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Abstract 

This study is motivated to explore the similarity among six types of scholarly networks 
aggregated at the institution level, including bibliographic coupling networks, citation 
networks, co-citation networks, topical networks, coauthorship networks, and co-word 
networks. Cosine distance is chosen to measure the similarities among the six networks. 
We find that topical networks and coauthorship networks have the lowest similarity; co-
citation networks and citation networks have high similarity; bibliographic coupling 
networks and co-citation networks have high similarity; and co-word networks and 
topical networks have high similarity. In addition, through multidimensional scaling, two 
dimensions can be identified among the six networks: Dimension 1 can be interpreted as 
“citation-based vs. non-citation-based”, and Dimension 2 can be interpreted as “social vs. 
cognitive”. We recommend the use of hybrid or heterogeneous networks to study 
research interaction and scholarly communications.  

Introduction 

In recent years, we have witnessed a growing trend in the study of various types of 
scholarly networks, wherein a node usually denotes an academic entity, such as a paper, a 
journal, or an author, and a link usually denotes relationships such as citation, 
coauthorship, co-citation, bibliographic coupling, or co-word. Through scholarly network 
analysis, scientists and policy makers have gained unprecedented insights into the 
interaction of these research aggregates. Network-based bibliometric study in general can 
be presented in a three-dimensional framework that includes approaches, networks types, 
and aggregation levels (Figure 1). 
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Figure 1. A 3-D presentation of network-based bibliometric studies 

Approaches. The popularity of network studies, influenced by social studies of human 
interactions, was accelerated by the discovery of small-world and scale-free properties 
and enriched by various macro-level statistics, meso-level clustering techniques, and 
micro-level indicators. Approaches that scholars have used to examine scholarly 
networks can fit into three categories: macro-level statistics, meso-level techniques, and 
micro-level indicators. Macro-level statistics are useful in identifying the global structural 
features of networks. Meso-level approaches focus on the behavior of a group of actors, 
where various clustering techniques can be classified into this category. Micro-level 
indicators are useful in understanding individual node’s power, stratification, ranking, 
and inequality in social structures (Wasserman & Faust, 1994).  

Network types. In addition to the different approaches, the interaction of research 
aggregates can be explored from different types of scholarly networks. Each type of 
scholarly network has its own use and can bring a range of perspectives to the study of 
research interactions and scholarly communications. For example, social networks such 
as coauthorship networks focus on finding patterns of contacts or interactions between 
social actors. Similarity-based networks such as co-citation networks, bibliographic 
coupling networks, and co-word networks focus on identifying research topics or 
disciplines. In citation networks, each node is a piece of knowledge and a link denotes the 
knowledge flow.  

Aggregation levels. In these network types mentioned above, an article is usually a 
single research unit that can be aggregated into several higher levels, for instance, the 
author unit, the journal unit, the institution unit, and the field unit. Through studies of 
different research aggregates, multiple focus lenses have been provided that allow us to 
zoom in and gain a concrete and detailed perspective on research interaction, while 
zooming out allows us to obtain a holistic and integrated view of the interacting 
institutions and disciplines. Previous efforts on scholarly network analyses have mainly 
emphasized lower research aggregates such as papers, authors, and journals. The findings 
from higher-level analyses, however, can provide richer contexts to study scholarly 



communications. For example, institutional scholarly networks analysis provides an 
opportunity to combine mappings from social, geographical, and cognitive perspectives.  

Previous network-based bibliometric studies usually chose one type of network at one 
aggregation level (e.g., author co-citation network) and used one approach (e.g., micro-
level) to address certain research questions. The choice of network type can sometimes be 
inconsistent, and thus problematic. Boyack and Klavans (2010) pointed out that “[C]o-
citation analysis was adopted as the de facto standard in the 1970s, and has enjoyed that 
position of preference ever since. There has been a recent resurgence in the use of 
bibliographic coupling that is challenging the historical preference for co-citation analysis” 
(p. 2390). This study helps provide a solution by identifying the similarity among six 
types of scholarly networks aggregated at the institution level, including bibliographic 
coupling networks, citation networks, co-citation networks, topical networks, 
coauthorship networks, and co-word networks. The results of this study can provide a 
better understanding of scholarly networks and contribute to social and cognitive studies 
of institution interactions.  

Literature review 

Scholarly networks: approaches, network types, and aggregation levels 

In bibliometrics, scholarly networks have been largely explored at meso- and micro-
levels. Bibliometricians and scientometricians have been dedicated to providing more 
accurate clustering and ranking approaches. Scholars working on meso-level scholarly 
network analysis have applied various clustering techniques to identify topics or map the 
backbone of science. Those methods include multidimensional scaling (e.g., White & 
McCain, 1998), k-means (e.g., Yan, Ding, & Jacob, 2012), and modularity-based 
clustering techniques (e.g., Van Eck, Waltman, Dekker, & Van den Berg, 2010). At the 
micro-level, scholars are seeking for more fine-grained bibliometric indicators to evaluate 
research progress. Simple citation counting has served as a formal instrument for 
quantitative scientific evaluation for several decades. Although it is easy to comprehend 
and implement, this tool does not take into account the linking structure of citing journals, 
citing authors, or citing articles. Noticing such problems, scholars have proposed various 
network-based bibliometric indicators that are able to consider the source of citation 
endorsement, such as Y-factor (Bollen, Rodriguez, & Van de Sompel, 2006), CiteRank 
(Walker, Xie, Yan, & Maslov, 2007), Eigenfactor (West, Bergstrom, & Bergstrom, 2010), 
and P-Rank (Yan, Ding, & Sugimoto, 2011).   

