
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
I3D 2008, Redwood City, California, February 15–17, 2008.
© 2008 ACM 978-1-59593-983-8/08/0002 $5.00

Computing Two-dimensional Delaunay Triangulation Using Graphics Hardware

Guodong Rong, Tiow-Seng Tan, Thanh-Tung Cao, Stephanus ∗

School of Computing

National University of Singapore

Abstract

This paper presents a novel approach to compute, for a given
point set S in R

2, its Delaunay triangulation T (S). Though prior
work mentions the possibility of using the graphics processing unit
(GPU) to compute Delaunay triangulations, no known implemen-
tation and performance have been reported. Our work uncovers
various challenges in the use of GPU for such a purpose. In prac-
tice, our approach exploits the GPU to assist in the computation of
a triangulation T ′ of S that is a good approximation to T (S). From
that, the approach employs the CPU to transform T ′ to T (S). As a
major part of the total work is done by the GPU with parallel com-
puting capability, it is a fast and practical approach, particularly for
a large number of points (millions with the current state-of-the-art
GPU). For such cases, our current implementation can run up to
53% faster on a Core2 Duo machine when compared to Triangle,
the well-known fastest Delaunay triangulation implementation.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms; I.3.1 [Com-
puter Graphics]: Hardware Architecture—Graphics processors

Keywords: Voronoi diagram, GPGPU, computational geometry,
graphics hardware

1 Introduction

The Delaunay triangulation T (S) for a set of points S is a useful
geometric structure that has applications in various areas of science
and technology [Fortune 1992]. In games and interactive applica-
tions, T (S) appears in the study of terrain rendering [Kang et al.
2006], path-finding [Lanctot et al. 2006], etc. Previous work on the
use of modern graphics hardware computes the discrete Voronoi di-
agram D(S) of S, a structure that is related to T (S), and this work
(for example, Hoff III et al. [1999]) mentions the possibility of ob-
taining T (S) from D(S). However, no known implementation and
performance have been reported. We present such an effort here
and realize that such a task is non-trivial.

Let us first define the discrete Voronoi diagram and Delaunay trian-
gulation so that we can discuss specifically the computational chal-
lenges of deriving the latter from the former. Let Ω be a connected
region in R

2. Let S = {s1, s2, . . . , sn} be a set of n points in

∗Emails: { rongguod | tants | caothanh | stephanu}@comp.nus.edu.sg.

Project webpage: http://www.comp.nus.edu.sg/∼tants/delaunay.html

Ω. We use ||p − q|| to denote the Euclidean distance between two
points p and q. For si ∈ S, we define: R(S; si) = {p ∈ Ω :
||p − si|| < ||p − sj ||, sj ∈ Ω, sj 6= si}. In other words, R(S; si)
is the set of points nearer to si than to any other point in S. The
region Ω is partitioned into R(S; s1), R(S; s2), . . . , R(S; sn) and
their boundaries. This partition is called the Voronoi diagram of S,
denoted by V(S). The elements of S are also called sites of this
Voronoi diagram. R(S; si) is called the Voronoi region of si. The
line segments shared by the boundaries of two Voronoi regions are
called Voronoi edges, and the points shared by the boundaries of
three or more Voronoi regions are called Voronoi vertices.

The discrete version of the Voronoi diagram V(S) is defined as
follows. Let L be the set of all the integer grid points in Ω, i.e.
L = Ω ∩ Z

2. For each (j, k) ∈ L, we define l(j, k) = i if
(j, k) ∈ R(S; si), that is, l(j, k) represents the ordinal number
of the site whose Voronoi region contains the grid point (j, k). If
the point (j, k) is at equal distance from two or more sites, we as-
sign the minimum (or arbitrary) ordinal number from among these
sites. The discrete Voronoi region for the site si is defined as
D(S; si) = {(j, k) ∈ L : l(j, k) = i}. Thus, L is partitioned
into discrete Voronoi regions. They are collectively called the dis-
crete Voronoi diagram, D(S).

The Delaunay graph of S, denoted as T (S), is a plane, dual graph
of V(S). In other words, the nodes of T (S) are the sites in S, so
there is one node corresponding to each Voronoi region. There is
an edge sisj if and only if R(S; si) and R(S; sj) share a Voronoi
edge. So the edges in T (S) one-to-one correspond to the Voronoi
edges in V(S). As a result, the faces of T (S) also one-to-one cor-
respond to the Voronoi vertices in V(S). In the degenerate case
with m ≥ 4 co-circular points in S generating a Voronoi vertex,
the corresponding face in T (S) is a polygon of m sides. When
Ω = R

2 and when there is no degenerate case, T (S) is a triangula-
tion, which is a plane graph having each face, other than the exterior
face, a triangle. The Delaunay graph under this case is also called
the Delaunay triangulation. For our work, we have Ω = R

2 and
we want to output a triangulation T (S). When there are degenerate
cases, the output is a super-graph of T (S).

With modern graphics processing units (GPUs), one can efficiently
compute D(S) [Hoff III et al. 1999; Rong and Tan 2006]. Though
T (S) can be derived from V(S) quite straightforwardly, it is non-
trivial to do the same from D(S). We give here just two reasons.
First, the adjacency relation between Voronoi regions in V(S) may
not be the same as that in D(S); see Figure 1. Second, Voronoi re-
gions D(S; si) in D(S) may not be one connected component; see
Figure 2. For both reasons, V(S) and D(S) do not have the same
topology, and the dual graph of D(S) is not our required triangu-
lation T (S). Thus, special processing needs to be incorporated in
order to still derive efficiently T (S) from D(S). Besides, there are
also challenges due to limited texture size and computational preci-
sion of D(S) to consider. The details are provided in later sections.

