarily just choose R′ =
R because, for instance, it could be that R moves all points in C1 to C2 and all
points in C2 to C1: in this case, performing all reassignments in R produces the
exact same clustering as we started with (just with different indices). Instead, we
need to ensure that each reassignment in R′ has an associated certificate ensuring
that if implemented, it will increase the resulting distance from C. Note also that
if C consists of 3 singleton clusters: C1 = {x}, C2 = {y}, C3 = {z}, and if R =
{(x, 2), (y, 3), (z, 1)}, then any subset of reassignments in R will produce a clustering
that differs in at most one element from C; thus, the factor of 3 is tight.
Notation. Given a clustering C and a point x, let C(x) denote the cluster Ci ∈ C
such that x ∈ Ci.

Proof. The proof is based on the following lower-bounding technique. Given
two clusterings C and C′, suppose we can produce a list L of disjoint subsets of
points S1, S2, . . ., such that for each i, all points in Si are in the same cluster in one
of C or C′ and they are all in different clusters in the other. Then C and C′ must
have distance at least 1

n

∑
i(|Si| − 1). In particular, any bijection σ on the indices

can have agreement between C and C′ on at most one point from each Si.
A simpler factor-8 argument: We begin for illustration with a simpler factor-8

argument. For this argument we consider two cases. First, suppose that at least
half of the reassignments in R involve points x in clusters of size ≥ 2. In this
case, we simply do the following. While there exists some (x, j) ∈ R such that
|C(x)| ≥ 2, choose some arbitrary point y ∈ C(x) and add {x, y} to L, add (x, j) to
R′, and then remove (x, j) from R as well as any reassignment of y if one exists; also
remove both x and y from the overall point set S. If cluster C(x) has been reduced
to a singleton {z}, then remove z from R and S as well. This process guarantees
that all pairs added to L are disjoint, and we remove at most three times as many
reassignments from R as we add to R′ (one for x, at most one for y, and at most
one for z). Thus, since we assumed at least half of R came from clusters of size
at least 2, overall we get a factor of 6. The second case is that at least half of the
reassignments in R involve points x in clusters of size 1. In that case, randomly
color each cluster red or blue: in expectation, 1/4 of these reassignments (at least
1/8 of the total in R) go from red clusters to blue clusters. We now simply put all
of these reassignments, namely those involving points moving from singleton red
clusters to blue clusters, into R′. Because all such (x, j) for any given j involve
different source clusters, for each j such that R′ contains at least one pair (x, j), we
pick an arbitrary y ∈ Cj and put in L the witness set Sj = {x : (x, j) ∈ R′} ∪ {y}.
All points in Sj were in different clusters in C and are in the same cluster in C′, and
the sets Sj , Sj′ for j 6= j′ are disjoint, so L is a legitimate witness set. Furthermore,
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j(|Sj | − 1) = |R′| as desired.

The factor-3 argument: For the factor-3 argument, we begin constructing R′ and
L as in the first case above, but using only clusters of size at least 3. Specifically,
while there exists a reassignment (x, j) ∈ R such that x is in a cluster C(x) with at
least 3 points: choose an arbitrary point y ∈ C(x) and add {x, y} to L, add (x, j)
to R′, and remove (x, j) from R as well as any reassignment of y if one exists. In
addition, remove x and y from the point set S. This process guarantees that all
pairs added to L are disjoint, and we remove at most twice as many reassignments
from R as we add to R′. (So, if R becomes empty, we will have achieved our desired
result with |R′| = t/2). Moreover, because we only perform this step if |C(x)| ≥ 3,
this process does not produce any empty clusters.

We now have that for all reassignments (x, j) ∈ R, x is in a singleton or doubleton
cluster. Let Rsingle be the set of reassignments (x, j) ∈ R such that x is in a
singleton cluster. Viewing these reassignments as directed edges, Rsingle forms
a graph on the clusters Ci where each node has outdegree ≤ 1. Therefore, each
component of this graph must be an arborescence with possibly one additional edge
from the root. We now proceed as follows. While Rsingle contains a source (a node
of outdegree 1 and indegree 0), choose an edge (x, j) such that (a) x is a source
and (b) for all other edges (y, j), y is either a source or part of a cycle. We then
consider two cases:

(1) Node j is not a sink in Rsingle: that is, there exists an edge (z, jz) ∈ Rsingle

for z ∈ Cj . In this case, we add to R′ the edge (x, j) and all other edges
(y, j) such that y is a source, and we remove from R (and from Rsingle) the
edges (z, jz), (x, j), and all edges (y, j) (including the at most one edge (y, j)
such that y is part of a cycle). We then add to L the set {x} ∪ {z} ∪ {y :
(y, j) was just added to R′} and remove these points from S. Note that the
number of edges removed from R is at most the number of edges added to R′

plus 2, giving a factor of 3 in the worst case. Note also that we maintain the
invariant that no edges in Rsingle point to empty clusters, since we deleted all
edges into Cj , and the points x and y added to L were sources in Rsingle.

(2) Otherwise, node j is a sink in Rsingle. In this case, we add to R′ the edge
(x, j) along with all other edges (y, j) ∈ Rsingle (removing those edges from
R and Rsingle). We choose an arbitrary point z ∈ Cj and add to L the set
{x}∪ {z}∪ {y : (y, j) was just added to R′}, removing those points from S. In
addition, we remove from R all (at most two) edges exiting from Cj (we are
forced to remove any edge exiting from z since z was added to L, and there
might be up to one more edge if Cj is a doubleton). Again, the number of edges
removed from R is at most the number of edges added to R′ plus 2, giving a
factor of 3 in the worst case.