Along with real connections (e.g., citation and coauthorship connections), some scholarly 
networks are constructed based on similarity connections. Compared to real connections, 
similarity-based connections are artificially made, such as the number of times two 
authors were co-cited, or the number of times two words co-occurred. Co-occurrence 



networks are generally used to identify the research fields and study interdisciplinarities. 
Examples of co-occurrence networks are author co-citations networks (White & McCain, 
1998), paper co-citation networks (Small, 1973), journal co-citation networks (Ding, 
Chowdhury, & Foo, 2000), and co-word relations (Milojević, Sugimoto, Yan, & Ding, 
2011). As studies on these scholarly networks have habitually used only one type of 
network, their findings are discrete and cannot be used to answer a broader spectrum of 
questions regarding scholarly interactions. 

In regards to aggregation levels, papers are the basic research unit, which can be 
aggregated into several higher research units, such as author unit, journal unit, institution 
unit, or country unit. At the paper level, scholarly networks usually utilize PageRank or 
its variants to differentiate the weight of citations according to the provenance of citation 
endorsements (e.g., Chen, Xie, Maslov, & Render, 2007; Ma, Guan, & Zhao, 2008; 
Waltman, Yan, & Van Eck, 2011). At the author level, Radicchi, Fortunato, Markines, 
and Vespignani (2009) constructed an author citation network to differentiate the 
scientific credits of authors based on the status of their citing authors. Attempts have also 
been made to differentiate popular and prestigious authors in coauthorship networks 
(Ding & Cronin, 2011; Yan & Ding, 2011). Journal citation networks are often employed 
to capture knowledge diffusion among research domains. The underlying assumption of 
indicators used in journal citation networks (such as Eigenfactor, Y-Factor, and SCImago 
Journal Rank Indicator) is that a journal is said to be prestigious if it is cited by other 
prestigious journals. Higher-level research aggregates have also been explored in recent 
years. For example, Yan and Sugimoto (2011) formulated a linear regression model to 
study the factors associated with institutional citation behaviors.  

Hybrid and heterogeneous networks 

There is a current trend in bibliometrics to use hybrid approaches in identifying research 
topics. Liu, Yu, Janssens, Glanzel, Moreau, and De Moor (2010) presented a framework 
of hybrid clustering to combine lexical and citation data for journal analysis. Zitt, Lelu, 
and Bassecoulard (2011) examined the convergence of two thematic mapping approaches, 
citation-based and word-based. They found these two approaches yield quite different 
outcomes and cannot be substituted with each other. Boyack and Klavans (2010) 
examined several types of scholarly networks, including a co-citation network, a 
bibliographic coupling network, and a citation network, in the interest of selecting the 
network that can best represent the research front in biomedicine. They used within-
cluster textual coherence and grant-to-article linkage indexed by MEDLINE as accuracy 
measurements, and found the bibliographic coupling-based citation-text hybrid approach, 
which couples both references and words from title/abstract, outperforms other 
approaches. Janssens, Glänzel, and De Moor (2008) proposed a novel hybrid approach 
that integrates two types of information, citation (in the form of a term-by-document 
matrix) and text (in the form of a cited_references-by-document matrix), through the use 



of Fisher’s inverse chi-square method. This method can effectively combine matrices 
with different distributional characteristics. They found that the hybrid approach 
outperforms the text-only approaches by successfully assigning papers into correct 
clusters.  

Hybrid approaches usually couple different types of networks in an intuitive way, without 
consideration of edge semantics. In addition to the efforts made on hybrid approaches, 
scholars have constructed heterogeneous scholarly networks that can incorporate 
different academic entities while keeping edge semantics. The study of heterogeneous 
networks has evolved from bi-typed networks (e.g., Zhou, Orshanskiy, Zha, & Giles, 
2007; Sun, Yu, & Han, 2009; Sayyadi & Getoor, 2009; Yan, Ding, & Sugimoto, 2011) to 
star-typed heterogeneous networks (e.g., Sun, Barber, Gupta, Aggarwal, & Han, 2011). 
The co-ranking model (Zhou et al., 2007) coupled two networks, a coauthorship network 
and a paper citation network. FutureRank (Sayyadi & Getoor, 2009) used coauthorship 
and citation networks to predict future citations. P-Rank (Yan, Ding, & Sugimoto, 2011) 
differentiated the weight of each citation based on its citing papers, citing journal, and 
citing authors through a citation network and two authorship networks. Sun et al. (2011) 
defined a schema for bibliographic networks that contains four academic entities (paper, 
author, topic, and venues) and four relationships (citation, collaboration, publication, and 
mentioning). This schema can be used to predict coauthor relationships and to rank 
academic entities.  