Our work here overcomes the above challenges. The main contri-
bution is a novel approach combining the power of the GPU and
CPU to compute the Delaunay triangulation for a given point set
S in R

2. Our implementation shows that the approach performs
well, particularly for a large number of points. For such cases, it

89

Figure 1: The red and blue Voronoi regions should be adjacent to
each other in V(S), but are separated by the yellow and green re-
gions in D(S). Dashed lines are the Voronoi edges in V(S).

can outperform the best known Delaunay triangulation implemen-
tation called Triangle [Shewchuk 1996]. Note that Triangle is a
CPU-based program.

This paper is organized as follows. Section 2 reviews the previous
work. Section 3 gives an overview of our new algorithm. The de-
tails of all the steps are discussed in Section 4. Section 5 provides
the correctness proof of our algorithm. Experimental results are
presented in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

The Delaunay triangulation is an old but important concept in com-
putational geometry. There are many algorithms developed for
the CPU to efficiently compute Delaunay triangulations; see sur-
veys [Aurenhammer 1991; Fortune 1992; Su and Drysdale 1995].
Among these, three algorithms are most commonly used: divide-
and-conquer, plane-sweep and randomized incremental.

The divide-and-conquer algorithm recursively divides a set of sites
into two smaller sets, until a set is small enough to compute its
Delaunay triangulation in constant time. Then, it gradually merges
two small Delaunay triangulations into a bigger one, until all are
merged into one mesh, forming the resulting triangulation. The
plane-sweep algorithm uses a sweeping line to sweep from left to
right to gradually build the mesh. Each time the line touches a site,
or a circle passes three sites, the mesh is updated accordingly. This
algorithm is first proposed to compute Voronoi diagrams, but is also
applicable to Delaunay triangulations. The randomized incremental
algorithm starts from a big triangle bounding all input sites, and
then adds the sites one by one, in a random order. Each time a new
site is added, the mesh is updated to maintain it being a Delaunay
triangulation.

All three algorithms have the same expected time complexity of
O(n log n) where n is the number of input sites. However, this does
not mean that all run with the same efficiency in practice. Shewchuk
[1996] implements all three algorithms in his Triangle package. His
experience is that the divide-and-conquer algorithm is the fastest,
and the randomized incremental slowest. We note that Triangle is
the fastest program known to compute 2D Delaunay triangulations.
This award-winning program has been optimized for more than ten
years to have efficient memory management and robust geometry
computations.

Though there are numerous algorithms using the CPU to compute
Delaunay triangulations, there is no known exact algorithm that
capitalizes on the parallel computing capability of the GPU. At a
quick glance, it is easy to compute Delaunay triangulations from
those algorithms that compute discrete Voronoi diagrams [Hoff III
et al. 1999]. Our work here uncovers numerous challenges that need
to be overcome in order to transform discrete Voronoi diagrams
to Delaunay triangulations in continuous space, and to outperform
the best implementation of 2D Delaunay triangulations, Triangle.
Some of these challenges are mentioned in the previous section,

and they will be clear when we discuss our proposed algorithm.
We note that the GPU approach of Yamamoto [2004] may produce
outputs with topological and numerical errors.

There are generally two approaches in using the GPU for general
purpose computations. One approach uses the many small proces-
sors in the GPU separately as the processors in a parallel machine,
and uses the position of the pixels only as memory addresses. In
this approach, the GPU is used in a fashion similar to the tradi-
tional parallel machines and can solve problems defined in contin-
uous space. The other approach performs computation directly on
textures. Such computation includes information of the positions
of the pixels, and often utilizes the communication among pixels.
This maps well to the architecture of the GPU. However, it gener-
ally is more suitable to solve problems defined in discrete/digital
space. Our work here uses the GPU primarily with the flavor of the
second approach, but solves (with the help of the CPU) a geometry
problem defined in continuous space.

3 Algorithm Overview

The idea of our algorithm is straightforward: we map our set of sites
S to a texture, compute the discrete Voronoi diagram D(S′) where
|S′| ≤ |S| and the sites in S′ are on grid points, use it to derive
a triangulation T ′(S′) that is close to our Delaunay triangulation
T (S), and then repair and subsequently flip edges to obtain T (S).
There are two major design decisions as discussed in the next two
paragraphs. In the discussion, the grid points are the pixels in the
texture, and each site has a unique color which is also the color of
the Voronoi region containing the site. The color of a pixel is the
color of the Voronoi region containing the center of this pixel.

In generating a triangulation from a Voronoi diagram, we could ei-
ther generate edges or triangles for the triangulation. From D(S′),
an edge of T ′(S′) can be derived from each grid point which has
neighboring grid points belonging to one other Voronoi region, i.e.
of a different color. In this way, an edge of T ′(S′) may be derived
from many grid points, and the algorithm would need to remove
duplicate edges. It is time-consuming to check duplicates and thus
the alternative of computing triangles for T ′(S′) is adopted: a cor-
ner (other than those on the boundary of the texture) is shared by
four grid points; a corner surrounded by grid points belonging to
exactly three Voronoi regions (i.e. three different colors) generates
one triangle, and similarly, one surrounded by grid points belonging
to four Voronoi regions generates two triangles.