At this point, if Rsingle is nonempty, its induced graph must be a collection of
disjoint cycles. For each such cycle, we choose every other edge (half the edges in
an even-length cycle, at least 1/3 of the edges in an odd cycle), and for each edge
(x, j) selected, we add (x, j) to R′, remove (x, j) and (z, jz) for z ∈ Cj from R and
Rsingle, and add the pair {x, z} to L.

Finally, Rsingle is empty and we finish off any remaining doubleton clusters using
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the same procedure as in the first part of the argument. Namely, while there exists
a reassignment (x, j) ∈ R, choose an arbitrary point y ∈ C(x) and add {x, y} to L,
add (x, j) to R′, and remove (x, j) from R as well as any reassignment involving y
if one exists.

By construction, the set R′ has size at least |R|/3, and the set L ensures that
each reassignment in R′ increases the resulting distance from C as desired.

B. ANALYSIS OF EXAMPLE IN SECTION 6

In Section 6, an example is presented of
√

n clusters of
√

n points each, with distance
1 between points in the same target cluster, and distance D + 1 between points
in different target clusters. We prove here that for any ε < 1/2, this satisfies
(Dε/2, ε)-approximation-stability for both k-median and k-means objectives. Thus,
if D > 4/ε, then this is (2, ε)-approximation-stable.

Let C be a clustering of distance at least ε from the target clustering CT = C∗.
Since C∗ has both k-median and k-means cost equal to n −

√
n, we need to show

that C has k-median cost at least (Dε/2)(n −
√

n) (its k-means cost can only be
larger).

We do this as follows. First, define the “non-permutation distance” from C to
C∗ as npdist(C, C∗) = 1

n

∑k
i=1 minj |Ci − C∗

j |. That is, we remove the restriction
that different clusters in C cannot be mapped to the same cluster in C∗. This is
non-symmetric, but clearly satisfies the condition that npdist(C, C∗) ≤ dist(C, C∗).
We observe now that the k-median cost of C is equal to Dn·npdist(C, C∗)+(n−

√
n).

In particular, the optimal median for each cluster Ci in C is a point in whichever
cluster C∗

j of C∗ has the largest intersection with Ci. This causes each point in
Ci − C∗

j to incur an additional cost of D over its cost in C∗, and so the overall
increase over the cost of C∗ is Dn ·npdist(C, C∗). Thus, it remains just to show that
npdist(C, C∗) cannot be too much smaller than dist(C, C∗).

We now show that npdist(C, C∗) ≥ dist(C, C∗)/2. We note that this will rely
heavily on the fact that all clusters in C∗ have the same size: if C∗ contained
clusters of very different sizes, the statement would be false. Since this inequality
may be of interest more generally (it is not specific to this example), we formalize
it in Lemma B.1 below.

Lemma B.1. For any clustering C, if all clusters of C∗ have size n/k, then we
have npdist(C, C∗) ≥ dist(C, C∗)/2.

Proof. Let pi = |Ci|/n and p = (p1, . . . , pk). Let u = (1/k, . . . , 1/k) and define
∆(p, u) =

∑
i:pi>ui

pi − ui to be the variation distance between p and u. Then,
npdist(C, C∗) ≥ ∆(p, u) because a cluster in C of size pin > n/k contributes at
least pi − 1/k to the non-permutation distance. Let ∆i = max(1/k − pi, 0). Since
variation distance is symmetric, we have ∆(p, u) =

∑
i ∆i.

Now, fix some mapping of clusters Ci to clusters C∗
j yielding the non-permutation

distance from C to C∗. Let Tj denote the set of indices i such that Ci is mapped
to C∗

j and let tj = |Tj |. Let S denote the set of indices j such that tj ≥ 2 (if
this were a permutation then S would be empty). We can now lower-bound the
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non-permutation distance as

npdist(C, C∗) ≥
∑
j∈S

∑
i∈Tj

pi

− 1/k


≥

∑
j∈S

 tj − 1
k
−

∑
i∈Tj

∆i


≥

∑
j∈S

tj − 1
k

−∆(p, u).

Therefore, we have

npdist(C, C∗) + ∆(p, u) ≥
∑
j∈S

tj − 1
k

. (B.1)

We now claim we can convert this mapping into a permutation without increas-
ing the distance by too much. Specifically, for each j such that tj ≥ 2, keep only
the i ∈ Tj such that Ci has highest overlap with C∗

j and assign the rest to (ar-
bitrary) unmatched target clusters. This reassignment can increase the distance
computation by at most 1

k ( tj−1
tj

) ≤ 1
k ( tj−1

2 ). Therefore, we have

dist(C, C∗) ≤ npdist(C, C∗) +
∑
j∈S

tj − 1
2k

. (B.2)

Combining (B.1) and (B.2) we have dist(C, C∗)− npdist(C, C∗) ≤ 1
2 (npdist(C, C∗) +

∆(p, u)), and since ∆(p, u) ≤ npdist(C, C∗), this yields dist(C, C∗) ≤ 2npdist(C, C∗)
as desired.

Finally, as noted above, by Lemma B.1 we have that the cost of clustering C in
the construction is at least Dnε/2 as desired.
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