While the hybrid approach furnishes a sound starting point for ongoing studies on 
scholarly networks, simply assembling different networks may cause unexpected 
problems, as we are unaware of how different scholarly networks relate to each other. 
This study is therefore motivated to examine the similarity of six different scholarly 
networks and aims to advance the scholarship of scholarly network analyses.  

Data 

The dataset used in this analysis was drawn from all documents in the 59 journals 
indexed in the 2008 version of the Journal Citation Reports (JCR) under the Information 
Science & Library Science category2.  All document types published within these 
journals from January 1965 to February 2010 were downloaded for analysis3. 

Data were processed in several steps. The first step was to filter the dataset in order to 
create a local citation network between institutions.  The second step involved identifying 
unique institution names from the affiliation data (see Yan and Sugimoto, 2011, for a 
detailed description of data processing).  
                                                            
2 There are 61 journals categorized as Information Science & Library Science in 2008; two journals written 
in foreign languages were excluded, PROF INFORM and Z BIBL BIBL, making the total number of 
journals in the data set 59. 
3 See data and visualizations at http://info.slis.indiana.edu/~eyan/papers/citation/ 



The dataset was then divided into four subsets based on the citing papers’ year of 
publication. The latest three time periods are selected. Time span is longer for the first 
period as the first years provided insufficient data to form comparable networks. Table 1 
shows the size of institution citation networks and paper citation networks.  

Institution collaboration (coauthor) networks, bibliographic coupling networks 
(BGcoupling), co-citation networks, co-word networks, and topical networks were 
constructed using the same vertex list. 

Table 1. Size of institution citation networks 

Time 
Size of institution 
citation networks 

Size of paper citation 
networks 

1991-2000 2,906*2,906 9,750*9,750 
2001-2005 3,010*3,010 9,280*9,280 
2006-2010 3,783*3,783 10,998*10,998 

The construction of citation and coauthorship networks 

The dataset consists of documents with at least one author affiliation that had been cited 
by another document (containing author affiliations) within the dataset.  Citation counts 
between documents were calculated, using the concept of “internal citation”.  That is, the 
number of times an article has been cited by other articles in the network (but not in the 
whole Web of Science database). An operationalized procedure is illustrated in Figure 2. 

First, two basic matrices are constructed. One is the institution authorship network (W): 
Wij=1 if institution j wrote paper i, and 0 otherwise. The other is the paper citation 
network (C): Cij=1 if paper j is cited by paper i, and 0 otherwise. Based on the matrix 
manipulation rule, institution citation network can then be obtained by W’*C*W, and 
institution coauthorship network can be obtained by W’*W. 



 

Figure 2. An illustration of the construction of citation and coauthorship networks 

For articles with multiple authors and multiple affiliations, each unique affiliation pair 
was calculated.  For example, given citing article A with three affiliations (inst_a, inst_b, 
and inst_c), three coauthorship relations are formed: inst_a-inst_b, inst_a-inst_c, and 
inst_b-inst_c. The coauthorship networks are then constructed based on these coauthor 
and citation relations. If A cites article B which has two affiliations (inst_b and inst_d), 
then the following six citation links are formed: inst_a-inst_b, inst_a-inst_d, inst_b-inst_b, 
inst_b-inst_d, inst_c-inst_b, and inst_c-inst_d. The citation networks are subsequently 
constructed based on these coauthor and citation relations. Similar to the approach of 
Boyack and Klavans (2010), these citation networks are then concatenated with their 
transposed networks, form symmetric networks. 

The construction of co-citation and bibliographic coupling networks 

The construction of co-citation and bibliographic coupling networks is also based on the 
basic networks C and W. First, two intermediate matrices are produced. Aij=1 if 
institution j is cited by paper i, and 0 otherwise. Bij=1 if paper j is cited by institution i, 
and 0 otherwise. Institution co-citation network is then A’*A, and institution 
bibliographic coupling network is B*B’. The procedure is illustrated in Figure 3. 



 

Figure 3. An illustration of the construction of co-citation and bibliographic coupling 
networks 

The construction of co-word networks 

The construction of co-word networks uses the basic matrices W and papers_title-words 
adjacency matrix T. In T, Tij=1 if paper i contains title word j, and 0 otherwise4. Dij=1 if 
institution i contains title word j, and 0 otherwise (note that D is also a binary matrix). 
Institution co-word network is then D*D’. The procedure is illustrated in Figure 4. 

 

Figure 4. An illustration of the construction of co-word networks 

The final treatment for coauthor networks, bibliographic coupling networks, co-citation 
networks, citation networks, and co-word networks is to screen out those links that are 
more likely to be random, as exemplified by Jarneving (2005). Random links were 
excluded by eliminating links whose weight is one.  