The point set S is mapped via a function M to S′. The measure
of distance between a′ and b′ in S′ (in the computation of D(S′))
could be defined as ||a′ − b′|| = ||a − b|| where a′ = M(a) and
b′ = M(b). This approach can generate triangles with orientation
not consistent to the Voronoi vertices, and can generate crossing
edges. It thus needs expensive computation to validate each trian-
gle generated. To avoid doing so, our approach adopts ||a′ − b′||
as the usual Euclidean distance between a′ and b′. We show (in a
later section) that this method does not generate duplicate and over-
lapping triangles, and the orientation of triangles are consistently
counterclockwise.

The algorithm consists of the following ten steps where GPU steps
are prefixed with G and CPU with C:

——————————————————————————–

Step G1. Write the input sites S (in continuous space) into a tex-
ture (discrete space) with surviving sites denoted as S′;

Step G2. Compute the discrete Voronoi diagram D(S′) using the
jump flooding algorithm;

90

Step G3. Re-assign, if needed, each island to a Voronoi region that
is connected to a site;

Step G4. Find Voronoi vertices that are corners surrounded by
three or four Voronoi regions;

Step G5. Chain up Voronoi vertices within each row in the texture;

Step G6. Construct one or two triangles for T ′(S′) from each
Voronoi vertex;

Step C1. Complete the construction of T ′(S′) with triangles
around the convex hull of S′;

Step C2. Shift each site s′ ∈ S′ in T ′(S′) to its respective position
in S to result in a triangulation T ′(S′′) where S′′ ⊆ S;

Step C3. Insert each point in S − S′′ into T ′(S′′) resulting in a
triangulation T ′(S); and finally

Step C4. Flip edges in T ′(S) to result in T (S) as required.

——————————————————————————–

4 Algorithm Details

This section details each step of our proposed algorithm.

4.1 GPU Steps

The purpose of the GPU steps is to compute a mesh that will be
passed on to the CPU to complete as T ′(S′). G1 to G5 are car-
ried out using shading programs in Cg [Mark et al. 2003], and G6
using CUDA [NVIDIA 2007] that enables parallel construction of
triangles for the mesh.

Step G1 – Write sites into texture

We scale the continuous space such that all sites can fit into our
chosen texture (discrete space), and then render these sites into the
texture. Note first that due to the resolution of the texture and the
distribution of the sites, there may be two or more sites mapped to
the same pixel. Only one of these sites is written at that pixel, and
the rest thus become missing sites, and will be inserted to be a part
of the triangulation in Step C3. Note second that we use half-float
format for the texture to represent precisely integers between -2048
and 2047. This matches the largest texture size of 4096×4096 in
currently available graphics cards. We should switch to texture of
integer format when Cg 2.0 becomes available.

Step G2 – Compute Voronoi diagram

With the texture of size m×m storing some sites, there are various
ways to generate the discrete Voronoi diagram [Hoff III et al. 1999;
Denny 2003; Rong and Tan 2006; Fischer and Gotsman 2006]. The
naı̈ve approach of standard flooding can propagate information of

a site step-by-step radically but it takes time proportional to
√

2m.
We choose the better propagation approach of jump flooding, in
particular, 1+JFA [Rong and Tan 2007] to compute the discrete
Voronoi diagram. It takes time proportional to log m. We note
that 1+JFA does not compute the exact discrete Voronoi diagram.
The possible errors (on a few pixels) have little chance to alter the
topology of the Voronoi diagram [Rong and Tan 2006]. This thus
does not have adverse effects on the correctness of the algorithm.

Step G3 – Remove islands

As shown in Figure 2, a Voronoi region of a site in the discrete
Voronoi diagram may contain more than one connected region due

Figure 2: Corners v0 and v1 (incident by an island) generate two
triangles that cross with each other.

v0

v1

Figure 3: A small portion of the Voronoi diagram is shown. Corners
v0 and v1 (incident by an island) both generate the same triangle
with red, blue and green sites.

to the discrete nature of the texture. We call all those connected
components not containing the site islands. Their presence can
complicate the identification of usable Voronoi vertices (in the next
step). Involving them in the identification of Voronoi vertices as in
Figures 2 and 3 can result in crossing edges and duplicate triangles
in T ′(S′).

We discover a pixel as a part of an island as follows. For a pixel p
belonging to the Voronoi region of a site s, we build a coordinate
system with the origin at p and is aligned with the texture. If s is
in the first quadrant, we examine the three neighbors of p at (1, 0),
(1, 1) and (0, 1). If all these three neighbors have colors different
from p, we say p is in an island. We define similarly when s is
in the other three quadrants. If s is on one of the axes, we only
check the neighbor next to p and between p and s. For example, if
s is on the positive x-axis, we only check the neighbor at (1, 0). If
this neighbor has a color different from that of p, we say p is in an
island. For a pixel in an island, we replace the color of the pixel by
the color of the closest site other than its original one.

The removal of one pixel that is in an island can expose other pix-
els to be in islands. The operation of removing these pixels is
then repeated until no new ones are found. The OpenGL extension
GL ARB occlusion query is useful in detecting if any pixels
in islands are removed and the process must be continued. In prac-
tice, a small number (less than 5) of iterations are sufficient.

Step G4 – Locate Voronoi Vertices

Each pixel has four corners. Excluding corners (of pixels) along the
boundary of the texture, each corner is incident by four pixels. A
corner is defined as a Voronoi vertex if its four incident pixels are of
three or four different colors, but with an exception. The exception
is the case of three different colors where the two same color pixels
are diagonally opposite (see Figure 4). In these cases, the two same
color pixels are actually 8-connected, and they prevent the other
two pixels of different colors from being adjacent. Respecting this
topology, we do not classify such a corner as a Voronoi vertex. In
the computation, the status (of being a Voronoi vertex or otherwise)
of a corner is identified and recorded at (or owned by) the lower left
pixel incident to the corner.