The construction of topical networks 

In order to quantify the topic similarity between institutions, the Author-Conference-
Topic (ACT) Model (Tang, Zhang, Yao, Li, Zhang, & Su, 2008) was used. The 
underlying idea of the ACT Model is that if two articles share more title (or abstract) 
words, they have a higher probability of being on the same research topic. This can also 

                                                            
4 A stop word list is used at http://ella.slis.indiana.edu/~eyan/papers/stoplist2.txt 



be extended to institutions, in that if two institutions publish articles with similar title 
words, they are more likely to be in the same research topic. The number of topics was 
set at ten, and thus, each institution received a topic probability distribution: Ti = (t1, t2,…, 
t10), for institution i. A threshold is set up to replace those probabilities that fall below the 
average 0.1 (1/10) to 0; by doing so, the insignificant probabilities will not be counted 
and will thus not add noise to the similarity calculation. The topic similarity between two 
institutions can be calculated using cosine similarity. The cosine similarity between two 
institutions i and j is given by:  
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Sij is then the edge value between institution i and institution j in the topical network. The 
resulting network is further dichotomized by only including those lines that have weight 
higher than 0.80. A simple weighting system was applied: for line values between 0.8 and 
0.9, their values were set to 1 and for line values between 0.9 and 1, their values were set 
to 2. 

Methods 

Clustering and mapping technique 

VOSviewer clustering technique (Waltman, Van Eck, & Noyons, 2010) is selected. It is 
developed based on Clauset, Newman, and Moore’s (2004) algorithm for weighted 
networks. This algorithm incorporated modularity, a measurement proposed by Newman 
and Girvan (2004) to evaluate the community structures.  

The advantage of VOSviewer clustering technique is that it unifies mapping and 
clustering approaches by solving the issue of minimizing: 





ji

ij
ji

ijijn ddSxxV 2
1 ),...(                                         (2) 

where 
ji

ij
ij kk

mA
S

2
  (m denotes the total number of links in the network; ki is the degree 

of a vertex i in a weighted network). dij has two options: for mapping, dij denotes the 
distance between nodes i and j in a p-dimensional 

map: 



p

k
ikikjiij xxxxd

1

2)(  ; for clustering, 











ji

ji

ij xx

xx
d

 if     /1

 if         0


 where 

γ is called the resolution parameter. 

Waltman, Van Eck, and Noyons (2010) have shown that minimizing V is equivalent to 
maximizing the modularity for weighted networks. It can be found that modularity for 



weighted networks is a special case when the resolution parameter γ and the 
weights wij are set equal to one. 

Distance measurement 

Cosine distance is chosen as it is a standard inquiry into the distance between two 
frequency vectors. Cosine distance is calculated based on cosine similarity (formula (1)). 
The way of calculating the cosine distance between two matrices is to transform the two 
matrices into two long vectors and to calculate the cosine distance using those vectors 
(transform the m-by-m matrix into m*m-by-1 vector). For example, the cosine distance 
between two matrices BGcoupling3783*3783 and Citation3783*3783 is 1-cosine 
(BGcoupling14311089*1, Citation14311089*1).  

Results 

A case study of 20 institutions 

Clustering results 

Network comparisons were conducted at two levels. We first chose 20 most cited 
institutions and observed what clusters they were grouped into and how they were 
visualized in a two-dimensional map. We then used cosine distance to calculate the 
network similarities for the whole networks.  

Table 2 shows the number of links, total number of link weights, network density, 
number of clusters, and size of largest clusters for the six types of scholarly networks 
under the three time periods. The features mentioned above provide basic information for 
network comparisons.  

Table 2. Basic network characteristics 
  No. of links Sum of link 

weights 
Density No. of clusters Size of the 

largest cluster 

1991-
2000 

BGcoupling 20,179 132,187 0.0048 51 285 

Citation 3,512 14,913 0.0008 108 116 

Co-citation 14,330 104,921 0.0034 48 181 

Topic 323,113 548,842 0.0765 -5 - 

Coauthor 302 788 0.0001 98 49 

Co-word 305,104 1,247,191 0.0723 - - 

2001-
2005 

BGcoupling 26,170 196,282 0.0058 44 262 

Citation 4,882 19,434 0.0011 44 136 

Co-citation 18,136 118,017 0.0040 42 216 

                                                            
5 Number of clusters and size of the largest cluster were only calculated for co-word and topical networks 
in 2006-2010. 



Topic 356,125 609,095 0.0786 - - 

Coauthor 530 1,451 0.0001 102 44 

Co-word 437,401 1,908,021 0.0966 - - 

2006-
2010 

BGcoupling 62,263 397,381 0.0087 54 518 

Citation 7,970 29,152 0.0011 58 218 

Co-citation 30,027 219,808 0.0042 44 361 

Topic 576,065 1,009,857 0.0805 25 522 

Coauthor 785 2,225 0.0001 112 105 

Co-word 835,198 3,769,316 0.1168 272 77 

Co-word networks have the highest density and number of links, followed by topical 
networks, bibliographic coupling networks, co-citation networks, and citation networks. 
Coauthorship networks have the lowest density and number of links, where the density is 
only a tenth of the co-citation networks and a hundredth of the topical networks, 
suggesting that real social connections are more difficult to establish than similarity 
approximations. This also shows that author level collaborations were largely made 
within institutions, in that authors are more inclined to collaborate with other authors who 
are collocated, making inter-institutional collaborations less common. 

Densities of the networks also affect the clustering results. The number of clusters for 
bibliographic coupling networks, citation networks, and co-citation networks are around 
50, and there are more than 100 clusters for coauthorship networks. Since the same 
resolution parameter γ was chosen, the higher number of clusters indicates the existence 
of quite a few loosely connected and locally situated sub-networks. The results are 
suggestively desirable, as Dunbar (1998) predicted that 150 is roughly the upper limit of 
a well-functioning human community. Other studies also found that smaller communities 
are desirable (Allen, 2004; Leskovec, Lang, Dasgupta, & Mahoney, 2008). Leskovec et al. 
(2008) found that communities of size beyond 100 become less community-like, “with a 
roughly inverse relationship between community size and optimal community quality” (p. 
1). By comparison, denser networks, such as topical networks, exhibit more generic 
characteristics and thus yield fewer clusters.  

Table 3 lists the top 20 institutions based on the number of citations during 2006-2010 (a 
detailed calculation can be found in Yan and Sugimoto, 2011). The numbers in the third 
to sixth columns are cluster IDs of each institution calculated through VOSviwer 
clustering technique (co-word and topical networks were not visualized due to their 
densities).  

Table 3. Clustering results of top institutions 

Idx Institution name BGcoupling Citation 
Co-

citation 
Coauthor 

1 GEORGIA STATE UNIV,ATLANTA 4 29 4 20 



2 HUNGARIAN ACAD SCI,HUNGARY 1 1 2 60 

3 UNIV GEORGIA,ATHENS 9 42 4 88 

4 UNIV MINNESOTA,MINNEAPOLIS 4 48 4 79 

5 UNIV WESTERN ONTARIO,CANADA 15 6 1 85 

6 INDIANA UNIV,BLOOMINGTON 7 15 33 94 

7 FLORIDA STATE UNIV,TALLAHASSEE 7 30 28 47 

8 UNIV BRITISH COLUMBIA,CANADA 5 16 4 104 

9 UNIV OKLAHOMA,NORMAN 20 11 30 13 

10 UNIV SHEFFIELD,ENGLAND 2 13 26 11 

11 UNIV MARYLAND,COLLEGE PK 7 3 28 75 

12 UNIV MICHIGAN,ANN ARBOR 9 28 27 37 

13 DREXEL UNIV,PHILADELPHIA 14 42 13 35 

14 KATHOLIEKE UNIV LEUVEN,BELGIUM 1 1 2 60 

15 UNIV S FLORIDA,TAMPA 7 43 9 57 

16 ROYAL SCH LIB & INF SCI,DENMARK 1 9 9 78 

17 LEIDEN UNIV,NETHERLANDS 1 1 2 14 

18 UNIV ARIZONA,TUCSON 18 32 1 97 

19 UNIV PITTSBURGH,PITTSBURGH 12 5 3 79 

20 UNIV ILLINOIS,URBANA 2 6 1 70 

In the bibliographic coupling network, institutions such as HUNGARIAN ACAD 
SCI,HUNGARY, ROYAL SCH LIB & INF SCI,DENMARK, KATHOLIEKE UNIV 

LEUVEN,BELGIUM, and LEIDEN UNIV,NETHERLANDS are more likely to cite the 
same articles (cluster ID: 1); in the citation network, institutions such as UNIV 
WESTERN ONTARIO,CANADA and UNIV ILLINOIS,URBANA are more likely to 
cite each other (cluster ID: 6); in the co-citation network, institutions such as GEORGIA 
STATE UNIV,ATLANTA, UNIV GEORGIA,ATHENS, UNIV BRITISH 
COLUMBIA,CANADA, and UNIV MINNESOTA,MINNEAPOLIS are more likely to be 
cited by the same articles (cluster ID: 4); in the coauthorship network, institutions such as 
UNIV MINNESOTA,MINNEAPOLIS and UNIV PITTSBURGH,PITTSBURGH 
maintain tighter collaboration relationships (cluster ID: 79).  

Mapping results 

The VOSviewer mapping technique is a weighted version of multidimensional scaling 
(Van Eck et al., 2010). The following four figures (Figure 5 to Figure 8)6 are used to 
understand how different scholarly networks would yield different mapping results about 
the 20 institutions. Numbers in circles are institutions’ index number (first column in 
Table 3). 

                                                            
6 Interactive visualizations can be found at http://info.slis.indiana.edu/~eyan/papers/citation/ 



 

Figure 5. A visualization of the bibliographic coupling network (2006-2010) 

In the bibliographic coupling network (Figure 5), three bibliometric institutions (e.g., 2, 
14, and 17) are located at the left side of the map. Information system institutions (e.g., 1, 
8, and 18) are located at the right side of the map. Institutions specializing in other topics 
in LIS, such as information retrieval (e.g., 13 and 12) and library science (e.g., 7 and 20), 
are found in the middle of the map. 