91

12

43

(a)

12

43

(b)

Figure 4: Three-color corners not identified as Voronoi vertices.

Step G5 – Chain up Voronoi Vertices

With the texture recording the Voronoi vertices in some of its pix-
els, for each row, this step performs a parallel prefix computation
[Blelloch 1990] to record for each pixel the nearest Voronoi vertex
to its right. In the process, we can also compute the total number of
triangles to be generated from each row of Voronoi vertices, and the
total number of triangles accumulatively for the rows. With these,
we can “jump” over all the pixels which are not Voronoi vertices
in the next step to generate triangles. Such a scheme of jumping is
particularly useful to support using a texture with a large resolution
while maintaining the computation time proportional to the size of
the output, which is the number of triangles.

Step G6 – Construct a Triangle Mesh

The result of Step G5 stored in an OpenGL texture is read into a
pixel buffer object to allow CUDA to construct triangles in paral-
lel. Reading a big texture takes time. With asynchronous readback
possible with glReadPixels in OpenGL, we use that time to
perform other bookkeeping tasks. One such activity is to derive a
list of vertex coordinates in integer format from the input in double
format. This list is used in Step C2 for shifting sites. Note that this
Step G6 could not be done well with Cg as is the case of Step G1
to Step G5, since we need scatter operations that are only avail-
able in CUDA. Also, Step G1 to Step G5 do not perform well when
implemented with CUDA since they map naturally to the parallel
computation using shader programs.

To construct the mesh, we use many parallel processes in CUDA,
each of which handles one row of data in our texture. With the in-
formation on the number of triangles to be generated from Step G5,
we can pre-allocate memory to enable processes to concurrently in-
sert triangles into the mesh. For each pixel recording a Voronoi
vertex due to three colors, a triangle is formed with the three sites
represented by these colors. Similarly, for a Voronoi vertex due
to four colors, two triangles are formed by the corresponding four
sites. Note that CUDA running on the NVIDIA GeForce 8800 GTX
does not support atomic operations. As such, updating the list of
triangles incident to each site (which is used to link up adjacent
triangles) cannot be performed in parallel. This results in a slight
penalty on the computation time.

4.2 CPU Steps

Data stored in the texture due to the GPU steps is no longer needed,
except for pixels on the boundary of the texture. These are read
in parallel by CUDA into an array and copied to the main CPU
memory for Step C1.

Step C1 – Fix Convex Hull

Because some Voronoi vertices may lie outside the texture, their
corresponding triangles were not generated in Step G6. In some
cases, the absence of these triangles may split the mesh into sev-
eral disconnected parts; see Figure 5. In this step, we traverse, in

Figure 5: Missing triangles due to Voronoi vertices lying outside
the texture. The five triangles with one or more white dashed edges
are missing. The mesh is separated into two disconnected parts.

clockwise order, along the boundary of the texture, starting from
the leftmost pixel that belongs to the highest site, to discover those
sites whose Voronoi regions occupy the boundary of the texture. We
push the first two sites found into a stack. From the third site on,
we push the new site found to the stack and then check the topmost
three sites si, si−1, si−2 in the stack. If they are in counterclock-
wise order, it means that there is a missing triangle. A new triangle
sisi−1si−2 is inserted into the mesh, si−1 is removed from the
stack, and the process is repeated until the topmost three sites are
not in counterclockwise order (similar to Graham’s scan algorithm
[1972]). The resulting mesh is T ′(S′).

Step C2 – Shift Sites

This step shifts each site at s′ in the discrete space back to their
original position at s in continuous space to compute T ′(S′′) where
S′′ ⊆ S. We handle this in three cases where F (s′) denotes the
triangle fan of s′:

Case 1: s is inside F (s′). Going through triangles in F (s′), we
can determine that s lies inside a triangle in F (s′) through
the counterclockwise test. Also with the same test, we deter-
mine whether s′ can be simply moved to s without creating
crossing edges in the mesh. If so, we are done (Figure 6(a)).
Otherwise, we insert s into the mesh by creating a triangle,
deleting edges incident to s′, and triangulating the resulting
polygonal region or curve (shown in green in Figures 6(b) and
6(c)).

Case 2: s is in a triangle not inside F (s′). By stepping from tri-
angle to triangle starting with those in F (s′), we can deter-
mine the triangle in the mesh containing s. Insert s to create
three triangles (or four triangles if s is on an edge), delete the
edges incident to s′, and triangulate the resulting polygonal
region or curve (shown in green in Figures 6(d) and 6(e)).

Case 3: s is outside the mesh. This is the case when the stepping
from triangle to triangle fails to locate s in any triangle. If s′

is not on the boundary of the convex hull, we delete edges in-
cident to s′, triangulate the resulting polygon (shown in green
in Figure 6(f)), insert s, and triangulate around the boundary
of the (new) convex hull. Otherwise, s′ is on the boundary
of the convex hull. We either have to move s′ to s without
any further processing (as in Figure 6(g)), or repair the con-
vex hull by deleting edges incident to s′ and inserting s on the
boundary of the convex hull (as in Figure 6(h)).

Note that counterclockwise tests are often used in the process.
Step G6 while generating triangles can pre-compute and record
the outcomes of some of these tests. This is an optimization that
improves the running time significantly. Not all such tests can be
recorded as there are triangles generated in Step C1 that are not by
Step G6, and there are triangles (after shifting some of their ver-
tices) that CUDA (which currently supports only float format as

92

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6: Shifting sites: (a)-(c) are Case 1, (d)-(e) Case 2, and
(f)-(h) Case 3. s′ is represented by the black point and s by the
red point. The solid lines show the triangles before shifting while
the dotted lines show the triangles after shifting. The green lines
indicate the polygonal region or curve that are to be triangulated.

compared to the input data that is in double format) cannot perform
reasonably robust tests due to insufficient precision.

Step C3 – Insert Missing Sites

This step handles missing sites due to Step G1. Suppose that s and
t are mapped to the same pixel in Step G1, and s is recorded as s′,
then t becomes a missing site. To insert t into the mesh, we start
from the triangle fan of s to locate the position of t, which is either
inside a triangle of the mesh, or falling on an edge of the mesh,
or outside the mesh. The remaining processing of inserting t into
the mesh is straightforwardly a subdivision of a triangle into three
triangles, two triangles into four triangles, or fixing the convex hull
when t lies outside the old convex hull. The resulting mesh is a
triangulation T ′(S).

Step C4 – Flip Edges

T ′(S) may not be a Delaunay triangulation for various reasons.
First, a low-resolution texture may cause topology change (as
shown in Figure 1). Second, in Step G6, when there are four col-
ors around a Voronoi vertex, we generate two triangles arbitrarily.
Third, Steps C1 to C3 also arbitrarily re-triangulate polygons or
curves in the mesh. In this step, we traverse all the triangles in the
mesh one by one. For an edge ab of ∆abc, it passes the empty circle
property if ab is a convex hull edge, or if the other triangle ∆adb
incident to ab is such that d lies outside the circumcircle of ∆abc.
If ab fails the empty circle property, an edge-flip occurs to replace
∆abc and ∆adb by triangles ∆adc and ∆cdb, and new tests ap-
ply to edges of these new triangles. This step is performed until
all edges pass the empty circle property. The resulting mesh is the
required Delaunay triangulation T (S).

5 Proof of Correctness

This section proves that our algorithm computes correctly the De-
launay triangulation T (S) of S. The main challenge is to show that
we can derive from the discrete Voronoi diagram D(S′) a mesh in
Step G6 that we can augment with more triangles into a triangula-
tion in Step C1.

Figure 7: Two colors alternate around a corner. Flooding does not
generate such a configuration.

Consider using the standard flooding to generate a Voronoi dia-
gram. A corner, incident by four pixels, cannot have two colors
alternate around the corner (see Figure 7); otherwise, one of these
pixels would lie on the wrong side of the perpendicular bisector of
the sites having these colors. In the following properties, we adopt
8-connectedness where two pixels that are 8-connected at a corner
is interpreted as connected through a tiny neck at the corner. For
example, the pixels marked 2 and 4 in Figure 4(a) are considered
connected to each other.

Property 1 Each Voronoi region generated by the standard flood-
ing is simply-connected.

Proof. Each Voronoi region generated by the standard flooding is
connected by induction: the site whose information first reaches
a pixel is the nearest site to that pixel, so a pixel never changes
its color (i.e. nearest site) once assigned; each pixel is connected
to a neighbor having the same color, which is in turn inductively
connected to the nearest site to the pixel. If a region D(S′; si) is
not simple, then at least one other region, say D(S′; sj), appears
as a hole in D(S′; si). Consider the line l passing through si and
sj , it is clear that the part of l closer to sj than si and intersects
D(S′; si) cannot be part of D(S′; si). So, there is no such hole
D(S′; sj) inside D(S′; si). �

Instead of the standard flooding, our algorithm uses the more ef-
ficient jump flooding algorithm (JFA) [Rong and Tan 2006]. This
is at the expense of two potential problems. First, a Voronoi re-
gion generated by the JFA is not necessarily simply-connected.
One reason is that there can be one D(S′; si) that is disconnected
into one component containing si and the others as islands. Is-
lands are removed by Step G3, and thus no longer an issue. An-
other possibility is the existence of a D(S′; sj) appearing as a
hole in D(S′; si). Such a scenario has not been detected in our
extensive experimentations. Nevertheless, we can perform some
additional passes of flooding with the step length of 1, utilizing
GL ARB occlusion query, to remove holes. Second, JFA may
not generate correct D(S′; si) for all si. There are however only
a few pixels with errors, and these errors are at Voronoi vertices in
most cases [Rong and Tan 2006]. All these do not change the topol-
ogy of the discrete Voronoi diagram, and are thus not issues for our
algorithm. We can thus assume Property 1 and Figure 7 hold for
our algorithm.

In the following properties, triangle refers to one that was gener-
ated during Step G6. Let the mesh generated at the completion of
Step G6 be T ′.

Property 2 All triangles in T ′ are consistent in orientation.

Proof. We first consider three sites, a, b and c whose Voronoi re-
gions are incident, in counterclockwise order, at a corner v. Then,
we have △abc ∈ T ′. Suppose we remove all sites other than a, b, c,
and then generate a discrete Voronoi diagram D′ = D({a, b, c}).
Note that those grid points colored by the colors of a, b and c, re-
spectively, in D(S′) remain the same in D′; in particular, corner v
is still incident by the same three colors in the same order. By join-
ing a ray each from v to a, b and c, we read around the boundary of
D′ (making D′ large enough) to note the order of the intersection

93

points a′, b′, c′. Notice that all the three angles at v formed by the
three rays are never larger than π; thus, a, b, c are in the same order
as a′, b′, c′. Suppose on the contrary that this order is clockwise,
then D′ has a corner v′ 6= v that is incident by alternate colors of
a and b, or b and c, or c and a so that each of the three Voronoi re-
gions can remain simply connected (as shown in Property 1) while
able to reach v in counterclockwise order. Such a v′ is impossible
as explained in Figure 7. So, a, b, c are in counterclockwise order,
as needed.