 

Figure 6. A visualization of the citation network (2006-2010) 

In the citation network (Figure 6), the three bibliometric institutions are still collocated, 
but are now found at the right side of the map. Information system institutions (e.g., 1, 3, 
and 8) are located at the left side of the map. Similar to Figure 5, ROYAL SCH LIB & 
INF SCI,DENMARK (16) is located between bibliometric institutions and information 
system institutions due to its multiple focuses on bibliometrics, information retrieval, and 
library science topics. 



 

Figure 7. A visualization of the co-citation network (2006-2010) 

In the co-citation network (Figure 7), the division between bibliometric institutions and 
other institutions becomes more evident. Bibliometric institutions (e.g., 2, 14, and 17) are 
located at the far right side of the map. Information system institutions are located at the 
upper left of the map, and library science institutions are located at the lower left of the 
map. UNIV SHEFFIELD,ENGLAND (10) is not collocated on the map with other top 
institutions. By reading its nearby institutions, we can find that the majority are British 
institutions. Geographical location can thus be a factor in institutional citation behaviors 
(Yan & Sugimoto, 2011), in that British institutions, in this case, are more likely to cite, 
co-cite, or be co-cited by other British institutions.  



 

Figure 8. A visualization of the coauthorship network (2006-2010) 

In the coauthorship network (Figure 8), more clusters can be found but the general 
locations of top institutions resemble the previous maps, in that bibliometric institutions 
are located at one side of the map and information system and library science institutions 
are located at the other side. It can be inferred that citation and collaboration relations are 
interweaving, meaning that if two institutions have collaboration relations (or citation 
relations), they are more likely to cite (or collaborate with) one another than in the 
absence of such relations. 

 Network comparisons of all institutions  

Table 4 shows the network similarities calculated based on cosine distance. Cosine 
distances range from 0 to 1, where a value of zero is an indication of two identical 
networks and a value of one is an indication of two totally dissimilar networks.  

Table 4. Network similarities measured by cosine distance 
 BGcoupling Citation Co-citation Topic Coauthor Co-word

BGcoupling - 
0.177 0.28 0.97 0.93 0.45 
0.34 0.56 0.99 0.90 0.79 
0.29 0.42 0.97 0.76 0.50 

Citation 0.17 - 0.01 0.99 0.96 0.59 

                                                            
7 The cosine distance between BGcoupling and Citation networks in 1991-2000; 0.34 is the cosine distance 
for the two networks in 2001-2005 and 0.29 is the cosine distance for the two networks in 2006-2010. 



0.34 0.19 0.98 0.84 0.61 
0.29 0.26 0.98 0.77 0.59 

Co-citation 
0.28 0.01 

- 
0.99 0.99 0.65 

0.56 0.19 0.97 0.92 0.60 
0.42 0.26 0.97 0.87 0.59 

Topic 
0.97 0.99 0.99 

- 
0.99 0.93 

0.99 0.98 0.97 0.99 0.94 
0.97 0.98 0.97 0.99 0.94 

Coauthor 
0.93 0.96 0.99 0.99 

- 
0.91 

0.90 0.84 0.92 0.99 0.87 
0.76 0.77 0.87 0.99 0.88 

Co-word 
0.45 0.59 0.65 0.93 0.91 

- 0.79 0.61 0.60 0.94 0.87 
0.50 0.59 0.59 0.94 0.88 

Based on cosine distances, bibliographic coupling networks and citation networks have 
the smallest value and thus have the highest similarity; topical networks and coauthorship 
networks have the highest value and thus have the lowest similarity.  A finding can 
therefore be made that topical networks and coauthorship networks set two boundaries 
for all six networks. Collaboration and topical adjacencies are different scholarly 
communication channel, where collaborations are social interactions, and topical 
adjacency is a form of cognitive approximation derived from knowledge recognition and 
identification.  

Discussion 

In this discussion section, we first validate the use of scholarly networks in studies of 
scholarly communications and science policy making. Second, since each scholarly 
network has its own applications, it is necessary to use appropriate distinctions to uncover 
their properties. Multidimensional scaling technique is then used to examine how 
different scholarly networks relate to each other. A recommendation is finally made that 
hybrid networks be developed as they are capable of capturing varied aspects of research 
interactions. 

The use of scholarly networks in studies of scholarly communication and science 
policy making 

Before network theories were introduced to bibliometrics, accumulative citation counting 
was widely used in scientific evaluation. In the same vein of research, several citation-
based indicators were proposed, such as Journal Impact Factor (Hirst, 1978) and h-index 
(Hirsch, 2005). The accumulative citation counting and citation-based indicators equated 
all citations to have the same weight, without consideration of the citing papers, citing 
authors, or citing journals. But this equal counting mechanism has been questioned, 
where scholars (e.g., Pinski & Narin, 1976; Cronin, 1984; Bollen, Rodriguez, & Van de 



Sompel, 2006; Yan, Ding, & Sugimoto, 2011) have argued that it is more reasonable to 
differentiate citation weights based on the source of endorsement. This tension has 
largely been alleviated by the construction of different types of scholarly networks and 
the invention of various network-based bibliometric indicators. Compared to traditional 
citation counting, scholarly networks have the advantage of considering the source of the 
citation endorsement. In this way, scholarly networks can capture the complex research 
communication and interaction more precisely. 