Next, we consider four sites, a, b, c and d whose Voronoi regions
are incident at a corner v in D(S′). Viewing from v, we see that
a, b, c and d are in the same order as their Voronoi regions incident
at v; otherwise, for any three of them, we can use the argument in
the previous paragraph to derive a contradiction. �

Note that in the case of a corner incident by four colors, one of the
two triangles generated by the algorithm may have zero area. This
does not cause any problem in the final result, as such triangles are
removed (flipped away) in Step C4. We thus ignore, for simplicity,
the existence of such triangles in our argument.

Property 3 No two edges of triangles in T ′ intersect. Additionally,
no endpoint of any edge lies on another edge.

Proof. Suppose on the contrary that a triangle with edge ac
crosses another triangle with edge bd. Then, sites a, b, c, d form
a convex polygon. Consider the discrete Voronoi diagram D′ =
D({a, b, c, d}), which (as in the proof of Property 2) maintains grid

points colored by the colors of a, b, c and d. The dual graph D′

of
D′ is a complete graph K4 of four vertices as each site is a neighbor
to the other three. We note that the only plane embedding of K4 is
with three vertices incident to edges that bound a region that en-
closes the fourth vertex (K4 is the smallest non-outerplanar graph).

But, our D′

has a 4-gon as its outer region, and thus cannot be a

plane graph. This contradicts the fact that D′

is a plane graph as
each Voronoi region of D′ is simply connected (Property 1).

The above argument, with minor adjustment, is also applicable to
show that no endpoint of any edge lies on another edge. �

Property 4 No two faces of triangles in T ′ overlap in area.

Proof. Because of Property 3, there are only two ways for trian-
gles to overlap in area: first, when the two triangles have the same
set of three vertices, and second, when one triangle is completely
enclosed by the other. The former means that there are duplicate
triangles, say △abc. This means that in Step G6, there are two
Voronoi vertices having colors of sites a, b and c around them. This
leads to two of these three colors occurring alternatively around a
corner, which is impossible as explained in Figure 7.

Next, we consider the latter way of overlapping. Let triangle △xyc
be enclosed in triangle △abd where x may be a, and y may be b.
Among x, y, c, we can assume the extremal property that c is closest
to d when x 6= a or y 6= b. So D(S′) is such that D(S′; c) appears
as a hole in the union of D(S′; a) and D(S′; b). Now, consider the
Voronoi diagram D′ = D′({a, b, c}). Grid points colored by the
colors of the three sites in D(S′) remain having the same colors in
D′. As a result, D′ has the Voronoi region D({a, b, c}; c) that is
not connected or is enclosed by the other two regions. This is not
possible as each Voronoi region for three sites must be connected
and must appear on the boundary of a large enough D′. �

Property 5 Each edge in T ′is shared by at most two triangles.

Proof. This is immediate from the previous property as three or
more triangles sharing an edge would result in triangles with over-
laping areas. �

a

b

c

d

e

lab

lbc

Boundary of texture

v

Figure 8: The edge de cannot exist and there is thus no holes in T ′.

Property 6 The union of all triangles in T ′ does not enclose a
bounded region that is not part of T ′.

Proof. Suppose on the contrary that there exists such a bounded
region, which is a polygon. Note that any polygon of three or more
vertices has an ear. Suppose we have consecutive vertices a, b, c in
counterclockwise order forming an ear. Let lab and lbc be the per-
pendicular bisectors of a, b and b, c, respectively, and they intersect
at v. We consider two cases where v is or is not a Voronoi vertex;
refer to Figure 8.

First, if v is a Voronoi vertex, then v must be outside D(S′); oth-
erwise, we are done as ∆abc exists in T ′. Figure 8 shows the
bounded region where d is possibly c, and e is possibly a. Consider
the Voronoi diagram D′ = D({a, b, c, d, e}). By the familiar argu-
ment as in the proofs of the above properties, it is clear that there
cannot be an edge in T ′ that crosses from the half-space containing
e defined by lab to that containing d defined by lbc. In other words,
the assumption on the existence of a bounded region is incorrect.

Second, if v is not a Voronoi vertex, then some points in ∆vbc∩ lbc

(or, in a similar case, ∆vab ∩ lab) belong to Voronoi regions other
than that of b and c (or, in a similar case, a and b). One such point
v′ is on a perpendicular bisector of two vertices of the polygon and
is closer to these two vertices than v is to b (and c). We can thus
employ an extremal property to find a v that is an intersection of two
perpendicular bisectors of vertices of the polygon and v is indeed
a Voronoi vertex. With these, we can adapt the argument in the
previous paragraph to arrive at a contradiction. �

Property 7 At the end of Step C1, T ′(S′) is a triangulation of S′.

Proof. At the end of Step G6, T ′ is a mesh in most cases, with
the exception that it may have more than one component (where an
isolated site can be a component), or there may be pinch points at
some vertices. If T ′ is one single component, the algorithm clearly
completes T ′ to a triangulation. So, suppose it is otherwise. Then,
there are two or more Voronoi regions that spread from one bound-
ary to another boundary as shown in Figure 5. In such case, the
algorithm going around the boundary of D(S′) can connect in con-
secutive order one vertex of a component to a vertex of the other
component. As such, the algorithm can link up all vertices of S′

into a single component in T ′(S′). �

Theorem 1 The proposed algorithm computes the Delaunay trian-
gulation of S.

Proof. From the above properties, we know that up to Step C1, we
have a triangulation of S′. Step C2 shifts the set of sites so that
it is now a subset of S while maintaining the mesh as a triangula-
tion. Then, Step C3 includes all points of S into the triangulation
constructed so far. Finally, Step C4 converts our triangulation to a
Delaunay triangulation through edge-flip, and we are done. �

94

x

(a)

x

(b)

x

(c)

x

(d)

Figure 9: Experimental results

6 Experimental Results

We have tested our algorithm on an Intel Core2 Duo 1.86 GHz PC
with 2 GB DDR2 RAM and an NVIDIA GeForce 8800 GTX PCI-X
with 768 MB DDR3 VRAM. Our program is developed using Mi-
crosoft Visual C++.NET 2005, and compiled with all optimization
options enabled. The GPU programs are written and compiled with
NVIDIA Cg 1.5 and NVIDIA CUDA 1.0. For the purpose of com-
parison, our program outputs Delaunay triangulations in the same
data structure as that by the Triangle program, and uses the same
robustness routine as Triangle [Shewchuk 1996]. We, however,
have not implemented other useful features, such as incorporating
constrained edges or augmenting the given sites with new vertices,
available in Triangle.

Running Time. On the whole, our algorithm (with still more
optimization possible) running on uniformly distributed sites can
achieve up to 53% improvement over Triangle. Figure 9(a) shows
the comparison of the running time of Triangle and our algorithm
for different texture resolutions. The ratio of the difference between
the running time of Triangle and our program to the smaller running
time of the two gives the percentage of improvement. Positive im-
provement means ours is faster than Triangle; see Figure 9(b).

For a small number of sites, Triangle is faster than our program, as
our program has certain overhead due to the use of the GPU compu-
tation. For a fixed texture resolution (such as 4096×4096 in Figure
9(c)), the computational time of the GPU, excluding Step G6, is
relatively constant since these steps are almost independent of the
total number of Voronoi sites. The timings of Step G6 and the CPU
part of our algorithm increase with the increase in the number of
Voronoi sites. Figure 9(c) when applied to other texture sizes also
looks similar. Currently, those CPU steps, especially C2 to C4, still
dominate the computational time. New features in the GPU such as

atomic operations may help to eventually realize some of them in
the GPU, and thus further improve computational time.

On the other hand, our algorithm does not perform as fast, though
remains robust as Triangle, when running on an input with non-
uniformly distributed sites such as the Gaussian, nearly co-circular,
or nearly collinear cases. In the case of the Gaussian distribution,
many sites are concentrated near the centroid of these sites. Thus,
the algorithm has more missing sites to handle and cannot perform
as efficiently as it can in the uniformly distributed case. Figure 9(d)
shows that the algorithm performs up to 22% faster for Gaussian
distribution of sites (as compared to 53% for uniformly distributed
cases), using a texture of 4096×4096, but only slightly faster when
using a texture of 2048×2048. As for co-circular or nearly collinear
cases, there are even more missing sites to handle as the mapping of
Step G1 results in most parts of the texture remain empty. As such,
our algorithm behaves like the randomized incremental algorithm
(but without any form of optimization) in constructing a Delaunay
triangulation, thus it runs very slowly when compared to Triangle
which uses a divide-and-conquer approach.

Texture Resolution. The resolution of the texture is a parameter in
our algorithm; it affects the running time of the CPU steps as shown
in Figure 10. For a larger texture, Step C1 spends slightly more time
to traverse along the boundary, while Step C3 has fewer missing
sites to handle and Step C4 has fewer edges to flip. Increasing the
texture resolution moves the problem closer to continuous space,
and Step G6 thus computes a mesh closer to the required output
and Steps C3 and C4 have less to do. On the other hand, Step C2
does not behave in a monotonic manner. With a larger texture, more
sites are shifted straightforwardly as shown in Figure 6(a), but there
are also more sites to be handled due to less missing sites. As such,
the time needed for Step C2 can increase with the increase in the
texture resolution.

95

Figure 10: Timings on one million sites using different texture res-
olutions.

Nevertheless, the total CPU time decreases with an increase in tex-
ture resolution. For our hardware configuration and as shown in
Figure 9(b), we should use resolution of 4096×4096 for more than
600K sites, but smaller resolution otherwise. Examining carefully
Figure 9(b) and also Figure 9(d), we notice the crossing pattern
among the four curves of different texture sizes: as the number of
sites increases, the algorithm should gradually switch to a larger
texture size to remain efficient when compared to a pure CPU al-
gorithm. This means that, assuming there is no limit on the texture
size (and memory), our algorithm can possibly run well for very
large data sets. More experiments should be conducted to ascertain
this when larger texture sizes become available in the future.

Memory Usage. The CPU memory needed for Triangle is about
80n bytes where n is the number of input sites. For our CPU com-
putation, we need, besides the above amount, about 48n bytes more
to keep track of vertices for shifting and a list of references to trian-
gles incident to each site. Such additional CPU memory is used in
linking up adjacent triangles sharing a site. Also, we need 384 MB
each in the CPU and GPU for the 4096×4096 textures and pixel
buffer objects. Specific to just the GPU, we need about 72n bytes
more to keep information on the triangles generated. With all these
on our GPU with 768 MB of memory, our program can run on
slightly more than five million sites. It is possible to reduce the
amount of memory usage, and we are continuing to optimize our
current implementation. On a side note, Step G6 requires the copy-
ing of an OpenGL texture to a pixel buffer object for CUDA to use.
This results in a bigger memory footprint. Should it be possible to
read OpenGL textures directly with CUDA, our program would run
with a smaller memory footprint.