In addition to scientific evaluation, scholarly networks contribute to other realms of 
scholarly communication and science policy making. For instance, coauthorship 
networks provide an accurate and expedite medium, allowing scientists and scholars to 
explore various intriguing questions pertinent to scientific collaboration and research 
communities (e.g., Logan & Shaw, 1991; Luukkonen, Persson, & Sivertsen, 1992; 
Newman, 2004; Moody, 2004; Ahn, Bagrow, & Lehmann, 2010); co-citation networks, 
bibliographic coupling networks, and co-word networks have been used to identify 
research specialties, examine interdisciplinarities, and map the backbone of science (e.g., 
Kessler, 1963; Small, 1973; White & Griffith, 1981; White & McCain, 1998; Boyack, 
Klavans, & Börner, 2005; Chen, 2006); and citation networks have been used to study 
knowledge flows and find knowledge paths in science (e.g., Jaffe, Trajtenberg, & 
Henderson, 1993; Narin, Hamilton, & Olivastro, 1997; Rinia, Van Leeuwen, & Bruins, 
2001; Chen & Hicks, 2004; Mehta, Rysman, & Simcoe, 2010; Yan & Sugimoto, 2011). 

Distinctions in scholarly networks  

In an important review article on networks, Newman (2003) distinguished four categories 
for real-world networks: social networks (e.g., collaboration networks), information 
networks (e.g., citation networks), technical networks (e.g., Internet router networks), and 
biological networks (e.g., protein networks). Based on such divisions, two types of 
scholarly networks can be distinguished, social networks vs. information networks. In 
social networks such as coauthorship networks, a node is a social actor (i.e., an author), 
yet in information networks, a node is usually an artifact, such as a paper, a journal, or an 
institution. In addition to “social networks vs. information networks”, another distinction 
of “real connection-based networks vs. artificial connection-based networks” can be 
made. Coauthorship networks and citation networks are constructed based on real 
connections, whereas co-citation, bibliographic coupling, topical, and co-word networks 
are constructed based on artificial connections8, usually in the form of similarity 
measurements. These scholarly networks can also be viewed from their edge types: 
collaboration-based, citation-based, or word-based. Citation-based scholarly networks 
include citation networks, co-citation networks, and bibliographic coupling networks; 

                                                            
8   Even though in author co-citation/BGcoupling networks a node can be an author, such a node is 
considered as an aggregator of papers (see how the networks were constructed in the Method section). 



word-based scholarly networks include topical networks and co-word networks; and 
collaboration-based networks include coauthorship networks. These distinctions (citation-
based networks vs. non-citation-based networks; social networks vs. information 
networks, real connection-based networks vs. artificial connection-based networks, as 
shown in Figure 9) are helpful in understanding how different types of scholarly 
networks relate to each other. 

 

Figure 9. Viewing scholarly networks from different perspectives 

Scholarly networks similarities 

Table 5 shows the similarity rankings for each pair of networks based on cosine distance 
in the 2006-2010 period. For example, the second row in Table 5 can be read as: 
bibliographic coupling networks are most similar to citation networks, followed by co-
citation networks, co-word networks, coauthorship networks, and topical networks. The 
second column can be read as for coauthor and co-word networks, bibliographic coupling 
networks are most similar to them, and for citation, co-citation, and topical networks, 
bibliographic coupling networks are the second most similar to them. 

Table 5. Ranking of network similarities (calculations based on Cosine 
Distance) 

 BGcoupling Citation Co-citation Topic Coauthor Co-word 
BGcoupling - 1 2 5 4 3 
Citation 2 - 1 5 4 3 
Co-citation 2 1 - 5 4 3 
Topic 2 4 2 - 5 1 
Coauthor 1 2 3 5 - 4 
Co-word 1 2 2 5 4 - 

Topical networks and coauthorship networks are found here to have the lowest similarity; 
co-citation networks and citation networks have low similarities with coauthorship 
networks; co-citation networks and citation networks have high similarity; bibliographic 
coupling networks and co-citation networks have high similarity; co-word networks and 



topical networks have high similarity, and so forth. We use multidimensional scaling 
(MDS) to generalize the findings in Table 5. For MDS, the input data are cosine distances 
between networks in 2006-2010. 

 

Figure 10. A visualization of network similarities as exemplified by MDS (stress value: 
0.18) 

The two dimensions are responsible for 84 percent of total variances. Dimension 1 can be 
interpreted as “network remoteness”. Topical networks are remote from all other 
networks. Each column in Table 5 shows how remote each network is to other networks, 
where topical networks are the most dissimilar to the remaining five networks, followed 
by co-word networks and coauthorship networks. The remoteness of the topical network 
cannot be fully attributed to its density, as the co-word network is also a dense network 
but it is not as remote as the topical network. On the other hand, BGcoupling networks, 
co-citation networks, and citation networks are closer to other networks. Dimension 1 can 
also be perceived as “non-citation-based vs. citation-based” because topical networks, co-
word networks, and coauthorship networks are non-citation-based, and BGcoupling 
networks, co-citation networks, and citation networks are citation-based. Dimension 2 
can be interpreted as “social vs. cognitive” wherein “social” refers to social connections 
such as collaboration relations, and “cognitive” mainly refers to similarity of lexical 
semantics. For example, co-word and co-citation networks have been used to identify 
research fields, map the backbone of science, or portray intellectual landscapes.  

Hybrid scholarly networks 



We recommend that in order to capture varied aspects of research interactions, different 
types of scholarly networks need to be combined to form a hybrid network. Intuitively, 
three hybrid scholarly networks can be constructed. The first hybrid scholarly network 
focuses on Dimension 1 “non-citation-based vs. citation-based” in Figure 10. Two 
scholarly networks, topical networks and co-citation networks can be linearly combined, 
thus incorporate the largest variance:  

citationcotopicalcitationcotopical MMH   )1(                          (3) 

The second hybrid scholarly network focuses on Dimension 2 “social vs. cognitive” 
where two scholarly networks, coauthorship networks and co-word networks, can be 
linearly combined: 

wordcocoauthorwordcocoauthor MMH   )1(                          (4) 

The third hybrid scholarly networks focuses on both dimensions, and thus integrates all 
six scholarly networks, where a+b+c+d+e+f=1: 

topicalcitationcocitationBGcouplingwordcocoauthor fMeMdMcMbMaMH    

(5) 

In this hybrid combination, when a=b=c=d=0, f= , and e=1- , equation (5) will 
become (3); when c=d=e=f=0, a= , and b=1- , equation (5) will become (4). Equation 
(5), therefore, is able to linearly combine different types of scholarly networks in a 
flexible way. 

Janssens, Glänzel, and De Moor (2008), however, argued that the weighted linear 
combinations may “neglect different distributional characteristics of various data sources” 
(p. 612). Therefore, appropriate thresholding and/or dichotomization is required for 
networks of diverse densities. 

In addition to linear combinations, scholars have proposed other approaches to form 
hybrid scholarly networks. For example, Cao and Gao (2005) used a feature selection 
method to classify scientific papers. Their method consists of two steps: it first applied a 
content-based classification, and then iteratively updated the labeling of unknown 
documents using papers’ cited references. Janssens, Glänzel, and De Moor (2008) 
integrated a term-by-document matrix and a cited_references-by-document matrix 
through Fisher’s inverse chi-square method. Liu et al. (2010) presented a framework of 
hybrid clustering to combine lexical and citation data for journal sets analysis. Two 
approaches, clustering ensemble and kernel-fusion clustering, were utilized in their 
framework. Boyack and Klavans (2010) developed a bibliographic coupling-based 
citation-text hybrid approach that couples both references and words from titles/abstracts. 



Yan, Ding, and Jacob (2012) coupled two paper-to-paper matrices, where in the paper-to-
paper (author) matrix, a cell value denotes the number of shared authors, and in the 
paper-to-paper (word) matrix, a cell value denotes the number of shared title words. 
Through matching the two matrices, the mutual dependency of research topics and 
research communities in library and information science was uncovered.  

Conclusion 

Previous studies on scholarly networks usually chose one type of network at one 
aggregation level. But the choice of networks types can be inconsistent, and the findings 
have been discrete, and cannot therefore be generalized to address a wider spectrum of 
research questions. This study provides a solution to this problem by exploring the 
similarity among six types of scholarly networks aggregated at the institution level.  

We find that topical networks and coauthorship networks have the lowest similarity, and 
these two types of networks set two boundaries (social and cognitive) for all six networks; 
co-citation networks and citation networks have high similarity; bibliographic coupling 
networks and co-citation networks have high similarity; co-word networks and topical 
networks have high similarity, and so forth. Factors that contribute to the similarities are 
edge types (“real” connections vs. artificial connections; citation-based connections vs. 
non-citation-based connections) and network types (social networks vs. information 
networks). In addition, through MDS, two dimensions can be identified and used to 
describe the six types of scholarly networks, where Dimension 1 can be interpreted as 
“non-citation-based vs. citation-based”, and Dimension 2 can be interpreted as “social vs. 
cognitive”.   

A recommendation is made herein that hybrid scholarly networks can more 
comprehensively capture the complex research communication and interaction. The 
findings of this study indicate that future research on this topic would benefit from 
evaluating different approaches to hybrid networks or heterogeneous networks through 
the possible application of “golden standards” (such as award lists or expert judgments) 
that can help determine which approach yields more precise clustering results and useful 
information for scientific evaluations and science policy making.  
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