7 Concluding Remarks

In this paper, we propose a new algorithm to compute Delaunay tri-
angulations in continuous space using the GPU and CPU together.
Although previous researches use the GPU to compute discrete
Voronoi diagrams, it is not a trivial task to derive a Delaunay tri-
angulation in continuous space from a discrete Voronoi diagram.
This work addresses all the problems and successfully implements
an algorithm that can run faster than the best Delaunay triangula-
tion program for a large number of uniformly distributed sites. We
have also proven the correctness of our algorithm. This algorithm
demonstrates a new direction in using the GPU (with the help of
the CPU) to solve geometry problems in continuous space, and it
serves to challenge investigations of such an approach on other ge-
ometry problems. Though the speedup is yet to be as exciting as
that of the traditional parallel computation [Kohout et al. 2005],
our approach here remains fundamentally sequential in that it runs

on a single (inexpensive) machine. Thus, it may not be appropri-
ate to compare our algorithm to the traditional parallel ones. On
the other hand, there remains possible work to further improve our
implementation. For example, one can consider the possibility of
utilizing atomic operations in CUDA to better realize some parts
that are currently performed by the CPU.

Acknowledgements

The authors would like to thank Herbert Edelsbrunner for contribut-
ing the major ideas in the proof of correction. They would also like
to thank anonymous reviewers for their comments to improve the
presentation of the paper. This research is supported by National
University of Singapore under the grant R-252-000-254-112.

References

AURENHAMMER, F. 1991. Voronoi diagrams—a survey of a fun-
damental geometric data structure. ACM Computing Surveys 23,
3, 345–405.

BLELLOCH, G. E. 1990. Prefix sums and their applications. Tech.
Rep. CMU-CS-90-190, School of Computer Science, Carnegie
Mellon University, Nov.

DENNY, M. O. 2003. Algorithmic geometry via graphics hard-
ware. PhD thesis, Universität des Saarlandes.

FISCHER, I., AND GOTSMAN, C. 2006. Fast approximation
of high order Voronoi diagrams and distance transforms on the
GPU. Journal of Graphics Tools 11, 4, 39–60.

FORTUNE, S. 1992. Voronoi diagrams and Delaunay triangu-
lations. In Computing in Euclidean Geometry, D.-Z. Du and
F. Hwang, Eds., vol. 1 of Lecture Notes Series on Computing.
World Scientific, Singapore, 163–172.

GRAHAM, R. L. 1972. An efficient algorithm for determining the
convex hull of a finite planar set. Information Processing Letters
1, 4, 132–133.

HOFF III, K. E., CULVER, T., KEYSER, J., LIN, M., AND

MANOCHA, D. 1999. Fast computation of generalized Voronoi
diagrams using graphics hardware. In Proceedings of ACM SIG-
GRAPH 99, ACM Press / ACM SIGGRAPH, New York, 277–
286. Computer Graphics Proceedings, Annual Conference Se-
ries, ACM.

KANG, D.-S., KIM, Y.-J., AND SHIN, B.-S. 2006. Efficient large-
scale terrain rendering method for real-world game simulation.
In Edutainment, 597–605.

KOHOUT, J., KOLINGEROVÁ, I., AND ŽÁRA, J. 2005. Parallel
Delaunay triangulation in E2 and E3 for computers with shared
memory. Parallel Computing 31, 5, 491–522.

LANCTOT, M., SUN, N. N. M., AND VERBRUGGE, C. 2006.
Path-finding for large scale multiplayer computer games. In Pro-
ceedings of the Second North American Game-On Conference.

MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD,
M. J. 2003. Cg: a system for programming graphics hardware in
a C-like language. ACM Transactions on Graphics 22, 3, 896–
907.

NVIDIA, 2007. NVIDIA CUDA compute unified device ar-
chitecture programming guide, Jan. http://developer.

nvidia.com/cuda.

96

RONG, G., AND TAN, T.-S. 2006. Jump flooding in GPU with
applications to Voronoi diagram and distance transform. In
Proceedings of the Symposium on Interactive 3D Graphics and
Games, ACM Press, 109–116.

RONG, G., AND TAN, T.-S. 2007. Variants of jump flooding algo-
rithm for computing discrete Voronoi diagrams. In Proceedings
of the 4th International Symposium on Voronoi Diagrams in Sci-
ence and Engineering (ISVD’07), 176–181.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D quality
mesh generator and Delaunay triangulator. In Applied Compu-
tational Geometry: Towards Geometric Engineering, M. C. Lin
and D. Manocha, Eds., vol. 1148 of Lecture Notes in Computer
Science. Springer-Verlag, 203–222. See also http://www.

cs.cmu.edu/˜quake/triangle.html.

SU, P., AND DRYSDALE, R. L. S. 1995. A comparison of se-
quential Delaunay triangulation algorithms. In Symposium on
Computational Geometry, 61–70.

YAMAMOTO, O. 2004. Fast computation of 3-dimensional convex
hulls using graphics hardware. In Proceedings of International
Symposium on Voronoi Diagrams in Science and Engineering,
179–190.

97

98

